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Abstract. Monitoring mental fatigue is of increasing importance for
improving cognitive performance and health outcomes. Previous models
using eye-tracking data allow inference of fatigue in cognitive tasks, such
as driving, but they require us to engage in a specific cognitive task.
A model capable of estimating fatigue from eye-tracking data in natural-
viewing situations when an individual is not performing cognitive tasks
has many potential applications. Here, we collected eye-tracking data
from 18 adults as they watched video clips (simulating the situation
of watching TV programs) before and after performing cognitive tasks.
Using this data, we built a fatigue-detection model including novel fea-
ture sets and an automated feature selection method. With eye-tracking
data of individuals watching only 30-seconds worth of video, our model
could determine whether that person was fatigued with 91.0% accuracy
in 10-fold cross-validation (chance 50%). Through a comparison with a
model incorporating the feature sets used in previous studies, we showed
that our model improved the detection accuracy by up to 13.9% (from
77.1 to 91.0%).
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1 Introduction

Health monitoring in a smart environment such as adaptive workplaces and
smart houses has been increasingly recognized for its importance in improv-
ing health outcomes [1]. Especially for supporting a rapidly aging population,
research has been focused on developing technologies that help mitigate critical
situations and enable individuals to manage their own health, with the dual aim
of increasing quality of lives and reducing healthcare costs [2].

One area of an individual’s daily health status that has yet to be utilized
is mental fatigue, which refers to the feeling people might experience during or
after cognitive activities [3]. Mental fatigue is a common problem in modern
everyday life and comes at a huge public health cost [4]. It is a warning sign of
harmful accumulation of stress that can have a detrimental effect on one’s health
[5] and an important symptom in general practice due to its association with a
large number of chronic medical conditions such as cancer, Alzheimer’s disease,
and Parkinson’s disease [6].
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Previous studies for monitoring mental fatigue have primarily focused on
detecting fatigue during cognitive tasks such as driving [6–8]. Unobtrusive meth-
ods, such as those that use remote- or webcam-based eye tracking, typically
monitor changes in an individual’s pupil response, blinking behavior, and eye
movement to determine levels of fatigue during cognitive tasks [9]. Although
these methods have shown the usefulness for monitoring fatigue during a spe-
cific cognitive task that requires visual processing, no study has yet developed a
model that enables us to infer mental fatigue from eye-tracking data in natural-
viewing situations when the individual is not performing cognitive tasks. Such
a system would enable people to monitor mental fatigue in a condition close to
everyday life. Moreover, it would be used to infer fatigue induced by not only
specific cognitive visual tasks, but also various factors such as cognitive auditory
tasks, multiple cognitive tasks, or poor health [6].

In contrast, recent studies have attempted to discriminate clinical popula-
tions from eye-tracking data in natural viewing conditions [10,11]. For example,
Crabb and colleagues demonstrated that patients with neuro-degenerative eye
diseases can be separated from healthy controls by using eye-tracking data col-
lected while the patients freely watched TV movies [11]. However, there has
been no investigation on the associations of eye-tracking data in natural viewing
conditions with mental fatigue.

In this paper, we present a novel model that detects mental fatigue in natural
viewing situations in which people watched video clips such as a TV program.
More specifically, we collected eye-tracking data from 18 adults as they watched
video clips before and after they performed auditory cognitive tasks. From this
data, we extracted 181 quantitative features, categorized into six feature sets
related to oculomotor-based metrics, blinking behavior, pupil measurements,
gaze allocation, eye-movement directions, and saliency-based metrics using a
saliency model (a computational model of visual attention). Although the last
three feature sets have already been used for characterizing eye movements,
especially in natural viewing situations [10,11], they have not been used for
inferring mental fatigue. Using these features and an automated feature selection
method, we built a two-class classifier for detecting mental fatigue. With eye-
tracking data of individuals watching only 30 s worth of video, our model could
determine whether that person was fatigued or not with 91.0% accuracy in 10-
fold cross-validation (chance 50%). To make a comparison with a model based
on the existing work, we also built a model using the three feature sets related
to oculomotor-based metrics, blinking behavior, and pupil measurements used
in a previous study, where the detection accuracy was 77.1%.

2 Data Collection

To build a model for inferring mental fatigue from eye-tracking data in a nat-
ural viewing situation, we collected data while participants watched video clips
(simulating the situation of watching a TV program) before and after performing
an auditory cognitive task.
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2.1 Participants

We collected data from 20 participants (8 females, 12 males; 24–76 years;
mean± SD age 47.5 ± 20.5 years). All participants were well-rested and in good
health, as measured by self-reports, and they had normal or corrected-to-normal
vision. They were unaware of the purpose of the experiment. Written informed
consent was obtained prior to the study. Eye-tracking data from two participants
(one female, one male) were excluded from our analysis because of problems cal-
ibrating the eye tracker. Thus, our sample size was N = 18.

2.2 Experimental Design and Procedure

The experimental procedure is summarized in Fig. 1A. Participants performed a
17-minute mental calculation task designed to induce mental fatigue two times
(Fig. 1B). They were asked to take questionnaires and watch video clips prior to
and following each mental calculation task. Prior to the experiment, all partici-
pants were given oral instructions about the experiments and allowed to practice
the mental calculation task.

In regard to the questionnaires, we used numerical rating scales to measure
the participant’s current (“right now, at this moment”) perceived intensity of
feelings regarding mental and physical fatigue, sleepiness, and motivation. The
intensity was scaled from 0 to 10, with zero indicating an absence of those feelings
and 10 indicating the strongest feeling ever experienced.

To collect eye-tracking data, the participants were asked to watch video clips
approximately five minutes in length during each phase. As in previous studies
[10], they were instructed to simply “watch and enjoy the videos.”

As an auditory cognitive task to induce mental fatigue, we used a modified
version of the Paced Auditory Serial Attention Test (mPASAT) [12] (Fig. 1B).
Participants listened to a series of numbers ranging from one to nine. They were
asked to add the number they had just heard to the number they had heard
before and then to press a button whenever the sum of the two consecutive
numbers equaled ten. One phase consisted of five 3-minute on-periods and four
30-second off-periods for a total 17 min. Each number was presented every 1.5 s.
Participants were also asked to visually focus on three numbers on the display,
which randomly changed every 0.5 s. These visual numbers were intended to
distract and interfere with the primary auditory task, thereby increasing the
complexity and attentional demands of the task in order to induce further mental
fatigue.

2.3 Stimuli and Eye-Tracking Data Acquisition

To simulate the situation of watching a TV program, we used video clips made
in the same manner as previous studies that investigated how neurodevelopmen-
tal and neurodegenerative disorders affect eye movements in natural viewing
situations [10,13] (Fig. 1C).
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Fig. 1. Experimental setup: (A) overall procedure, (B) mental calculation task
(mPASAT), (C) examples of scene-shuffled video clips.

Each 5-minute phase consisted of nine scene-shuffled videos (SVs), approxi-
mately 30 s each. Between the SVs, there were 5-second off-periods for rest. The
SVs were made by assembling randomly extracted snippets from video clips. The
lengths of the snippets were determined so that they were within the range of
typical television programs [14,15]. Specifically, the lengths of the snippets were
uniformly distributed between two and four seconds, so each SV consisted of
nine to eleven snippets with no temporal gaps in between. For the original video
clips, we utilized two datasets: CRCNS-ORIG [16] and DIEM [17], consisting
of heterogeneous sources with different styles of programs that are commonly
watched on a daily basis.

The participants’ eye movements and pupil data were recorded using a nonin-
vasive infrared EMR ACTUS eye-tracking device at a sample rate of 60 Hz (nac
Image Technology Inc.; spatial resolution for eye movements and pupil diameter
less than 0.5◦ and 0.1 mm, respectively). The eye tracker was calibrated using
9-point calibration at the beginning of each recording phase.

3 Mental Fatigue Detection Model

Our model uses 30 s worth of eye-tracking data in each SV to make a decision
whether a participant is in a fatigued or non-fatigued state at that time. Thus,
we obtained 9 samples for each 5-min phase of video watching.

First, we extracted 181 features categorized into six feature sets from the
eye-tracking data that may change according to an individual’s state of mental
fatigue. Next, we built a two-class classifier for inferring mental fatigue using a
subset of the features selected by a feature selection method through recursive
evaluation and selection to avoid over-fitting (Fig. 2).

3.1 Data Preprocessing and Features

The raw eye-position data were segmented into blink, saccade, and fixation
(or smooth-pursuit) periods. First, we extracted blink periods by using eyelid
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Fig. 2. Overview of our fatigue-detection model.

occlusion of both eyes. Apart from the blink periods, artifacts detected by the
eye tracker were removed by using a linear interpolation algorithm. Finally, we
used the mean-shift clustering method in the spatio-temporal domain to identify
saccade and fixation periods [18].

We extracted six feature sets that we hypothesized would be differentially
influenced by mental fatigue from each 30-second-long SV (Fig. 2). The first three
feature sets related to oculomotor-based metrics, blinking behavior, and pupil
measurements were used in previous studies on mental fatigue during cognitive
tasks [6–8]. The other three feature sets were related to gaze allocation, eye
movement directions, and saliency-based metrics. Although these feature sets
have been used for characterizing eye movements in natural viewing conditions as
well as inferring neurodevelopmental and neurodegenerative disorders [10,11,19],
they have not been used for inferring mental fatigue.

The oculomotor-based features consisted of nine features: saccade amplitude,
saccade duration, saccade rate, inter-saccade interval (mean, standard deviation,
and coefficient of variance), saccadic mean velocity (mean and median), and fix-
ation duration. We calculated seven features related to blinking behavior: blink
duration, blink rate, blink duration per minute (the total time of all durations),
and inter-blink interval (mean, standard deviation, and coefficient of variance).
The pupil measurements were subdivided into six features related to pupil diam-
eter, constriction velocity, and amplitude of each eye, and nine features related to
the coordination of the pupil diameters of both eyes. Of these nine features, one
was computed using Pearson’s correlation coefficient. The other eight features
were extracted using the phase locking value [20], which can identify transient
synchrony over shorter time scales than Pearson’s correlations. We used the
mean and maximum values of the phase locking values with four different time
windows (5, 10, 30, 60 frames).

The fourth feature set was calculated from a time-series of gaze allocation.
We first converted gaze allocation values into radius and angle (r, φ) in a polar
coordinate system situated at the center of the display. We then defined two time
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series of gaze allocations during all periods and only during fixation periods as
(r,φ)all and (r,φ)fx, respectively. We discretized each time series with k bins of
uniform width. We set k = 8 for rall and rfx, k = 36 for φall, and k = 12 for φfx.
As features, we used the probability of each bin and entropy estimated using
these histograms and also calculated the mean and median values of rall and
rfx. In total, we obtained seventy-two features from the gaze-allocation data.

The fifth feature set related to eye-movement directions was calculated in a
similar manner to the gaze allocation features. We discretized the time series
of eye-movement directions θ during all periods and saccades periods into 12
and 36 bins of uniform width, respectively. We then computed the probability
of each bin and entropy estimated using these histograms as features. In total,
we obtained fifty features.

The sixth and final set consisted of features using a saliency model. The
saliency model was proposed as a biologically-inspired computational model of
human attention [21,22]. The saliency model computes a topographic map of
conspicuity for every location in each video frame, highlighting locations that
may attract attention in a stimulus-driven manner. We used the graph-based
visual saliency model, where conspicuity maps of six low-level features (intensity
contrast, color contrast, intensity variance, oriented edges, temporal flicker, and
motion contrast) are linearly combined and normalized to form a saliency map
[23]. Using both the saliency map and the six conspicuity maps, we obtained
4 × 7 = 28 saliency-based features in total. For more details about how to
calculate saliency-based features, please see the original papers [10,23].

3.2 Classification and Feature Selection

For a two-class classification model for detecting mental fatigue, we used support
vector machine (SVM) models [24,25] with a radial basis function kernel as
follows: K(xi,xj) = exp(−γ||xi − xj ||2). We set γ = bSVM/nf , where nf is the
number of features and bSVM is a hyper-parameter. We used the algorithm for
SVM implemented in MATLAB (MathWorks Inc., Natick, MA) and LIBSVM
toolbox [25].

To identify useful features and avoid over-fitting of the model, we performed
a feature selection through recursive evaluation and selection. One of the well-
known methods is support vector machine recursive feature elimination (SVM-
RFE) in a wrapper approach [26]. However, when the candidate feature set has
highly correlated features, the ranking criterion of SVM-RFE tends to be biased,
which would have a negative effect on the results. Our feature set contained
highly correlated features such as features about saccade duration, amplitude,
and velocity. We then used an improved SVM-RFE algorithm with a correlation
bias reduction strategy in the feature elimination procedure [27].

4 Results

We first determined whether or not the tasks succeeded in inducing men-
tal fatigue in the participants by using subjective ratings and objective
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measurements of mental fatigue that have been used in previous studies. We
then evaluated our mental fatigue detection model in terms of their average
scores after 20 iterations of 10-fold cross-validation.

4.1 Mental Fatigue After the Cognitive Tasks

We first investigated the participants’ reported mental fatigue before and after
performing the mPASAT, with subjective ratings from 0 to 10 (Fig. 3A). Com-
pared with the subjective ratings in phase 1, i.e., before engaging in the cognitive
task, 12 and 14 out of 18 participants in phases 2 and 3, respectively, reported
increased ratings of mental fatigue. We performed a repeated-measures Friedman
non-parametric ANOVA followed by Dunn’s multiple comparisons and found a
significant increase in mental fatigue from phases 1 to 3 (p < .05), but no signif-
icant difference between phases 1 and 2 or between phases 2 and 3.

We also tried to determine whether objective measurements of mental fatigue
changed after the participant performed cognitive tasks. We used pupil diam-
eters and blink behaviors, which are widely used as fatigue-related biomarkers
[6–8] as the objective measurements. One-way repeated measures ANOVA with
post hoc Bonferroni multiple comparisons were used to calculate the statistical
significance over the phases. In this analysis, we computed these measurements
by taking averages during each 5-minute phase. As a result, we found a signif-
icant decrease of pupil diameters from phase 1 to 2 and 3 (p < .05, p < .005,
respectively) for the left eye and from phase 1 to 3 (p < .005, Fig. 3B; from phase
1 to 2, p = .14) for the right eye. In regard to the blink behaviors, we also found
significant changes indicative of increased mental fatigue in duration, blink rate,
and blink duration per minute over the phases. Among them, the blink duration
per minute showed the biggest difference (η2

p = .348; from phase 1 to 2, p < .05;
from phase 1 to 3, p < .001; Fig. 3C).

Fig. 3. Changes in subjective and objective measurements for mental fatigue after per-
forming mPASAT. (A) Subjective ratings for mental fatigue on an 11-point numerical
rating scale from 0 to 10. (B), (C) Right pupil diameter and blink duration per min.
Boxes show the median, 25th, and 75th percentiles, filled symbols show outliers, and
squares represent mean values.
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Table 1. Fatigue-detection-model performance in 10-fold cross validation. Fpre: three
feature sets related to oculomotor, blinks, and pupil measurements used in the previous
studies, Fsal: saliency-based features, Femd: features related to eye movement directions,
and Fga: features related to gaze allocation.

Model Detection performance (%)

Accuracy Precision Recall F-measure

Fpre 77.1 78.6 72.9 75.6

Fpre + Fsal 80.7 79.4 83.0 81.0

Fpre + Femd 82.9 83.2 82.4 82.7

Fpre + Fga 84.7 84.6 84.9 84.7

Fpre + Fsal + Femd + Fga 91.0 91.4 90.3 90.8

Through these analyses, the results regarding the subjective and objec-
tive measurements indicate that the participants experienced increased mental
fatigue after engaging in the cognitive tasks two times, i.e., in phase 3. We thus
regarded phase 1 as a non-fatigued circumstance and phase 3 as a fatigued cir-
cumstance and proceeded to build a model that classifies the eye-tracking data
of phases 1 and 3.

4.2 Model Performance

We built a fatigue detection model to differentiate eye-tracking data before and
after performing the cognitive tasks. We used eye-tracking data of 18 participants
in phases 1 and 3. In our model, features were extracted from each 30-second SV
trial, and each phase consisted of nine SVs. Thus, the number of samples was
18 × 9 × 2 = 324.

As a result of 20 iterations of 10-fold cross-validation, our model detected
mental fatigue with 91.0% accuracy (Table 1). The feature selection process
selected 55 of the 181 features as the most discriminative for classifiers for
detecting mental fatigue and selected the features of all six groups. We also
evaluated our model by leave-one-subject-out cross-validation, where classifiers
were trained using data collected from all participants expect one and then were
tested on data of the one participant left out of the training data set. We repeated
this process for all participants, and obtained an accuracy of 88.5% accuracy.

We next investigated the contribution of the feature sets related to gaze allo-
cation, eye movement directions, and saliency predictions proposed in this study.
First, we built a model using only the three feature sets related to oculomotor-
based metrics, blink behavior, and pupil measurements used in the previous
studies. We did the feature selection and hyper-parameter optimization in the
same way as our model. The model performance was 77.1% accuracy in 10-
fold cross validation. Next, we separately added each feature set to this model.
As a result, the model accuracies increased to 84.7%, 82.9%, and 80.7% as a
result of adding gaze-location features, eye-movement direction features, and
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saliency-based features, respectively (Table 1). Therefore, we found that the
novel use of three feature sets each improved the model’s performance, and
when taken together improved the model’s performance by up to 13.9% (from
77.1 to 91.0%).

5 Conclusion

In contrast to previous studies focusing on detecting mental fatigue during cog-
nitive tasks, we aimed to develop a system enabling us to infer mental fatigue in
natural-viewing situations when an individual is not performing cognitive tasks.
To this end, we devised a fatigue-detection model including novel feature sets
and an automated feature selection method. Through experimentation with 18
adults, we showed that our model could detect mental fatigue with an accuracy
of 91.0% in 10-fold cross-validation. One of the limitations in this study is that
the study took place in a lab setting. We need to investigate whether our model
can infer mental fatigue induced by everyday tasks. In addition, there is a pos-
sibility that the controlled setting might influence the way people watch video
clips. Thus, future work will include an in-situ study to test our model in more
realistic situations.
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