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Abstract. Dealing with missing data is a crucial step in the preprocess-
ing stage of most data mining projects. Especially in healthcare contexts,
addressing this issue is fundamental, since it may result in keeping or
loosing critical patient information that can help physicians in their daily
clinical practice. Over the years, many researchers have addressed this
problem, basing their approach on the implementation of a set of imputa-
tion techniques and evaluating their performance in classification tasks.
These classic approaches, however, do not consider some intrinsic data
information that could be related to the performance of those algorithms,
such as features’ distribution. Establishing a correspondence between
data distribution and the most proper imputation method avoids the
need of repeatedly testing a large set of methods, since it provides a
heuristic on the best choice for each feature in the study. The goal of this
work is to understand the relationship between data distribution and
the performance of well-known imputation techniques, such as Mean,
Decision Trees, k-Nearest Neighbours, Self-Organizing Maps and Sup-
port Vector Machines imputation. Several publicly available datasets,
all complete, were selected attending to several characteristics such as
number of distributions, features and instances. Missing values were arti-
ficially generated at different percentages and the imputation methods
were evaluated in terms of Predictive and Distributional Accuracy. Our
findings show that there is a relationship between features’ distribution
and algorithms’ performance, although some factors must be taken into
account, such as the number of features per distribution and the missing
rate at state.
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1 Introduction

In healthcare classification scenarios, the main goal is to provide strong classifi-
cation results, whereas imputation is considered a necessary pre-processing step
to achieve such goal [4]. Therefore, imputation is often evaluated using the clas-
sification error (CE): the method that minimizes the CE is considered the best.
The use of CE is however controversial, in the sense that the imputation method
that minimizes the classification error might produce biased estimates and affect
the original data distribution, especially if the same method is used for all dif-
ferent types of features’ distributions [11]. Furthermore, using the same method
for all features raises two main issues: first, all techniques must be implemented
for all features, which increases the number of necessary simulations and con-
sequently computational cost; secondly, imputation is performed based on the
assumption that the same technique should perform well for the great major-
ity of features, which could be an over assumption, since different features may
benefit the most from different imputation techniques, particularly if different
missing rates are taken into account. Studying the influence of data distrib-
ution in imputation provides a heuristic on the most appropriate imputation
strategy for each feature in the study, avoiding the need of testing a large set
of methods.

In this work, we aim to assess which imputation techniques can efficiently
reproduce the true, original values in data, without causing a distortion in their
distribution, which can be evaluated by Predictive Accuracy (PAC) and Dis-
tributional Accuracy (DAC) metrics, respectively. Furthermore, we intend to
investigate whether there is a relationship between the imputation methods and
a particular distribution. Our study focuses on the best techniques for data impu-
tation across several different distributions, in terms PAC and DAC, rather than
CE. To achieve this goal, we have selected several complete healthcare datasets
comprising features with different data distributions, and artificially generated
missing data in all of them at several rates (5, 10, 15, 20 and 25%). Then the
missing values are imputed with the methods most commonly used in related
works: Mean imputation, Decision Trees (DT), k-Nearest Neighbours (KNN),
Self-Organizing Maps (SOM) and Support Vector Machines (SVM) imputation.
Our experiments show that the imputation methods are in fact influenced by
data distribution, with the exception of SVM, that does not seem to be affected.
Aside for SVM, that achieves the best PAC and DAC results for all distribu-
tions, SOM is overall winner in both metrics. However, the choice of the best
imputation method depends also on the number of features per distribution and
the missing rate at state.

The remainder of the manuscript is organized as follows: Sect.2 presents
some works that studied imputation for classification purposes. Sections 3 and
4 describe the setup used in this work and report on the experimental results,
while Sect.5 presents the conclusions and suggests some directions for future
work.
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2 Related Work

Addressing missing data to increase data quality for classification purposes is
a standard procedure in a plethora of contexts, including healthcare. Nanni
et al. [8] compared several imputation approaches (including Mean and KNN
imputation) by randomly generating missing data at several rates, and used
classification-related metrics such as accuracy (1-CE) and Area Under the ROC
Curve (AUC) to evaluate the quality of imputation. Kang [7] also generated
missing values in complete datasets, at several missing ratios. They compare
their approach with other well-known imputation methods (also including Mean
imputation and KNN), and the results were evaluated using accuracy. Aisha et
al. [1] study the effects of several imputation techniques (including Mean, KNN
and SVM imputation) on Bayesian Network classification of datasets with miss-
ing data, and evaluate the results also using accuracy. Garcia-Laencina et al.
[4] studied the influence of imputation (including KNN and SOM imputation)
on the classification accuracy, using synthetic and real datasets. In this work,
the authors start by measuring the quality of imputation using PAC (Pearson’s
coefficient and mean squared error) and DAC (Kolmogorov-Smirnov distance)
metrics. However, this analysis in only performed for KNN imputation, and
immediately discarded in favor of CE metrics, since the main objective is to
solve a classification problem. Rahman and Islam [10] present two imputation
techniques based on DT and compare them in terms of their predictive accu-
racy (PAC), using the Pearson’s correlation coefficient, root mean squared error
(RMSE) and mean absolute error (MAE) as performance indicators. DAC met-
rics are, however, completely disregarded. In what concerns healthcare contexts
in particular, Garcia-Laencina et al. [3] also compared the performance of stan-
dard imputation algorithms (including Mean and KNN imputation) on the sur-
vival prediction of breast cancer patients. The results were evaluated in terms
of sensitivity, specificity, accuracy and AUC. Rahman and Davis [9] studied the
influence of Mean, DT, KNN and SVM imputation on the survival prediction of
cardiovascular patients, evaluating the quality of imputation also classification-
related metrics (sensitivity, specificity and accuracy). Jerez et al. [6] use imputa-
tion (including Mean, KNN and SOM) to predict breast cancer recurrence in a
real incomplete dataset, evaluating the results in terms of AUC. In all the previ-
ously mentioned works, imputation techniques are frequently evaluated in terms
of CE, and the effects they may have in data distribution are ignored. Further-
more, all features are imputed with the same technique, without considering the
possibility that some techniques may perform differently for different features.
We herein conduct a study on the influence of data distribution in missing data
imputation, aiming to assess how different imputation techniques perform across
different feature distributions, which to the extent of our knowledge, as never
been performed.
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3 Methodology

This works comprised four main stages: Data Collection, Missing Data Genera-
tion, Data Imputation and Evaluation Metrics.

3.1 Data Collection

The first stage of this work consisted in choosing several publicly available
datasets, all without missing values: Bupa Liver Disorders Dataset (bupa), Breast
Tissue Dataset (breast), Cardiotocography Dataset (ctg), Haberman’s Survival
Dataset (hsd), Wisconsin Diagnostic Breast Cancer Dataset (wdbc), Parkinsons
Dataset (parkinson) and Lower Back Pain Symptoms Dataset (backpain). All
datasets were collected from UCI Machine Learning Repository (http://archive.
ics.uci.edu/ml), except for the latter, retrieved from Kaggle Datasets (https://
www.kaggle.com/datasets). We have chosen only complete datasets composed
exclusively of continuous features so that both the influence of different data
distributions and missing rates could more efficiently studied. Table 1 summa-
rizes the datasets’ characteristics in what concerns their context, sample size,
number of features and number of different distributions comprised in the data.
In terms of data distributions, these datasets are somewhat heterogeneous, with
the most common distributions being generalized extreme value (all 7 datasets),
generalized pareto (6 datasets) and gamma distributions (4 datasets). We have
also included the ratio of variables per distribution for each dataset (Ratio).
Ratio is estimated as o offeatures "oy that a greater weight is given to the

. R 7 No. of distributions
number of distributions comprised in the dataset.

3.2 Missing Data Generation

Before generating missing values, each dataset’s features were fitted against sev-
eral standard continuous distributions and the distribution of each feature is
saved for posterior analysis when assessing the imputation results (Tablel).
Missing data was randomly inserted at several rates (5, 10, 15, 20 and 25%)
for each feature in the dataset. Therefore, for each of the datasets, 5 different
versions exist, one for each considered missing percentage.

3.3 Data Imputation

In this section, each imputation technique is briefly explained, with particular
emphasis on the implementation details. Mean imputation is the most com-
mon of imputation techniques [5]. For continuous data, the missing values are
replaced with the mean of the observed cases on each respective feature. In k-
Nearest Neighbours (KNN), the incomplete patterns are imputed according
to the values of their k closest neighbours on the missing features: mode for
discrete data and the mean or a weighted average for continuous data [6], which
is used in this work. Our implementation considers a range of k from 1 to 20
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Table 1. Summary of datasets’ characteristics.

Dataset |Context Sample |No. of |Ratio|No. of distributions (no. of features)
size features
bupa Detect 345 6 0.240 |Generalized extreme value (1)
alcoholism Logistic (1), exponential (1)
problems Loglogistic (2), lognormal (1)
breast Identify breast 106 9 0.360 |Birnbaum-saunders (2)
carcinomas Generalized extreme value (1)

Generalized pareto (2) Rayleigh (1),
inverse gaussian (3)

ctg Detect 2126 21 0.583 |Generalized extreme value (5)
pathologic fetal Generalized pareto (10), gamma (1)
cardiotocograms Logistic (1), weibull (3),

nakagami (1)

hsd Predict 5-year 306 3 0.333 |Generalized extreme value (1)

survivability Generalized pareto (1) Nakagami (1)

after breast
cancer surgery

wdbc Diagnose breast | 569 |30 0.469 |Generalized extreme value (16) General-
cancer cases ized pareto (2), gamma (1) Birnbaum-
saunders (2), exponential (1)

Inverse gaussian (1), loglogistic (1)
Lognormal (4)

parkinson|Diagnose cases 195 22 0.344 |Generalized extreme value (9)
of parkinson Generalized pareto (5), gamma (1)
disease Beta (1), inverse gaussian (1)
Normal (1), weibull (1), lognormal (3)
backpain |Detect abnormal | 310 12 0.245 |Generalized extreme value (2)
back pain Generalized pareto (4), gamma (2)

Beta (1), birnbaum-saunders (1)
Logistic (1), rayleigh (1)

closest neighbours and the Heterogeneous Euclidean-Overlap Metric (HEOM)
as distance measure between patterns [12]. In DT imputation, each incom-
plete feature must be used as target: the remaining features are used as training
data, to fit the model, and missing values are determined as if they were class
labels. For this work, only regression trees are constructed, given the nature of
all our features. In Self-Organizing Maps (SOM), each incomplete pattern is
imputed according to its Best Matching Unit (BMU), its most similar unit in the
SOM map. Several map configurations were tested: from 10 to 100 nodes. Sup-
port Vector Machines (SVM) are currently the state-of-the-art algorithms in
pattern recognition, due to their good trade-off between the model’s complexity,
generalization and quality of fitting the training data, and have proven to per-
form well for missing data imputation [4]. In this work, only regression SVMs
were used for imputation: in particular, we have implemented several Radial
Basis Function (RBF) SVMs, with different values of C' and v (both from le™>
to 1e°, increasing by a factor of 10).
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3.4 Evaluation Metrics for Missing Data Imputation

The metrics used in this work concern mainly two aspects: Predictive Accuracy
(PAC) and Distributional Accuracy (DAC) [2]. PAC relates to the efficiency of
an imputation technique to retrieve the true values in data, while DAC repre-
sents the technique’s ability to preserve the distribution of those true values. For
PAC assessment, two measures were used: Pearson Correlation Coefficient (Pear-
son’s ) and Mean-Squared Error (MSE). For DAC assessment, the Kolmogorov-
Smirnov distance (Dgkg) was implemented. Considering a complete feature x,
and its imputed version &, Pearson’s r provides a measure of the correlation
Dty (@i—Ti)(Bi—24)
VEi (ei2)? T, (8-3:)
cient imputation technique should have a value close to 1. MSE is traduced by
LS (z; — #;)? and measures the difference between the imputed and original
values of a given feature j, the average square deviation of Z; from the true
values x;, for all n values of a feature j. In this case, values closer to 0 traduce
a better imputation. Finally, Dxg is given by max(||F, — F3||), where F, and
F; are the empirical cumulative distribution functions of x and Z, respectively.
Smaller distance values represent better imputations.

where an effi-

between the two, and is given by r =

4 Experimental Results and Discussion

Considering all five imputation methods (Mean, DT, KNN, SOM and SVM),
the results clearly show that SVM is the winning method for all distributions
(see Total and Total SVM in Table2). For all metrics, SVM outperforms the
remaining methods, with a maximum total mean MSE, Pearson’s r and Dgg of
0.014, 0.993 and 0.01, respectively, versus the 0.039, 0.98 and 0.13 achieved by
the remaining methods. Moreover, SVM does not seem to be affected by data
distribution, with good performance indicators across all distributions. How-
ever, a preliminary analysis of our simulation results suggested that this was
not the case for the remaining methods, which lead us to investigate them more
closely, and further divide our analysis in particular ranges of missing data.
Therefore, Table 2 also presents the winning methods with respective means and
standard-deviations in several missing rate scenarios (5/10, 15/20 and 25%),
and summarizes the number of victories and draws of each method. Note that
for 25% missing rate, some methods do not show a mean/standard deviation,
which happens in distributions included in only two datasets and where the
methods tie (each wins in one dataset, and the presented value refers to the
result achieved for that dataset). In what concerns PAC results, although DT
and KNN may outperform or match SOM’s results for low percentages of missing
data (5-10%), SOM is generally the best approach for percentages above 10%.
In terms of DAC, KNN and SOM have similar results for missing percentages
between 5% and 20%. Nevertheless, for percentages higher that 20%, SOM is
the method that better preserves the original data distribution. Due to space
constraints, it is not possible to show the results for each dataset and distri-
bution, but we provide a more detailed discussion for certain distributions in
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what follows. For birnbaum-saunders datasets, SOM was always chosen as the
best approach regarding all metrics. For datasets with a considerable number of
features following the generalized extreme value distribution (wdbc: 16, parkin-
son: 9 and ctg: 5) and considering the range 5-10% of missing data, DT achieves
the best results for in terms of PAC, although KNN achieves better results in
terms of DAC. When the missing percentage increases, SOM is then considered
the best approach in both metrics. Nevertheless, for datasets where only one
variable of this type exists (hsd and breast), KNN outperforms or match SOM’s
results in both PAC and DAC metrics, for all missing rates. Dataset bupa, also
with one variable of this type, seems to be an exception, with SOM achieving
better results in all metrics, except when the missing rate increases (25%), where
KNN is considered the best approach. Datasets backpain, ctg and bupa have one
variable following the logistic distribution, where for small percentages of missing
data, DT and KNN are feasible approaches. As the missing rate increases, only
bupa includes KNN as best approach, while the remaining are better imputed
with SOM. Dataset bupa seems to be a special case, where results are somewhat
variable with increasing rates of missing values. This fact could be due to the
ratio of features per distribution of this dataset (see Table1). In fact, in a total
of 6 features, bupa includes 5 different distributions, which causes it to have the
lowest feature per distribution ratio (0.240). Intrigued by these results of bupa,
we have further compared the overall MSE, Pearson’s r and Dgg results for
datasets with the lowest (bupa and backpain) and highest (wdbe and ctg) ratio
of features per distribution, where a particular distribution is present in only
one feature: exponential and logistic distributions (see Table1). In the case of
logistic distribution, PAC results of backpain and bupa differ from ctg: a mean
MSE of 0.1/0.12 versus 0.04 and a mean Pearson’s r of 0.95/0.94 versus the
0.98, respectively. Regarding DAC, all datasets are similar (maximum difference
of 0.01). For the exponential distribution, the results follow the same trend: a
mean MSE of 0.025/0.147 and Pearson’s r of 0.99/0.92 for wdbc/bupa. DAC
results are practically the same, with a difference of 0.005. This suggests that,
when a particular distribution is present in only one feature, datasets with a
low ratio of features per distribution (backpain: 0.245, bupa: 0.240), are more
challenging than datasets with a higher ratio (wdbc: 0.469, ctg: 0.583), in what
concerns retrieving the true values in data. However, imputation algorithms are
able to considerably preserve the data distribution in both cases.

5 Conclusions and Future Work

Our results show that SVM is the winning method for all distributions in both
PAC and DAC metrics. Aside for SVM, SOM is generally the best approach in
terms of PAC when the missing rates increases above 10%, although for DAC
its superiority its only noticeable for percentages higher that 20%. Regarding
particular distributions, SOM was the best approach for birnbaum-saunders dis-
tributions in all considered missing percentages. In datasets with a great number
of features following a generalized extreme value distribution, DT and SOM are
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the best approaches in terms of PAC, in 5-10% and 15-20% ranges of missing
data, respectively. Furthermore, PAC metrics seem to be affected by the ratio
of features per distribution, when a particular distribution is present in only
one feature. Lower ratios generally achieve worst PAC results, although the data
distribution is not significantly affected (DAC results are similar for both cases).
There are several directions for future work the authors would like to address. To
the extent of authors’ knowledge, this approach has never been applied in impu-
tation studies for healthcare contexts in particular or other subjects in general.
Therefore, its application for other contexts and other data distributions is yet
to be addressed. The extension of this methodology for discrete features, fitting
discrete distributions and investigating how the studied imputation techniques
perform in this case, could also be a possibility for future work. An ongoing
work is the evaluation of the proposed approach in more extreme setups, where
missing values are not generated completely at random, but rather affecting spe-
cific areas of features’ probability density functions. Finally, from a classification
perspective, it would also be interesting to study whether the best imputation
techniques regarding PAC and DAC metrics also achieve reasonable results in
terms of classification error.
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