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Abstract. The analysis of surgical motion has received a growing inter-
est with the development of devices allowing their automatic capture.
In this context, the use of advanced surgical training systems make an
automated assessment of surgical trainee possible. Automatic and quan-
titative evaluation of surgical skills is a very important step in improving
surgical patient care. In this paper, we present a novel approach for the
discovery and ranking of discriminative and interpretable patterns of sur-
gical practice from recordings of surgical motions. A pattern is defined
as a series of actions or events in the kinematic data that together are
distinctive of a specific gesture or skill level. Our approach is based on
the discretization of the continuous kinematic data into strings which
are then processed to form bags of words. This step allows us to apply
discriminative pattern mining technique based on the word occurrence
frequency. We show that the patterns identified by the proposed tech-
nique can be used to accurately classify individual gestures and skill
levels. We also present how the patterns provide a detailed feedback on
the trainee skill assessment. Experimental evaluation performed on the
publicly available JIGSAWS dataset shows that the proposed approach
successfully classifies gestures and skill levels.
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1 Introduction

In recent years, analysis of surgical motion has received a growing interest follow-
ing the development of devices enabling automated capture of surgeon motions
such as tracking, robotic and training systems. Surgical training programs now
often include surgical simulators which are equipped with sensors for automatic
surgical motions recording [1,2]. The ability to collect surgical motion data brings
unprecedented opportunities for automated objective analysis and assessment of
surgical trainees progression. The main goal of this effort is to support surgeons
in technical skills acquisition, as these are shown to correlate with a reduction
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of patient complications [3]. Hence, automated evaluation of surgical skill level
is an important step in surgical patient care improvement.

This article tackles the issue of identifying discriminative and interpretable
patterns of surgical practice from recordings of surgical motions. We define a
pattern a series of actions or events in the kinematic data that together are
distinctive of a specific gesture or a skill level. We show, that by using these pat-
terns, we can reach beyond the simple classification of observed surgeons into
categories (e.g., expert, novice) by providing a quantitative evidence-supported
feedback to the trainee as per where he or she can improve. The proposed app-
roach, based on SAX-VSM algorithm [4], considers surgical motion as continuous
multi-dimensional time-series and starts by discretizing them into sequence of
letters (i.e., strings) using Symbolic Aggregate approXimation (SAX) [5]. In
turn, SAX sequences are decomposed into subsequences of few consecutive let-
ters via sliding window. The relative frequencies of these subsequences, i.e., the
number of times they appear in a given sequence or in a set of sequences, are
then used to identify discriminative patterns that characterize specific surgical
motion. To discover the patterns, we rely on the Vector Space Model (VSM) [6]
which has been originally proposed as an algebraic model for representing col-
lection of text documents. The identified discriminative patterns are then used
to perform classification by identifying them in to-be-classified recordings. Fur-
thermore, by highlighting discriminative patterns in the visualization of original
motion data, we are able to provide an intuitive visual explanation about why
a specific skill assessment is provided. We evaluated our method on the kine-
matic data from the JHU-ISI Gesture and Skill Assessment Dataset (JIGSAWS)
[7] that is currently the largest publicly accessible database for surgical gesture
analysis. Our experiments have shown that the proposed method accurately
classifies gestures and skill levels. The main contributions of this paper are:
– A framework for identifying discriminative and interpretable patterns in sur-

gical activity motion based on SAX [5] and VSM [4].
– Experimental evaluation highlighting the relevance of the proposed method

for gestures classification and skill assessment.
– A visualization technique enabling self-assessment of trainee skills.

2 Background

Surgical motion analysis is mainly based on kinematic data recorded by surgical
robot [8,9] and video data [10–12]. Kinematic data usually include multiple
attributes such as the position of robot’s tools, rotations, and velocities. From
such data, significant amount of work has been devoted to the segmentation of
surgical tasks into more detailed gestures [13–15]. Segmenting surgical motion
into gestures makes it possible to obtain a finer description of surgical task
leading to more detailed feedback on skill assessment [16,17]. Previous work
concerned with gesture segmentation using kinematic and video data uses Hidden
Markov Models [18,19], Conditional Random Fields [20] and Linear Dynamical
Systems [11]. Main drawback of these approaches is the difficulty for the trainee
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to understand the output and to use it as a feedback to improve performance. In
contrast, our approach seeks not only to identify that a surgical motion has been
performed by a novice surgeon, but also to explain why it has been classified
as such. This step is critical in justifying the reasons why the trainee is still
considered as a novice and to help him or her to focus on the specific steps that
require improvement.

3 Method

3.1 Symbolic Aggregate ApproXimation (SAX)

We propose to use Symbolic Aggregate approXimation (SAX) [5] to discretize
the input time series [21]. For time series T of length n, SAX obtains a lower-
dimensional representation by first performing a z -normalization then dividing
the time series into s equal-sized segments. Next, for each segment, SAX com-
putes a mean value and maps it to a symbol according to a pre-defined set of
breakpoints dividing the data space into α equiprobable regions, where α is the
user specified alphabet size. While dimensionality reduction is a desirable fea-
ture for exploring global patterns, the high compression ratio (n/s) significantly
affects performance in cases where localized phenomena are of interest. Thus, for
the local pattern discovery, SAX is typically applied to a set of subsequences that
represent local features – a technique called subsequence discretization [22] which
is implemented via a sliding window. Note that other time-series discretization
approaches could have been used at this step [23].

3.2 Bag of Words Representation of Kinematic Data

Following the approach proposed in [4], a sliding window technique is used to
convert a time series T of length n into the set of m SAX words, where m =
(n − ls) + 1 and ls the sliding window length. A sliding window of length ls is
applied across the time series T and the overlapping extracted subsequences are
converted into SAX words and then put in a collection. This collection is a bag
of words representation of the original time series T .

In the case of kinematic data, this process is performed independently for
each dimension of the data (e.g., x coordinate, y coordinate, etc.). All features
are normalized on a per-trial per-feature basis. Each word extracted in each
dimension of the data is postfixed with the name of the dimension (e.g. x, y,
etc.). We assume that depending of the gesture or the skill level to classify,
different kinematic features can be relevant. Note, that this methodology can be
used regardless of the available kinematic data (e.g. number of features, etc.).
Figure 1 illustrates the conversion of kinematic data for one trial into a bag of
words using SAX.

3.3 Vector Space Model (VSM)

We rely on the original definition of vector space model as it is known in Infor-
mation Retrieval (IR) [4,6]. The tf*idf weight for a term t is defined as a product
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Fig. 1. Conversion of kinematic data for one trial into a bag of words using SAX [5]
and a sliding window of size 4 (in red). (Color figure online)

of two factors: term frequency (tf ) and inverse document frequency (idf ). The
first factor corresponds to logarithmically scaled term frequency [24].

tft,d =
{

log(1 + ft,d), if ff,d > 0
0, otherwise (1)

where t is the term, d is a bag of words (a document in IR terms), and ft,d is the
frequency of t in d. The inverse document frequency [24] is defined as

idft,D = log
|D|

|d ∈ D : t ∈ d| = log
N

dft
(2)

where N is the cardinality of a corpus D (the total number of classes) and the
denominator dft is the number of bags where the term t appears. Then, tf*idf
weight value for a term t in the bag d of a corpus D is defined as

tf*idf(t, d,D) = tft,d × idft,D = log(1 + ft,d) × log
N

dft
(3)

for all cases where ft,d > 0 and dft > 0, or zero otherwise.
Once all frequencies are computed, the term frequency matrix becomes the

term weight matrix, whose columns are used as class term weight vectors to
perform classification using Cosine similarity. For two vectors a and b, the Cosine
similarity is based on their inner product and defined as

similarity(a,b) = cos(θ) =
a · b

||a|| · ||b|| (4)

3.4 Training and Classifying Kinematic Data

The training step starts by transforming the kinematic data into SAX represen-
tation using two parameters: the size of the sliding window ls, and the size of
the alphabet α. Then, the algorithm builds a corpus of N bags corresponding to
the subsequences extracted from the N classes of kinematic data, i.e. same skill
level or same gesture depending on the application. The tf*idf weighting is then
applied to create N real-valued weight vectors of equal length, representing the
different class of kinematic data.
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Fig. 2. Snapshots of the three surgical tasks in the JIGSAWS dataset (from left to
right): suturing, knot-tying, needle-passing [7].

In order to classify an unlabeled kinematic data, the method transforms it
into a terms frequency vector using exactly the same sliding window and SAX
parameters used for the training part. It computes the cosine similarity measure
(Eq. 4) between this term frequency vector and the N tf*idf weight vectors
representing the training classes. The unlabeled kinematic data is assigned to
the class whose vector yields the maximal cosine similarity value.

4 Experimental Evaluation

The JIGSAWS dataset [7] includes 8 subjects with 3 different skill levels (novice,
intermediate and expert) performing 3–5 trials of three tasks (suturing, knot
tying, and needle passing). The Fig. 2 illustrates the three tasks. Each trial lasts
about 2 min and is represented by the kinematic data of both master and slave
manipulators of the da Vinci robotic surgical system recorded at a constant rate
of 30 Hz. Kinematic data consists of 76 motion variables including positions and
velocities of both master and slave manipulators. All trials in the JIGSAWS
dataset were manually segmented into 15 surgical gestures. Video of the trials
are also available and are synchronized with the kinematic data. A detailed
description of the dataset is available in [25].

Our training step first transforms the kinematic data time series into SAX
representation configured by two parameters: the sliding window length (ls) and
SAX alphabet size (α). The number of segments per window was kept equal
to the length of the window which means that every point of the time series
was transformed into a letter. This choice was made to allow us to map back
the patterns on the original time series. Parameters ls and α were optimized
using cross-validation on the training data. As they can differ for each specific
classification problem, their values are provided along with the experimental
results.

4.1 Gesture Classification

We considered the gesture boundaries to be known and we used the kinematic
data alone. We present results for two cross-validation configurations provided
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Table 1. Gesture classification performance, assuming known boundaries and using
kinematic data only.

Leave-one-supertrial-out Leave-one-user-out

Method Metric Suturing Needle
passing

Knot
tying

Suturing Needle
passing

Knot
tying

(ls,α) (8,19) (13,18) (15,7) (8,19) (14,18) (10,12)

Proposed Micro 93.69 81.08 92.45 88.27 75.29 89.76

Macro 79.95 74.67 89.78 68.77 67.54 82.29

LDS [25] Micro 84.61 59.76 81.67 73.64 47.96 71.42

LDS [25] Macro 63.87 46.55 74.51 51.75 32.59 63.99

HMM [25] Micro 92.56 75.68 89.76 80.83 66.22 78.44

HMM [25] Macro 79.66 72.36 87.29 65.03 62.70 72.68

with the JIGSAWS data [7]. In the first configuration – leave one supertrial out
(LOSO) – for each iteration of cross-validation (five in total), one trial of each
subject was left out for the test and the remaining trials were used for training. In
the second configuration – leave one user out (LOUO) – for each iteration of the
cross-validation (eight in total), all the trials belonging to a particular subject
were left out for the test. These are the standard benchmark configurations
provided in [7]. We report micro (average of total correct predictions across all
classes) and macro (average of true positive rates for each class) performance
results as defined in [25].

Table 1 presents the results for gesture classification assuming known bound-
aries and using kinematic data only. For comparison purposes, we also report
state-of-the-art results for Linear Dynamical Systems (LDS) and Hidden Markov
Models (HMM) from [25]. The proposed method outperforms both LDS and
HMM methods in terms of micro and macro performances for the three tasks
and the two cross-validation configurations. These results show that our method
accurately identifies patterns that are specific to a gesture motion. One of the
interesting features of the proposed method is the ability to use different kine-
matic data depending of the gesture. As our method computes the frequencies
for each component of the kinematic data for each gesture independently, the
most discriminative attributes of a given gesture naturally stand out. Further-
more, the tf*idf regularization discards the motion patterns that are common
to every gesture (i.e., irrelevant for classification as not distinctive of any class).

The LOUO configuration is known to be particularly challenging, because we
attempt to classify gestures of a subject without having any of his or her other
attempts. The good performance of our approach can be explained by its ability
to identify highly discriminative patterns that are the most distinctive of each
gesture. These results also indicate that our method generalizes well, as shown
by the fact that it can accurately classify gestures from unobserved trainees.
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Table 2. Skill classification performance per trial using kinematic data only.

Leave-one-supertrial-out

Method Metric Suturing Needle passing Knot tying

(ls,α) (10,9) (12,13) (5,14)

Proposed Micro 89.74 96.30 61.11

Macro 86.67 95.83 53.33

SHMM [19] Micro 97.40 96.20 94.40

4.2 Skills Classification

For skill classification, we performed experiments to identify the skill level
(novice, intermediate or expert) at the trial level. In this experiment, we used
the leave one trial out (LOSO) cross-validation configuration. Table 2 presents
the results for the three tasks and reports micro and macro performances. The
results are better for Suturing and Needle Passing tasks than for Knot Tying
task. The poor performance on the Knot Tying task can be explained by the
minor difference between the Expert and Intermediate subjects for this task
(mean GRS is 17.7 and 17.1 for expert and intermediate respectively). We also
report the state-of-the-art results from [19] for the Suturing task. The SHMM
approach gives better results for the per trial classification configuration as it
uses global temporal information, whereas our method is focusing on the local
patterns regardless of their location within larger time series. Furthermore, the
SHMM approach [19] uses gestures boundaries to learn the temporal model while
our method is not using this information.

4.3 Interpretable Patterns Visualization

Our approach outputs a set of discriminative patterns weighted by the class
specificity for each of the input class. These lists of ranked patterns can be
studied to better understand what makes each class distinctive. As the use of
tf*idf (Eq. (3)) discards patterns that are common to all classes, only patterns
having discriminative power remain.

The list of weighted discriminative patterns can be used to visualize, on a
given trial, where are the areas that are specific to the current skill level of the
trial. We propose to use a heat map-like visualization technique that provides
immediate insight into the layout of the “important” class-characteristic patterns
(as described in [4]). Figure 3 shows, for the Suturing task, the two individual
5th trials of subjects B (Novice) and E (Expert), using (x, y, z) coordinates for
the right hand. In this figure, we used respectively the tf*idf weights vectors
of the 5th fold for the Novice on subject B and for the Expert on subject E.
The red areas correspond to specific motions that are correlated with a skill
level. For Subject B (Fig. 3a), these areas correspond to motions that were only
observed among the novices. By contrast, green areas correspond to motions that
are common to all subjects regardless of their skill. This visualization provides
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Fig. 3. Example of interpretable feedback using a heat-map visualization of subse-
quence importance to a class identification. The value corresponds to the combination
of the tf-idf weights of all patterns which cover the point.

a rich information about what makes a specific skill level distinctive and can
also be used to provide individual and personalized feedback. As the videos of
the trials are also available, this result has to be displayed side-by-side with the
videos in order to show to the trainee the movements that are specific. Note that
a more detailed analysis could be performed by observing which kinematic data
features are specific in these areas or by performing the analysis on a per gesture
basis. Visualization (like Fig. 3) for all the subject trials for the Suturing task
are available on the companion webpage1.

Note that as the tf*idf weight vectors are computed prior to the classification
step, it is possible to display this heat-map visualization in real-time during the
trial. We provide a video on the companion webpage that shows the real-time
computation of this visualization while a trainee performs a suturing task. We
believe that this tool is an interesting addition to existing learning tools for
surgery as it provides a way to obtain a feedback on which parts of an exercise
have been used to classify the attempt.

5 Conclusion

In this paper, we presented a new method for discovery of discriminative and
interpretable patterns in surgical activity motion. Our method uses SAX to
1 http://germain-forestier.info/src/aime2017/.

http://germain-forestier.info/src/aime2017/
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discretize the kinematic data into sequence of letters. A sliding window is then
used to build bag of words. Finally, tf*idf framework is applied to identify motion
class-characteristic patterns. Experiments performed on the JIGSAWS dataset
has shown that our method successfully classifies gestures and skill levels. The
strong advantage of the proposed technique is the ability to provide a precise
quantitative feedback for the classification results. Of course, the evaluation of
our visualization approach needs to be performed within curriculum.
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