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Abstract  Autism spectrum disorder (ASD) is a neurodevelopmental disorder with 
an incidence of 1 in 68 children. Cerebellar abnormalities have been observed in 
many ASD patients. The cerebellum is an elaborate brain region critically important 
for motor learning and coordination of movement, and increasing lines of evidence 
indicate that the cerebellum also contributes to emotion and cognition. In this chap-
ter, we will review the genetic and environmental factors that may cause cerebellar 
deficits in ASD patients. Structural and functional cerebellar abnormalities based on 
neuroimaging and histopathological studies and current approaches to management 
will be discussed.
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�Introduction

Autism is a commonly occurring complex neurodevelopmental disorder. Leo 
Kanner, a child psychiatrist (1943), first described patients with “a powerful desire 
for aloneness” and “an obsessive insistence on persistent sameness” as “early infan-
tile autism” [1–4]. A similar behavioral disorder, “Asperger’s syndrome,” was 
reported by Hans Asperger [5]. To avoid using different terminologies, these disor-
ders were together named “autism disorders” in 1987. Recently, the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-V) collectively designated all autism-
like disorders as “autism spectrum disorder” (ASD) [3].

ASD is characterized by a triad of symptoms: (1) impairment in social interaction, 
(2) communication difficulties, and (3) restricted, repetitive, and stereotyped patterns 
of behavior [3, 6–10]. Current methods can diagnose the ASD in children as young as 
2 years old, and males are four times more likely to be diagnosed with ASD than 
females [11]. The prevalence of ASD is estimated at 1 in 68 children in the United 
States [12] and 1–2% in Asia, Europe, and North America (see chapter “Epidemiology 
of Cerebellar Disorders”). The etiology of ASD is complicated: in some patients it is 
unknown, and in some cases, individuals are affected due to gene mutations and/or 
environmental factors [7]. However, the interplay of genetic, environmental, and epi-
genetic factors probably underlies the mechanisms of ASD [8, 13].

A subset of ASD patients, about one in five, display increased head circumfer-
ence and brain volume in early childhood, typically until 5–6 years of age [14, 15]. 
In these patients, the cortical white matter, the thickness of the corpus callosum, and 
the volume of cerebrospinal fluid (CSF) in the subarachnoid space are increased at 
the age of 6–9 months [16–18]. The frontal cortex has been reported to be larger, 
probably due to increased neuronal density in the prefrontal cortex [19]. Other brain 
regions that are prominently implicated in ASD include the cerebellum; brainstem 
and limbic system, including the hippocampus; and basal ganglia [20]. These areas 
are most likely responsible for the symptoms of those patients with abnormalities 
related to social behavior, executive functions, atypical use of language, and diffi-
culties with speech [21]. Additionally, enlargement of the amygdala and caudate 
nucleus may cause anxiety and repetitive behavior [22].

Recent advances in molecular genetics and imaging technologies have shown that 
the cerebellum is one of the most consistently affected brain regions in ASD patients 
[8, 23, 24]. The cerebellar neurodevelopmental deficits in ASD include abnormalities 
in the cerebellar cortex, neurodegeneration, and impaired cerebellar circuits. Together, 
these deficits affect motor, sensory, language, and cognitive functions [25–28].

�Autism Spectrum Disorder Pathogenesis

Emerging evidence from genetic association studies and postmortem human brain 
tissue indicates that ASD is either hereditary or caused probably by de novo muta-
tions in a number of genes. Additionally, certain environmental risk factors have 
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been proposed to be causative in ASD. The set of molecular pathways, neural cir-
cuits, and behaviors affected in the different autisms is highly complex, and as a 
result, it has been difficult to uncover the neurobiological underpinnings of ASD 
[9, 29]. How the cerebellum contributes to the etiology of ASD has been particu-
larly underappreciated.

The cerebellum develops from early embryogenesis to the first year postnatally 
in human. This long period of pre- and postnatal cerebellar development makes it 
susceptible to many risk factors [30–34]. In this section, we briefly review the find-
ings regarding currently identified genetic and environmental risk factors in 
ASD. Epigenetic susceptibility factors have been discussed in chapter “Epigenetics 
and Cerebellar Neurodevelopmental Disorders.”

�Genetic Factors

Several lines of evidence have revealed that ASD is a neurodevelopmental disorder 
determined largely by genetic factors [35]. For example, twin studies have higher 
concordance rates for monozygotic twins than for dizygotic; approximately 80% of 
monozygotic twins are concordant compared to 10% of dizygotic twins, with a 
heritability of over 90% [36]. Recently, genome-wide association studies have 
identified many genes as risk factors for ASD. These genes span several chromo-
somal loci, and many are highly expressed in, and are involved in, the development 
of the cerebellum [37, 38]. Sadakata et al. [38] categorized these genes based on 
their role in development of the nervous system and synapse development and 
function. Some of these genes, such as CDH9, CDH10, RELN, and PTEN, are 
involved in developmental process such as neuronal differentiation, migration, and 
circuit formation. An important category of ASD-associated genes regulates synap-
tic adhesion and synaptic transmission, including genes encoding for neurexins, 
neuroligins, leucine-rich repeat transmembrane neuronal proteins (LRRTMs), 
Shanks, and SynGAP [39–42]. Another category of ASD risk genes encodes for 
proteins required for transcription and translation such as EN2, TSC1, FMR1, and 
MECP2 [38, 43].

Chromodomain-helicase-DNA-binding protein 8 (CHD8), previously called 
Duplin, is one of the genes most strongly associated with ASD [44, 45]. It was the 
first identified in the screen for novel interactors within the canonical Wnt/β-catenin 
pathway [46]. CHD8 is an ATP-dependent chromatin-remodeling factor [47] and 
may serve as a “master regulator” for other ASD risk genes during fetal develop-
ment [44, 48]. Knockdown of CHD8 in human neural stem cells affects the expres-
sion of several ASD risk genes [44], and human patients with mutations in CHD8 
display ASD symptoms and have macrocephaly and gastrointestinal difficulties 
[37]. Taken together, these data suggested that CHD8 targets a set of genes during 
brain development and regulates other ASD risk genes [44]. Some of the ASD risk 
genes regulate developmental processes in the cerebellum [13]. These include genes 
encoding for Reelin, RORα, EN2, BDNF, neuroligins, and neurexins [8, 49].
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RELN dysregulation has been observed in a subset of autistic individuals 
(reviewed by Ishii et al. [36, 49]). Reelin, encoded by the RELN gene (located on 
chromosome 7 in human and chromosome 5 in mice), is a 388 kDa extracellular 
matrix glycoprotein which is essential for proper neuronal migration and position-
ing during embryonic and perinatal development of the brain/cerebellum [8, 36]. 
Though the precise mechanisms of RELN’s role in ASD pathogenesis is uncertain, 
trinucleotide repeat expansion in the RELN gene has been observed in autistic indi-
viduals [8, 49]. Persico et al. (2001) first reported that the polymorphic GGC repeats 
located in the 50 untranslated region (50 UTR) of the RELN are associated with 
ASD disorder [50]. The finding was subsequently replicated in three studies [51–
53], but there were no confirmed association between the triplet repeats in the 50 
UTR of the RELN and autism. The family-based association analyses revealed that 
many CGG repeats present in RELN alleles may cause ASD particularly in patients 
with speech difficulties [54].

Reelin mutations in mouse models lead to irregular cortex formation and abnor-
mal layering which may be responsible for behavioral and neurological disorders 
[55]. Adulthood changes in Reelin protein level caused cognitive impairment and 
reduced synaptic plasticity [55–58]. Given that the genetic evidence implicates RELN 
in the etiopathology of ASD, it has been attempted to add biochemical evidence by 
measuring the Reelin level in brain tissue and blood by using Western blotting. They 
showed that the levels of Reelin were significantly reduced in patients with ASD [59].

Several lines of evidence indicate that genes encoding retinoic acid receptor-
related orphan receptors (RORs) are also associated with ASD. The RORα, RORβ, 
and RORγ are nuclear receptors that regulate a range of physiological processes dur-
ing brain development [60–62]. RORα and RORγ are broadly expressed in the body, 
whereas RORβ expression is more restricted to the central nervous system [62, 63]. 
RORα protein expression significantly decreases in the brains of ASD patients prob-
ably through epigenetic alterations [64]. Devanna and Vernes demonstrated that miR-
137, a microRNA implicated in neuropsychiatric disorders, targets a number of genes 
associated with ASD including RORα [65]. RORα is a transcription factor that is 
critically important for development of the cerebellum [60, 61, 66]. The role of the 
RORα in neural development has been demonstrated in mouse strain staggerer, 
which harbors a spontaneous deletion within RORα [67]. These mice have small 
stature and develop ataxia and hypotonia. The major neural deficit was underdevel-
opment of the cerebellar cortex with a pronounced deficiency in both granule and 
Purkinje cells [67]. Furthermore, disruption of RORα in staggerer mice shows behav-
ioral phenotypes such as abnormal spatial learning, reduced exploration, limited 
maze patrolling, and perseverative behavior, which are associated with ASD [61, 62].

Engrailed 2 (EN2), a homeobox transcription factor, has been associated with 
normal cerebellar development, and mutations or deletions of EN2 result in reduced 
cerebellum volume and structural abnormalities [68, 69], which are both associ-
ated with susceptibility to ASD [70]. Brain-derived neurotrophic factor (BDNF) 
plays a key role in the development of the nervous system and modulation of neu-
ronal activity, both of which impact complex human behaviors. Several studies 
have been performed to measure peripheral blood levels of BDNF in an attempt to 
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find a biomarker for children with ASD.  Peripheral blood levels of BDNF are 
known to be highly correlated with brain BDNF levels [71]. Although there is no 
consistency in the association between BDNF levels in blood and ASD, a recent 
review by Xiao-Yan et  al. (2016) using meta-analysis indicated that there are 
increased peripheral blood levels of BDNF in ASD patients [72]. Furthermore, 
Ca2+-dependent activator protein for secretion 2 (CADPS2) contributes to normal 
cerebellar development by enhancing release of BDNF and neurotrophin-3 (NT-3) 
[73, 74]. The CADPS family is a secretory-related protein family that regulates 
secretory granule exocytosis, which in vertebrates consists of two genes, CAPS1/
CADPS1 and CAPS2/CADPS2. The expression level of the CAPS2 has been 
observed to be unusually high in some patients with ASD [38, 75].

Mutations in the methyl CpG-binding protein 2 (MECP2) gene are known to 
cause Rett syndrome, a disorder characterized by language impairments, motor 
deficiencies, and stereotypical behavior [76], which is under the umbrella of ASD. 
Patients with Rett syndrome frequently have cerebellar atrophy that increases with 
age [13] (see chapter “Epigenetics and Cerebellar Neurodevelopmental Disorders”).

Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors 
in the body, including the brain [77]. Mutation in the TSC1 and TSC2 genes causes 
TSC with a neurodevelopmental disorder that involves higher rates of ASD [77, 78]. 
TSC produces a protein that negatively regulates the target of the rapamycin (mTOR) 
signaling pathway to control molecular and cellular process. Tsai et  al. (2012) 
designed a mutant mouse model in which the gene for Tsc1 is not expressed in 
Purkinje cells [78]. These mutant mice displayed ASD-like behaviors, such as abnor-
mal social interaction and ultrasonic vocalization, and inflexibility. In addition, recent 
discovery has shown that the granule cells/Purkinje cells are important for cognitive 
processing in the cerebellum [79]. These studies are significant because they demon-
strated a clear involvement of the cerebellum in non-motor functions as well [78].

�Environmental Factors

It has been suggested that the risk of developing ASD increases with exposure to 
environmental factors such as teratogenic substances (e.g., thalidomide, valproate, 
and misoprostol), infection with viruses (e.g., influenza, rubella, and cytomegalo-
virus) during pregnancy, and advanced age of parents (for reviews, see references 
[38, 80, 81]).

Some environmental risk factors such as exposure to valproic acid during prenatal 
development may cause abnormalities in cerebellar development and ASD [82]. In 
rat, valproic acid exposure reduces the number of Purkinje cells in the cerebellum 
accompanied by increases in the number of apoptotic cells [83]. Cole et al. (2011) 
have shown changes in cerebellar gene expression in mice treated with chlorpyrifos 
[84]. Dermal exposure of young adult mice to chlorpyrifos causes increased glial 
fibrillary acidic protein expression of the cerebellum [85]. Furthermore, Purkinje cell 
numbers are reduced in rats prenatally exposed to chlorpyrifos [86]. Other factors 

Neurodevelopmental Disorders of the Cerebellum: Autism Spectrum Disorder

http://dx.doi.org/10.1007/978-3-319-59749-2_10


374

such as organophosphate pesticides and antiepileptic drugs have been shown to affect 
cerebellar development and potentially cause ASD [87].

Maternal fever is another environmental risk factor that affects the cerebellum 
and leads to apoptosis. It also interferes with neuronal maturation and may cause 
heat shock protein activation during cerebellum development in ASD [88–90].

Viral infections can affect cerebellar and neocortical development during pre- 
and neonatal and cause neuropathy in ASD [91, 92]. Influenza virus also has the 
same impact on cerebellum development such as reduced the number of Purkinje 
cells and interruption in migration of Purkinje and granule cells during perinatal 
development, which may cause deficits in working memory and behavioral impair-
ments [93–96] (see chapter “Infections of the Cerebellum”).

Functional gastrointestinal disorders (FGIDs) are disorders independent of 
organic or physiological conditions that are the most common causes of GI disor-
ders in children with ASD. FGID symptoms include abdominal pain, constipation, 
irritable bowel syndrome, and functional dyspepsia [97]. The FGIDs are associated 
with impaired behaviors and sensory responses, as well as changes in sleep patterns 
[98]. It is suggested that inadequate brain-gut interactions may be responsible for 
these symptoms in ASD patients [97]. Changing the gut microbiome to treat the 
ASD behaviors such as anxiety and depression is a new line of study that hopes to 
find alternate treatments for ASD patients [99, 100].

The exposure to air pollution, which may cause immune responses, is another 
likely environmental risk factor for ASD [101]. The immune response results in 
activation of immune cells and antibody production and increases the leukocyte 
migration to the brain tissue by increasing diffusion through the blood-brain barrier. 
It is suggested that maternal immune activation at a critical time points impair cer-
ebellar morphology and a variety of motor and non-motor behaviors [102]. The 
abnormal level of blood immunological markers in ASD patients is evidence of 
interactions between genetic/environmental factors with their immune system in 
these patients is shown [103, 104] (see chapter “Neuroimmune Mechanisms of 
Cerebellar Development and Its Developmental Disorders: Bidirectional Link 
Between the Immune System and Nervous System”).

�Diagnosis of ASD

Studies on patients with ASD using advance brain imaging, genetic, and behavioral 
observations improved our knowledge of ASD symptoms. As of yet there are no 
biomarkers for the diagnosis of ASD, and currently clinical diagnosis of these 
patients is based on behavioral observations combined with patient history [22, 
105]. Three ASD diagnosis criteria  – social reciprocity, communication, and 
restricted/repetitive behavior  – have been published by DSM-IV.  However, it 
recently has been revised by DSM-V and International Classification of Diseases, 
Tenth Edition (ICD-10), into two domains of diagnosis criteria, (1) deficits in social 
communication/interaction and (2) restricted and repetitive behaviors, with 
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evidence of persistent symptoms that cause functional impairment [105]. Murphy 
et al. (2016) highlighted three key issues, sleep, GI problems, and epilepsy, regard-
ing physical health that may be important in the diagnosis of ASD patient [105]. The 
mental health issues are present both in adults and children with ASD, which include 
mood and anxiety disorders, obsessive-compulsive disorder (OCD), attention-
deficit hyperactivity disorder (ADHD), and psychotic disorders. These persist from 
childhood to adulthood in both sexes. Additionally, ASD patients have specific cog-
nitive anomalies, including poor planning, decision-making, timing, and motor 
skills, which impact their daily activities [105–107].

�The Cerebellum and ASD

Cerebellar malformations have been associated with a range of developmental 
impairments and behavior disorders including ASD (see review by Bolduc and 
Limperopoulos [31]). Motor impairment and clumsiness has been noted as an 
important feature in ASD [108]. It is shown that about 80% of children with ASD 
have motor coordination deficits, which have a positive correlation with the severity 
of the ASD and intellectual disabilities [109, 110]. Cerebellar motor dysfunction in 
ASD includes eye movement abnormalities, fine and gross motor deficits, gait, bal-
ance and coordination impairment, postural instability, and motor learning deficits 
[109, 111]. Motor impairments are among the earliest signs of an autistic phenotype 
[112]. It has been shown that motor impairments are predictive of the ASD out-
come. During early movement activities, individuals, who are later diagnosed with 
ASD, have poor fine and gross motor skills that are accompanied by delays of lan-
guage development [109, 113]. Similarly, difficulties in oral and manual motor 
skills in infancy can label individuals as an ASD patient, and late speech fluency is 
predictable [114]. In addition, early motor delays are more common in infants at 
risk for ASD and are related to later communication delays [115]. Therefore, the 
timing of language acquisition may serve as an indicator for neurodevelopmental 
and behavior disorders and may be a marker to diagnose people with ASD.

Emotional/behavioral disturbance and communication disorders may be associ-
ated with the motor task performance in ASD patients [116]. It has been suggested 
that the lack of gesture and imitation in ASD patients might be related to motor 
dysfunction, providing a mechanism by which cerebellar dysfunction could impact 
the core social communication symptoms of patient with ASD [109, 117].

�ASD and Cerebellar Structure Abnormalities

Cerebellar abnormalities are the most consistently reported brain structural changes 
in ASD, such as decreased cerebellar cortex, which is a key landmark for diagnosis 
in ASD brains [109, 118]. Cerebellar enlargement has been reported in ASD young 
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children in comparison with the total brain volume and may be associated with the 
cerebellar white matter [26, 119, 120]. However, the growth rate declines later during 
development and eventually results in a smaller cerebellar volume by adulthood in 
ASD patients [120, 121].

By MRI, cerebellar lobules VI and VII are hyperplastic in patients with ASD, and 
it is suggested that these alterations may be responsible for increased stereotype and 
repetitive movements [122]. The language impairment in ASD may be associated 
with a decreased volume of the vermis and anterior lobe and abnormal left lateral-
ization in lobule VIIIA [123, 124]. A study conducted using voxel-based morphom-
etry suggested that structural differences such as increase and decrease in cerebellar 
gray and white matters are related to specific abnormalities at the different stages of 
cerebellar development in ASD patients [109, 125].

Neurohistological studies show changes in the anatomy of the cerebellum in 
patients with ASD, including a decrease in the number of Purkinje cells [126, 127], 
immature cerebellar development [128–130], morphological changes in the size of 
the cerebellar nuclei which are small and abnormal, and an increase in the number of 
Bergmann glia cells [131, 132]. The low density of the Purkinje cells in the cerebel-
lum of ASD patients was observed in the vermis, Crus I–II, lobules IV–VI, and lob-
ule X [133]. The smaller size of Purkinje cells may indicate the occurrence of an 
atrophic process [134]. Because of the large size, and due to numerous synapses with 
the parallel and climbing fibers, Purkinje cells have a high metabolic demand. 
Therefore they have extensive amounts of calcium storage that may cause increases 
in intracellular calcium, which elevates the risk of excitotoxicity and cell death [135].

It has been reported that the cortical-pontine-cerebellar-thalamic circuit is imma-
ture and abnormal both functionally and anatomically in patients with ASD [9]. It is 
also shown that the cerebellar input and output pathways in relation to neocortical 
areas are unusual in ASD patients [136, 137]. The corticopontocerebellar pathway 
carries inputs that originate from the primary sensory and motor cortex, posterior 
parietal, prefrontal, orbitofrontal, cingulate, temporal, and basal nuclei and projects 
to the cerebellum [138, 139]. Outputs originate from the cerebellar nuclei and 
through the thalamus project to the neocortex [140–142]. These circuits are 
specialized for cognitive and behavioral activities such as executive functions, lan-
guage, and emotions. Thus, the cerebellum may be responsible for cognitive impair-
ment, sensorimotor behavior, and social disconnection in ASD [13].

Eye gaze abnormalities during social interaction are an early diagnostic indicator 
in ASD patients. Gaze fixation is naturally used to fix the fovea on an image or object. 
The oculomotor system maintains fixation, which is supported by the nuclei of the 
brainstem. Therefore, inputs from the frontal eye fields and superior colliculus 
actively block the saccades away from the object of interest [143]. The pontine nuclei 
stimulate Purkinje cells in lobules VI–VII vermis cerebellum, and inhibitory outputs 
from the oculomotor vermis help to stop undesired eye movements and keep an image 
on the fovea [144] which could potentially be used as an early marker of ASD patients.

Control of upper limb movement is related to the frontoparietal cortex as well as 
the cerebellar cortex and its output nuclei [145]. Upper limb and manual motor defi-
cits that are associated with atrophy of the intermediate and lateral cerebellum 
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involve lobules I–V as well as more lateral areas of lobules V–VI extending into 
Crus I–II in patients with upper limb ataxia. [146]. These loops are responsible for 
regulating the amplitude, duration, and timing of movements [147, 148]. Patients 
with ASD have difficulties coordinating grasping and reaching activities [149]. 
These difficulties may be caused by central defects in integrating sensory feedback 
information and motor output as well as deficits in neocortical-posterior cerebellar 
circuitry. The compromised motor learning in individuals with ASD could be related 
to disturbances in the anterior cerebellar lobules IV–VI and their connectivity to 
frontal as well as parietal regions of the cortex. These effects may damage upper 
limb and manual motor actions that ultimately impact the patient’s ability to control 
motor behavior and learn new skills. Therefore, the development of more complex 
social motor skills in these patients is disabled. Medial and intermediate cerebellar 
circuits affected by insufficiency in both sensory feedback and forward control 
appear to cause motor impairments and difficulties in posture, gait, and walking in 
ASD patients [150]. The motor deficits start from infancy and extend to adolescence 
and adulthood [108, 151–153].

Cognitive function deficits such as attention and memory impairment, executive 
function, and cognitive flexibility deficits are common features in ASD [154]. The 
cerebellum communicates with Brodmann areas 46 and 9 of the prefrontal cortex, 
which are involved in cognitive functions, memory, planning, decision-making, and 
cognitive flexibility [155–157]. The cerebellum to prefrontal cortex pathway could 
affect cognitive functions directly or perhaps indirectly through the ventral tegmental 
area, which contains dopaminergic neurons that project and terminate in the prefron-
tal cortex [158]. Notably, the function of the prefrontal cortex dopaminergic pathway 
is associated with attention selection, cognitive flexibility, and memory [157]. A mal-
development of connectivity in connection of the cerebellum to this higher-order cir-
cuit may explain the cognitive involvement of the cerebellum in patients with ASD.

�Assessment and Treatment

There is very limited accurate and practical information to assess, diagnose, and 
manage ASD conditions. Therefore, because the number of ASD patients has rap-
idly increased during past decade, there is an urgent need to improve knowledge and 
develop assessment tools and treatment of ASD patients [105].

ASD diagnosis can be difficult because of a large amount of heterogeneity, vary-
ing presentation, and variability in symptoms [159]. There are no biomarkers to 
diagnose ASD; therefore behavioral presentation of the patients is used for diagno-
sis [160]. The gold standard for clinical diagnosis in these patients is based on cur-
rent diagnostic classification systems and proceeding very careful assessment 
practices. These assessments include physical examination, hearing test, observa-
tion of children’s behavior, and a structured parent interview that covers the patient’s 
full developmental history [160]. Currently, the best practice to diagnose ASD 
patients is a step-by-step strategy that is recommended by the American 
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Psychological Association [161]. This diagnostic strategy starts with child’s parent/
caregiver concern and followed by a formal diagnostic assessment conducted by a 
pediatrician or/and appropriate referrals. The formal diagnostic assessment includes 
medical and functional evaluation such as everyday verbal and nonverbal skills and 
level of ability as well as analyze/assess of behaviors based on developmental aspect 
[162]. However, because of differences in cognitive function, age, language level, 
and the source of information, diagnosis of ASD is very difficult [159].

Children who are diagnosed with ASD need to be reevaluated continuously dur-
ing preschool years to identify their weakness, inabilities, and difficulties [159]. 
There are also some diagnostic instruments for ASD such as the Autism Diagnostic 
Observational Schedule – Generic (ADOS-G) [163], which assesses communica-
tion, play, and creative use of materials and possibilities for children who may have 
ASD. The best Screening Tool for ASD in Toddlers and Young Children (STAT) 
[164] is structured to identify children between 24 and 36  months of age with 
ASD. One of the measures of early communication in children 8–24 months is the 
Communication and Symbolic Behavior Scales (CSBS) [165]. Additionally for the 
parent interview, there is a clinical diagnostic instrument named the Autism 
Diagnostic Interview-Revised (ADI-R) that is addressing early development, com-
munication/language, social interactions/interests, and restricted and repetitive 
behaviors [166]. The Social Communication Questionnaire (SCQ) is an appropriate 
method to get information from parents [167].

Usually an assessment starts with medical evaluation which will be conducted by 
physicians and, if the ASD suspected, referring the patient for diagnostic assessment 
as well as considering the pediatrician as an alternative referral. When diagnosis is 
confirmed, treatment planning should involve the professional health team [159].

�Summary

Many genetic and environmental factors may cause ASD.  The mechanisms are 
unknown, but presumably genetic and environmental factors affect normal brain 
development and, consequently, lead to functional disorders in patients with ASD.

There is mounting evidence that developmental abnormalities in the cerebellum 
may underlie the pathogenetic mechanisms that are associated with the ASD pheno-
type. Cerebellar developmental disorders that are associated with ASD pathogene-
sis show deficits in motor coordination, balance, motor memory, and higher-order 
dysfunctions including speech and attention regulation.

The major goal of management in ASD patients is early diagnosis for behavioral 
and medical interventions to enhance the functional ability of these children. The 
new approach involving brain-gut-microbiome interactions may provide a bio-
marker associated with GI disorders that could be helpful in the early diagnosis of 
these patients. Because the number of ASD patients is increasing, studies are needed 
to develop assessment tools and treatment, increase public awareness, and develop 
strategy for health care of patients with ASD.
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