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Teratogenic Influences on Cerebellar 
Development

Albert E. Chudley

Abstract The effects of environmental agents on cerebellar development are pro-
found, and this organ has not been given the attention that is deserving of it, based 
on its importance in motor, cognitive, and behavioral functions. This chapter will 
review select agents associated with teratogenic effects on cerebellar structure and 
function. Mechanisms of teratogenesis and genetic influences will be addressed. 
The emerging role of effects of environmental agents and effect on the epigenetic 
mechanisms and gene expression are discussed. Prenatal alcohol exposure and fetal 
alcohol spectrum disorder will be discussed in greater detail, as this disorder is the 
most common teratogenic disorder affecting humans. Indeed, many of the pheno-
typic effects of FASD are the result of cerebellar injury and dysfunction.
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 Introduction

Teratology can be defined as science dealing with causes, mechanisms, and mani-
festations of developmental deviations of either structural or functional nature [1, 2]. 
A teratogen is any agent that compromises a healthy intrauterine environment and 
results in altering normal development during the period of embryonic or fetal 
development resulting in abnormal structure or function, restriction of growth, or 
death of the embryo or fetus [3]. Known teratogenic agents include infectious agents 
(e.g., rubella virus, Zika virus, cytomegalovirus, toxoplasmosis, varicella, etc.), a 
chemical or drug (most anticonvulsant medications such as phenobarbital, 
diphenylhydantoin, valproic acid, retinoic acid, warfarin, etc.), heavy metals and 
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environmental poisons (mercury, lead, manganese, and toluene/benzene deriva-
tives), excessive radiation, maternal conditions (drug and alcohol abuse or addiction 
to illicit drugs, smoking, nutritional deficiencies, metabolic disorders in the mother 
such as phenylketonuria, diabetes, mental and emotional stress, etc.), invasive medi-
cal interventions (such as amniocentesis, chorionic villus sampling, etc.), and 
changes in the environment (elevated core temperature for an extended period of 
time such as febrile illness, sauna or hot tub use, etc.) [4–6].

Teratogens in humans have certain characteristics that include evidence of an 
increase in the frequency of a known abnormal phenotypic effect, such as neurobe-
havioral changes or structural changes leading to birth defects, a dose response 
relationship with a threshold effect, critical periods of significant risk, established 
mechanism of action, biological plausibility of teratogenicity, and genetic and/or 
epigenetic predisposing risk factors. Identifying and confirming the etiological ori-
gins of birth defects can lead to better treatment and prevention and, in the case of 
infectious diseases, the development of effective vaccines to reduce the risk in the 
population [2].

The effects of teratogens are variable and dependent on timing of the exposure, 
the dose of the exposure, the frequency of exposure(s), maternal and fetal genetic 
factors, and other mitigating or susceptibility factors that modify the effect. The 
exposure can lead to a variety of outcomes, from apparently normal and unaffected 
to mild impairment and to severe impairments with multiple malformations, or 
result in abortion and death.

As with all developing organs, the brain is often the target of teratogenic effects. 
The resulting impairments from a teratogenic exposure affecting brain development 
can lead to effects on brain structure (cellular defects, malformations, or disruption) 
and/or brain function that can manifest as behavioral abnormalities, craniofacial 
dysmorphology, developmental delays, intellectual impairment, and/or severe phys-
ical disability. It is rare for a teratogenic effect to be restricted to a single organ 
structure or specific region of the brain. However, for the purposes of this chapter, 
emphasis will be placed on the teratogenic effect on the cerebellum and the clinical 
consequences.

The cerebellum is relatively small, but it has established functional connections 
to many other regions of the brain. Prenatal and postnatal injuries due to a variety of 
toxins result in neurologic deficits, including ataxia, hypotonia, dysarthria, and ocu-
lar motility problems. These exposures can present with impairments in movement, 
motor coordination, sensory function, cognition, affect regulation, or mood. 
Dysfunction of the cerebellum and its effects on connectivity to other brain regions 
have been correlated with a number of neurodevelopmental disorders that include 
autism, attention deficit hyperactivity disorder, dyslexia, as well as psychiatric dis-
eases such as schizophrenia and bipolar diseases [7]. Many inherited disorders 
involving abnormal development and function of the cerebellum including cerebel-
lar hypoplasia have been described [8].

The nature of the injury or exposure would be dependent on the subregions of the 
cerebellum involved and determined by alterations in the corresponding cerebro- 
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cerebellar circuitry [9]. Recent studies exploring the role of speech and language 
have demonstrated an important role of the cerebellum in communication in health 
and disease. Mariën et al. [10], in a consensus review of this topic, summarized their 
findings to date “cerebellar involvement in language extends far beyond the pure 
motor domain to a variety of high-level non-motor linguistic processes at both the 
expressive and receptive language level. In general the role of the cerebellum in 
language adds evidence to the view that timing and sequencing processing, senso-
rimotor adaptation and cognitive skill automatization act as the overall operational 
modes of the cognitive cerebellum.”

Developmental abnormalities of the cerebellum have been induced by several 
teratogenic agents, including therapeutic agents such as 13-cis retinoic acid 
(Accutane©) and misoprostol (Cytotec©)l. [11–13]. Many early studies, prior to the 
1970s, were limited in describing cerebellar abnormalities since techniques to visu-
alize this organ were crude or not yet available for wide clinical use. Evaluation of 
the brain in the 1960s and 1970s was restricted to investigations such as electroen-
cephalograms (EEG), pneumoencephalograms, ultrasound, and the earlier genera-
tion computed tomography (CT) or autopsy findings. The list of disorders with 
identifiable cerebellar lesions is growing particularly with the advent and ubiquitous 
use of newer imaging techniques. With the advent of newer imaging modalities, 
brain imaging has been enhanced. Single-photon emission computed tomography 
(SPECT) can provide 3D information, and positron emission tomography (PET) 
can help assess functional abnormalities in the brain before anatomical changes 
occur in many diseases of the brain. Using magnetic resonance imaging (MRI), 
structural CNS defects and malformations are more readily and accurately defined, 
or in the case of functional MRI analysis, brain activation responses to a variety of 
external stimuli can be visualized. Magnetic resonance spectroscopy (MRS) can 
identify disturbances in the neurochemistry of the brain. Diffusion tensor imaging 
(DTI) assesses the integrity of the white matter and maps normal and aberrant white 
matter tracts and brain circuitry. In this chapter some examples of teratogenic agents 
with effects on the developing cerebellum will be presented.

 Intrauterine Infections

There are scores of infectious agents associated with intrauterine viral and para-
sitic infections. Most can cause a variety of developmental defects in exposed 
fetuses. Examples include the classical group of teratogenic pathogens, the so-
called “TORCH” (Toxoplasma gondii, Others like Treponema pallidum, Rubella 
virus, Cytomegalovirus, Herpes simplex virus), and other agents including 
Parvovirus B19, Varicella zoster virus, and plasmodium falciparum to name a few. 
In this chapter reviews of Rubella and the Zika virus are presented for illustration 
purposes, and readers are referred to recent reviews on intrauterine infections for 
further information [14, 15].
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 Congenital Rubella

As noted, several infectious agents have been implicated in causing birth defects 
and brain abnormalities [16]. The first report of a teratogenic agent in humans was 
made in 1941 by an Australian ophthalmologist Normal Gregg, who described chil-
dren with cataracts as a result of rubella in the children’s mothers during the preg-
nancy [17]. Congenital rubella is typically associated with other CNS abnormalities, 
microcephaly, growth retardation, congenital hepatitis, deafness, cataracts, retinop-
athy, and cardiovascular defects. The mechanisms of teratogenesis have included 
inhibited cell growth, impaired blood flow, direct effects of the ongoing infection 
with cytopathic effects, and immunopathological mechanisms [18, 19].

Townsend et al. [20] reported on a case of progressive panencephalitis in a child 
who was born with congenital rubella. Neuropathologic studies showed findings in 
the brain which included diffuse destruction of white matter with perivascular 
inflammatory cells and gliosis, moderate neuronal loss, numerous amorphous vas-
cular deposits in the white matter, and severe generalized cerebellar atrophy. 
Recently Cluver et  al. [21] reported on an infant with confirmed early prenatal 
rubella infection born with agenesis of the inferior cerebellar vermis. The authors 
suggest that the cerebellar defect was likely the result of spread of the virus through 
the vascular system causing vasculitis and endothelial necrosis [22]. There are only 
rare reports of cerebellar defects in congenital rubella syndrome.

It is likely that most viral and other infectious agents causing intrauterine 
infections have similar mechanisms of teratogenesis affecting the developing cer-
ebellum [16, 23, 24]. Further investigations could clarify the role of viral infec-
tions in overstimulation of excitatory amino acid receptors, excess production of 
angiogenesis, pro-inflammatory cytokine neurotrophic factors, and apoptotic-
inducing factors [25].

 Congenital Zika Infection

Recently, the Aedes species mosquito-borne Zika virus has been confirmed to be 
causative of congenital microcephaly and other birth defects including arthrogrypo-
sis and sensorineural hearing loss [26–32]. The Zika virus belongs to a family of 
related arthropod-borne (arbovirus) that includes dengue, yellow fever, West Nile 
encephalitis, and Japanese encephalitis viruses and another virus from a different 
family, Chikungunya virus [30]. The virus was first recognized in the Zika forest of 
Uganda from a rhesus monkey with an acute febrile illness in 1947 [33] with human 
infections first reported in Nigeria in 1954 [34]. Subsequent spread to the Yap 
Islands of Micronesia, the Pacific Islands, and Polynesia showed that this was not a 
benign disease in humans [30]. From mid-2015 to 2016, over 30,000 cases were 
reported in Brazil [29] and subsequently as far north as Florida [35]. Several cases 
have been imported to European countries and North America including Canada 
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[36]. In a series of 23 infants from Brazil, de Fatima et al. [27] and Hazin et al. [37] 
identified common findings in the brain of these children through CT and MRI tech-
niques. The abnormalities included brain calcifications in the junction between cor-
tical and subcortical white matter; malformations of cortical development with 
simplified gyral patterns, pachygyria, or polymicrogyria in the frontal lobes; 
enlarged cisterna magna; abnormalities of corpus callosum; ventriculomegaly; 
delayed myelinization; and hypoplasia of the cerebellum and brainstem [37]. Garcez 
et al. [38] experimental studies on human brain culture confirm that the Zika virus 
abrogates neurogenesis during human brain development. Tang et al. [39] showed 
that there is a downregulation of genes involved in cell-cycle pathways, dysregula-
tion of cell proliferation, and upregulation of genes involved in apoptotic pathways 
resulting in cell death. Clearly until an effective vaccine is developed [40], better 
treatment and diagnostic capabilities need to be developed and priority given to vec-
tor control. Outcomes of children born with congenital Zika virus infection show 
major CNS abnormalities and have features of severe delays in development and 
severe neurological dysfunction [27, 41].

 Congenital Anticonvulsant Syndrome

It is estimated that well over a million women of childbearing age in the United 
States have epilepsy, the vast majority of whom are on drug therapy for manage-
ment of this common disorder [42]. This is a concern since almost all antiepileptic 
drugs have potential risks for causing fetal anomalies and later developmental delay. 
This was first confirmed a reality in the early 1970s and 1980s with reports of chil-
dren born to epileptic mothers on drugs that included phenobarbital, phenytoin, and 
carbamazepine presenting with recurrent patterns of birth defects that included 
major malformations, such as microcephaly, growth retardation, and minor cranio-
facial and digital/limb anomalies [43–50] (Fig. 1). Holmes et al. [50] showed that 
the risk of malformations was higher in women taking one anticonvulsants over 
women delivering babies who were on no anticonvulsants (odds ratio 2.8), and the 
risk when women were taking two or more anticonvulsants was even higher (odds 
ratio 4.2). Women with epilepsy who were not on medication in the pregnancy 
showed no increase in major congenital anomalies than the controls. Morrow et al. 
[51] studied pregnant women with a diagnosis of epilepsy in UK centers using a 
prospective, observational, registration, and follow-up approach. They found 4.2% 
of women delivered infants with major congenital malformations with a history of 
taking anticonvulsant medication. For polytherapy use, the rate was 6.0%, for 
monotherapy it was 3.7%, and for women with epilepsy taking no medication, the 
rate was 3.5%. Valproic acid demonstrated the highest rate of major congenital mal-
formations at 6.2%. This is compared with the expected “background” rate of major 
congenital malformations as between 1% and 2% in the general population at birth 
[52, 53]. It has been suggested that some of the difference may be due to genetic 
factors that increase the frequency of anomalies in some children. This seems to be 

Teratogenic Influences on Cerebellar Development



280

borne out by studies that show differences in activity of the detoxifying enzyme 
epoxide hydrolase, with deficiency of the enzyme in infants, presenting with clinical 
features of hydantoin embryopathy [54, 55]. It has been hypothesized that anticon-
vulsants increase the production of free radicals resulting in vulnerability to malfor-
mations as a potential etiological factor [56].

There are several anticonvulsants in common use today. The list of anticonvul-
sants is long, and the most commonly used drugs include valproic acid, phenobar-
bital, phenytoin, carbamazepine, gabapentin, lamotrigine, levetiracetam, topiramate, 
vigabatrin, and benzodiazepines. A detailed review of the effects of valproic acid on 
human development including the cerebellum is presented below.

Fig. 1 Infant with typical facial features and distal digital hypoplasia with fetal hydantoin syn-
drome (From Buehler et al. NEJM. 1998. With permission)
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 Valproic Acid

Valproic acid (VPA) is a widely used and effective anticonvulsant medication that is 
also used in the treatment of mood disorders, schizophrenia, and migraine head-
aches. Animal and human studies show that VPA is associated with a predictably 
higher rate of major congenital malformations that is dose dependent [57]. The risk 
is two to three times that of the expected rates of malformations in the population, 
and it is associated with a higher risk than are other anticonvulsants.

The risk of adverse outcomes following the use of VPA includes major congeni-
tal malformation including spina bifida, atrial septal defects of the heart, cranio-
synostosis, cleft palate, hypospadias, and polydactyly [53]. In 1984, DiLiberti 
et  al. [58] described a consistent constellation of dysmorphic features that they 
called fetal valproate syndrome which has been confirmed subsequently in many 
reports [59, 60]. Although periconceptional use of folic acid is recommended for 
all women, those using anticonvulsants may benefit by using a higher dose of this 
vitamin, although evidence suggests that folic acid may not be protective in pre-
venting spina bifida from occurring after exposure to VPA.  This then begs the 
question what is the mechanism of the malformations in VPA and other anticonvul-
sants [44, 61]. VPA is also associated with neurodevelopmental and cognitive 
impairments [62] and is a known risk for autism spectrum disorders [63–65]. 
Christiansen et al. [64] confirmed in their prospective study that maternal use of 
VPA was associated with a significantly increased risk of autism spectrum disorder 
even after adjusting for maternal epilepsy. It is of interest and perhaps not coinci-
dental that one of the effects of prenatal exposure to VPA is an increased risk for 
autism as well as cerebellar anomalies. A subgroup of children with autism and a 
subgroup of children exposed to VPA both demonstrate structural cerebellar anom-
alies. The most common model used in environmentally induced ASD models in 
rodents is the one induced by VPA [66].

Not infrequent and severe consequences of long-term postnatal use of phenytoin 
and VPA include cerebellar atrophy [67–70]. Although the mechanism of both pre-
natal and acquired postnatal effects on the cerebellum may be different, genetic 
studies suggest that the risk of cerebellar complications may be determined by 
variations in enzyme activities that metabolize drugs. Buehler et al. [54] showed 
this to be a fact. They studied infants with fetal hydantoin syndrome and confirmed 
reduced activity of epoxide hydrolase in those exposed and affected compared to 
both those exposed and unaffected and normal controls. CYP2C9 mutation (*2 or 
*3) reduces phenytoin metabolism by 25–50% and can increase the risk of phenyt-
oin-related side effects. CYP2C9 polymorphism has been associated with a reduc-
tion in cerebellar white matter volume in epileptic users of phenytoin [69]. Animal 
studies confirmed that prenatal exposure to VPA is associated with loss of volume 
in the vermis and hemispheres. Ingram et al. [64] identified reduced Purkinje cells 
in the vermis with greater loss in the posterior lobe with parallel in some human 
autistic populations.

Teratogenic Influences on Cerebellar Development



282

As newer and safer drugs become available for the treatment of epilepsy and 
other seizure disorders in women of childbearing age, the use of drugs such as VPA 
will likely continue to be reduced. It is important that women on these drugs need 
to be advised of the risks in pregnancy and screening measures and ongoing surveil-
lance to assess fetal well-being be instituted.

 Prenatal Alcohol Effects and Fetal Alcohol Sepctrum Disorder

Whether prenatal alcohol exposure (PAE) can harm the human embryo and fetus 
has been a contentious issue over the past century. Following seminal studies by 
Lemoine et al. [71] in France in 1968 and Jones et al. [72, 73] in the United States 
in 1973 did the irrefutable evidence of the harmful effects of alcohol in pregnancy 
become clear, and PAE is considered the most common teratogenic agent in humans. 
Based on extensive research in animals and humans, PAE has been demonstrated to 
cause a variety of structural and/or functional deficits in the developing fetus, even 
after a single binge episode or equivalent use in experimental situations [74–76].

In humans, the first reports were on infants and young children born to mothers 
who were known alcoholics. These children typically presented with intrauterine 
growth retardation, microcephaly, characteristic facial dysmorphic features of 
short palpebral fissure lengths of the eyes, abnormal and short midface with a 
smooth poorly formed philtrum and a thin vermilion border of the upper lip, risk to 
various birth defects including cleft palate, cardiac malformations, limb anomalies, 
and an increase in minor anomalies, with cognitive impairment and behavioral 
problems (Fig. 2). This presentation was called fetal alcohol syndrome (FAS) [73, 
74, 77, 78]. Subsequently less visible signs of the prenatal effects of alcohol were 
identified in which affected children showed few or little of the facial and growth 
features but presented with cognitive and behavioral difficulties. The use of other 
terminologies such as fetal alcohol effects (FAE), partial fetal alcohol syndrome 
(pFAS), and alcohol- related neurodevelopmental disorder (ARND) was applied 

Fig. 2 The typical facial features of fetal alcohol syndrome in two infants
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[79–85]. The term fetal alcohol spectrum disorder has often been used to include 
the whole spectrum of effects of PAE. Cook et al. [84] recently updated the fetal 
alcohol spectrum disorder (FASD) diagnostic guidelines in Canada, and the termi-
nology has been changed to include two diagnostic categories, FASD with sentinel 
facial features (FAS) and FASD without sentinel facial features (previously called 
partial FAS and ARND).

The diagnosis of FASD requires multidisciplinary team assessments to identify 
behavioral, cognitive, neurological, and dysmorphic features congruent with FASD 
[82]. This means that referrals for suspected cases are sent to the multidisciplinary 
team for a thorough evaluation by other specialists that includes specialist physi-
cians (developmental pediatricians, geneticists, psychologists, speech and language 
therapists, occupational therapists, education specialists, and social work case 
workers). Details of the referral process, evaluations and steps in the diagnosis, and 
management recommendations are described in detail elsewhere [82, 84].

Evaluation of the brain is an important component of diagnosis. This includes an 
in-depth assessment of brain function using standardized testing of (1) cognition, 
(2) memory, (3) language, (4) academic achievement, (5) executive function (includ-
ing impulse control and hyperactivity, adaptive behavior, social behavior, social 
skills or social communication, attention, affect regulation, motor skills, and neuro-
logical assessment of brain size, neuroanatomy, and neurophysiology (including 
neurologic examination and in some cases imaging)) [84].

There are many other conditions that can mimic FASD with an extensive differ-
ential diagnosis [86], and many comorbid conditions are often co-occurring in 
FASD individuals, some conditions at rates greater than 100 times the general popu-
lation based on US data [87]. These children need to be identified as early as pos-
sible if therapy and interventions are to make a difference in their long-term 
prognosis, and so screening programs need to be introduced to afford early detec-
tion [88]. Many affected children and adults who are not identified or diagnosed 
until later in life can experience what has been referred to as secondary disabilities 
[89]. They can be lost in society and can experience apprehension by social service 
agents and foster care, school failure with early dropout, addiction problems, mental 
health difficulties, limited employment opportunities, homelessness, and involve-
ment with crime and the justice system with frequent incarceration [89, 90].

The prevalence of fetal alcohol spectrum disorder (FASD) is estimated to be 
between 2.4% and 4.8% in a school-age population in the United States [91] and 
similar high rates of prevalence in a school-age population in Italy [92]. The highest 
rates at 18–26% were estimated in an at risk rural and lower socioeconomic com-
munity in South Africa [93]. Because of the high prevalence in most populations 
studied and the high costs to society of the condition, prevention of drinking in 
pregnancy should be a high priority of governments, social and health care profes-
sionals, and the alcohol industry [87, 94–99].

It is relevant that several of the brain domain impairments observed in PAE and 
FASD individuals exhibit these difficulties, in part, because of teratogenic effects of 
alcohol on the cerebellum and their respective connections to other regions of the 
brain. For example, the functions of motor and balance, eye tracking and visual–
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spacial perception, cognitive abilities, learning, language, emotional responses, and 
attention pathways are connected to the cerebellum. Many children with FASD have 
impairments in these functions. Many research reports and clinical descriptions in 
the literature to support the above association of cerebellar dysfunction and FASD 
are presented in the following pages.

 Mechanisms for Alcohol Teratogenesis

Ethanol is toxic to the developing embryo and fetus. Alcohol readily crosses the 
placenta and the blood–brain barrier. Alcohol can affect normal placental function 
and cause altered blood flow, ischemia, and hypoxia to the fetus. There is also an 
interaction between the direct toxic effects and indirect or maternally mediated 
effects of alcohol [100].The mechanisms are complex and involve variables in the 
timing, frequency, and dose of exposure. Alcohol is known to act on or modulate 
many different target molecules’ multiple mechanisms, activated at different stages 
of embryonic and fetal development or at different dose thresholds of exposure and 
stages of development, resulting in diverse phenotypes [101–103]. The earlier the 
exposure of teratogenic factors during organogenesis, the greater the harm that is 
likely to occur [74, 103–105].

 Molecular Pathways and Genetic Factors

PAE and FASD are perhaps best considered to be a prototypical multifactorial tera-
togenic disorder whereby both genetic predisposing factors and environmental 
exposures combine to have a variable phenotype (Fig. 3). It is evident that alcohol 
alone can be directly toxic to the embryo and fetus, but other factors also can either 
contribute to the risk (as aggravating factors) or have protective effects to some 
degree (a mitigating factor). PAE is both dose dependent (acute vs chronic expo-
sure; frequency of exposure) and sensitive to critical periods of developmental 
stage. Factors shown to be protective include good nutrition prenatally and after 
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Growth 
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stillbirths

Fig. 3 Variable fetal 
outcomes from excessive 
ethanol exposure
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birth [106], consistent and nurturing child care, early diagnosis with earlier inter-
ventions, and favorable genetic factors (particularly those involved in alcohol 
metabolism). According to May and Gossage [107], maternal risk is multidimen-
sional, including factors related to quantity, frequency, and timing of alcohol expo-
sure, maternal age, number of pregnancies, number of times the mother has given 
birth, the mother’s body size, nutrition, socioeconomic status, metabolism, religion, 
spirituality, depression, other drug use, and social relationships. Some risk factors in 
the child include poor nutrition; exposure to neglect; physical, emotional, or sexual 
abuse; repeated changes in caregivers and place of residence; “unfavorable” genet-
ics; and a diagnosis later in childhood [89]. It is well established that the genetic 
background of the mother and fetus influences the risk of ethanol-induced malfor-
mations [108]. The more efficient alcohol dehydrogenase (ADH) allele, ADH 1B*3, 
affords protection for FASD outcomes [109], while the maternal and fetal ADH1B*2 
allele reduced the risk for FAS in a South African population (in comparison with 
ADH1B*1) [108]. For more recent reviews relevant to the importance of polymor-
phisms in the alcohol metabolizing pathway, the reader is referred to other reviews 
[110, 111] (Figs. 4 and 5).

A recent population-based prospective children’s health and development study 
from Britain confirmed a genetic risk to some children genetically predisposed to 
the effects of alcohol exposure in pregnancy [112]. The authors found four ADH 
genetic variants in alcohol metabolizing genes in 4,167 children which were strongly 
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related to lower IQ at age 8, as was a risk allele score based on these four variants. 
All the mothers of these children took moderate amounts of alcohol during the preg-
nancy. The authors suggest that, even among women drinking moderate amounts of 
alcohol, subtle changes in exposure to alcohol due to an ability to metabolize the 
substrate may be important and offer some support to the hypothesis that even small 
amounts of alcohol in utero have an effect on future cognitive outcomes.

Alterations in a number of molecular pathways have been suggested as candi-
dates responsible for the range of FASD phenotypes [101, 113, 114]. These include 
(1) alterations in the regulation of gene expression (e.g., reduced retinoic acid sig-
naling [115, 116], homeobox gene expression, altered DNA methylation [117]); (2) 
interference with mitogenic and growth factor responses involved in neural stem 
cell proliferation, migration, and differentiation [118]; (3) disturbances in mole-
cules that mediate cell–cell interactions (L1, NCAM, loss of trophic support, e.g., 
[119, 120]); (4) activation of molecular signaling controlling cell survival or death 
(growth factor deprivation, oxidative stress, apoptotic signaling and caspase-3 acti-
vation, suppression of NMDA glutamate and GABAA receptors,  withdrawal- induced 
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Fig. 5 Oxidative pathways of alcohol metabolism. The enzymes alcohol dehydrogenase (ADH), 
cytochrome P450 2E1 (CYP2E1), and catalase all contribute to oxidative metabolism of alcohol. 
ADH, present in the fluid of the cell (i.e., cytosol), converts alcohol (i.e., ethanol) to acetaldehyde. 
This reaction involves an intermediate carrier of electrons, nicotinamide adenine dinucleotide 
(NAD+), which is reduced by two electrons to form NADH. Catalase, located in cell bodies called 
peroxisomes, requires hydrogen peroxide (H2O2) to oxidize alcohol. CYP2E1, present predomi-
nantly in the cell’s microsomes, assumes an important role in metabolizing ethanol to acetaldehyde 
at elevated ethanol concentrations. Acetaldehyde is metabolized mainly by aldehyde dehydroge-
nase 2 (ALDH2) in the mitochondria to form acetate and NADH (From Chudley [187])
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glutamatergic excitotoxicity), [121, 122]; (5) and derangements in glial prolifera-
tion, differentiation, and functioning [123].

Lombard et al. [124] utilized a computational candidate gene selection method that 
identified genes that may play a role in alcohol teratogenesis. Using a modification of 
the methodology called convergent functional genomics which combines data from 
human and animal studies, this group identified a short list of high- probability candi-
date genes, with the inclusion of additional lines of evidence in the presence of limited 
expression studies in an animal model and the absence of FAS linkage studies. From a 
list of 87 genes, the group prioritized key biological pathways significantly overrepre-
sented among the top-ranked candidate genes. These pathways include the TGF-β 
signaling pathway, MAPK signaling pathway, and the Hedgehog signaling pathway.

The genes in the TGF-β signaling pathway may play pivotal roles during embryo-
genesis and development and have a potential role in the distinct characteristics 
associated with FAS, i.e., CNS dysfunction, craniofacial abnormalities, and growth 
retardation. CNS dysfunction is the most severe and permanent consequence of in 
utero alcohol exposure and the only feature present in all diagnostic categories in 
FASD. These observations make the TGF-β signaling pathway an important consid-
eration, as it is essential in fetal and CNS development. Alcohol inhibits TGF-β- 
regulated processes such as cortical cell proliferation and neuronal migration, 
disrupts axonal (the major extension of a nerve cell) growth, and upregulates cell 
adhesion molecule expression [125]. TGF-β signaling pathway interacts with alco-
hol, and/or its metabolic breakdown products, and alcohol may have a detrimental 
effect on the efficiency of this developmentally essential pathway.

The MAPK pathway transmits many signals, leading to growth, differentiation, 
inflammation, and apoptosis responses [126]. This pathway is very complex and 
includes many protein components. MAPK pathway components are involved in 
the regulation of meiosis, mitosis, and postmitotic functions and in cell differentia-
tion. The MAPK signaling pathway can be activated by a variety of stimuli as well 
as external stress factors, such as alcohol [127]. Using a mouse model of FAS, 
experimental manipulation of second-messenger pathways (that also impact on the 
MAPK pathway) completely reversed the action of ethanol on neuronal migration 
in vitro as well as in vivo [128].

The Hedgehog signaling pathway was also identified to contain several genes 
within the candidate list. This signaling pathway is a highly conserved and key regu-
lator of embryonic development. Knockout mouse models lacking components of 
this pathway have been observed to develop malformations in the CNS, musculo-
skeletal system, gastrointestinal tract, and lungs [129]. FAS animal models have a 
similar craniofacial phenotype to mouse models treated with antibodies that block 
Hedgehog signaling components, specifically the sonic Hedgehog (Shh) molecule 
[130, 131 132]. Alcohol resulted in a significant decrease in Shh levels in the devel-
oping embryo, as well as a decrease in the level of other transcripts involved in Shh 
signaling. Addition of Shh after alcohol exposure led to fewer apoptotic (dead or 
dying) cranial neural crest cells and a decrease in craniofacial anomalies [131]. 
Altered function of genes in the Hedgehog signaling pathway may thus contribute 
to the brain malformations and dysfunction in FASD.
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 Epigenetics

Epigenetic mechanism as a cause of the diverse effect of PAE and FASD is emerg-
ing as a potentially important mediator of the FASD phenotype [133–136]. 
Epigenetics refers to modifications of DNA and its packaging that alter the acces-
sibility of DNA to potentially regulate gene expression and cellular function with-
out changes to the underlying genomic sequences [135, 137]. There are several 
mechanisms in which gene expression can be controlled, and the most studied 
epigenetic modification in human populations is DNA methylation. DNA methyla-
tion generally represses gene expression, but this relationship is less well defined 
for CpGs located within gene bodies and intergenic regions [138]. Furthermore, 
DNA methylation is closely associated with several key developmental processes, 
including genomic imprinting, tissue specification, and differentiation [139]. 
Prenatal alcohol exposure has been shown in animal studies to alter methylation 
which is predicted to alter gene expression and thus alter developmental processes 
[134, 140, 141].

There have been few human studies to test the role of changes in methylation and 
relationship to FASD. Several studies have demonstrated the effect of PAE on the 
H19 imprinted gene in both mice and humans [142, 143]. Altered expression of the 
H19 gene could interfere with normal growth mediated through the Igf2 gene. A 
smaller human study characterized the DNA methylation profile in buccal epithelial 
cells (BECs) from a small cohort of human FASD samples, identifying alterations 
in the epigenome of children with FASD, particularly within the protocadherin gene 
clusters, which are involved in producing proteins involved in cell adhesion [144]. 
A genome-wide DNA methylation study in mouse embryos exposed to ethanol also 
identified significant changes within several imprinted genes including both H19 
and SLC22A18 [145]). The SLC22A18 gene is located in an imprinted region and 
plays a role in tumor suppression with other genes in the region mediating growth. 
A recent comparatively large study compared a cohort of FASD and alcohol- 
exposed children with controls through genome-wide DNA methylation patterns of 
BECs which were analyzed (Portales). Results from the study by Portales-Casamar 
et al. [146] further confirmed these findings, as five down-methylated probes in H19 
and six in SLC22A18 were altered in the FASD cohort. With validation, these find-
ings provide initial insight into the molecular mechanisms underlying the effects of 
PAE on children and present a potential role for DNA methylation in the etiology of 
FASD. It may also be possible to define a biomarker for alcohol exposure that may 
aid in the earlier diagnosis, referral, and treatment of this common disorder.

 FASD and the Cerebellum

The earliest autopsy studies described in humans diagnosed with FAS and PAE 
identified errors in cell migration, agenesis or thinning of the corpus callosum, and 
anomalies in the cerebellum and brain stem [73, 147–149]. Subsequent imaging 
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studies with newer technology and resolution were consistent with autopsy findings 
[150]. These showed overall volume reductions in the cranial, cerebral, and cerebel-
lar vaults in FASD [151–156]. Furthermore, other studies have suggested that this 
decrease is not uniform but rather that the parietal lobe [153–155, 157], portions of 
the frontal lobe [154], and specific areas of the cerebellum [156, 158, 159] appear 
to be especially sensitive to alcohol insult (Fig. 6).

Studies of effects on brain volume using imaging techniques have reported dis-
proportionate size reductions in the cerebellum [153, 156, 160–162]. Cardenas et al. 
[162] studied PAE individuals using a cerebellar parcellation tool kit with 
T1-weighted MRI to assess cerebellar size. They concluded that (1) PAE-related 
microcephaly is strongly related to cerebellar hemispheric volumes and (2) smaller 
cerebellar measures in FASD are not fully explained by microcephaly and suggest 
an additional direct effect of prenatal alcohol exposure on the cerebellum.

Experimental studies on animals confirmed that PAE targets certain areas of the 
brain, particularly the cerebellum and the craniofacial structures [74, 163, 164]. 
Nathaniel et al. [165, 166] showed that the cerebellum and the area and circumfer-
ence of the vermal cerebellum were significantly reduced in ethanol-exposed pups 
compared with the pair-fed controls. Studies in rats showed that synaptic density of 
the molecular layer of the cerebellar lobule VI was decreased in 28-day-old animals 
which were exposed prenatally to ethanol [167].

Studies in the mouse cerebellum showed that microglia promote the death and 
subsequent engulfment of Purkinje cells that express activated caspase-3 when they 
are undergoing synaptogenesis [168]. Similar results were observed in a developing 
nematode C. elegans, where cells in the advanced caspase (CED-3)-dependent stage 
of degeneration could recover [169]. Sawant et al. [170] assessed fetal cerebellar 

Fig. 6 A MRI 
demonstrating a small 
cerebellum and vermis 
hypoplasia (arrow) in a 
child with FAS (From 
Fig. 1 in Autti-Rämö et al. 
[156].)
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Purkinje cell counts in an early-maturing region (lobules I–X) and a late-maturing 
region (lobules VIc–VII) from midsagittal sections of the cerebellar vermis in sheep. 
Third trimester-equivalent ethanol exposure caused a significant reduction in the 
fetal cerebellar Purkinje cell volume density and Purkinje cell number only in the 
early-maturing region, and as expected, the first trimester-equivalent ethanol expo-
sure resulted in significant reductions in both the early- and late-maturing regions. 
The authors concluded prenatal ethanol exposure in the first trimester interferes 
with the genesis of Purkinje cells in an unselective manner, whereas exposure dur-
ing the third trimester selectively kills postmitotic Purkinje cells in specific vermal 
regions during a vulnerable period of differentiation and synaptogenesis.

Chronic prenatal alcohol exposure on the immature central nervous system 
(CNS) profoundly inhibits insulin and insulin-like growth factor (IGF) signaling 
[171, 172]. They conclude that insulin-stimulated central nervous system neuronal 
survival mechanisms are significantly impaired by chronic gestational exposure to 
ethanol and that the abnormalities in insulin signaling mechanisms persist in the 
early postnatal period, which is critical for brain development. The same research 
group [173] observed ethanol dose-dependent reductions in cerebellar aspartyl 
(asparaginyl)-β-hydroxylase (AAH) immunoreactivity and significant impairments 
in insulin- and IGF-I-stimulated directional motility in granule neurons isolated 
from ethanol-exposed rat pup cerebella. In addition to reduced motility, the authors 
observed that chronic in vivo ethanol exposure mainly reduced the percentages of 
migrant adherent cells, consistent with previous reports indicating that ethanol 
impairs neuronal cell adhesion mechanisms and neuronal migration [102, 120]. 
Tong et al. [174] showed that abnormalities in cerebellar function following chronic 
prenatal ethanol exposure were associated with inhibition of insulin/IGF, canonical 
Wnt, and Notch pathways. Thomas et al. [175] showed that neonatal ethanol expo-
sure induces cerebellar Purkinje and granule cell loss if exposure occurs before 
postnatal day (PD) 7 and that cerebellar damage may underlie ethanol-induced 
motor deficits. Exposure during PD 4/5 produced significantly more severe motor 
deficits and significantly more severe reductions in cerebellar and brainstem weights 
than did exposure later in life.

Another mechanism of disrupted development of the cerebellum involves synap-
tic defects. A recent study that showed reduced N-acetylaspartate NAA levels in 
children with PAE using MRS suggests impairment in the early developmental for-
mation of dendritic arborizations and synaptic connections [176]. The study showed 
that additional finding of lower choline points to disrupted choline metabolism of 
membrane phospholipids with potentially reduced content of dendrites and syn-
apses. The alcohol-related alterations in glutamate plus glutamine that was  identified 
suggested a disruption of the glutamate–glutamine cycling involved in glutamater-
gic excitatory neurotransmission.

Fan et  al. [177] have confirmed abnormalities in eyeblink conditioning and 
FASD using the MRI and DTI analyses. Using DTI (which is used to assess integ-
rity of the white matter) they demonstrated a lower response (as measured by frac-
tional anisotropy) bilaterally in the superior cerebellar peduncles and higher 
diffusivity in the left middle peduncle in the alcohol-exposed children compared to 
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controls, and the findings correlated with poorer EBC performance. This may reflect 
poorer myelination in these large bundles of myelinated nerve fibers that connect 
the cerebellum to the brain stem. The authors conclude that FASD deficits in EBC 
are likely attributed to poorer myelinization in key regions of the cerebellar 
peduncles.

 Clinical Consequences to Cerebellar Dysfunction in PAE 
and FASD

Many of the behavioral deficits seen in individuals with FASD, including spatial 
recognition, motor learning, and fine motor control, are mediated, in part, by the 
cerebellum [150]. There has been a long-standing recognition and association with 
cognitive function and cerebellar function [178–181]. Behavioral changes were 
clinically prominent in patients with lesions involving the posterior lobe of the cer-
ebellum and the vermis, and in some cases they were the most noticeable aspects of 
the presentation [178]. As noted previously, there is a frequent occurrence of cere-
bellar defects in autism [182] and also in ADHD children [183]. Berquin et al. [183] 
showed vermal volume was significantly less in boys with ADHD. This reduction 
involved mainly the posterior inferior lobe (lobules VIII–X) but not the posterior 
superior lobe (lobules VI–VII). A cerebello–thalamo–prefrontal circuit dysfunction 
may subserve the motor control, inhibition, and executive function deficits encoun-
tered in ADHD. It is of interest that FASD children frequently present with attention 
difficulties, and there may be an overrepresentation of autism in PAE and/or FASD 
children and adults [184].

In a study of children with heavy prenatal alcohol exposure experience, signifi-
cant deficits in isometric force production were identified that may impede their 
ability to perform basic motor skills and activities in everyday tasks [185]. In addi-
tion, another study results indicated children with FAS experience deficits in 
response programming and movement time production [186].

 Summary

This chapter summarizes select teratogenic agents to illustrate the importance of the 
recognition of etiology, mechanisms of teratogenesis, pathogenesis, and clinical 
impact these agents have on the developing human and particularly cerebellar struc-
tural and functional consequences. Where appropriate and relevant, the emerging 
role and effects of genetic and epigenetic mechanisms are discussed. Emphasis has 
been given to common conditions and hence the greater attention to PAE and 
FASD.  Because of the nature of teratogens, there is opportunity to prevent the 
occurrence of phenotypic consequences of these exposures through various preven-
tion strategies.
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