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Hormonal Regulation of Cerebellar 
Development and Its Disorders

Noriyuki Koibuchi

Abstract  Cerebellar development and plasticity involves in various epigenetic pro-
cesses that activate specific genes at different time points. Such epigenetic influ-
ences include hormonal signals from endocrine cells. Various hormone receptors 
are expressed in the cerebellum, and cerebellar function is greatly influenced by 
hormonal status. The aim of this chapter is to introduce several key features of hor-
mones and their receptors involved in the regulation of cerebellar development and 
plasticity. Furthermore, cerebellar developmental disorders caused by aberrant hor-
monal status are also discussed. This chapter also covers the effect of endocrine-
disrupting chemicals that may alter hormone functions in the cerebellum.

Keywords  Steroid hormone • Thyroid hormone • Nuclear receptor • Critical period • 
Endocrine-disrupting chemicals

�Hormone and Cerebellar Development: A General Overview

To understand the functional organization of the central nervous system (CNS), 
including the cerebellum, it is important to consider the process by which neurons 
differentiate to establish their role and interact with specific target cells to form 
functional pathways. The development of the brain involves epigenetic processes 
that activate specific genes during different time frames. As shown in Fig. 1, epigen-
etic influences that regulate brain development may originate from the neuronal cell 
itself or from outside of the CNS. The former includes spatial and temporal pattern 
of intrinsic gene expression tightly regulated by their molecular programs. The lat-
ter includes sensory inputs, mediated by the peripheral nervous system and hor-
monal influence from endocrine cells. These are also crucial stimuli for brain 
development. Environmental influences, such as stressors, endocrine-disrupting 
chemicals (EDCs), and undernutrition may affect such processes.
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The cerebellar cortex forms well-organized structures involving a highly specific 
and uniform arrangement of cells and microcircuitry [1]. The cerebellum is one of 
the few sites in the CNS where the pattern of intrinsic connections is known in con-
siderable detail. These features make the cerebellum an ideal system to study the 
mechanisms of neural development and plasticity. Based on such advantages, many 
excellent works have been done at various levels ranging from basic science to clini-
cal disorders. In contrast, although a number of hormone receptors are expressed in 
the cerebellum, and cerebellar function is greatly influenced by hormonal status, a 
relatively smaller number of studies have evaluated the role of hormonal signaling 
on development and plasticity of the cerebellum.

Among circulating hormones, a group of small lipophilic hormones such as ste-
roids (corticosteroids, progesterone, androgens, and estrogens) and thyroid hor-
mone (TH) may particularly play an important role in mediating environmental 
influences. Because of their chemical nature, these are able to cross the blood-brain 
barrier (BBB) more easily than peptide hormones, although the existence of specific 
transporters has been proposed [2]. Receptors for such lipophilic hormones are 
mainly located in the cell nucleus (nuclear receptor, NR) and represent the largest 
family of ligand-regulated transcription factors [3]. As shown in Fig. 2, the molecu-
lar structure of the NR superfamily is homologous. It consists of a highly variable 
N-terminal domain, which contains a transactivation domain (activation function-1, 
AF-1), DNA-binding domain (DBD), and ligand-binding domain (LBD). The DBD 
is the most homologous among these domains. The LBD, which also shares certain 
homology among NRs, is also responsible for dimerization of NRs and ligand-
dependent transactivation (activation function-2, AF-2). To activate or repress the 
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Fig. 1  Schematic diagram showing genetic and epigenetic influences and its modulation by envi-
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transcription of target gene, NRs bind to a specific nucleotide sequence called the 
hormone response element (HRE) located in the promoter region of target genes 
(Fig.3). Then NRs recruit a variety of coregulators in a ligand-dependent manner, 
such as coactivator and corepressor complexes, which then modulate chromatin 
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structures [4]. With a specific pattern of expression, the NRs are widely distributed 
in the CNS, as well as in other organs [5]. In the cerebellum, NRs are expressed in 
a specific temporal and spatial pattern [6]. However, the role of these NRs on cere-
bellar development and function is not fully understood.

Among the lipophilic hormones, involvement of TH (triiodothyronine [T3] and thy-
roxine [T4]) on cerebellar development has been well studied. Deficiency of TH during 
the postnatal development results in abnormal cerebellar morphogenesis in rodents 
[7–9] and humans [10]. Conversely, although the importance of gonadal steroids such 
as estrogen, progesterone, and testosterone on the development and functional mainte-
nance of the CNS has been well documented, the cerebellum is considered to be rela-
tively insensitive to gonadal steroids. However, recent studies have clarified that 
gonadal steroids play an important role in cerebellar development and may be involved 
in various health and disease states [11]. In addition to the supply from circulation, 
these gonadal steroids are produced locally within the Purkinje cells [12]. Corticosteroids, 
particularly glucocorticoid, are crucial for the maturation of various organ systems, 
including the brain [13]. Furthermore, since recent studies have shown the critical role 
of the cerebellum on social, cognitive, and emotional behaviors [14]; other studies on 
the role of glucocorticoids on cerebellar development are currently underway. 
Additionally, it should be noted that these thyroid/steroid hormone-mediated pathways 
can be disrupted by prescription drugs and environmental chemicals [15].

This chapter will provide useful information regarding the hormonal regulation 
of cerebellar development and plasticity. Furthermore, cerebellar developmental 
disorders caused by aberrant hormonal status are also discussed.

�Cerebellar Disorders Induced by Aberrant TH Systems

The importance of T3 and T4 in brain development has been well documented [7–9]. 
Deficiency of THs during fetal and early postnatal period results in severe mental 
retardation. In humans, this is known as cretinism [10]. In the 1980s when newborn 
screening was introduced in many countries, the initial prevalence of cretinism was 
1/3,000–1/4,000 births worldwide; however, recent studies have shown that the 
prevalence has increased to 1/1,400–1/2,800. This increase may be attributed to the 
change in diagnostic strategy from serum T4 measurement to thyrotropin (TSH) 
measurement, allowing the identification of milder cases. If the diagnosis of cretin-
ism is delayed, the risk of mental retardation and neurologic sequelae, such as poor 
motor coordination, ataxia, spastic diplegia, muscular hypotonia, strabismus, learn-
ing disability, and diminished attention span, is likely to increase.

T4 enters the brain through the BBB more easily than T3, an active form of TH 
[16]. After crossing the BBB, T4 is taken up by astrocytes and deiodinated to pro-
duce T3 by type 2 iodothyronine deiodinase [17]. T3 is then transferred to neurons or 
oligodendrocytes, possibly via monocarboxylate transporter 8 (MCT8) [18]. The 
effects of THs are mainly exerted through the nuclear TH receptor (TR). At least 
three TR isoforms are expressed in the CNS (TRα1, TRβ1, and TRβ2) [19].
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Perinatal hypothyroidism dramatically affects cerebellar morphogenesis and 
function. In an animal model of perinatal hypothyroidism, the growth, dendritic 
arborization, and dendritic spines of Purkinje cells are all markedly decreased. 
Synaptogenesis between Purkinje cells and parallel fibers is dramatically repressed. 
The disappearance of the external granule cell layer is postponed as a result of the 
delayed proliferation and migration of the granule cells into the internal granule cell 
layer (Fig. 4) [7–9]. TRs are expressed in most subsets of cells in the developing 
cerebellum in both rodents and humans [20, 21]. TRα1 is abundant in granule cells, 
whereas TRβ1 is mainly expressed in Purkinje cells. In perinatal hypothyroidism, 

Fig. 4  Effect of congenital hypothyroidism in rat model. Rdw congenital hypothyroid rat, which 
harbors mutated thyroglobulin gene, shows delayed cerebellar development (b, d, f) compared to 
control animal (a, c, e). Note the decrease in dendrite arborization of Purkinje cell (d) and delayed 
disappearance of the external granule cell layer (EGL) (f)
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the expression of many cerebellar genes is altered [8]. Representative TH-responsive 
genes in the cerebellum include neurotrophins such as nerve growth factor, BDNF, 
NT3, and NT4/5, and receptors such as the inositol triphosphate 3 receptors, and 
retinoic acid receptor-related orphan receptor α, hairless, and myelin basic protein 
genes. The THs regulate the expression of many of these genes only during a limited 
period of development. Various animal models harboring TR mutation have been 
used to study the role of TR in cerebellar development [22]. Interestingly, TRα 
knockout mice, TRβ knockout mice, and TRα/TRβ double knockout mice do not 
display obvious cerebellar defects, suggesting that most of the consequences of 
congenital hypothyroidism in the brain are caused by the detrimental activity of 
unliganded TR. In fact, in animal models expressing dominant-negative TR, which 
cannot bind to TH, cerebellar phenotypes, such as disrupted motor coordination, are 
evident [23–26], suggesting that unliganded TR may cause aberrant phenotypes. In 
human cases of resistance to TH (RTH) caused by mutation of TR genes, the clini-
cal phenotype is highly variable [27, 28]. This probably depends on the severity of 
the mutation. However, abnormal motor coordination, which is always evident in 
animal models, is not common in human cases. Their representative neurological 
symptoms are emotional disturbances and hyperkinetic behavior [27]. Although the 
involvement of the cerebellum on such behavioral alterations is also known as cer-
ebellar cognitive affective syndrome [29], further study is required to clarify such 
phenotypic differences among species.

In addition to cretinism and RTH, recent studies have shown another congenital 
disease induced by aberrant TH system. Another human disorder related to the TH 
system is Allan-Herndon-Dudley syndrome, which is an X chromosome-linked dis-
ease. The symptoms are hypotonia, dysarthria, athetoid, or other distal limb move-
ments, muscle hypoplasia, and severe mental retardation [30]. Linkage studies have 
identified the gene locus in Xq 13.2. This region encodes for MCT8 that transports 
T3 into the neurons [31]. Animal studies have shown the disruption of cerebellar 
development by knocking down MCT8 in the Purkinje cells [32]. Although MCT8 
is responsible for the TH transport into neurons, the phenotype of Allan-Herndon-
Dudley syndrome is much more severe than that in a patient with cretinism or 
RTH. Thus, further study is necessary to clarify whether this syndrome is induced 
only by disrupted TH transport or by other additional factors.

�Cerebellar Disorders and Gonadal Steroids

Although the importance of gonadal steroids, such as estrogen, progesterone, and 
testosterone in the development and functional maintenance of the brain, has been 
well documented, the cerebellum has been previously considered relatively insensi-
tive to gonadal steroids. However, recent studies have clarified that gonadal steroids 
play an important role in cerebellar development and may be involved in various 
health and disease states [11]. Aside from the supply from circulation, these gonadal 
steroids are also produced locally within the Purkinje cells [12].
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Testosterone and estradiol (E2) are the two major gonadal steroids synthesized in 
the testes and the ovaries, respectively. During brain development, gonadal steroids 
regulate the formation of structures of many brain regions. In late embryonic period, 
the testes in males start producing testosterone. Because of their lipophilic nature, 
steroids can pass across the BBB by simple diffusion [33]. Testosterone is then 
converted to E2 by an aromatase. In contrast, ovaries in females differentiate much 
later during development and do not secrete E2 during this period. Thus, during the 
perinatal critical period, there are significantly higher levels of E2 in males com-
pared to females. These are thought to act on male brain development [34]. E2 regu-
lates apoptosis to produce sexually dimorphic cell numbers, dendritic spine 
formation, neuronal migration, and synaptic organization in the hypothalamic 
regions, most of which are key regions for regulating male- and female-sexual func-
tions in the adult brain. Because of the lack of estrogen exposure during the perina-
tal period, the female brain is thought to develop without involvement of E2. 
However, studies of aromatase gene using knockout mice have suggested that E2 
produced by the ovaries during a prepubertal period plays a role in the differentia-
tion of the female-typical brain [35].

In addition to estrogen, androgens, particularly testosterone, directly acting on 
the androgen receptor (AR), are also thought to play a role in brain masculinization. 
This is based on studies of human patients with complete androgen insensitivity 
syndrome and on patients with mutations in the aromatase gene, as well as on stud-
ies of rodents with the testicular feminization mutation, which produces a nonfunc-
tional AR [36].

Gonadal steroids also play an important role in the development of the cerebel-
lum. Two nuclear estrogen receptors (ERα and ERβ) were detected in an immature 
cerebellar granule cell line derived from late embryonic mouse cerebellum [37]. 
Quantitative reverse transcription-polymerase chain reaction (RT-PCR) studies 
have shown that both receptors are expressed in the cerebellum from birth to adult-
hood but levels of ERβ mRNA are significantly higher than those of ERα in neona-
tal rats [38]. Nevertheless, ERα levels are higher than those in adults during the 
neonatal period [38]. ERα is predominantly expressed in the Purkinje cells [39]. In 
contrast, the level of ERβ protein decreased transiently at P5 and P7 in rodents and 
then increased dramatically at P10 followed by a subsequent decrease to adult levels 
[40]. ERβ immunoreactivity was detected in various neurons, including Golgi, 
Purkinje, and basket cells, and the expression in each cell type occurs on different 
postnatal days. Additionally, differentiating external granular layer cells and glial 
cells also show ERβ immunoreactivity. Differential expression profiles of ERα and 
ERβ suggest that E2 exerts its actions in a cell type-specific manner via binding to 
the two ERs, which play distinctive roles in cerebellar development. Additionally, 
there may be a possibility that estrogen acts rapidly through a membrane-associated 
receptor in the developing cerebellum [41].

As discussed above, during the late embryonic period, E2 converted from testos-
terone may be major gonadal steroid that may have some effect in the developing 
cerebellum. Previous studies showing the expression of aromatase in mid gestation 
in monkey [42] and early postnatal age in rat [43] support this hypothesis. Then at 
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the later stage, the estrogen level in the cerebellum increases relative to that in the 
plasma [44] with the expression of enzymes responsible for estrogen [43] and pro-
gesterone [45] synthesis, indicating that gonadal steroids are locally produced as 
“neurosteroids.” The most evident action of gonadal steroid is that estrogen and 
progesterone promote dendritogenesis and increases dendritic spine density [44, 
46]. Taken together, gonadal steroids produced in the testes or ovaries may play an 
important role during the early cerebellar development. Then, de novo synthesized 
neurosteroids may play a major role at a later stage of development. Additionally, 
possible sex chromosome effects have been proposed [47]. The diagram showing 
the influence of gonadal steroids on cerebellar development is shown in Fig. 5.

Whether there are any sex differences in cerebellar architecture remains controver-
sial. Some magnetic resonance imaging (MRI) studies have reported that the cerebel-
lar size in men, both adults [48] and children [49], is larger than that in women, and 
other MRI studies failed to detect such differences [50]. Biochemically, the levels of 
aromatase and several enzymes related to estrogen synthesis are higher in postnatal 
male rats than in females [43], whereas calbindin levels are higher in female mice 
[47]. While these are only few examples related to sexual differences in the cerebel-
lum, sexual dimorphism is not evident in gene expression patterns in the cerebellum.

In spite of the fact that no clear sex differences in cerebellar morphology and gene 
expression were observed, there is a clear sex difference in cerebellar pathology in 
several developmental diseases in humans and related animal models. For example, 
the prevalence of autism is four times higher in men [51], and autistic patients com-
monly show increased cerebellar volumes during childhood and hypoplasia in adult 
[52, 53]. In postmortem tissue in autistic patients, Purkinje and granule cells were 
reported to be lower in number [54, 55]. Another clinical example is attention-deficit 
hyperactivity disorder (ADHD), which affects two to four times more males than 
females [56]. Untreated children show the decreased volume of the posterior inferior 
vermis [57]. In our animal model, when polychlorinated biphenyl (PCB), an environ-
mental chemical pollutant and developmental neurotoxicant, is administered postna-
tally to dams, pups present ADHD phenotype [58]. Hyperactivity was more evident 
in males. Additionally, motor coordination was more severely disturbed in male rats 
(Fig. 6) [58]. More recently, the change in the volume of several cerebellar regions in 
transgender individuals has been reported, although the mechanisms underlying such 
cerebellar structural difference are unknown [59, 60]. To clarify the molecular mech-
anisms of sexual differences in cerebellar pathology, further study is necessary.
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Fig. 5  Possible differential roles in gonadal steroids and neurosteroids during cerebellar development
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�Cerebellar Disorders Induced by Corticosteroids

Glucocorticoids and mineralocorticoids are major adrenal steroid hormones (corti-
costeroids) synthesized in the adrenal cortex. Mineralocorticoids regulate sodium 
and potassium levels, whereas glucocorticoids are involved in the stress response 
and carbohydrate metabolism. Glucocorticoid levels are controlled through the 
hypothalamic-pituitary-adrenal (HPA) axis, whereas mineralocorticoid levels are 
regulated by the renin-angiotensin-aldosterone system. The effect of corticosteroids 
in the brain is mainly exerted through binding to intracellular receptors, the gluco-
corticoid receptor (GR), and mineralocorticoid receptor (MR) [61]. Although GR 
binds preferentially to glucocorticoids, MR can bind to both glucocorticoids and 
mineralocorticoids with similar affinity. The specificity of MR is determined by the 
colocalized expression of 11 β-hydroxysteroid dehydrogenase 2 (11β-HSD2), 
which inactivates cortisol [61]. Additionally, rapid effects that respond within min-
utes are regulated by non-genomic action [62].
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In most mammalian species, the glucocorticoid concentration increases dramati-
cally during the perinatal period, and such increases are associated with the matura-
tion of several organs including the lungs and brain [63]. In the developing CNS, 
corticosteroids regulate neurogenesis, neuronal morphology, and function in 
response to chronic stress. During fetal rat brain development, GRs are expressed 
widely, including cerebellum, with high levels of 11β-HSD2 and much lesser levels 
of MR [64], indicating that the developing cerebellum is protected from excess glu-
cocorticoids. In the early postnatal rat cerebellum, however, the MR expression in 
Purkinje cell become evident, followed by the GR expression within this cell type 
and MR expression in migrating granule cells, the internal granule layer, and the 
deep cerebellar nuclei [65]. Conversely, 11β-HSD was specifically expressed in the 
external granule cell layer [66], indicating that MR as well as GR may mediate post-
natal glucocorticoid action in the cerebellum. Prenatal glucocorticoids influence the 
development of Purkinje neurons [67]. Furthermore, the glucocorticoid-binding 
capacity of the neonatal rat cerebellum (P8-P15) is highest among brain regions, 
such as the cerebral cortex, hippocampus, and olfactory bulb [68]. These results 
indicate that glucocorticoids play an important role in the developing cerebellum to 
induce multiple changes in response to various environmental stimulations.

As discussed above, studies of rodents have shown that the cerebellum has higher 
glucocorticoid binding capacity on P8-P15 [68], which is equivalent to the human 
perinatal period. Such a high sensitivity to glucocorticoid stimulation may make the 
cerebellum susceptible to development alterations if glucocorticoid homeostasis is 
disrupted by perinatal stress or glucocorticoid administration. In rats, cortisone 
treatment during the prenatal [69] and postnatal [70] development resulted in a 
decreased number of cerebellar granule cells. Such a decrease may be caused by an 
increased sensitivity to oxidative stress by perinatal glucocorticoid treatment, induc-
ing cell death [71]. In humans, premature newborns suffering from respiratory dis-
tress caused by lung immaturity or mothers at a risk of premature delivery before 
34 weeks of gestation are sometimes administered glucocorticoid therapy. Newborns 
who received such treatment sometimes show neuromotor/cognitive disorders [72], 
including abnormal cerebellar development [73]. Thus, careful use of glucocorti-
coid therapy (i.e., dose and timing) is required for fetuses and newborns.

Stressful experiences in the prenatal or early postnatal period may increase the 
risk of neurological and psychiatric disorders, such as ADHD, autism, schizophrenia, 
and depression [74]. The cerebellum is one of the major brain regions to be directly 
affected by stressful experience, and the involvement of glucocorticoid system has 
been proposed as the culprit for such abnormalities [75]. Maternal deprivation (MD) 
during the early postnatal period in rats causes retardation in the development of 
cerebellar-dependent motor coordination and behavioral abnormalities similar to 
those in schizophrenia [76]. In MD rat, a transient increase has been reported in 
several neurotrophic factors, such as brain-derived neurotrophic factor, TrkB, and 
oligodendrocyte-myelin glycoprotein [77]. These results support the possibility that 
abnormally increased levels of glucocorticoids caused by neonatal stress during 
development are associated with structural abnormalities in the cerebellum, leading 
to psychosomatic abnormalities in adulthood. However, in spite of high glucocorti-
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coid binding capacity in the developing cerebellum, the role of glucocorticoid dur-
ing cerebellar development has not yet been fully clarified. Further investigations, 
including studies with human subjects, are necessary.

�Environmental Chemicals That May Disrupt Cerebellar 
Development Through Disruption of Hormone Actions

As discussed above, various hormones are involved in cerebellar development and 
disruption of such hormonal environment may affect such development. A large 
number of synthetic or natural chemicals may disrupt hormonal environment. These 
are referred to as EDCs. The exact definition of an EDC by the World Health 
Organization (WHO) is as follows: “An endocrine disrupting chemical is an exog-
enous substance or mixture that alters function(s) of the endocrine system and con-
sequently causes adverse health effects in an intact organism, or its progeny or (sub) 
populations” [78]. As many hormones have distinct effects, specifically in critical 
periods during development, fetal or early neonatal exposure to such chemicals may 
induce adverse effect in various organs, including the CNS [79]. Recent advances in 
EDC research have provided many important data regarding the neurotoxicity of 
such EDCs [80]. Table 1 shows representative EDCs that are categorized as pharma-
ceuticals, herbicides, fungicides, insecticides, industrial chemicals and byproducts, 
and organic and inorganic metals [79, 80]. Importantly, although there are approxi-
mately 1,000 EDCs, more than 100,000 chemicals exist in the environment. The 

Table 1  Environmental chemicals showing hormonal or antihormonal activities

Classification Chemicals

Pharmaceuticals Hormones or antihormones, amiodarone, DES, fenamate, 
phenobarbital, phenytoin

Herbicides 2,4,-D, 2,4,5,-T, alachlor, amitrole, atrazine, linuron, metribuzin, 
nitrofen, trifluralin

Fungicides Benomyl, ethylene thiourea, fenarimol, hexachlorobenzene, 
mancozeb, maneb, metiram – complex, tri-butyl-tin, vinclozolin, 
zineb

Insecticides Aldicarb, beta-HCH, carbaryl, chlordane, chlordecone, DBCP, DDT, 
dicofol, dieldrin, DDT and metabolites, endosulfan, 
heptachlor/H-epoxide, lindane (gamma-HCH), malathion, methomyl, 
methoxychlor, oxychlordane, parathion, synthetic pyrethroids, 
transnonachlor, toxaphene

Industrial chemicals 
and by-products

Bisphenol – A, polycarbonates, butylhydroxyanisole (BHA), 
chloro- and bromo-diphenyl, dioxins, furans, nonylphenol, 
octylphenol, PBDEs, PCBs, pentachlorophenol, penta- to 
nonylphenols, perchlorate, PFOA, PFOS, p-tert-pentylphenol, 
phthalates, styrene

Metals Cadmium, gadolinium, lead, manganese, methyl-mercury, organic-
tins (e.g., TBT)
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main reason why such chemicals are not currently defined as EDCs may be that 
research on EDCs cannot keep up with the increase in newly generated chemicals. 
Further studies are indeed necessary to identify EDC activity that may cause adverse 
effect and for the creation of new EDC screening method.

It should be noted that, because concentrations in hormones in plasma are low 
(nM~pM level), exposure to EDCs, even at low doses, may disrupt hormone action. 
Furthermore, we do not have the systems to effectively catalyze and excrete most 
EDCs, because humans are being exposed to EDCs quite recently during the 
evolutionary process. Thus, EDCs may concentrate in our food chain and accumu-
late in our body.

So far, 12 chemicals have been identified as being developmental neurotoxic to 
humans [81]. These are metals and inorganic compounds (arsenic, arsenic com-
pounds, lead, methylmercury, fluoride, and manganese), organic solvents (toluene, 
tetrachloroethylene), pesticides (chlorpyrifos and DDT/DDE), and industrial chem-
icals (PCBs and brominated diphenyl ethers [PBDEs]). In cellular or animal study 
levels, more chemicals may have potential neurotoxic effects [81]. Such chemicals 
may, at least in part, mediate their action though the endocrine system. In fact, in our 
previous studies, we have shown that PCBs and PBDEs may disrupt cerebellar 
development through TH system alterations [15, 82]. Both PCBs and PBDEs inhibit 
TR-mediated transcription and disrupt TH-induced Purkinje cell development 
(Fig. 7). Our current study has shown the possibility that several EDCs may affect 
cerebellar development [15]. Thus, continuous attention should be paid to detect the 
effect of EDC on cerebellar development. These agents may disrupt cerebellar 
development even at a low-dose exposure.

�Conclusion

Although many hormone receptors are expressed in developing cerebellum, only a 
limited amount of data is available in this regard. This may a result of the challenges 
related to research of hormone actions that are mainly mediated by nuclear recep-
tors. Unlike membrane-associated receptors, these act as transcriptional factors to 
activate or repress the transcription of target genes. Thus, the response is rather slow 
and various signal transduction cascade may be involved to express their action as a 
specific phenotype. However, hormonal signaling plays an important role to medi-
ate environmental influences on the developing brain. Thus, hormonal disruptions 
may cause cerebellar disorders leading to various psychosomatic diseases. It is my 
hope that this chapter will help increase the understanding of the role of hormones 
in the developing cerebellum.
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