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Abstract. The evaluation of emotional states has relevance in the devel-
opment of systems that can automatically interact with human beings.
The use of brain mapping techniques, e.g., electroencephalogram (EEG),
improves the robustness of the emotion assessment methodologies in
comparison to those schemes that use only audiovisual information.
However, the high amount of data derived from EEG and the com-
plex spatiotemporal relationships among channels impose several signal
processing issues. Recently, functional connectivity (FC) approaches have
emerged as an alternative to estimate brain connectivity patterns from
EEG. Thereby, FC allows depicting the cognitive processes inside the
human brain to support further brain activity discrimination stages. In
this work, we propose an FC-based strategy to classify emotional states
from EEG data. Our approach comprises a variability-based representa-
tion from three different FC measures, i.e., correlation, coherence, and
mutual information, and a supervised kernel-based scheme to quantify
the relevance of each measure. Thus, our proposal codes the inter-subject
brain activity variability regarding FC representations. Obtained results
on a public dataset show that the introduced strategy is competitive in
comparison to state-of-the-art methods classifying arousal and valence
emotional dimensional spaces.

Keywords: Emotion assessment · Functional connectivity · Variabil-
ity · Relevance analysis

1 Introduction

Emotional states highly influence both human interaction and human com-
puter/machine interaction. In fact, analyzing emotions has attracted enormous
interest in the development of systems that can interact automatically with the
user, e.g., brain-computer interfaces (BCI) [5]. Regarding this, emotion repre-
sentation is divided into two broad categories: discrete and dimensional. The
former includes basic emotions such as: anger, joy, surprise, disgust, fear, and
sadness. The latter comprises the analysis of few subtle dimensions that can
define an emotional stimulus from a more physiological point of view [8]. In
particular, the emotions under dimensional category employs the arousal vs.
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valence space characterization to describe the active/passive and the positive-
ness/negativeness responses, respectively, against a given emotional stimulus.
Thereby, a wider range of emotions can be analyzed and quantified than in the
discrete representation case [6,13].

Concerning the emotion assessment approaches, initial attempts included
audiovisual data. This type of data allows the detection of few basic emotions
(discrete representation), however, the analysis of facial expressions and speech
proves a challenging task due to the inter-subject variability of discriminant
emotion patterns [3]. Namely, visual emotion responses derived from body move-
ments and facial expressions are regulated by the subject, that is why the audio-
visual information lacks sort of robustness in this particular task. On the other
hand, recent approaches use physiological data to support the assessment [13].
Physiological data allows studying different biological responses in the human
body related to the central nervous system, which includes more accurate and
detailed emotion patterns than audiovisual ones [10]. Although capturing physi-
ological data poses an invasive sensing, recent efforts to improve the acquisition
technology have been made. In particular, the electroencephalogram (EEG) pro-
vides a set of time series that allows the analysis of neural activity in different
brain regions that can be easily related to cognitive processes, i.e., emotions [1,6].
Recent studies demonstrated that the EEG data and some cortical and sub-
cortical regions of the brain could be used effectively for the discrimination of
emotion responses [11]. Indeed, the EEG is preferred instead of other brain map-
ping technologies as functional magnetic resonance imaging (fMRI), because of
its non-invasive scheme and improved time resolution. Nonetheless, some issues
associated with the use of EEG include the low space resolution and the complex
spatiotemporal relationships among channels.

Some works have tried to recognize emotions from EEG data by extract-
ing a set of static features under constrained frequency bands, namely: theta,
gamma, alpha, and beta rythms [12]. Besides, more elaborate feature extraction
approaches, i.e., Dual-Tree Complex Wavelet Packet Transform (DT-CWPT),
have been introduced to highlight emotion patterns from EEG recordings [3].
However, their results are still far from being satisfactory [1,13]. Recent tech-
niques employ functional connectivity (FC) representations to support emotion
assessment by the computation of statistical dependencies among EEG time
series [4]. Such dependencies aim to code the relations of neurophysiological
events characterized by generalized synchronization (GS), phase synchroniza-
tion (PS), and information theory (IT) measures [9]. In this sense, authors in [6]
employ a PS measure to detect the reactive band and relevant synchronized
regions of the brain related to different emotions. Moreover, authors in [10] used
a mapping technique to group a region of interest from EEG time series that
gives an improved location of the brain areas related to emotional states. Simi-
larly, authors in [7] exploited the correlation and the coherence measures within
a graph theory scheme for emotion assessment. Though algorithms based on FC
seem to be promising, the variability of the inter-channel dependencies and the
selection of the FC measure still pose an open issue. Besides, the assessment
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success highly depends on the subject at hand that is related to the particular
form in which the brain of each person works.

In this work, we introduce an FC variability (FCV) representation strategy
to classify emotional states from EEG data. Our proposal codes FC variations
from three different measures: correlation, coherence, and mutual information.
Moreover, a supervised kernel-based relevance analysis is used to quantify each
FC measure significance. Thus, the inter-subject dependency regarding the emo-
tion assessment is addressed as a feature relevance analysis task concerning the
employed measure. Our approach is tested using a publicly available database
known as Database for Emotion Assessment using Physiological Data (DEAP).
In particular, a bi-class problem is built for both arousal and valence dimensions.
The obtained results show competitive performances in comparison to state-
of-the-art methods for subject-dependent emotion recognition. The rest of the
paper is organized as follows: In Sect. 2, we present the theoretical background
of FCV representation with relevance analysis. Section 3 describes the experi-
mental set-up for emotion assessment, Sect. 4 discusses the obtained results, and
the concluding remarks are outlined finally in Sect. 5.

2 Materials and Methods

2.1 Functional Connectivity Using a Variability-Based
Representation

Let u,v ∈RL be a pair of EEG records of size L, a FC measure ξ :RL×RL→R

between u and v can be defined in terms of their statistical interdependence.
Following some well-known FC measures are briefly described.

Correlation-(COR). The linear correlation ξCOR (u,v) ∈ [−1, 1] between u and
v in the time domain is computed by the Pearson’s correlation coefficient as:

ξCOR (u,v) =
1

σuσv

l∑

L=1

(ul − ū) (vl − ū), (1)

where σu, σv ∈R+ and ū, v̄ ∈R are the standard deviation and the mean values
of u and v, respectively.

Coherence-(COH). The linear time-invariant relationship between u and v at
frequency range [fmin, fmax] is calculated trough the coherence measure as:

ξCOH (u,v) =
1

fmax − fmin

fmax∑

f = fmin

|ζuv (f)|2
ζuu (f) ζvv (f)

, (2)

where ξCOH (u,v) ∈ [0, 1], ζuv (f) ∈C is the cross-spectrum of u and v, and
ζuu (f), ζvv (f) ∈C are the power spectrum of u and v, respectively.
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Mutual Information-(MI). The MI between u and v allows revealing the uncer-
tainty amount of one time series by observing the other. So, high-order correla-
tions can be computed utilizing probability density estimators as follows:

ξMI (u,v) =
L∑

l=1

p̂(ul, vl) log
(

p̂(ul, vl)
p̂(ul)p̂(vl)

)
, (3)

where p̂(ul, vl)∈ [0, 1] is an estimation of the joint probability density function
and p̂(ul), p̂(vl)∈ [0, 1] are the marginal density function approximations of ul

and vl.
In practice, an emotion assessment framework includes a set of EEG data tri-

als denoted as Ψ ={Xn ∈RC×T :n= 1, 2, . . . , N}, where Xn is the n-th observed
trial with C channels and T time instants. Furthermore, let Γ ={bn} be the
class label set, termed the emotion dimension class, where bn ∈ {−1,+1}. Given
the channel xc ∈RT of an observed EEG trial X, we initially estimate a set of
overlapped segments {zj

c ∈RL:j = 1, 2, . . . , Q} which are split from xc, being zj
c

the c-th channel at the j-th window. To model time-variant dependencies among
EEG channels, we compute the above-described FC measures between channel
segments by building the set {Aj ∈RC×C}, where matrix Aj holds elements:

aj
cc′ = ξm

(
zj
c ,z

j
c′

)
, (4)

with aj
cc′ = aj

c′c, m= {COR,COH,MI}, and c, c′ = 1, 2, . . . , C. Afterwards, both
the mean and the variance of each provided measure along segments are stored
in matrices Δ ∈RC×C and Ω ∈RC×C , holding elements:

Δcc′ =
1
Q

Q∑

j=1

aj
cc′ , (5)

Ωcc′ =
1
Q

Q∑

j=1

(
aj
cc′ − Δcc′

)2

. (6)

Finally, the feature vector y ∈RC(C−1), coding the FC variability (FCV),
is built after vector concatenation of Δ and Ω matrices (Δcc′ = Δc′c and
Ωcc′ = Ωc′c).

2.2 Relevance Analysis of Extracted FCV

Given a provided EEG set, a feature matrix Ym ∈RN×C(C−1) can be obtained
from Eqs. (5) and (6) by extracting FCV patterns based on the m-th measure,
i.e., COR, COH, and MI. So, to highlight the most relevant connectivity measure
regarding the set (subject) at hand, here, we employ a supervised kernel-based
relevance analysis to take advantage of the available joint information, associ-
ating FCV variations to a given emotion dimension value. Namely, the FCV
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similarities among EEG trials yn,yn′ ∈Ym are coded by estimating a Gaussian
kernel matrix Km ∈RN×N on Ym, as follows:

knn′ = exp
(−‖yn − yn′‖/2σ2

)
, (7)

where n, n′ ∈ N and σ ∈R+ is termed the kernel bandwidth. Further, on the
emotion dimension space, we also estimate a kernel matrix L∈RN×N as follows:

lnn′ = δ (bn − bn′) , (8)

where δ (·) is the delta function. It is worth noting that each defined kernel
reflects a different notion of similarity (FCV vs. labels). Therefore, we must still
evaluate how well the kernel-based similarity matrix Km matches with the target
matrix L. To this end, a Centered Kernel Alignment (CKA) functional is used
to appraise such a match as the inner product of both kernels to estimate the
dependence μm ∈[0, 1] between the jointly sampled data as follows [2]:

μm =
〈K̄m, L̄〉F√

〈K̄m, K̄m〉F〈L̄, L̄〉F
, (9)

where 〈·, ·〉F is the matrix-based Frobenius inner product. K̄ stands for the cen-
tered kernel matrix K̄ = ĨKĨ, Ĩ = I−1�1/N , I ∈RN×N is the identity matrix,
and 1∈RN is the all-ones vector. In this sense, μm weights allow ranking the
relevance of an FCV, that is, the higher μm value the better the m-th FCV
representation regarding the emotion labels. So, the highstest weigth value is
employed to select the most relevant FCV (RFCV) for a given EEG set.

3 Experimental Set-Up

Testing Dataset and Preprocessing. The well-known Database for Emotion
Assessment using Physiological Data (DEAP) is used to test the introduced FCV
approach. The DEAP is publicly available and contains physiological record-
ings from 40 emotion elicitation experiments of 32 subjects. Each subject was
requested to watch a one minute portion of a video that induces a particular emo-
tion, then, an auto-tagging system captured the arousal, valence, dominance, and
liking level of each video within the range 1 to 9. The collected data includes
the following signals: EEG, electrooculogram, galvanic skin response, tempera-
ture, among others. The EEG data were acquired using a 32 channel biosemi
configuration at 128 Hz and filtered by an artifact removal stage [8].

FCV Training. The proposed FCV approach is tested as feature extraction tool
for emotion assessment. Thus, each DEAP subject dataset is configured as a
biclass problem for both arousal and valence dimensions. The first class corre-
sponds to arousal/valence levels between 1 and 5, meanwhile, the second one
holds levels between 5 and 9. Furthermore, a window of 9 s with 25% overlap-
ping is employed to compute the inter-channel dependencies based on FCV. The
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fixed window size aims to highlight channel dependencies under alpha, beta,
gamma, and theta rhythms along time. Likewise, the configuration of the fre-
quencies bands for the coherence measure are related to the aforementioned
rythms (fmin = 4 Hz and fmax = 47 Hz). Here, the FC measures are computed
using the HERMES MatLab toolbox [9]. Subsequently, the FCV-COR, FCV-
COH, FCV-MI, and RFCV are computed as in Sects. 2.1 and 2.2, yielding a
feature extraction matrix Y ∈RN×P with N = 40 emotion elicitation videos and
P = 992 features for each considered representation. Finally, the discrimination
between emotion classes is carried out based on a k-nearest neighbor classifier
under a Gaussian similarity criteria. A nested 10-fold cross-validation strategy
is used to test the system performance, where the number of nearest neighbors
of the applied classifier is fixed as the one reaching the best accuracy within the
following testing range {1, 3, 5, 7, 9, 11}.
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Fig. 1. FC measures for the 32 EEG array in different time window (TW). Top row -
COR measure, middle row - COH measure and bottom row - MI measure. Columns
1–3 from left to right corresponds to each measure in different (non-subsequently) TW.
Column 4 is the average and column 5 the variance for all the time windows.

4 Results and Discussion

The FC scheme detailed in Sect. 2.1 allows the visualization of the variability in
the connectivity patterns between EEG channels. Figure 1 shows an example of
some time windows from the three measures over the subject 13 in a experiment
with arousal and valence ratings of 8.09 and 6.15 respectively. It can be seen in
Fig. 1 the variations in the dependences of channels from the EEG array for few
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time windows. As seen, the relationships on different channels from the EEG
array varies in time, and some strong interdependences could be found accord-
ing each FC measure. For this particular subject/experiment, the COR measure
exhibit a strong interdependences between the majority of channels with a small
degree of variability among all the time windows (Figs. 1(a)–(c)). On the other
hand, for the COH (Figs. 1(f)–(h)) and MI measures (Figs. 1(k)–(m)), there is a
higher degree of variability among time windows. The discussed variability for
each measure is consequently summed up in the average and variance figures
(columns 4–5 from Fig. 1). The average FC allows to observe the channels with
strong interdependences as well as the channels with weak interdependences in
the whole experiment. Likewise, the FC variance shows the channels interdepen-
dence variability across the experiment, with a higher degree of variability for
the majority of channels in the COH (Fig. 1(j)) and the MI (Fig. 1(o)) measures.
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Fig. 2. Gaussian kernel transformation applied to the three FC connectivity measures
and the targets matrix for two subjects 13 and 18

On the other hand, in Fig. 2, the FCV-based representation and emotion
label similarities for each considered measure (see Sect. 2.2) can be analyzed. In
this particular case, the FCV corresponds to the subjects 13 and 18 and the
set of 40 emotion elicitation experiments. We can infer by visual inspection that
exist a higher similarity between the FCV-MI approach and the target matrix
for the subject 13 (Figs. 2(a)–(d)), which is also coded by the computation of
the weights μ in the RFCV representation. In the other case, for the subject 18
there is a higher relation in the FCV-COR with the targets representation than
for the FCV-COH and the FCV-MI (Figs. 2(e)–(h)). For both cases the RFCV
allows to code the measure that seems to present the highest correlation with
the targets.
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FCV is used for classification purposes as stated in the experimental setup.
A graphical description of those results can be found in Fig. 3, where the clas-
sification accuracy (CA) for each subject and each dimension are presented.
Figures 3(a), (b), and (c) show CA for the 32 subjects in arousal dimension using
the FCV-COR, FCV-COH and FCV-MI representation respectively. Likewise,
Figs. 3(d), (e), and (f) present the CA for all subjects in the valence dimension.
From the figures it can be noticed the differences in CA among subjects that
evidences the subject-dependency of the FC measures. Also, a summary for each
FCV measure is included in Fig. 3(g) for the arousal dimension and Fig. 3(h) for
the valence dimension. From those figures, small differences in the CA when the
FCV scheme is applied could be noticed and there is no evidence of one of the
FCV schemes to present a superior performance in comparison to the others.
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Fig. 3. Boxplots of classification accuracy (CA) per subject in each FC measure. Top
row - arousal, middle row - valence and the bottom row, average CA for both dimensions

Finally, a summary of the results of CA for all the subjects is presented in
Table 1 for the FCV and RFCV schemes. In this table the results of the proposed
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Table 1. Mean emotion classification results [%] for all considered DEAP subjects.

Reference Approach Arousal Valence

Koelstra et al. [8] Linear features, power
spectral - SVM

62.00 57.50

Soleymani et al. [12] Power spectral - SVM 50.00 62.00

Gupta et al. [7] Power spectral - HJORT -
SVM

60.00 60.00

Padilla-Buritica et al. [10] MSP - ROI signal - SVM 58.6 55.76

Daimi et al. [3] Wavelet packet - SVM 67.00 65.00

This work FCV-COR - KNN 61.93 63.35

This work FCV-COH - KNN 63.45 61.62

This work FCV-MI - KNN 62.48 60.78

This work RFCV - KNN 66.00 65.73

methodology are compared against state-of-art works that have been developed
in a similar framework using EEG data and the same database (DEAP). It can
be seen that for all the works using the DEAP dataset, there is still room for
improvement, since the higher results are around 67.00%. Our RFCV approach
proves to obtain the higher CA for the valence dimension with 65.73% and the
second higher CA for arousal dimension with 66.00%.

5 Conclusions

We introduced a novel FC representation approach for feature extraction to
enhance automatic emotion assessment from EEG data. To this end, the pro-
posed strategy incorporates three well-known FC measures: coherence, correla-
tion, and mutual information, to code the temporal variability of EEG inter-
channel dependencies. Moreover, a supervised kernel-based relevance analysis
based on CKA is used to evaluate the significance of each FC variability regard-
ing the considered measures. Our approach learns both important temporal
inter-channel variations and relevant FC measures to deal with inter-subject
dependency in emotion classification. Validation of the proposed feature extrac-
tion, termed RFCV, is carried out in a public dataset (DEAP). Attained results
demonstrate that RFCV is a reliable methodology for emotion assessment in
comparison to the state-of-art works. As future work authors plan to couple
RFCV with a space state strategy to deal appropriately with the intrinsic EEG
nonstationarity. Besides, information theory measures could be employed to
reveal connectivity variations among EEG channels.
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sia fármaco-resistente asociada a displasias corticales cerebrales: método costo-efectivo



362 C. Torres-Valencia et al.
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