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Preface

The hybridization between social sciences and social behaviors with robotics, neuro-
biology and computing, ethics and neuroprosthetics, cognitive sciences and neuro-
computing, neurophysiology and marketing will give rise to new concepts and tools
that can be applied to information and communication technology (ICT) systems, as
well as to natural science fields. Through IWINAC we provide a forum in which
research in different fields can converge to create new computational paradigms that are
on the frontier between neural sciences and information technologies.

As a multidisciplinary forum, IWINAC is open to any established institutions and
research laboratories actively working in the field of this interplay. But beyond
achieving cooperation between different research realms, we wish to actively encourage
cooperation with the private sector, particularly small and medium-sized enterprises
(SMEs), as a way of bridging the gap between frontier science and societal impact, and
young researchers in order to promote this scientific field.

In this edition, there were four main themes highlighting the conference topics:
affective computing, signal processing and machine learning applied to biomedical and
neuroscience applications, deep learning and big data, and biomedical applications.

Traditionally, when ICT research has been performed in relation to the human brain,
the focus has been on the cognitive brain. Primary research in computer science, engi-
neering, psychology, and neuroscience has been aimed at developing devices that rec-
ognize human affects and emotions. In computer science, affective computing is a branch
of the study and development of artificial intelligence that deals with the design of
systems and devices that can recognize, interpret, and process human emotions. It is an
interdisciplinary field spanning computer sciences, psychology, and cognitive science.

Emotion recognition refers to the problem of inferring the significance of human
expressions of different emotions. This inference is natural for human observers but is a
non-trivial problem for machines. The data gathered on the cues humans use to per-
ceive emotions in others may be used in machine-learning techniques. Emotional
speech processing recognizes the user's emotional state by analyzing speech patterns.
EEG analysis may also detect human emotions by studying the positive and negative
peaks located in specific areas around 450 ms after stimulus induction. Another area
within affective computing is the design of computational devices proposed to exhibit
either innate emotional capabilities or that are capable of convincingly simulating
emotions. Robots may be used for embodying personality traits that induce desired
emotions in humans and behave in an appropriate manner when recognizing human
emotional state. Neuroprosthetics may be used for treating emotional disorders by
electrical stimulation of certain specific areas in the thalamus or other neural centers.

The increasing spread of in vivo imaging technologies, such as magnetic resonance
imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), single photon
emission computed tomography (SPECT), positron emission tomography (PET) and other
non-invasive techniques such as electroencephalography (EEG) or magnetoencephalog-
raphy (MEG), have meant a breakthrough in the diagnosis of several pathologies, such as
Alzheimer’s disease, Parkinson’s disease, etc. Today, signal processing and machine



learning methods are crucial as supporting tools for a better understanding of diseases. In
this way, signal processing and machine learning applied to biomedical and neuroscience
applications became an emergent and disruptive field of research.

Deep learning has presented a breakthrough in the artificial intelligence community.
The best performances attained so far in many fields, such as computer vision or natural
language processing, have been overtaken by these novel paradigms to a point that only
ten years ago was pure science fiction. In addition, this technology has been open
sourced by the main artificial intelligence (AI) companies, thereby and hence making it
quite straightforward to design, train, and integrate deep-learning based systems.
Moreover, the amount of data available every day is not only enormous, but, growing
at an exponential rate over the past few years, there has been an increasing interest in
using machine-learning methods to analyze and visualize massive data generated from
very different sources and with many different features: social networks, surveillance
systems, smart cities, medical diagnosis, business, cyberphysical systems, or media
digital data. This special session is designed to serve researchers and developers to
publish original, innovative, and state-of-the art machine-learning algorithms and
architectures to analyze and visualize large amounts of data.

Finally, biomedical applications are essential in IWINAC meetings. For instance,
brain–computer interfaces (BCI) implement a new paradigm in communication net-
works, namely, brain area networks. In this paradigm, our brain inputs data (external
stimuli), performs multiple media-access control by means of cognitive tasks (selective
attention), processes the information (perception), makes a decision (cognition) and,
eventually, transmits data back to the source (by means of a BCI), thus closing the
communication loop. Image understanding is a research area involving both feature
extraction and object identification within images from a scene, and a posterior treat-
ment of this information in order to establish relationships between these objects with a
specific goal. In biomedical and industrial scenarios, the main purpose of this discipline
is, given a visual problem, to manage all aspects of prior knowledge, from study
start-up and initiation through data collection, quality control, expert independent
interpretation, to design and development of systems involving image processing
capable of tackling these tasks. These areas are clear examples of innovative appli-
cations in biology or medicine.

The wider view of the computational paradigm gives us more elbow room to
accommodate the results of the interplay between nature and computation.
The IWINAC forum thus becomes a methodological approximation (set of intentions,
questions, experiments, models, algorithms, mechanisms, explanation procedures, and
engineering and computational methods) to the natural and artificial perspectives of the
mind embodiment problem, both in humans and in artifacts. This is the philosophy that
prevails at IWINAC meetings, the “interplay” movement between the natural and the
artificial, facing this same problem every two years. This synergistic approach will
permit us not only to build new computational systems based on the natural measurable
phenomena, but also to understand many of the observable behaviors inherent to
natural systems.

The difficulty of building bridges between natural and artificial computation was one
of the main motivations for the organization of IWINAC 2017. The IWINAC 2017
proceedings contain the works selected by the Scientific Committee from nearly 200
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submissions, after the review process. The first volume, entitled Natural and Artificial
Computation for Biomedicine and Neuroscience, includes all the contributions mainly
related to the methodological, conceptual, formal, and experimental developments in
the fields of neural sciences and health. The second volume, entitled Biomedical
Applications Based on Natural and Artificial Computing, contains the papers related to
bioinspired programming strategies and all the contributions related to computational
solutions to engineering problems in different application domains.

An event of the nature of IWINAC 2017 could not be organized without the col-
laboration of a group of institutions and people whom we would like to thank, starting
with UNED and Universidad Politécnica de Cartagena. The collaboration of the
Universidade da Coruña was crucial, as was the efficient work of the local Organizing
Committee, chair by Richard Duro with the close collaboration of José Santos and their
colleagues José Antonio Becerra Permuy, Francisco Bellas Bouza, Abraham Prieto,
Fernando López Peña, Álvaro Deibe Díaz, and Blanca Priego. In addition to our
universities, we received financial support from the Spanish CYTED, Red Nacional en
Computación Natural y Artificial, Programa de Grupos de Excelencia de la Fundación
Séneca and from Apliquem Microones 21 s.l.

We want to express our gratitude to our invited speakers Prof. Hojjat Adeli (Ohio
State University, USA), Prof. Manuel Graña (Universidad del País Vasco, Spain), Prof.
Martin Greschner (Carl von Ossietzky Universit of Oldenburg, Germany), and Prof.
Gusz Eiben (Vrije Universiteit Amsterdam, The Netherlands) for accepting our invi-
tation and for their magnificent plenary talks.

We would also like to thank the authors for their interest in our call for papers and
their effort in preparing the papers, condition sine qua non for these proceedings. We
thank the Scientific and Organizing Committees, in particular the members of these
committees who acted as effective and efficient referees and as promoters and managers
of pre-organized sessions and workshops on autonomous and relevant topics under the
IWINAC global scope.

Our sincere gratitude also goes to Springer and especially to Alfred Hofmann and
his team, Anna Kramer, Elke Werner, and Christine Reiss, for the continuous recep-
tivity, help, and collaboration in all our joint editorial ventures on the interplay between
neuroscience and computation.

Finally, we want to express our special thanks to Viajes Hispania, our technical
secretariat, and to Chari García and Beatriz Baeza, for making this meeting possible
and for arranging all the details that comprise the organization of this kind of event.

We would like to dedicate these two volumes of the IWINAC proceedings to
Professor Mira. In 2018, it will have been 10 years without him, without his inquiring
spirit. We miss him greatly.

June 2017 José Manuel Ferrández Vicente
José Ramón Álvarez-Sánchez

Félix de la Paz López
Javier Toledo Moreo

Hojjat Adeli
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Abstract. A hypothesis on how the robot’s self might emerge in the
future will be set in this paper, as this could help us understand how it
worked on humans. Since here, a sound computational explanation about
some aspects of consciousness will be offered; as physical, chemical and
psychological ones lack power to do so. This explanation involves neural
modules that forecast each other and a computational fixed point that
emerges from there. In this paper, the self is proposed as an emergent
fixed point caused by a loop in the scope of prediction functions inside
the brain.

Keywords: Consciousness · Self · Artificial Intelligence · Forecast ·
Fixed point

1 Introduction

It has often been said that the highest aim for Artificial Intelligence is the cre-
ation of consciousness in machines. Even when there are already machines that
plan, solve non-mathematical problems, process and produce natural language
and other jaw-dropping feats, some scholars claim that for a machine (computer
or robot) to be truly intelligent, it has to display features of consciousness such as
awareness of its own self and qualia. Nevertheless, human knowledge has been
unable to explain consciousness. Even though many theories of consciousness
have been proposed, a general consensus has not been reached. The reason for
this was indicated by Chalmers [1]: trying to explain consciousness by describing
chemical reactions or physical low-level processes, as the famous 40 Hz hypothesis
proposed by Crick [2], is like trying to find the beauty of Van Gogh’s “Wheatfield
with Crows” by examining the pigments used in the painting. Simply stated, it
is not the correct level of abstraction.

A low level physical process like the 40 Hz oscillation is, naturally, involved
in the perception of a unified subjective experience, but it is impossible to argue
that the 40 Hz oscillation originates consciousness by itself. Conversely, many
electronic devices that oscillate at this frequency can be built without hope

c© Springer International Publishing AG 2017
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to observe any kind of consciousness. 40 Hz oscillation can be an indicator, a
measure, or a by-product of consciousness but not a cause.

Then, one might wonder, what level of abstraction may be suitable for the
task at hand? Which kind of processes can construct and explain consciousness if
they are not physical or chemical? Psychological processes might be an alterna-
tive, yet psychology today is mostly experimental and descriptive, and has failed
to achieve causal explanations for the phenomena it studies. The only fields of
knowledge that have achieved causal power and such a level of abstraction are
mathematics and computing (the latter being, in fact, a branch of mathematics).
It seems reasonable to assume, thus, that an explanation and representation of
consciousness must be something related to information fluxes or feedback loops
carried out inside the brain. That is to say, the explanation must be structural,
not physical or chemical. The current paper offers an explanation of conscious-
ness from this structural perspective framed as computational functionalism.

Although explaining consciousness has been an elusive goal, remarkable
progress has been made in order to understand it in recent years. From all
previous works, this paper will focus on a few which, in the author’s opinion,
seem to point out the right path, mainly due to philosopher Daniel Dennett [4–6]
and engineers Hawkins [9] and Kurzweil [11].

According to these authors, for any entity to be considered conscious it must
display all of the following:

– Environment awareness: the entity can sense its surroundings, looking for dan-
gerous or beneficial events, reacting to these perceptions and having memories
about past similar events.

– The self: the entity can identify itself as distinct from its environment and,
apparently, can also govern its body and exercise free will.

– Self-awareness: the entity is able to think about its internal states.
– Qualia: the entity experiences internal subjective states that cannot be com-

pared to their equivalents in the brains of other similar entities.
– Subjective feeling: this is the hard problem of consciousness.

A sound explanation of consciousness should address all these features. The
first one is very simple, nowadays, and it can be easily explained as a computing
process that maintains internal models, segmenting and representing the behav-
ior of objects in the real world, something like Google’s TensorFlow software
[13] which recognizes cats in videos. Thus, the rest of this paper will concentrate
only on the self and self-awareness. Qualia and subjective feeling will not be dis-
cussed here neither additional features like sensory integration, attention focus
and others. By the way, focusing on only one object at the time is a capability
that implies a contractive function on consciousness as it will be seen later.

2 The Brain as a Prediction Tool

Artificial Intelligence has been defined in many impractical ways, i.e. the science
of making machines do things that would require intelligence if done by men as
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said by Marvin Minsky (quoted by [14, p. 20]). Yet, from an evolutionary point
of view, there is a more operational definition: all entity behavior aimed to its
own survival and reproduction. There are several levels of intelligence, of course,
and the mere fact of being alive is the first of them. Consciousness appears in the
highest levels. In this line of reasoning, the main task an entity must accomplish is
to forecast its environment to be warned from dangers and alert to opportunities
as soon as possible. The second task may be to modify the environment to make
its own life easier. However, modifying the environment also requires forecasting
all possible outcomes from a given set of potential actions. Internal simulators
have been proposed theoretically in Popperian creatures by Dennett [4, p. 88]),
in order to test predictions and select the best one. Thus, it can be argued that
forecasting is essential to intelligence.

Many other functionalities, if not all, usually ascribed to an intelligent being
can be interpreted in terms of forecasting (i.e. classifying, clustering, designing,
manipulating, and so on).

A neurobiological discovery supports this idea [3]. There are some neural
structures into the neocortex, named cortical columns, whose main function is
to forecast. Each structure has six layers of neurons arranged in such a manner as
to recognize spatial and temporal patterns, to learn the patterns, to find causal
relationships between them and to predict the continuation of a sequence when
it begins (as Hawkins [9, p. 60] and Kurzweil [11] point out). At its high level, the
brain contains many of these predictive neural modules that receive inputs from
other modules, some of which are related to sensory and neuromotor information
and others to internal information. As there are about 2× 108 modules, the
existence of closed loops within these modules is almost unavoidable. In other
words, it would be natural to think that at some point, these modules will end
up trying to predict themselves.

3 Fixed Points

In mathematics, if you have a continuous contractive function that maps into
itself in a bounded and closed set X : ∀x ∈ X, f(x) ∈ X, it can be shown that
it has at least one fixed point xF defined as f(xF ) = xF [16].

Fixed points also exist in computing: when a function is applied repetitively
over its own results, as long as special conditions are met, it may happen that
some isolated points emerge asymptotically as overall result as the iteration
process unfolds [15].

Consider the following example: a car is traveling from city A to city B
along a road. It leaves A at 8:00 am and arrives to B at 11:00 am. Some days
later, it makes the reverse travel at the same times, i.e. departing B at 8:00
am and reaching A at 11:00 am. Instantaneous speed in both journeys may
vary unpredictably. It can be high, low, zero or even negative (due to traffic
lights, traffic jams or even if the driver has to go back to pick something that
has been forgotten). Despite not knowing the exact ranges of speed, it can be
demonstrated that there is some point along the road where the car passes in
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both trips at the same time of the day. This is a fixed point. You cannot determine
where that point on the road is, neither the time of the day when it happens.
But mathematics can prove the existence of at least one fixed point (there could
be more).

Consider another more intriguing example: a person has an open box with a
pile of sheets of paper. The person takes the paper atop, crumples it (without
cutting) and throws it again over the pile. It can be demonstrated that at least
one point of this sheet remains in the same vertical state as it was before being
crumpled.

These are excruciating problems for the layman. Despite the arbitrary com-
plexity of the trip or the crumpled paper, it can be demonstrated that in both a
point remains the same. For most people these are unbelievable statements. The
surprise generated from this fact can last for long even if a cursory explanation
is given. This perplexity can only be eliminated when knowing all the intricacies
of the mathematical demonstration process. It is a well-known fact that fixed
points generate perplexity in humans.

4 Making the Self and Self-awareness Emerge

Let us now think of a sophisticated but unconscious robot. This hypothetical
robot is somewhat aware of its environment since it can identify isolated objects,
it can control its body, and it has a primitive instinct to survive (assuming it
was built by an evolutionary algorithm). Because it lacks consciousness, its body
is only another piece of its environment as stated by [9, p. 134]. The robot has
also forecast algorithms, similar to those proposed by [8,9] or [11].

In its attempt to survive, this robot would forecast all surrounding objects,
sometimes successfully, sometimes not so, but the learning algorithms will help it
improve its responses. However, it would be impossible for it to predict accurately
all objects in all situations. There are often unexpected behaviors in all objects,
in all but one. At that point, the robot has made an extraordinary discovery:
there is one object that is 100% predictable, the self. Incidentally, this is a fixed
point that comes out when a forecasting functionality of a robot is applied over
a set of items including the robot itself. Without knowing when or in which part
of the brain of the robot it will emerge, its emergence will naturally take place.

Because of this, when talking about consciousness, perplexity can be
expected. Double perplexity, in fact, as the main product of consciousness is
a fixed point and, simultaneously, I am that fixed point.

A proof of the existence of the fixed point is hard to show, if not impossible.
It can be signaled its soundness because neural forecasting space is in some way
contractive, but not continuous. Its existence is very probable but not guaran-
teed, and this could be the case of some mental illness due to several fixed points
or the absence of any inside the brain.

The expectations over the self are always fulfilled. This does not happen
as a result of the self ruling over the brain, but as a result of the privileged
information the forecasting mechanism has about the self. I can know what I
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am about to do, since my motor neurons can be interrogated to forecast my
behavior. Obviously, this information is not available from any other external
object.

According to psychologist Nicholas Humphrey, cited by [12, p. 158], evolution
pushes organisms to gain consciousness so later this can be used to observe and
understand other beings. Without denying the strength of this claim, the oppo-
site can also be proposed: while playing social roles trying to understand others,
a special object emerges -the self- and since this very moment self-awareness
emerges too, thereby resulting in a circular causality.

5 Discussion and Related Work

Edelman [7] also offers a cornerstone for this paper. In his work, neural feedback
loops were described as consciousness-related. He empathized on low level neural
feedback loops (reentrant maps as he labeled them). The forecast nature of the
main process was not mentioned because he considered recognition as the main
function of the brain, instead of prediction, which is the perspective in this paper.

Closed loops of neurons under certain conditions (positive feedback) usually
produce quasi-periodic oscillations due to their non-linear nature (chaotic paths
with strange attractors). Neural electric activity carried out at this level does
not make a solid argument for consciousness. As previously stated, high level
concepts are required. The prediction module feedback loop can be traced down
to these reentrant maps, for sure, but without the high level prediction concept,
it is impossible to sustain any claims about the self.

Closed loops are built by high level prediction modules, in a way that resem-
bles a stochastic Boolean network model proposed by Kauffman [10], differing
on the use of prediction modules instead of Boolean gates. In the brain, all these
prediction modules are implemented by neurons. On the other hand, in robots,
they could be carried out by other kind of algorithms (artificial neurons, genetic
algorithms, bayesian reasoning among others).

This is not to say that as fixed points cause perplexity, and consciousness
causes perplexity too, then consciousness is a fixed point. The point being made
is that due to the modular-predictive architecture of the brain, it is highly likely
that a closed loop appears (self-awareness) causing a fixed point to emerge (the
self); then, the subjective experience of self-awareness is the same as the one
caused by the recognition of a fixed point. To be certain, this argument does
not offer a cause-effect explanation of self-awareness subjective experience, but
it does offer an alternative to understand the way we perceive it.

It is worth noting that fixed points are not the same as attractor points. In
one of the previous examples, the car does not get trapped while it gets to a fixed
point. Rather, the car goes along seamlessly. Likewise, the brain does not get
stuck when attention is directed to the self. Indeed, after this point, attention
can wander to other things.
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6 Conclusions

In this paper, the following points have been made:
When an evolutionary being, human or robot (i.e. with its own motivations

and capabilities to conduct optimization processes) is endowed with forecast
algorithms that try to predict all its internal states (some derived from sensorial
inputs, some derived from neuromotor outputs, and some completely internal)
a special internal object arises because is 100% predictable, namely, the self.

The self exists as a fixed point. However, it is not the cause of a forecasting
closed loop, but rather its product. And free will does not reside in the self. If
freedom exists, it is the whole brain that exercises it, not the self. As any other
fixed point, the self is associated to perplexity.

Self-awareness exists. However it is not related to magic. Its mystery arises
from the potentially infinite loops it generates. A computer in a closed loop can
linger on for an infinite number of times but, luckily, the brain gets bored soon
and stops the loop after two or three iterations avoiding getting trapped forever.
However, this leads to the paradox of the homunculus inside the homunculus, at a
figurative level, while leading to the self examining of the self, at a more abstract
level. Potentially infinite loops arise rendering self-awareness mysterious. If the
researcher attention does not concentrate on these loops, the mystery fades.

From an engineering point of view, only one forecasting closed loop is enough
to generate the self and the self-awareness inside the brain of a futuristic robot.
It should not be forgotten, though, that the human brain is a very complex
structure with richer capabilities. There must be many loops at several descrip-
tion levels, running in parallel and with some acting as inputs or metaphors for
others. This loop entanglement creates our conscious rich experience.
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Abstract. This paper describes a network-oriented model based on the
neuroscientist Graziano’s Attention Schema Theory for consciousness.
This theory describes an attention schema as an internal model of the
attention process supporting the control of attention, similar to how our
mind uses a body schema as an internal model of the body to control
its movements. The Attention Schema Theory comes with a number of
testable predictions. After designing a neurologically inspired temporal-
causal network model for the Attention schema Theory, a few simula-
tions were conducted to verify some of these predictions. One prediction
is that a noticeable attention control deficit occurs when using attention
without awareness. Another is that a noticeable attention control deficit
occurs when using only bottom-up influence (from the sensory repre-
sentations) without any top-down influence (for example, from goal or
control states). The presented model is illustrated by a scenario where
a hunter imagines (using internal simulation) a prey which he wants to
attend to and catch, but shortly after he or she imagines a predator which
he then wants to attend to and avoid. The outcomes of the simulations
support the predictions that were made.

1 Introduction

Understanding and modeling consciousness has been a challenge since a long
time. Several theories have been put forward over time, often with involvement of
neuroscientists or at least essential knowledge from neuroscience; see, for exam-
ple, [1,2,5,6,11–13] to name just a few. Some of the themes that often recur in
such theories are:

– A winner takes it all competition between unconscious processes in order to
achieve a selection of what is to reach consciousness; e.g., [1,2,6]

– Internal simulation of the own mental and bodily processes, other persons’
mental and bodily processes, and other external processes; e.g., [5,7,11–13]

– By becoming conscious certain aspects are more explicitly presented to (other
parts of) the brain and thus become more accessible to the brain; e.g. [1,2,6]

– The relation between attention and consciousness; e.g., [16]
c© Springer International Publishing AG 2017
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– The extent to which consciousness fulfils a functional role in behaviour, or
instead is only an epiphenomenon

A recent theory which addresses the above five themes is the Attention Schema
Theory for consciousness of the neuroscientist Graziano; see, for example,
[8–10,23]. It is claimed that this theory explains the brain basis of subjective
awareness in a mechanistic and scientifically testable manner. The theory starts
with attention which is a process by which signals compete for the brain’s lim-
ited computing resources. This internal competition is partly under bottom-up
influence of sensory representations and partly under top-down control of other
mental states such as goal states or control states. According to this theory the
top-down control of attention is improved when the brain has access to an (sim-
plified) internal model of attention itself that can be used for internal simulation
of the attention process. The brain therefore constructs a schematic model of
the process of attention, called the Attention Schema. This is similar to the
brain’s construct of a schematic model of the body, the Body Schema, with its
role in body movements. The presence of this internal model for attention leads
a brain to concluding that it has a subjective experience.

An advantage of the Attention Schema Theory is that it explains how we can
be aware of both internal and external events. The brain can apply attention to
many types of information including external sensory information and internal
information about, for example, affective and cognitive states. If awareness is
based on a model of attention, then this model will pertain to the same domains
of information to which attention pertains. A further advantage of this theory
is that it has a neurological basis and provides testable predictions. If awareness
is based on an internal model of attention, used to help control attention (see
Fig. 1), then without awareness, attention should still be possible but could show
deficits in control.

Fig. 1. Awareness as an internal model of attention supporting control of attention

This paper introduces a neurologically inspired computational model for the
Attention Schema Theory. The model was designed by a Network-Oriented Mod-
eling approach based on temporal-causal networks [19,20], taking into account
causal relations assumed in the Attention Schema Theory. The model addresses
all of the five themes mentioned above. It has been used to perform simulation
experiments and it was verified by mathematical analysis. Model parameters
such as connection weights, update speed factors, and steepness, threshold were
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estimated to fulfil the requirements that reflect the expected internal behavioural
patterns based on the Attention Schema Theory.

2 The Neurologically Inspired Network Model

In this section, the Network-Oriented Modeling approach used is briefly intro-
duced, and the conceptual and numerical representation of the developed net-
work model are described. The Network-Oriented Modeling approach based
on temporal-causal networks described in more detail in [19,20] is a generic
and declarative dynamic modeling approach based on networks of causal rela-
tions. Dynamics is addressed by incorporating a continuous time dimension.
This temporal dimension enables modelling by networks that inherently contain
cycles, such as networks modeling mental or brain processes, or social interaction
processes, and also enables to address the timing of the processes in a differenti-
ated manner. The modeling perspective covers (adaptive) recurrent neural net-
work models and (adaptive) social network models. It is more generic than each
of these methods in the sense that a much wider variety of modeling elements
are provided, enabling the modeling of many types of dynamical systems, as
described by many examples in [19] and confirmed by a formal analysis in [22].

The Network-Oriented Modeling approach is supported by dedicated mod-
eling environments (e.g., in Matlab, or in Pyhon) that can be used to model
at a conceptual level. The obtained temporal-causal network models are based
on states and connections between them; they can be represented at two levels:
by a conceptual representation and by a numerical representation. A conceptual
representation of a temporal-causal network model can have a (labeled) graphi-
cal form with (states as nodes and connections as edges) or a matrix form (with
states on the axes and connections in the cells). More specifically, the follow-
ing three model parameters define a temporal-causal network, and are part of a
conceptual representation of such a network model:

– connection weight ωX,Y Each connection from a state X to a state Y has
a connection weight ωX,Y representing the strength of the connection, often
between 0 and 1, but sometimes also below 0 (negative effect).

– combination function cY (..) For each state Y (a reference to) a combi-
nation function cY (..) to aggregate the causal impacts of other states on
state Y. This can be a standard function from a library (e.g., a scaled sum or
logistic function) or an own-defined function.

– speed factor ηY For each state Y a speed factor ηY is used to represent
how fast a state is changing upon causal impact, usually in the [0, 1] interval.

Each state Y is assumed to have an (activation) level in the [0, 1] interval that
varies over time, indicated in the numerical representation by a real number Y(t).
Combination functions can have different forms. The applicability of a specific
combination rule may depend much on the type of application addressed, and
even on the type of states within an application. Therefore, for the Network-
Oriented Modeling approach based on temporal-causal networks a number of
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standard combination functions are available as options and a number of rele-
vant properties of such combination functions have been identified; e.g., see [19],
Chap. 2, Table 2.10. Some of these standard combination functions are scaled
sum, max, min, and simple and advanced logistic sum functions. These options
cover elements from different existing approaches, varying from approaches based
on neural networks to approaches considered for social network modeling, or rea-
soning with uncertainty or vagueness.

A conceptual representation of the designed network model is shown in Fig. 2.
The legend shown in Table 1 explains the different states in the model. Nodes
outside the box called Mind represent external states. For the scenario considered
here the model only incorporates two different stimuli; it represents a situation
where a human hunter first spots a prey and then is confronted with a predator.
This should result in a shift of attention from the prey to the predator and
eventually result in the hunter fleeing from the predator instead of going after
the prey. An arrow between two nodes means that there is a temporal-causal
relation from one state to the pointed state. Such a relation means that one
state has either an strengthening (positive connection weight) or a suppressing
(negative connection weight) effect on the other state.

Fig. 2. A graphical conceptual representation of the temporal-causal network model
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In the hunter and prey scenario, the external world states wss and wsb respec-
tively represent the prey and predator. The world states wse and wsd represent
the output of the gaze adaptation loop, which leads to control of the sensor states
sss and ssb. This can be interpreted as directing and sharpening of the senses
(for example, eyes or ears), as a result of focusing of the attention. The world
states wsf and wsg represent approaching or distancing behavior with regard to
the prey and predator, modelled as action effectuation. Specific attention and
awareness states were modelled for prey (atts and aws) and predator (attb and
awb). These states are affected via both top-down and bottom-up influences.
The bottom-up influences occur via the sensory input, which leads to a sensory
representation which in turn affect attention and awareness for that input. Top-
down influence comes from two control states: css for the prey and csb for the
predator; for example this can relate to goals.

Besides bottom-up and top-down influence there is also a mutually suppress-
ing effect. For example, a high value of the attention state attb for the predator
will have a suppressing (inhibiting) effect on the attention state atts for the prey,
and conversely. Similarly the awareness states awb and aws mutually suppress
each other. This can work as a winner takes it all competition, in order to obtain
a single attention and awareness focus.

Also action execution states are included in the model, with their corre-
sponding preparation states. These can perform gaze adaptation by the gaze
adaptation loop and actual execution of actions (e.g., escape from the predator)
by the action effectuation loop. But the preparation states (without activating
the corresponding execution states) also play an important role in internal sim-
ulation. Internal simulation takes place by using internal as-if loops as a kind of
shortcuts for the gaze adaptation loop and the action effectuation loop. These
as-if loops are modeled by direct (predictive) connections from preparation states
to the sensory representation states of the effects of the prepared actions. Via
these internal as-if loops, so-called simulated action and perception chains are
generated [11–13], through which the preparation states directly affect the sen-
sory representation states of the action effects, instead of through the external
loop via action execution, action effectuation, and sensing.

The conceptual representation of the model can be transformed into a numer-
ical representation in a systematic manner. The impact of state Xi on state Y
at time point t can be determined by multiplying the state value Xi(t) of each
state Xi (i = 1, 2, .., k) with impact on Y by the weight ωXi,Y of the connection
from Xi to Y :

impactXi,Y (t) = ωXi,Y X(t) (1)

The aggregated impact is a combination of multiple impact values VXi,Y =
impactXi,Y (t) for the states Xi and is calculated using combination function
cY (..):

aggimpactY = cY (VX1,Y , . . . , VXk,Y ) = cY (ωX1,Y X1, . . . ,ωXk,Y Xk) (2)
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Table 1. Legend of the state labels in the model

wss World state for prey psa Preparation state for action a

wsb World state for predator psc Preparation state for action c

sss Sensor state for prey psx Preparation state for action x

ssb Sensor state for predator psy Preparation state for action y

srss Sensory representation state
for prey

esa Execution state for action a

srsb Sensory representation state
for predator

esc Execution state for action c

aws Awareness state for prey eax Execution of action x

awb Awareness state for predator eay Execution of action y

atts Attention state for prey wsd World state for d

attb Attention state for predator wse World state for e

css Control state for prey wsf World state for f

csb Control state for predator wsg World state for g

The speed of the influence of aggimpactY (t) on Y depends on the speed
factors ηY . Thus the following difference and differential equations are obtained
for each state Y :

T (t + Δt) = Y (t) + ηY [aggimpactY (t) − Y (t)] Δt
= Y (t) + ηY [cT (ωX1,Y X1(t), . . . ,ωXk,Y Xk(t)) − Y (t)] Δt

dY (t)/dt = ηY [cT (ωX1,Y X1(t), . . . ,ωXk,Y Xk(t)) − Y (t)]
(3)

The current model consists of 24 states and about 50 connections. Note that
not all connections are active during a specific scenario, for example, as discussed
in the next section. For the combination functions for the control states in the
presented model the identity function id(..) was used:

cY (V ) = id(V ) = V (4)

The identity function was used here as in the scenario illustrated here the
control states have only a single impact, from themselves. The other states use
the scaled sum combination function ssumλ(. . . ) with scaling factor λ:

cY (V1, .., Vk) = ssumλ(V1, .., V k) = (V1 + .. + Vk)/λ (5)

To avoid negative state values a prevention is applied: if the outcome of
(V1 + ..+Vk)/λ is negative, the value 0 is taken for ssumλ(V1, .., Vk) instead; so
in fact the following is used: ssumλ(V1, .., Vk) = max(0, (V1 + ..+Vk)/λ). This is
important for cases in which negative connection weights are involved to model
suppression. Note that in the Network-Oriented Modeling approach followed,
also alternative combination functions can be used, for example logistic sum
functions. A change of combination function is similar to and as simple as a
change of a parameter value.
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3 Simulation Experiments

Several scenarios were simulated, based on the literature on the Attention
Schema Theory, with a hunter first hunting for a spotted prey and later flee-
ing from a spotted predator. Figure 3 shows an internal simulation scenario. In
this scenario the external stimuli (wss and wsb) are inactive and the internal
states are triggered internally by the control states (css and csb). All parameter
values of this example simulation can be found in the Appendix.

Fig. 3. Example simulation: internal simulation

The hunter first visualizes (constructs a mental image of) a prey and attention
to it and then visualizes a predator and attention to it. This will cause a shift
in (simulated) attention from the prey to the predator. For this scenario, the
attention state atts for the prey initially increases, which also leads to an increase
in awareness state aws of the prey. As soon as the predator is visualized, the
attention shifts from the prey to the predator which is shown as a decrease in
the activation level of the attention state atts for the prey and an increase in the
level of the attention state attb for the predator. This effect also occurs for the
awareness states aws and awb for prey and predator. The sensory representation
states and preparation states for action execution also follow the same trend,
but no action is executed, because as it only concerns internal simulation, these
states are suppressed by the control states.

4 Verification by Mathematical Analysis

In order to verify the model a general method for verification of temporal-causal
networks was followed. It is based on substitution of values from a simulation in
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stationary point equations; see [21] or [19] Chap. 12. A state Y has a stationary
point at time point t if dY (t)/dt = 0. A stationary point is usually a local maxi-
mum or a local minimum. Using the simulations by the model, several stationary
points can be found. Using the difference or differential Eq. (3) mentioned earlier
and a scaled sum combination function it can be deduced that a state Y has a
stationary point at t if and only if:

aggimpactY (t) = Y (t)
cY (ωX1,Y X1(t), . . . ,ωXk,Y Xk(t)) = Y (t)
(ωX1,Y X1(t) + · · · + ωXk,Y Xk(t)) /λ = Y (t)

(6)

Three stationary points were selected:

1. a local maximum for state atts (attention for the prey)
2. a local minimum for state psy (preparation state before attention shifts from

prey to predator)
3. a local minimum for state srss (sensory representation state after attention

shifts from prey to predator)

According to this verification method, the model is verified by using for each
of the stationary points mentioned above the state values from the simulation
and substituting them into the equation above (6). As an example, the equation
expressing that atts is stationary at time t is as follows:

aggimpactatts(t) = atts(t)
max (0, (ωcss,attscss(t) + ωsrss,attssrss(t) + ωattb,attsattb(t)) /λ)
= atts(t)

(7)

In the simulation results shown in Fig. 3 a maximum for state atts is found
at t = 5.8. For atts, the scaling factor is λ = 1.7. This provides the equation

max (0, (ωcss,attscss(5.8) + ωsrss,attssrss(5.8) + ωattb,attsattb(5)) /1.7)
= atts(5.8) (8)

From the simulation data it was found that the state value for atts at this
time point is 0.4651, while the state value for css is 0.5639 at t = 5.8, srss had a
state value of 0.3954, and attb had a state value of 0. The weight ωcss,att,s was
0.7, the weight ωsrss,att,s was 1 and the weight ωattb,att,s was −0.1. Substituting
these values into the equation above (7) results in the following

max(0, (0.7 ∗ 0.5639 + 1 ∗ 0.3954 − 0.1 ∗ 0)/1.7) = 0.4651
0.4648 = 0.4651

So the equation for this stationary point holds with an accuracy <0.001. Next
stationary points verified are a minimum for psy that can be found at t = 20
and a minimum for srss found at t = 60. The same method was used as above
and this resulted in the following equations:

max(0, (ωawb,psyawb(20) + ωsrss,psysrss(20) + ωattb,psyattb(20)+
ωsrsb,psysrsb(20))/λ) = psy(20) (9)
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Substitution of the values provides

max(0, (1 ∗ 0 − 1 ∗ 0.1932 + 0 ∗ 0.0596 + 1 ∗ 0.0343)/2) = 0
max(0,−0.0794) = 0

0 = 0

So, the equation for this stationary point holds with accuracy 0. Finally

max(0, (ωsss,srsssss(60) + ωcss,srsscss(60) + ωaws,srssaws(60)
+ωatts,srssatts(60) + ωpsa,srsspsa(60)ωcsb,srsscsb(60))/λ) = srss(60) (10)

Substitution provides:

max(0, (1 ∗ 0.0017 + 1 ∗ 0.0024 + 1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 − 3 ∗ 0.8503)/5) = 0
max(0,−0.5094) = 0

0 = 0

The equation for this stationary point also holds with a very small accuracy 0.
These verification results provide some evidence that the implemented model is
correct.

5 Discussion

The presented neurologically inspired temporal-causal network model, designed
following the Network-Oreinted Modeling approacvh put forward in [19,20], is
based on the Attention Schema Theory for consciousness recently developed
by neuroscientist Michael S.A. Graziano and others; e.g. [8–10,23]. The model
was illustrated for a relatively simple scenario in which an attention shift takes
place in relation to two different stimuli. For reasons of presentation the incor-
porated model of attention was kept simple. However, the network model can
also incorporate a more complex model for attention involving multiple stimuli,
for example, as described in [4].

A number of conclusions can be drawn from the different simulation exper-
iments that have been performed using the developed model, among which the
one shown in Sect. 3. These simulation experiments show a functional role of
awareness in evolutionary perspective as theorized by, for example, [6]. Given
the temporal-causal loop between attention and awareness, it turns out that the
impact on attention grows faster and higher than without this loop being active.
Based on the results of simulation scenarios such as the one shown in Fig. 3,
support was found for a positive effect of visualizing a scenario by internal sim-
ulation to the flow of attention and awareness. With an amplifying effect of
the (bottom-up) sensory representation states, the effect on both attention and
awareness is prolonged with an amplifying effect on attention to the predator
which may lead to a faster response to the occurrence of the predator, because a
preparation state threshold is exceeded sooner. This suggests a potential faster
response to, for example, an encounter with a predator or prey which implies an
increased survival chance and therefore an evolutionary advantage. So, it seems
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that the developed model based on the Attention Schema Theory, connects well
to some theories about the functional role of awareness; see also [23]. These
theories also provide an answer to the question of whether or not subjective
awareness serves a useful purpose or whether it is merely an epiphenomenon
with no clear purpose. This suggests that an attention schema may be of great
utility, at least, in the top-down control of attention.

Future research can be done to test the model more extensively, by simulat-
ing more scenarios, in relation to claims made in literature such as [8–10,23].
Although these scenarios at the time of writing were not all tested yet, it is
however likely that the model will also work with these scenario’s, because they
mostly largely rely on the same internal connections and patterns generated by
them. The following additional example scenarios are some of the relevant ones:

1. Simulation with external stimuli of a prey and a predator.
Based on previous results with the model using control states to trigger inter-
nal simulation (visualization) of stimuli (prey and predator), similar results
using real world external stimuli (world states for prey and predator) can be
expected. The only real difference is that in this case the sensory representa-
tion states are activated by the sensor states instead of by the control states;
the rest of the processes will be similar.

2. Simulation with external stimuli (visible prey and predator) and external
reactions (eye gaze, approaching, fleeing) using attention without awareness
In this scenario first the hunter attends to the prey which he does not become
aware of (achieved by disconnecting those parts of the model), and soon after
the predator comes into sight his attention shifts from the prey to the predator
and there is no shift in awareness from the prey to the predator. It can be
predicted that the attention level - without awareness - will not rise as fast and
as high as with awareness, as there are less causal impacts on the attention
states; see also [23]. If this indeed is the case, then this confirms that awareness
can play a crucial role in attention such that without awareness a reaction to
spotting a prey or a predator may be too late or even absent which leads to
an increased existential risk for the hunter.

3. A mirroring scenario where an individual spots another hunter reacting to a
prey and a predator.
In this case the trigger is not from internal control states or from external
stimuli concerning prey or predator, but from external stimuli concerning
observation of another hunter addressing prey and predator. By way of mod-
eling a mirroring mechanism, the sensory representations corresponding to
these observations are connected to the own preparation states (with mir-
ror function) as if the hunter him or herself would be in the situation. These
preparation states trigger the whole internal simulation process (mental imag-
ination) as shown in Sect. 3. Based on the results of the presented model, for
this case similar results can be expected compared to the case of using real
external stimuli (for prey and predator) for the hunter him or herself. In
addition, a self-other distinction control state can be incorporated, so that
the hunter is able to know that in this case it is not his or her own process
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that is internally simulated but somebody else’s. This is a basis for generat-
ing empathy with somebody else: having and feeling the same mental states,
but at the same time knowing that they are relating to states of somebody
else; e.g., [18]. This scenario relates to an angle on consciousness as related to
social interaction; see also [9], Chap. 10 on more elaboration on the relation
of the Attention Schema Theory to social theories of consciousness, and [14]
to how this may relate to attributing awareness to somebody else.

Appendix Parameter Values Used in the Example
Simulation Shown in Sect. 3
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Abstract. The Multilevel Darwinist Brain (MDB) is a cognitive archi-
tecture aimed at providing autonomous and self-motivated life-long
learning capabilities for robots. This paper deals with a new structure
and implementation for the long term memory (LTM) in MDB based
on Fuster’s concept of Network memory and on the introduction of a
new type of node or cognit called Context Node (Cnode). The idea of
Network memory as proposed here, provides a path to hierarchically and
progressively relate LTM knowledge elements, allowing for a develop-
mental approach to learning that permits very efficient experience based
responses from the robot. We include a simple, albeit quite illustrative,
example of the application of these ideas using a real Baxter robot.

Keywords: Cognitive architecture · Long term memory · Network
memory

1 Introduction

From a Psychological or Cognitivist perspective, “a cognitive architecture is a
broadly-scoped domain-generic computational cognitive model, capturing the
essential structure and process of the mind, to be used for broad, multiple-
level, multiple-domain analysis of behavior.” [1]. Thus, we can consider it a
generic computational model, a basic operational mechanism that is not specific
to any particular task or domain. It is only when knowledge is introduced or
acquired that it can carry out tasks in particular domains. As indicated by
Vernon, a cognitive architecture establishes the structure and organization of a
cognitive system through the definition of the modules that make it up and their
relationships as well as the way knowledge is acquired, represented, and acted
upon, including the types of memories used to store it [2].

An artificial cognitive architecture is always based on a set of assumptions
and views of the designer. Most designers take inspiration from the only refer-
ence that is available, that is, natural cognitive architectures and, in particular,
from their assumptions on how the one that is closest to them (the human one)
operates.

c© Springer International Publishing AG 2017
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Natural cognitive architectures, however, were not designed the way they
are, they are the result of a very long evolutionary process of the species and
reflect the interactions of the evolutionarily changing hardware (bodies, organs,
sensors, etc. . . ) with different sets of environments. The result is a mixture of
knowledge and structures present at birth (phylogenetically coded knowledge)
that include a set of capabilities that allow the modification of the knowledge
content (and maybe even some of the structures) in order to adapt to the partic-
ular environments and situations the organism faces (ontogenetically acquired
knowledge).

In any case, the final function of a cognitive architecture is to provide a
means for a motivated system (a system that has goals) to choose actions that
allow those goals to be fulfilled. Thus, appropriately deciding on what actions
to choose each instant of time is what a cognitive architecture is about. These
decision processes almost always revolve around two main concepts: prospection
and experience.

Prospection has to do with the prediction and evaluation of future states so
that the system can select among the potential actions or policies as a function of
the expected achievement of its goals. It requires performing predictions into the
future, usually carried out by models (forward models, world models, internal
models), and evaluations of the predicted states by means of value functions.

On the other hand experience has to do with relationships the system has
found among its knowledge components (models, policies, perceptual classes,
etc.) when it was successful at achieving a goal (or, in some cases, even unsuc-
cessful). These relationships allow the system to directly choose an action or
policy if it can determine the context it is in, that is, if it can determine in which
world it is operating, what its goal is and what is its current perception. Through
these previously observed relationships it can directly activate the action or pol-
icy that produced a successful result in a previous instance of the same or a
similar context.

Both of these decision making approaches require of a long term memory
where the system can store knowledge elements that it has learnt (models, poli-
cies, perceptual classes, value functions, etc.), but more importantly, where it
can store the experience based relationships among these knowledge elements.
Long term memory is critical for addressing lifelong learning and cognition [3].
However, most authors have paid very little attention to this system except as a
passive storage container for knowledge. A computer architecture like analogy of
the mind has been the predominant paradigm in this regards: memory as a hard
disk. Thus, human memory is usually described as a storage system organized
by content with discrete encoding, storage, and retrieval functions [3].

However, authors such as [3,4] argue that to achieve properties such as adap-
tivity, flexibility and robustness, biological system memories are a distributed
and active component of cognition which in embodied agents should be situated
within the perception–action cycle of adaptive behavior. Consequently, memory
is proposed as the central component of any cognitive architecture. Further-
more, authors like Oberauer [6] or Fuster [4] do not even adhere to the classical
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division of memory into two separate subsystems: Short Term Memory (STM)
and Long Term Memory (LTM). They take STM as the currently activated parts
of LTM. Anyway, whatever the view, the most relevant mechanisms for life-long
cognition are those related to LTM and its operation.

In particular, in Fuster’s view [5], memory consists of the modulation of
synaptic contacts within distributed networks of interconnected cortical cells.
Memory is achieved through the potentiation or inhibition of synaptic links
between neural aggregates as a response to perceptual or other types of activa-
tions. These activation patterns supported by the connections between neural
populations that are acquired through experience is what he calls memory net-
works or cognits [4]. A consequence of this model is that memories can be taken
as distributed throughout large areas of the associative cortex, with nodes cor-
responding to neural aggregates with particular processing functions that are
linked through synaptic links that connect them, much in the same way as
graphs. It follows that in this view memory shares the same neurons and net-
works used by perception, defining perception as object classification by means
of the activation of the networks that represent these concepts in memory.

From a computational perspective, this approach is similar to that of tra-
ditional semantic networks, as considered for instance in ACT-R [7]. However,
autonomously acquired network memories that grow directly from the perceptual
apparatus of the system all the way to the executive part of the cognitive struc-
ture without any explicit foreignly imposed symbolic structure does not suffer
from the problems of classical symbolic approaches with respect, for instance, to
grounding. In this line, Wood indicates that the storage of semantic information
is a property of the memory system as embedded in the wider cognitive architec-
ture [3] and not something that is explicitly encoded. In fact, these ideas become
very important in architectures such as the one we are working on, which aim
at exploiting development as a facilitator of life-long learning. In this case, LTM
becomes one of the most important parts of the architecture as it is where the
knowledge the system has acquired, and upon which it must developmentally
construct new knowledge, is stored.

This paper is concerned with presenting our current advances in the intro-
duction of the concept of network memory within the LTM structure of the
Multilevel Darwinist Brain cognitive architecture. In particular, it deals with
the introduction of the concept of Context Nodes and the initial experiments
carried out to demonstrate their effectivity. Thus, Sect. 2 is devoted to a brief
introduction of the Multilevel Darwinist Brain. The network memory based LTM
structure that has been constructed is described in Sect. 3. An example of its
use in a real robot is presented in Sect. 4. Finally, some conclusions and outlooks
are provided in Sect. 5.

2 Cognitive Architecture and Multilevel Darwinist Brain

A robot must be able to obtain enough utility from an initially not completely
known world in order to survive for as long as possible (in other words, its
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utility level must not drop below a certain threshold for as long as possible). As
indicated in the introduction, a cognitive mechanism is the structure that allows
for this in an open-ended manner in a closed loop between the system and the
world. Thus, in a cognitive mechanism, knowledge is exploited to lead the robots
towards Goals (points or areas in state space that provide utility).

The Multilevel Darwinist Brain (MDB) is a cognitive architecture for real
time robotics. When designing the MDB, the idea was to create a computation-
ally effective structure that provided the required cognitive functionality. We
were not looking to produce a biologically plausible, but rather a biologically
inspired architecture. MDB follows a developmental approach and its operation
revolves around 4 basic types of elements:

– Models: prediction structures in the form of forward models and satisfac-
tion models (value functions in reinforcement learning terms) that are usu-
ally instantiated as Artificial Neural Networks. They conform the declarative
knowledge acquired through interaction with the world. MDB relies on evo-
lutionary algorithms for model learning,

– Policy or Behavior: a policy is a decision structure that needs to be learnt
and that provides the action to be applied in time t from the sensorial input
in t.

– Episodes: real world samples that are obtained from the robot sensors and
actuators after applying an action. Typically, within the MDB these episodes
are made up of the sensorial information plus the applied action in time t and
the sensorial information including sensed rewards or satisfaction derived from
the execution of the action in time t + 1. These episodes are used as targets
for model learning.

– Memories: two main kinds of memory elements were considered in the first
implementations of the MDB: Short-Term (STM) and Long-Term (LTM)
• The STM is made up of a model memory, which contains models and

behaviors that are relevant to the current task, and an episodic buffer
(EB) that stores the last episodes experienced by the robot. The EB has
a very limited capacity according to the temporal nature of the STM.

• The LTM is made up the models that have been consolidated due to their
significance and reliability, and the consolidated behaviors.

The full details of the operation of the MDB can be found in [8]. However, as
a short summary, we have to say that the MDB interacts with its environment
by performing actions, these produce new perceptions and rewards (which, in
any case, are also perceptions) that are stored together in the episodic memory
as episodes. The elements in the episodic memory are used as ground truth, that
is, as the information obtained from reality to determine the fitness of evolving
populations of models by testing them over the episodic memory instances. These
populations are evolved just for a few generations for every interaction with the
environment (we do not want the models to converge to a particular content
of the small episodic memory, but rather to slowly converge to the series of
episodic memories it is being exposed to). The best current models are selected
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and used in order to evaluate possible policies that are being generated in a
second evolutionary process. This is achieved through a prospective process that
determines the new state a policy would lead to (using forward or world models)
and provides a satisfaction or reward value for this state (using the satisfaction
model or value function). The best policy is chosen and it is used to select the
next action to apply to the environment. This policy will be active until a new
policy that improves on it is provided by the MDB. Those models and policies
that are successful and are applied to the real world are copied to LTM for their
preservation and possible reuse. It is how LTM is constructed and managed that
is the subject of the work we are presenting here.

3 Network Memory Based Long Term Memory

The MDB tries to fulfill a robot’s goals by means of an appropriate choice of
actions or policies to carry out in order to survive in the long term. To this end,
apart from random selection, a robot has mainly two possible mechanisms for
choosing actions or policies: Experience or Prospection.

In this paper we are going to concentrate on the issues surrounding experience
based action selection (EBAS), as the prospection based case has been considered
before [8]. To this end, we are going to expand the basic LTM structure of the
traditional MDB in order to accommodate the relationship structure that would
be necessary for EBAS through the introduction of a series of concepts inspired
by the memory network ideas proposed by Fuster [5].

By experience based decision we mean that as the system interacts with the
world it can relate a state Si and a policy or action that was successful (even
though initially the policy could have been chosen at random) and save this
relationship in some type of memory so that the policy can be reused when the
same state arises. In general, this is a bit more complex, as the validity of a
policy to produce a result given an initial state (its repeatability) also depends
on the result we want (the goal) and on the world we are in (we assume the world
includes the agent), as different worlds may work differently. It is not the same
to walk on solid ground than on ice, for instance. In general, the world we are in
can be identified by knowing which forward model is successful at predicting it
or, alternatively, by having a particular sensor that helps identify worlds. Thus,
we must relate the state (Si) or its representation (Rn), the goal (Gk) or its
related value function (Vk), the policy (πr) and the successful forward model
(FMj) and when the tuple {Si, FMj , Gk} is found again, then the system can
infer that applying policy πr, should lead to a successful result.

The need of experience based decision making of having context dependent
mechanisms available to recover information from LTM as well as the need of
later memory consolidation processes to have access some type of neighborhood
structure of LTM contents so that similarities can be detected and generaliza-
tions made, has driven us to create a new LTM structure that goes beyond the
simple storage of knowledge elements of the MDB (individual policies, perception
classes, forward models, value functions) that were successful. To this end, and
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following the principles stated by Wood [3] and Fuster [4], we started in [9] by
directly introducing experience modulated activating or inhibitory connections
between the different knowledge elements present in the LTM (they are usually
neural groups represented as ANNs). These connections were strengthened when
those instances of the elements co-occurred, that is, when they were chosen to
carry out a decision process in the robot leading to the final instantiated behav-
ior. The resulting structure they generated was a graph where the connections
are the edges and the knowledge elements of the architecture stored in the LTM
are the nodes (see Fig. 1(a)).

Fig. 1. Memory network based approaches in the MDB LTM: (a) direct activation and
inhibition, (b) including context nodes.

The operation of this first approach could be described by considering that
when a new perception (Ps) is presented to the agent, its represention class (Rn)
is activated, activating whatever links it has to forward models, policies or value
functions. This activation is propagated through the graph, either until the policy
level is reached, in the case of a strictly tree like structure, or until some type of
convergence, time limit or attractor is reached in the case of considering all of the
possible cycles and feedback connections in the graph. The activation pattern
will determine what elements are related through experience to the perceptual
state and how strongly they are related to it. Thus, the policy with the highest
activation can be chosen for direct application in urgent cases (strictly experience
based approach) and/or a subset of all the elements in the architecture consisting
of those with the highest activations can be selected and used in order to evaluate
policies through deliberative processes in a prospective manner when considering
both experience and prospection.

As indicated before, a long term learning process occurs through the perma-
nent modification of the edge weights through co–occurrence. A consequence of
this is that the connectivity structure that arises tends to define in what contexts
an element is activated. That is, elements with similar connectivity vectors will
tend to be activated in similar contexts or situations. Therefore, the connectivity
matrix itself can be used to establish some order or neighborhood structure for
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the different elements in the LTM. Elements with connectivity vectors that are
similar can be considered similar. Independently of whether the nodes themselves
present any structural similarity, they respond to the same contexts.

However, as the number of worlds and tasks the architecture is faced with
grows, this simple connectivity structure becomes quite difficult to maintain. It
tends to drift depending on the sequence in which the system is faced with the
worlds or goals it has to work with and on how long it is presented with each
combination (which in real systems cannot be predicted). Thus, the connectiv-
ity matrix is quite local in time and tends to forget co–ocurrence relationships
related to world–goal combinations it has not seen in a while or even get stuck
in connectivities related to combinations it has seen for too long or that are
simpler. This is mainly due to the fact that the activation of a node is given by
a function over a summation of its inputs (activations of the nodes leading to it
that go through weighed edges) and the training is achieved by increasing and
decreasing the weights in the edges.

To address this issue, we propose here to delegate the task of relating elements
in a more permanent way to a new type of knowledge element that is added to the
previously presented LTM structure, a relational node we have called “context
node” or Cnode for short (see Fig. 1(b) for a depiction of the LTM structure with
Cnodes). A context node is a node that is created when the co–occurrence of a
series of elements within the LTM leads to a relevant event. All the elements that
co–occur are linked to the newly created Cnode through weighed connections.
Initially, relevant events are taken as events in which a reward is achieved, but
any other type of event could be considered. Basically, the idea is that whenever
a reward is obtained, it is not a bad idea to remember in a relatively permanent
manner the context in which this occurred. Cnodes become active when the
product of their inputs surpass a threshold (in a binary case, when this product
is not zero).

In the case of continuous domains, the connections leading from the sensing
apparatus of the system to a Cnode are filtered for each dimension of state
space. This means that each dimension of the state or perceptual space that is
linked to the Cnode is connected to it through a filtering function (a Gaussian,
for instance) that determines the value interval of that particular dimension
(variable) that is relevant for the Cnode decision. Any value of that variable
that is outside the corresponding interval will lead to a zero in that link and, as
Cnodes are product units, to a zero total input to the Cnode. These intervals
for the filtering functions are learnt through interaction with the world. Initially,
they will be very narrow and given by the first perceptual (state) point that
led to a reward for that particular world, goal and policy but as more states
lead to rewards for the same context in terms of world, goal and policy, these
filters will become less narrow and will correspond to wider multipoint areas in
state space. Summarizing, Cnodes represent memories of relevant events that are
related in LTM. Thus, in cases were we consider only a finite number of world–
goal combinations (domain-task combinations), once the cognitive architecture
has identified all the contexts (world, goal, state space area, policy) that lead to
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relevant events by interaction of the sytem with the world, it will have Cnodes for
each one of them. Thus it will be able to directly choose or activate appropriate
policy (series of actions) in order to obtain a reward or reproduce the relevant
event in any case where this is possible.

4 Application Example

In order to demonstrate the operation and capabilities of the approach intro-
duced above, we present a very simple experiment using the Baxter Robot. The
setup is shown in any of the images of Fig. 3. A Baxter robot sees, using its
camera, a workspace where there are two containers, one with a round hole and
one with a square hole. There are also two objects, a cube and a cylinder, with
colored lights on top (red and blue). The cube fits in the square hole and the
cylinder in the round one. The Baxter robot can grab any of the two objects and
it can move them anywhere within its reach, including putting them in one of
the holes. However, the robot perceptual system only detects the colored light
on top of each object, it does not detect shape. This implies that the only way
the robot has to distinguish one shape from the other is through the colored
light on it.

Using this basic setup, we have constructed an experiment that involves two
types of worlds and two types of tasks (as defined by their goals). In one world,
cylinders have a red light on top and cubes a blue light. In the other world,
the light assignment is inverted (cylinders are blue and cubes red). Regarding
the goals, there are two possible situations: reward is obtained when a hole (the
screen in the scene indicates which hole) is full with the correct shape or reward
is obtained when all the holes are empty. The initial state may involve one of
the holes having the wrong object in it, which implies taking it out before being
able to put the other one in.

Fig. 2. Three states of the LTM during the interaction with the world.

Thus, as this is a very simple experiment, we can know in advance all the
possible combinations of things that should lead to the creation of Cnodes, that
is, all of the relevant events. In terms of goals and worlds, we have four combi-
nations. For each of these cases, there are six relevant situations, leading to a
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total of 24 Cnodes that should be obtained through interaction with the differ-
ent worlds with different goals. We assume that the robot will not be interacting
continuously with any world (they will change randomly) and that its goal will
change after a random number of interactions. This implies that, in fact, the
robot will have to learn to achieve the maximum reward concurrently in the four
situations.

Figure 2 displays a sequence of views of the robot LTM. One at the beginning
of the process, where there are no Cnodes, one after 70 interactions with the
different worlds and one after 167 interactions. At the beginning, the robot is
performing a trial and error process. It is making mistakes that allow it to find
the relevant events. After 70 interactions with the world, the robot has already
learnt some Cnodes, and when the associated situations arise, the robot chooses
the right policy directly. Exploration is only taking place with regards to the ones
it has not learnt yet. It is easy to see that after 167 interactions, the robot has
learnt all of the possible relevant events in the environment and, thus, when faced
with any state in any of the four world-goal combinations, it directly chooses
the optimal policy. It is very important to note here that this process was quite
efficient and did not take very long. Figure 3 shows four snapshots of the robot
doing one of the tasks.

Fig. 3. The robot performing the task of introducing a cube in the square hole in after
170 interactions with the world. (Color figure online)

5 Conclusions

In this paper we have presented a new implementation of the long term mem-
ory of the Multilevel Darwinist Brain cognitive architecture. This new imple-
mentation is based on the ideas of Fuster’s memory networks, which establish a
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graph-like connection structure among the knowledge components stored in LTM
(models, policies, perceptual classes, goals,...). In the implementation presented
here we have introduced a new type of node called Context Node, or Cnode,
which provides for the establishment of product–like activations that permit
the long term storage of context relationships. The combination of this type of
connectivity together with the basic direct connection among components that
provide a summation type activation function allow for the categorization of the
context space into classes corresponding to the relevant events the robot must
associate in order to be able to achieve rewards in the environment it is faced
with. These ideas were tested over a simple experiment using a real Baxter robot
and the results were very promising.
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Abstract. This work proposes a new method to model the extrinsic
motivation of a cognitive architecture based on the discovery of separable
utility regions (SUR), which reduce the complexity of the standard value
functions typically used. Those regions exhibit a correlation between the
expected utility and the response of one sensor of the robot. Once they
are discovered, the evaluation of the candidate states is only based on
the changes of one sensor, which provides a strong independence from
noise or dynamism in the utility models. A non-static variation of the
classical collect-a-ball scenario was used to test the mechanism in order
to generate and define the certainty maps associated to those SURs.
Preliminary results show a good response of the technique and a clear
improvement in performance when this is associated to a restructuring
mechanism for the utility model, which, in this case, corresponds to the
creation and chaining of sub-goals.

Keywords: Motivational system · Extrinsic motivation · Cognitive
robotics

1 Introduction

The motivational system of a cognitive robot is in charge of the evaluation of the
candidate states according to a set of innate and learned motivations [1,2]. From
this evaluation, the robot selects the action that must be applied in the environ-
ment to reach a goal state. As a consequence, the motivational system guides
the cognitive development, from learning to operation. The most remarkable
approaches in this line [3] distinguish between two main types of motivations:
intrinsic and extrinsic. Intrinsic motivations can be assimilated to innate motiva-
tions, those obtained by evolution in animals or humans, and they are involved
in exploring the state space to promote learning without requiring the presence
of an explicit goal. Intrinsic motivations have been widely analyzed in reinforce-
ment learning [4] and cognitive robotics [5], and their ultimate goal is to improve
autonomous knowledge and skill acquisition. On the other hand, extrinsic moti-
vations drive the robot towards reaching a goal state where a reward can be
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obtained based on the current knowledge. Typically, extrinsic motivations have
also been provided by the designer, creating, again, a sort of innate motivation
[6,7]. This approach can be useful from a practical point of view if we aim to
have a robot that can solve a set of predefined tasks in a controlled fashion.

However, following a more general and cognitivist perspective, extrinsic moti-
vations should be autonomously acquired during development [8,9]. Thus, the
robot may start its operation with just a set of predefined sensors and intrin-
sic motivations, as commented above. When some sensorial states are reached,
the robot receives a reward, which defines a goal and, as a consequence, a new
extrinsic motivation emerges guiding the robot operation towards fulfilling such
motivation. Many other extrinsic motivations can appear during robot develop-
ment, and the motivational system must handle them efficiently. From a practical
point of view, this approach means that the robot is able to learn any goal (any
task) if an appropriate reward is provided, for instance, by an external teacher.

As part of the EU’s H2020 DREAM project (www.robotsthatdream.eu), we
have proposed a new motivational system called MotivEn (Motivational Engine)
based on the previous framework. Thus, MotivEn considers a cognitive robot as
an open-ended system that operates guided by autonomously learned extrinsic
motivations, but containing a set of innate intrinsic motivations required to
foster robot development in the most reliable way. MotivEn has been tested in a
collect-a-ball experiment in simulation [10] and with a real robot [11], providing
successful results in the autonomous acquisition of new goals and sub-goals in
static tasks. In this paper, we present a new version of the MotivEn motivational
system improved to operate in non-static cases, that is, in more realistic tasks
where the sensorial path to reach the goal state can change between episodes.

2 Motivational Engine

In order to formalize the MotivEn framework, some basic definitions are required:

– Sensorial state (S): an array of sensorial values in a given instant of time. It
should be noted that MotivEn operates in continuous domains.

– Action (A): set of values provided to the robot actuators
– Reward (R): scalar value that can be measured by the robot which defines its

goal. The robot aims to maximize the reward it achieves during its lifetime.
– Utility function (UF): function that assigns a reward to the sensorial states.

It is out of the control of the robot and depends on the problem nature.
– Episode (E): sample of the real world response to the robot actions.

episode = [S(t), A(t), S(t + 1), R(t + 1)]

– Trace (T): discretized trajectory of episodes that finish with a reward
– Episodic buffer (EB): memory element that stores the last episodes experi-

enced by the robot. The EB has a predefined limited capacity

www.robotsthatdream.eu
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Fig. 1. MotivEn state evaluation based on intrinsic and extrinsic motivations

– Value Function (VF): function representing the expectancy-value (V), that
is, the assessment of the cognitive system on how probable it is that it will get
a reward starting from that point modulated by the amount of the expected
reward. It is a useful internal representation of the utility function:

V (t + 1) = V F (S(t + 1))

The expectancy-value (hereafter value) at a state space point containing a
reward is the value of the reward. At any other point with no reward, it
will be a value that is smaller than the reward and which is assigned by the
motivational system to provide information to the robot and thus allow it to
reach the reward by following state space paths of increasing value.

The original version of MotivEn [11] was based on the motivational model
shown in Fig. 1. We assume that there is a cognitive architecture that selects
a set of candidate actions and provides a set of candidate sensorial states that
must be evaluated by the motivational system in a given instant of time. The
combination of intrinsic and extrinsic motivations must be correctly handled in
order to choose the most appropriate sensorial state, with the final objective
of guiding the robot towards the completion of its tasks. In a first approach,
we have defined two types of intrinsic motivations (IM) [11]. The Blind IM
guides the robot behavior towards the discovery of unvisited sensorial states and
operates as an explorative intrinsic process. The Certainty-based IM is devoted
with guiding the robot to improve the VF, that is, it enhances learning to increase
VF reliability. On the other hand, the Extrinsic Motivation is a single component
based on the current VF model which aims to maximize the utility function.
However, since modeling the utility function can require more than one VF
due to its complexity or some other learning limitations (trace length, memory
size...), MotivEn is endowed with a sub-goal creation mechanism to divide VF
into simpler sub-VFs, including a sub-VF combination mechanism [11].
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As commented in the introduction, this initial MotivEn approach was highly
successful in static environments [10], but in the case of more complex scenarios
it was not possible to obtain a reliable VF model. To solve it, we have developed
an improved Extrinsic Motivation component for the MotivEn, which will be
described in the following section.

3 Extrinsic Motivation for Non-static Tasks

To provide an extrinsic motivational value for a sensorial state, apart from the
one provided by the VF, we introduce a second method based on the concept
of separable utility regions (SUR). These represent subspaces of the sensorial
space where the expected utility and the value of one sensor are correlated,
this is, the VF corresponding to that region would be a one dimensional and
monotonic function. The identification of SURs in the state space provides a
fast and simple way of implicitly defining VFs. SURs are defined by the sensor
which is correlated, the tendency of the correlation (increasing or decreasing in
a first approach) and the region where they are active. Therefore, all the effort
is focused on correctly finding regions where one of the possible correlations (2
x number of sensors) is active and there is no need to model any explicit utility
model. In a way, the use of SURs to estimate the utility function constitutes
an orthogonal linearization of the model. In this work, we have developed an
algorithm that is continuously searching for tendencies in the sensor values as a
way to find possible SURs. This algorithm operates concurrently with the VF
learning that was used in the previous version of MotivEn [11], so we now have
two extrinsic criteria to evaluate the sensorial states. As a first approach, the
VF will only be used if no SUR can be detected.

Before presenting how SURs have been implemented in MotivEn, a definition
of the regions where they are active (certainty areas) must be carried out.

3.1 Certainty

Our extrinsic motivation model considers the fact that the reliability of the value
provided by the VF is not uniform, neither in time nor in (state) space. In the
first stages of learning, there are a small number of traces that can be used to
learn the VF, so its reliability remains low. Also, in regions that are far away
from those where the goal was found, the VF is not reliable either. Hence, the
extrinsic motivation requires a measurement that indicates the validity of the
VF in those points. Similarly, the definition of SURs also requires information to
indicate where they are active and how reliable that activation is. To this end,
we have defined a certainty function which associates, for each sensorial state, a
certainty (reliability) value. This function works mainly as a density map based
on the visited past states that are stored as traces in the episodic buffer (EB),
assuming that if a new state is close to an old state, the information we acquired
from the old state could be used to extrapolate information to the new one [11].

To create the certainty maps, the system must handle three types of traces:
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– Positive Traces (p-traces): created when a goal is reached while the robot is
acting in a existing certainty area under the influence of its extrinsic motiva-
tion.

– Negative Traces (n-traces): created when a robot fails to reach a goal under
the influence of the extrinsic motivation in its associated certainty area.

– Weak Positive Traces (w-traces): created when a goal is reached but the robot
was not executing actions guided by its extrinsic motivation (for instance, the
robot reached a goal by exploring an unknown part of the environment).

On the one hand, p-traces will have a positive weight on the density certainty
value, while n-traces will have a negative one. On the other hand, we consider
w-traces as positive traces that are not as reliable as proper p-traces, because
the robot was not taking into account its extrinsic motivation directly to reach
the goal, so the information obtained may not be consistent. W-traces will have
less influence on the certainty value and their presence in the system will be
temporal, however very important to the initial steps of the creation of certainty
maps. The area of influence of each type of trace (p, n or w-traces) varies with
time. The addition of p-traces expands the certainty area, while the addition of
n-traces reduces it. It starts being wider, covering most of the state space, and
it gradually converges towards a range which is correlated with the variance of
the available trace points.

The following mathematical model defines the implementation used for the
creation of certainty maps. First, of all, we provide some basic definitions:

– T ≡ {t1, t2, t3, t4, . . . } is the set of trace points (episodes) that will be used to
define the certainty map. Each point is defined by n components (n sensors),
tj ≡ {cj1, c

j
2, c

j
3, . . . , c

j
n}.

– dmj = maxi

∣
∣cjm − cim

∣
∣ is the maximum distance, for the m-th dimension,

between the j-th trace point and the rest of the trace points in T.
– Dm ≡ {dm1 , dm2 , dm3 , . . . , dmn } is the set of the maximum distances for all the

points in T.
– Demy = perc

y
(Dm) is the y-effective distance in dimension m, being perc

y
(X)

the percentile y over the set X.
– NT is the number of traces available. NT = Nht + Cf ∗ Nst: sum of p-traces

and cf times w-traces.
– Lsup

m and Linf
m is the superior and inferior limits of the m-th sensor.

– Dr = minj{
∣
∣cjm − Lsup

m

∣
∣ ,

∣
∣cjm − Lsup

m

∣
∣} is the minimum distance to the m-th

sensor limits.
– p is the point of coordinates {p1, p2, . . . , pn} in the state space for which the

certainty is to be computed.
– hj

m =
∣
∣pm − cjm

∣
∣ is the distance in the m-th dimension between the j-th trace

point and any point p.

Thus, we can define Hlim as the limit distance in dimension m from which the
traces quickly decrease their effect on the state space. It is calculated as:

Hlim =

{
Dem100 +(Drm−Dem100)∗KNT −1

2 , Drm > Dem100
Dem100

2 , Drm > else
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with K = 0.05
1

NT5%−1 and NT5% being the number of traces to reduce the feasible
distance to 1.05Dem100 (NT5% = 4 by default), and with Dem100 ≡ max(Dm).
Based on this limit, the effective distance in the m-th dimension between the
j-th trace point and any point p, hnn

j , is calculated using the following expression:

hnn
j =

{
hj
m, hj

m < ceHlim

ceHlim + (hj
m − ceHlim) ∗ M, else

Finally, the weight, Wj of a trace point tj in any point p is calculated as follows:

Wj =
normt(

{

hn1
j , hn2

j , . . . , hnn
j

}

))

Lsup
m − Linf

m

Combining the weights of p-traces, n-traces (Zj) and w-traces, (W ∗
j ), the cer-

tainty value for a point p is given by:

C = max
(

0, tanh
(

cp ∗ (

ΣTWj + cw ∗ W ∗
j − caZj

)))

with cw and ca being the weighing factors for n- and w-traces regarding p-traces.

3.2 Separable Utility Regions (SUR)

The idea behind the SURs is to model the expected utility by chaining regions
which require of movements in the search space associated to increasing or
decreasing a specific sensor value in order to reach the goal. This way, the
implicit value function proposed will be very simple, this is, the action that
most increments/decrements the sensor value will get a higher evaluation. As
mentioned, the learning process in this case relies on the determination of what
SUR is active each moment and in what direction (incremental or decremental).
MotivEn will initially consider all possible SURs and will try to find traces that
support them. As new traces are included in the episodic memory, some of the
SURs are deactivated and some others are reinforced. This way, the suitable
SUR will be finally activated in each point in the state space.

Under this approach, the robot can be in three situations according to its
current action-selection criterion:

1. If one SUR is active, the state evaluation follows that sensor as long as it can
until it reaches a goal.

2. If there no SUR is active but there are reliable SURs associated to the current
state (certainty value higher than 0) the robot randomly selects a SUR among
those with positive certainty and activates it, then all possible candidate
states are evaluated according to that sensor response.

3. In any other case, the states are evaluated using the blind IM.

A tendency trace will be an ordered list of perceptual states st for which a
specific sensor value is increased/decreased with respect to st−1. So, after a goal
achievement, a robot with n sensors, will create m tendency traces being m ≤ n.
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As these tendency traces are created depending on the increase or decrease of a
sensor value, both situations cannot be possible for the same sensor. In addition,
some sensors could present a constant value, so no tendency trace would be
created for them. If the goal was achieved while a sensor tendency was active,
its relative tendency trace would be an s-trace, and the remaining m − 1 would
be w-traces. These tendency traces would have different lengths depending on
when the tendency is broken.

3.3 Sub-goals

The certainty area is now limited to a state subspace that is close (depending
on the trace length limitation) to the goal. This way, a large part of the state
space would be outside the certainty area. To complete the Extrinsic Motivation
model, we must be able to combine different certainty areas with their own
extrinsic evaluation structures. This way, we create the concept of sub-goal in
this new representation. As obtaining a reward would be considered the goal
of the robot, and associated to this the traces will be created, now reaching a
certainty area will be considered a sub-goal, and the traces for reaching it would
be linked to a new extrinsic evaluator in a hierarchical way.

4 Experimental Results

The simulated experiment that has been used to test the new MotivEn imple-
mentation is shown in Fig. 2, and it is based on the collect-a-ball experiment
originally proposed by Ollion and Doncieux [12]. The scenario is divided into
two parts by a wall. The robot is placed in the left part, where it can sense a
blue box and an green button. In the right side there is a red ball that, initially,
cannot be perceived by the robot. The robot is able to move on this environ-
ment and to reach the different objects. Hitting the button makes the wall open,
allowing the robot to see the ball. Whenever the robot reaches the ball, it auto-
matically picks it up. Also, when the robot reaches the box carrying the ball,
the ball is dropped into the box and the robot receives a reward. This event
triggers a reset of the scenario and all the elements (button, box, ball and robot)
are placed in a random location, creating this way a non-static version of this
experiment.

Fig. 2. Collect-a-ball scenario with a typical execution trace followed by the robot
(Color figure online)
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The robot has three sensors: distance to the green button (g), distance to
the red ball (r) and distance to the blue box (b). When it cannot see the ball,
the sensor returns the maximum distance it can measure. As for the actions (a),
the robot can change its orientation by an angle between −90◦ and 90◦, with
a constant linear speed. Consequently, the sensorial state is given by a vector
(g,r,b).

This experiment implies that the robot has to learn a complex and ordered
behavior. In order to achieve a reward it will first have to reach the button, then
go and pick the ball, so that it can finally go to the box, drop it, and receive
the reward. Initially, the robot has no idea of where the reward is or of how to
reach it. It will thus have to discover the reward and associate it to a point in its
state space. The fact that the different elements in the scenario can be located
anywhere produces that the utility model may show inconsistencies (dynamism)
from one run to the next. Therefore, it provides an interesting scenario to test
whether the extrinsic motivation model benefits from using SURs.

In order to understand how MotivEn creates the certainty model associated
to all SURs, Fig. 3 displays the final state of the certainty regions for all avail-
able SURs at the end of the learning process in an exemple execution of this
experiment. The first three rows show the active certainty regions for the first
goal of the scenario (reaching the box while carrying the ball: distance zero to

Fig. 3. Activation of the SURs for the different sub-goals. Representation of the cer-
tainty values of the SURs. Blue, violet and red represent, positive, zero and negative
values of certainty respectively (Color figure online)



40 R. Salgado et al.

ball and box). Box, button and ball distances are represented in the x axis, y
axis (in each graph) and column (discretized into 6 ball distances). Each row
represents one SUR. Blue areas represent regions with positive certainty, violet
indicates zero certainty and red indicates negative certainty. In the first goal,
only three SURs generated traces and most of them are concentrated in the box
distance decreasing SUR, as expected. More in detail, only when ball distance is
zero is the box distance decreasing SUR active, for any value of box and button
distance, this is, when carrying the ball follow the direction which minimizes
box distance. Sometimes, when the robot is carrying the ball (ball distance = 0)
close to the box, increasing the distance to the button can lead to fortuitously
(robot located between button and box) reaching the box. Thus, we can also
find active regions in the button distance increasing SUR for ball distance = 0
and box distance � 0. Several button decreasing traces were also created but
negative traces overcome positive ones removing any active area. As a result,
the active (blue) area in this set of SURs (ball and box distances = 0: reaching
the box while carrying the ball) becomes a goal for the next set of SURs.

The next four rows indicate the SURs which received traces to reach the
second goal. In this case the ball, button and box sensors are represented by X,
Y and columns in order to better visualize the active areas. The most populated
SUR is the one which corresponds to decreasing the ball distance and the whole
state space is active. Therefore, when trying to find the ball, wherever you are
in the state space aim for decreasing ball distance (if you can see the ball: ball
distance < 1000). Finally, the third certainty sets seek to see the ball and the
active region created corresponds to the button distance decreasing SUR and to
ball distance = 1000 (reach the button if you do not see the ball).

Regarding general performance, Fig. 4 shows how long it takes to find the
goal in a typical run of 8000 iterations. Each red dot represents the iteration

Fig. 4. Evolution of the time to reach the goal as the SURs are learnt and activated.
Green and blue lines indicate the creation of first and second sub-goals. (Color figure
online)
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when the main goal was reached (ball to the box). The Y axis represents how
many iterations it took for the robot to find the goal in each run. The green
vertical line indicates the creation of the first sub-goal (find the ball). The blue
vertical line indicates the creation of the second sub-goal (press the button). The
figure shows how the time to reach the goal gradually decreases and that the
creation of sub-goals is associated with that reduction. Shortly, after the creation
of the second sub-goal, the system learns the last certainty area and converges
to a stable performance in finding the goal.

5 Conclusions

An improved version of the MotivEn motivational system for cognitive robots
designed to operate in non-static tasks has been presented. It is based on the
identification of separable utility regions, which constitutes a simple and fast
way of implicitly defining Value Functions. To provide a first indication of the
usefulness of SURs, we have tested them in a non-static version of the collect-a-
ball experiment, showing the potential of the proposed method, which allowed
us to solve this task in a more general and autonomous fashion.
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Abstract. Communicating with machines in the same way we do with
other people has been a long-time goal in computer science. One of its
many advantages would be the ability to give instructions to our com-
puters without the need of learning how to use specific software or pro-
gramming languages. Since we’re dealing with human language, it would
make sense to use a model of the human brain to build a system with
such capabilities. In this work, the Hierarchical Temporal Memory algo-
rithms are explored and evaluated as a biologically inspired tool capable
of working with natural language. It’s proposed that task execution can
be achieved by training the algorithms to map certain sentences with
keywords that correspond to the tasks. Different encoders are tested,
that translate words into a proper representation for the algorithms. The
configuration of algorithms and encoders with the highest success rate is
able to correctly map up to 90% of the sentences from a custom training
set. The behaviour of the success rates does not vary greatly between
different subsets of the training set, suggesting that the learning system
is able to find patterns and make inferences about missing data.

Keywords: Hierarchical Temporal Memory · Natural language process-
ing · Neural networks · Task execution · Language understanding

1 Introduction

Imagine you’re a student of arts. You have to build a 3D model due tomorrow.
But you spent last night with your friends, having some drinks and a lot of fun.
Noon has already passed, yet you’re just getting up, really tired. And now you’ll
have to learn how to use that confusing software your teacher likes? No way!
You turn on your laptop. Could this software be compatible with your favourite
task execution program? “Create a sphere”, you say to the mic, and a sphere
appears floating in the screen. Way to go! You won’t need to learn commands
specific to this new software, you’ll just use the concepts you’re already familiar
with!

Of course, not everything is parties and procrastination. A software with
such capabilities could, for example, improve the life quality of people who don’t
have easy access to computers. They’d be able to immediately take advantage

c© Springer International Publishing AG 2017
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of resources that are freely available in the Internet, like homemade technology
or environmental advice.

Language understanding has been tackled from different perspectives. Models
built on top of semantic databases, like wordnet [5], can solve problems such as
Word Sense Disambiguation [6]. Deep learning techniques have recently provided
some of the most accurate results in many areas, like speech generation [4], and
are used by important companies in their natural language processing tasks.

The Hierarchical Temporal Memory (HTM) theory is an attempt to reverse-
engineer the human cortex [2]. As a recent technology, not much studies have
been made to evaluate its potential for Natural Language Processing. Notably,
the cortical.io start-up has developed a framework based on the HTM theory
principles that identify and take advantage of semantic relations between words
in a given context [11].

In this work, we’ll experiment with the biologically-inspired HTM theory by
building a task execution system that receives instructions in natural language.
Such system was implemented in an open-source software called HTM-TEUL1,
which uses the official HTM algorithms implementation, Nupic [8]. Now let’s
take a look at the parts it was built upon.

2 The Training Set

In order to avoid bias toward the vocabulary of a specific person, the data used
to feed the learning system was collected by posting a Google Sheets document
in social networks. In the post, people were requested to write the different ways
they would ask an agent to execute certain tasks. The resulting data contained
sentences in both Spanish and English and was reviewed by a human in order
to filter out duplicated or inappropriate sentences. Nothing wrong was found
in this process, so it was kept intact. A copy of such data can be found in the
HTM-TEUL github repository.

Four subsets were built, that were then subdivided in pairs of training data
(used to train the models) and test data (used to evaluate the models) as follows:
(1) Both the ‘Total’ training and test sets have all the sentences. (2) The ‘Partial’
training set is comprised of a random selection of 80% of the sentences, leaving
the other 20% for the ‘Partial’ test set. (3) For the ‘Spanish’ sets, the 80/20%
ratio is maintained, but only sentences in Spanish are taken into account. (4)
The same goes for the ‘English’ sets, but applied for the sentences in English.

3 The Virtual World

The Virtual World is merely an interface element where users can visually iden-
tify the task being executed after they input a sentence. It was conceived as a
grid of 5× 5 where a cartoonish character 2, who executes the tasks, lives in. The
possible tasks are (1) move to the left, (2) move to the right, (3) move upwards,
(4) move downwards, (5) pick up an object, and (6) dance.
1 DOI:https://zenodo.org/badge/latestdoi/45553850.
2 The ant Ectatomma ruidum.

https://zenodo.org/badge/latestdoi/45553850
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4 The Encoders

Our sensory organs are constantly translating stimuli from the real world into
sets of active neurons that hold semantic meaning [9]. These sets have the form of
Sparse Distributed Representations (SDRs), which means that the information
is held across multiple neurons, and that the relative number of active neurons at
any given time is low. SDRs have a number of desired properties that contribute
to scalability, robustness and generalization [1].

HTM systems also work with SDRs, and encoders are in charge of generat-
ing them from raw data [9]. Building an encoder capable of extracting semantic
features from words is not an easy task. As the scope of this work was to experi-
ment with the HTM theory and evaluate its capabilities in text processing, three
fairly simple encoders were used.

The sparsity and length of the encoded outputs comply with the recommen-
dations given in [9]. At any rate, the collected data didn’t have any source of
noise or randomness, which are one of the main reasons for those recommen-
dations. You may look for use examples of the encoders in the HTM-TEUL’s
github repository.

4.1 Custom Category Encoder (CCE)

The first encoder is a modified version of the Nupic’s Category Encoder. As
its name implies, it treats every new input (words or tasks, in our case) as a
different category, semantically isolated from all the other known inputs. The
modifications allow you to specify a number of extra slots for yet unknown
categories, so new inputs can get a unique representation. The length of the
output arrays depend on the number of words and tasks of the training set
being used. The sparsity varied from approximately 0.77% to 12.5%.

4.2 Totally Random Encoder (TRE)

The TRE assigns a unique random sequence of bits to every new word, though
two completely different inputs may have overlapping bits. This goes explicitly
against the recommendations given in [9], but it was included for comparison
purposes. For this work, the output arrays have a length of 1024 with 204 active
bits, resulting in a sparsity of approximately 20%.

4.3 Randomized Letter Encoder (RLE)

This encoder has two parts. First, each letter of the word is encoded using a
Category Encoder. Then a random sequence is appended at the end, in order
to prevent errors from homonyms. In this work, 3 active bits per letter were
used for the first part and an array of length 600 with 60 random active bits
for the second. As there are 26 letters in the English alphabet and the words in
the training data varies from 1 to 20 letters, the sparsity of the encoded output
ranges from approximately 5% to 30%.
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5 The HTM Models

The HTM theory include two main algorithms: The Spatial Pooler (SP), which
finds spatial patterns between the inputs and create SDRs, and the Temporal
Memory (TM), that learns and predicts the sequences in which the inputs are fed
[2]. For this work, let’s call ‘HTM models’ to a set of instances of such algorithms,
interconnected (the output of one is the input of another) in a specific way.

The HTM models developed for this experiment, depicted in Fig. 1, receive
input from two sensors: One for the words and the other for the tasks. When
training, the models are fed with inputs from both sensors. Then, to evaluate
them, only words are fed, and their predictions about the corresponding tasks are
recorded. The evaluation metric used is the percentage of successful predictions.

Fig. 1. HTM models structures
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5.1 Classic Hierarchical Model

In the neocortex, neurons are arranged in regions, which are connected in a
hierarchical fashion. This allows noise reduction and reuse of already-learned
patterns in order to build more abstract concepts upon them [2]. The Classical
Hierarchical Model is based on this idea.

Inputs from the two sensors are received separately in a lower region. The
‘Word TM’ learns the order in which the words must go to form a sentence,
while the ‘Event TM’ learns the possible sequences of tasks. The higher region
is fed first with the outputs of the ‘Word TM’ and then with those of the ‘Event
TM’. Note that the HTM theory doesn’t describe how to accomplish a hierarchy
yet. This implementation has no biological foundations.

5.2 Feedback Model

As the Classic Hierarchical model, the Feedback Model processes the inputs from
the two sensors independently in the first region. However, the OR operation is
applied to the outputs of the TMs so a single representation of the whole sentence
(or tasks sequence) is passed to the next region.

In other words, the higher region processes sequences of two elements: A
sentence and its corresponding tasks sequence. Then it’s prediction about the
tasks sequence that follows a sentence is passed down to the ‘Event TM’ to
bias its own predictions. This mechanism is believed to provide lower regions in
the Neocortex with a glance of the general world so they can situate the input
they’re processing in a context [2].

Contrary to the Classic Hierarchical Model, the Classifier is fed with the
output of the ‘Event TM’ rather than with those of the ‘General TM’. This is
because the ‘General TM’ in this case only holds a representation of the whole
tasks sequences, which would make it difficult to tell apart individual tasks.

5.3 One Level Model

This is a simplification of the Classic Hierarchical Model. It skips the first region
so the encoded data is fed directly into a general SP and TM.

6 The Classifier

The Classifier extracts human-readable data back from the HTM system’s mem-
ory. The Nupic’s CLA Classifier can determine the most likely value that will
appear in the next n steps. It was modified for this work, so it only considers
the tasks for its predictions.
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7 Parameters Selection

The SP and TM algorithms can be tunned trough various parameters. Nupic’s
tool ‘Swarming’ explores different values in the parameter space and picks the
ones that it considers appropriate for the specific case. However, Swarming was
designed for streaming data (like the hourly measure of a building’s temperature)
and is not well suited for the data collected in this work. Therefore, an evolu-
tionary algorithm was used for this task. It’s worth noting that the parameters
found by an evolutionary algorithm are not necessarily the best.

8 Results and Discussion

Results, depicted in Fig. 23, were consistent across the data subsets. This shows
the system’s flexibility and robustness, given that the subsets contained different
languages and the sentences used to train the models were different from the one
used to test them.

Fig. 2. Results for the different subsets of the collected data

3 The graphs were created with the matplotlib [3] and seaborn [10] visualization tools.
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The system was also able to map partial sentences with the corresponding
tasks, which proves its capacity to extract patterns from the data. For exam-
ple, when the word “arriba” (Up) was introduced, it was mapped to the move
upwards task, even though it was not present in the training set as a full sentence.

The same random seed (420) was used in all the tests, but the scores didn’t
went high for the randomness-based encoders. In fact, the best scores were invari-
ably obtained by the Category Encoder, followed by the Randomized Letter
Encoder in almost all cases. These results are surprising in the sense that the
RLE was the only encoder that produced representations partly based on seman-
tic meaning. A possible weak point are homonyms, but there are none in the
collected data. The random bits could have lowered the success rates.

As for the models, One Level obtained the best success rates. The fact that
there’s no official support for hierarchies in Nupic [7] could have influenced these
results. Hierarchy is supposed to boost robustness [2], but this effect wasn’t
strong enough to justify the loss of information generated by going from one
region to another.

9 Conclusions and Future Work

The HTM algorithms’ flexibility allow to experiment with different kinds of
data and connections between them. Thanks to this, anyone can attempt to
implement characteristics that are core to the HTM theory but for which there’s
no algorithmic description yet (like hierarchy and feedback).

The experiments demonstrated that there’s potential in HTM systems for
NLP. An advantage with respect to traditional methods is that there’s no need
for a big corpus annotated by professionals. In fact, anyone could participate
in the data collection. However, this comes with the cost of having to build
an encoder that captures semantic meaning. In this work, the simple Cate-
gory Encoder did the job, but would it be sufficient for a larger, more complex
data set?

Aside from prediction, another strong point of HTM systems is anomaly
detection. Using existing corpus annotated at grammatical and syntactic levels,
the task execution system could make use of such features to detect poorly-
written sentences. Furthermore, with the appropriate encoders, a system that
combines inputs from different sensors (like images, sounds and text) and create
relationships between them could be built on top of the HTM algorithms.
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Abstract. Goal-oriented human-machine situation-awareness systems
focus on the challenges related to perception of the elements of an envi-
ronment and their state, within a time-space window, the comprehen-
sion of their meaning and the estimation of their state in the future.
Present computer-supported situation awareness systems provide real-
time information fusion from different sources, basic data analysis and
recognition, and presentation of the corresponding data using some aug-
mented reality principles. However, a still open research challenge is to
develop advanced supervisory systems, platforms and frameworks that
support higher-level cognitive activities, integrate domain specific asso-
ciated knowledge, learning capabilities and decision support. To address
these challenges, a novel cognitive architecture framework is presented in
this paper, which emphasizes the role of the Associated Reality as a new
cognitive layer to improve the perception, understanding and prediction
of the corresponding cognitive agent. As a proof of concept, a particular
application for railways safety is shown, which uses data fusion and a
semantic video infrastructure.

Keywords: Knowledge modelling · Cognitive architectures · Situa-
tion awareness · Human-machine interactive systems · Safety systems ·
Semantic video analysis

1 Introduction

Goal-oriented human-machine situation-awareness interactive systems are cru-
cial in many decision-making activities and associated control processes in real-
time environments, such as driving vehicles or trains, monitoring nuclear power
plants, or supervising manufacturing systems, or in sectors such plant automa-
tion, intelligent transportation systems, civil construction, homeland security,
cyber security or healthcare.

A common cognitive problem in these critical real time systems is the neces-
sity of managing the corresponding environment and context information in a
c© Springer International Publishing AG 2017
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suitable way. The involved Situation Awareness (SA) systems focus on the chal-
lenges related to three basic cognitive layers (Endsley 1995 Model of SA) [1]: 1.
Perception (observation) of the elements of a particular environment and their
state, within a time-space volume (window), 2. Comprehension (understanding)
of their meaning and 3. Projection (prediction-estimation) of their state in the
future.

Robust computer-aided situation awareness systems, in semiautonomous or
autonomous scenarios, are crucial for managing the involved critical real-time
process, including surveillance, security, safety and emergency fields, command
and control centres, human-machine interactive systems and alarm management
frameworks.

In general, the evolving relationship between humans, technology and
machines is a crucial factor pointed out by Gartner’s Hype Cycle [2]. Partic-
ularly the corresponding situation-awareness cognitive systems need to tightly
share knowledge and goals with the involved teams in order to be really useful
for the corresponding services.

In the corresponding supervisory systems and involved cognitive architec-
tures, the following information levels are usually considered [3,4]: 1. Reality-
world 2. Perception 3. Situation comprehension 4. Future estimation 5. Decision
6. Action. Present computer-supported situation awareness systems provide real-
time information fusion from different sources, basic data analysis and recogni-
tion, and presentation of the corresponding data using some augmented reality
principles [5–9]. However, a still open research challenge in situation awareness
and alarm management fields is to develop integrated goal-oriented supervisory
systems, platforms and frameworks that support higher-level semantic cognitive
activities, integrate context and historical knowledge, learning capabilities and
robust decision support.

From a cognitive perspective, the main situation awareness challenges
of safety, security and emergency monitoring systems lay in integrating
timestamped data fusion techniques, data semantic analysis, alarms and events
statistics, and expert rules knowledge. To also address context and content aware
problems [10], to extract meaning and relevance, and to have a deep under-
standing of the systems of interest, a novel cognitive architecture framework is
presented in this paper, which emphasizes the role of associated reality as new
cognitive layer to really improve perception, understanding and prediction of the
involved human-machine interactive systems.

Additionally, in this paper a particular system architecture and application
developed for railway safety, which uses a semantic video framework and sensor
data fusion, is also shown. The corresponding software has been implemented in
C++ using OpenCV libraries, to analyse, visualize and verify the safety state,
manage warnings and alarms, and generate historical and statistic records of
trains. The considered approach focuses on the interplay between humans and
machines in SA systems, and between the corresponding perception, understand-
ing, and semantic and reasoning elements.
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The paper is organized as follows. In Sect. 2, we discuss some cognitive archi-
tecture concepts applied to situation awareness systems, and introduce the asso-
ciated reality cognitive layer for human-machine systems. In Sect. 3, we describe
a general cognitive architecture framework for situation awareness which includes
the associated reality layer. Section 4 describes a specific data fusion and seman-
tic video architecture for situation awareness, specifically designed for railways
safety applications. Section 5 summarizes a railway safety application we have
developed using the previous framework. Finally, Sect. 6 discusses the conclu-
sions and further research.

2 Associated Reality Cognitive Layer

In this paper we borrow some general concepts from systems architecture descrip-
tion, standard IEEE 42010 [11], to define and categorize some cognitive aspects
of the situation awareness model considered. The purpose of this architectural
approach is to improve the definition and abstraction levels of the corresponding
cognitive elements.

A cognitive architecture refers to a theory about the structure of the human
mind, and analogous computer cognitive layers and cognitive agents. The main
purpose of a goal-oriented architecture is the understanding, and description,
of the main elements of the system of interest from a particular point of view.
A cognitive architecture should include data, information, knowledge and suit-
able techniques used to perceive, interpret, and analyse a system from the cor-
responding viewpoint.

A cognitive layer of a collaborative architecture contains information (more
specifically: data, information and knowledge) and suitable processes to carry
out the involved goals. When we try to develop machine cognitive layers for
situation awareness, to emulate or improve human brain capabilities, usually
we have to provide them with similar information and techniques to reach the
corresponding goals. A cognitive layer usually incorporates different cognitive
agents.

A cognitive agent can be considered as an active RT architect that constructs
dynamic goal-oriented views of the system-of-interest and integrates these views
within the general description using cognitive models and schemas, and general
cognitive processes. This paper introduces the concept of Associated Reality (see
Fig. 1) as an additional cognitive layer (architectural view) that enriches the real
world with related semantic information and data for enhancing the capabilities
of a goal-oriented cognitive agent, which can be considered as a generalization
of the concept of Augmented Reality layer for HMI’s [12].

A goal-oriented Associated Reality (AsR) cognitive layer (cognitive-copilot
or expert layer), for human-machine interactive systems, modelizes, combines
and stores direct or indirect related real-time information from multiples sources,
from a particular viewpoint. This cognitive layer can include: system characteris-
tics, state, mode and context, semantic information and historical data, models,
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Fig. 1. Example of an Associated Reality (AsR) layer that provides a semantic
goal-oriented associative layer between the world and a goal-oriented cognitive agent
(Source: https://goo.gl/images/zSMTuY)

and simulation and estimation methods. Analogous knowledge associative struc-
tures are also prevalent in natural cognitive systems: especially in brain cortex
of the humans and other mammals.

For developing goal-oriented AsR cognitive layers, it is also necessary to
have flexible and hierarchical visualization tools to improve the corresponding
processes.

The conception of the AsR cognitive layer proposed in this paper, for situa-
tion awareness system was partially inspired by Hawkin’s model [13]: “memory-
prediction framework of intelligence”, which points out the strong relation among
intelligence, continuous predictions and associated stored semantic knowledge.
Analogous prediction ideas: ‘ ‘prediction is the ultimate function of the brain”,
were also emphasized by the neurophysiologist Llinas [14].

The AsR cognitive layer can significantly improve the observability, control-
lability and situation awareness of the system of interest. It implies a human-
machine sharing of the considered goals and objectives, and a continuous vigi-
lance and alertness for extracting relevant information and drawing inferences
and conclusions. The involved cognitive agents should perceive, analyse and asso-
ciate the available information about the system and its environment to improve
their knowledge and make better decisions in the future.

Following Endslay’s approach [1,3,4] and explicitly adding the association
phase, an AsR cognitive layer for situation awareness can be decomposed into
the following four basic layers (sublayers), with different feedback loops in the
corresponding processes: 1. Perception of the elements and state space of a par-
ticular environment. 2. Comprehension-fusion of their meaning. 3. Association
of the involved information. 4. Prediction-estimation of their state in the future.

Using the JDL Data-Information Fusion’s model [15] for situation awareness
systems, cognitive layers can also be categorized into the following five levels: 0.
Signal 1. Object. 2. Situation. 3. Impact. 4. Process improvement.

https://goo.gl/images/zSMTuY
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A goal-oriented AsR cognitive layer of an object (JDL Level 1) can includes
the following timestamped attributes:

Table = (Time,Object − type,Object − name, (Object − attributes), (Object − related − information))

Example. For a particular train safety application, the corresponding histor-
ical AsR cognitive layer, and the involved timestamped database, can include
the following object-attributes = (thermometer, GPS, odometer, tachometer,
gyroscope, Doppler radar...) and object-related-information = (GSM-R data,
GPRS-R data, command & control information, railway incidents information,
and present 4G LTE external cloud information or future extended 5G connec-
tions and associated cloud services).

3 A Cognitive Architecture for Situation Awareness

Figure 2 depicts an associated reality architecture for situation awareness. Its
main elements of are:

AsR = (Specification, Control, Management, AsR cognitive layer, Decision, Actions)

Fig. 2. AsR architecture. Situation awareness architecture with an associated reality
layer.

Following the system architecture guideline IEEE 42010 [11], we include in
the diagram the main elements and relations of the corresponding cognitive
system. The main innovation aspect of this cognitive architecture framework is
the AsR cognitive layer, which contains an active cognitive agents for situation
awareness with associative knowledge. This structure basically emulates some
associative properties of human brain for situation awareness activities.

The AsR cognitive layer provides the basis to perceive (capture), comprehend
(analyze) and associate (relate) the corresponding semantic information, make
estimations (predictions), and also store and retrieve the corresponding historical
database.
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4 A Situation Awareness Architecture for Railways
Safety

This section presents a particular AsR cognitive architecture for critical sit-
uation awareness, specifically designed for train safety applications, which uses
semantic-video and data-fusion processes (AsR.SVDF). Figure 3 depicts its main
architecture components. This cognitive redundant architecture uses the associ-
ated reality layer, and it is based on a continuous vigilant semantic video, sensors,
GPS, RFID balises and cloud agents. The main components of this architecture
are:

AsR− SV DF = (I1, I2, I3, I4, FT SV, DF, HMI, HDB, AsR.SVDF Plan & Scheduler)

Fig. 3. AsR.SVDF model. SA system architecture for railway safety.

Main System Components

I1. System and environmental sensors: odometer, tachometer, accelerometer,
gyroscope, thermometer, etc.

I2. Balises, transponders or RFID beacons placed between the rails of the rail-
way.

I3. GPS module and antenna.
I4. External RT cloud connection with low latency. It provides additional infor-

mation for the situation awareness process: context, environment and system
information.

I5. Video signal input. It provides the visual perception of the environment.
FT. Filtering of sensors signals, GPS, balise and cloud information.
SV. Semantic Video. It analyzes the input video information, and detects

objects and situations of interest (markerless detection).
DF. Data Fusion. It combines all available information, and stores the fusion

results and complementary information in XML format.
HDB. Timestamped Historical Fusion Database of system and environment

variables.
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HMI. Associated reality HMI. It shows annotated and symbolic information of
alarms & events, and relevant related information for the development and
operations.

PE. Prediction-estimation Engine. Estimation model uses the present data and
previous system state to estimate the state in the near future state. The train
position estimation is basically based on a dead reckoning procedure (using
previously determined position and integrating the speed over the elapsed
time). GPS, balises and video information optimize the position references.

A&E. Alarms and Events Management. A&E’s are triggered using A&E Rule
Database, according to the detected scenario and context. A&E conditions
and Rule Database can be modified by the corresponding Command & Con-
trol cloud service. The timestamp A&E’s triggered are stored in the historical
A&E Database.

AsR.SVDF Plan and Scheduler. It manages the complete process accord-
ing to scenarios, goals, objectives, and key performance indicators (KPI’s)
considered.

Main Design and Operational Principles

– Design principle: In AsR-SVDF architecture, the associated reality layer con-
tains HDB, A&E, PE and HMI modules.

– Design principle: Reliability of an AsR-SVDF situation awareness system
depends on the semantic video analysis and robustness of the data fusion
(redundancy).

– Design principle: The Quality Management and KPI’s of an AsR-SVDF sys-
tem depend on the monitoring of historical fusion database and historical
A&E database.

– Design principle: The semantic video drastically reduces the necessary storage
resources and the ulterior analysis computation (economy).

– Operational principle: Situation awareness can be improved by controlling
and monitoring the trip-plan data and the statistic parameters of previous
trips derived from the corresponding historical database (copilot knowledge).

– Operational principle: System reliability, availability and robustness depend
on the maintenance plan and continuous improvement process (CIP) defined.

Example of a Record of the Historical Database

A simplified timestamped sample of the historical database is:

Sample = (Date : 26.05.2016;Time : 13 : 25;TrafficSign : Max90;
Speed : 80.4Km/h;TripDistance : 146.3Km)

This register stores the traffic sign detected, present train speed and present
trip distance derived from the redundant data fusion-association available data
and prediction. The present trip distance or position of the train can be
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dynamically estimated from different redundant sources: GPS, radar, odome-
ter, tachometer integration, RFID balises (marker-based references) and video
specified railway objects (markerless references) that sequentially correspond to
particular travelling distances of the railway. Traffic signs and others significant
elements are sequentially detected with a video camera on the machine train
through an intelligent video analysis (IVA). The corresponding data fusion and
data association allow estimating the train position based on sensors and sources
available, train state and railway conditions.

Example of a Situation Awareness Alarm Rule

A simplified register example of an Alarm & Event Rule Database for a train is:

Register = (Train : 00151;Rule : 8.1;Weather : normal;Begin : 143Km;End : 147Km;

Type : Alarm;V ariable : Speed;Min : 0Km/h,Max : 90Km/h;AlertMessage : Reducespeed)

The corresponding A&E Rule Database specifies the speed constraints
based on weather conditions and distance intervals. In operation, the triggered
timestamp A&E’s are stored in the historical A&E Database. Notice that in
the associative situation awareness architecture considered, the train speed and
position can be estimated in many different direct or indirect ways, which is
essential for the reliability of the alarm system. This redundant structure pro-
vides much more robustness to diverse scenarios, even with a partially damaged
or sensor degraded system. This way, the machine cognitive behaviour emulates
the remarkable robust cognitive behaviour of many survival animals of our nat-
ural ecosystems. Next section, presents a practical demonstration of a railways
situation awareness system which uses the considered AsR framework.

5 A Situation Awareness Application for Railways Safety

Severe accidents in railway systems are often based on the loss of situational
awareness of engine drivers and rail traffic operators, due to different factors:
distraction, fatigue, violation of procedures, etc. [16]. For example: Santiago de
Compostela’s derailment occurred on 24.07.2013 at 20:44 CET in Alvia Talgo
high-speed train with an ASFA-ERTMS hybrid management system [17]. This
accident was initially originated by a loss of situation awareness of the engine
driver, with the consequences of 80 deaths and 152 injuries (Fig. 4). Further
investigation of train’s data recorder, revealed that the train was travelling at
179 Km/h instead the posted speed limit of 80 Km/h.

The involved tracks of the accident were equipped with Eurobalises ERTMS-
ETCS Level 1 [17], which provide relevant information regarding the track ahead
of the train, e.g. track conditions, maximum speed, and maximum distance
allowed to travel with the corresponding balise. If the driver exceed this maxi-
mum speed, the train shall be slowed down automatically, but the corresponding
Alvia trains had compatibility problems with ERTMS, and were not conveniently
configured for using the Eurobalises.
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To prevent this kind of railway accidents, we have developed an AsR-SVDF
situation awareness demonstration platform (Fig. 5). The RT platform will be
able to analyse and detect the railway traffic signs and associated data, generate
an annotated reality video with the suitable information, store the time-stamped
semantic video in the corresponding historical database, and compute the rule-
based alarms and events module.

Fig. 4. Derailment in Alvia high-speed train (source: spanishnewstoday.com).

Fig. 5. Particular view of the application graphical user interface of AsR.SVDF system.

6 Conclusions

This paper has presented a general cognitive architecture framework to empower
the development of novel situation awareness systems based on the associated
reality layer. This approach emphasizes the role of this active cognitive layer
as a copilot or personal assistant for machine cognitive agents, which contains
and models related information of the system and its environment for enhancing
the corresponding process. To improve real railway safety systems, a particular
situation awareness architecture was defined, with redundant data fusion and a
semantic video schema, to manage the corresponding A&E system. This alarm
framework supports simple and flexible declarative rule style for building situa-
tion awareness systems and services. A particular demonstration prototype, to

http://spanishnewstoday.com
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improve the railway safety, was also presented to practically show some capabil-
ities of the approach. In the future we plan to extend the AsR cognitive layer
defined and develop more applications with different scenarios and contexts.
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Abstract. Descriptive models of the retina have been essential to under-
stand how retinal neurons convert visual stimuli into a neural response.
With recent advancements of neuroimaging techniques, availability of
an increasing amount of physiological data and current computational
capabilities, we now have powerful resources for developing biologically
more realistic models of the brain. In this work, we implemented a two-
dimensional network model of the primate retina that uses conductance-
based neurons. The model aims to provide neuroscientists who work in
visual areas beyond the retina with a realistic retinal model whose para-
meters have been carefully tuned based on data from the primate fovea
and whose response at every stage of the model adequately reproduces
neuronal behavior. We exhaustively benchmarked the model against well-
established visual stimuli, showing spatial and temporal responses of the
model neurons to light flashes, which can be disk- or ring-shaped, and
to sine-wave gratings of varying spatial frequency. The model describes
the red-green and blue-yellow color opponency of retinal cells that con-
nect to parvocellular and koniocellular cells in the Lateral Geniculate
Nucleus (LGN), respectively. The model was implemented in the widely
used neural simulation tool NEST and the code has been released as
open source software.

Keywords: Primate retina model · Conductance-based neuronal net-
work · Parvocellular pathway · Koniocellular pathway · Red-green color
opponency · Blue-yellow color opponency · NEST simulation

1 Introduction

The majority of retina models basically fall into two categories. The first one
consists of descriptive or phenomenological models [3,8,31], which are filter func-
tions that convert input visual stimuli into some neuronal response, commonly
recorded from ganglion cells. While they involve just a few parameters whose val-
ues are easily calculated from experiments, these models retain only some gross
features of the retina and it is hard to construct a qualitative interpretation of
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 63–74, 2017.
DOI: 10.1007/978-3-319-59740-9 7
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the retinal network behavior. The second category, known as mechanistic models
[11,27], attempts to incorporate known morphological and physiological data of
the system. The challenge to construct them lies in finding precise values of all
their parameters, provided also that some of them cannot be reliably acquired.
Model neurons are formulated in terms of differential equations, whose numer-
ical resolution entails a considerable increase of the computational load. There
are also hybrid models that combine descriptive filters in some stages of their
circuit, where the response can be approximated by a linear function, with more
detailed neuron models in those other stages that exhibit nonlinear responses
[20,21,34].

While descriptive models have proven to be successful in explaining the gen-
eral properties of the visual system, improvement of computational technologies
and neuroimaging techniques allows implementation of large-scale biophysical
models that can facilitate the understanding of its structural and dynamic com-
plexity [13,14]. However, there are two key limiting factors that continue to hin-
der the development of biophysical models of the primate retina. One of them is
the scarcity of physiological data from primates. The second factor is the lack of
standardized neuron models for neurons that communicate via graded potentials
instead of spikes, as happens with retinal neurons. Moreover, existing biophysical
models of the primate retina [12,23] are not exhaustively benchmarked against
well-established visual stimuli.

To address these challenges, we implemented a two-dimensional network
model of the primate retina built on conductance-based neurons. We show spa-
tial and temporal responses of the model neurons to well-known visual stimuli,
e.g., light flashes and sine-wave gratings of varying spatial frequency. Simulated
response at every stage of the model was correlated with published physiological
data. The circuit model was implemented in NEST v2.11 [26] and the code has
been released as open source software [9].

2 Methods

2.1 Overview of the Network Model

The model is organized in two-dimensional grids of retinal cells synaptically
connected as shown in the schematic of Fig. 1A. Each layer is scaled to span a
patch of 2 deg× 2 deg in the foveal visual field of the primate retina and contains
40 × 40 neurons. The network is driven by the three different types of cones, S,
M and L types, which correspond to short-, medium- and long-wavelength light
respectively. Response of cones was implemented according to van Hateren’s
model of primate cones [10] with linear cone-horizontal cell feedback (Fig. 1B).
We chose the same generic parameter values given in Table 1 of the reference
[10], with the exception of parameter gs, which was 0.5 instead of 8.81 to slightly
increase the overshoot of the response with a stimulus onset.

All remaining retinal cells (horizontal cells, bipolar cells, amacrine cells and
ganglion cells) are implemented as single passive compartments [11,12]. The
membrane potential dynamics are given by:
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Fig. 1. A: Schematic of the circuit model including the different neuron types and
connections in the five color opponent pathways: L-ON, L-OFF, M-ON, M-OFF and
S-ON. L, M and S are the different types of cones. H1 and H2 are horizontal cells.
While H1 type horizontal cells tend to avoid S-cones, H2 cells innervate all types
of cones indiscriminately. The different types of bipolar cells are: midget bipolar cell
(MB), diffuse bipolar cell (DB) and S-ON bipolar cell (SB). The two types of ganglion
cells are: midget ganglion cell (MG) and small bistratified ganglion cell (SBG). ON
bipolar cells excite AII macrine cells through gap junctions and, in turn, AII amacrine
cells inhibit both OFF bipolar cells and OFF ganglion cells. The different activation
functions of the synapse cone-bipolar cell are shown in the insets. B: Model of response
of the cone cells consisting of a nonlinearity cascaded with two divisive feedback loops
and a subtractive feedback loop [10]. The output of this model, the membrane potential
of cones, Vs, is connected with horizontal cells and bipolar cells.

dVm(t)
dt

= −gL
Vm(t) − EL

Cm
− Iin(t)

Cm
+

Ie

Cm
(1)

where Vm(t) is the membrane potential of the neuron, gL the leak conductance,
EL the leak reversal potential, Cm the capacity of the membrane and Ie a
constant external input current. Ganglion cells also include integrate-and-fire
dynamics based on a threshold potential, Vth, and a refractory period, tref .
Iin(t) represents either incoming synaptic currents or gap junction currents. In
horizontal cells, bipolar cells and ganglion cells, Iin(t) is the sum of excitatory
and inhibitory synaptic currents:

Iin(t) =
N∑

i=1

wigi(t)(Vm(t) − Eex) +
M∑

j=1

wjgj(t)(Vm(t) − Ein) (2)

wi, wj are synaptic weights and Eex, Ein are the reversal potentials for the N
excitatory synapses and the M inhibitory synapses respectively. gi(t) and gj(t)
are the synaptic activation functions of the neuron. Synaptic activation functions
are modeled as a direct function of some presynaptic activity measure. In the
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simplest case, synaptic interactions are described by an instantaneous sigmoid
function [7,28,33]:

gi(t) =
1

1 + e−(Vprei
(t)−θsyn)/ksyn

(3)

where Vprei
(t) is the membrane potential of the neuron i and θsyn and ksyn are

parameters used to customize the sigmoid function.
By contrast, in amacrine cells, Iin(t) is the sum of gap junction currents

through electrical synapses with a constant gap junction conductance (ggap):

Iin(t) =
N∑

i=1

ggap(Vm(t) − Vprei
(t)) (4)

Photoreceptors release only one type of neurotransmitter, glutamate. How-
ever, bipolar cells react to this stimulus with two different responses, ON-center
and OFF-center responses [24,29]. While OFF bipolar cells have ionotropic
receptors that maintain light-activated hyperpolarizations of photoreceptors, ON
bipolar cells have instead metabotropic receptors that produce a sign reversal at
the photoreceptor-ON bipolar cell synapse. Ionotropic glutamate receptors are
positively coupled to the synaptic cation channel of OFF bipolar cells, which
is opened with an increase of glutamate. On the contrary, ON bipolar cells are
negatively coupled to the synaptic cation channel and glutamate acts essentially
as an inhibitory transmitter, closing the cation channel.

To simulate the activation function of this cation channel based on the cone
membrane potential (Vcone(t)), we used a sigmoid function whose exponent is
negative for OFF bipolar cells (standard sigmoid) and positive for ON bipolar
cells (inverted sigmoid):

gOFF (t) =
1

1 + e−(Vcone(t)−θsyn)/ksyn
(5)

gON (t) =
1

1 + e(Vcone(t)−θsyn)/ksyn
(6)

In the synapse horizontal cell-bipolar cell, although both bipolar cell types
express the same ionotropic GABA receptors, GABA release from horizontal cells
can evoke opposite responses. One evidence suggests that GABA evokes opposite
responses if chloride equilibrium potentials of the synaptic chloride channel in the
two bipolar cell types are on opposite sides of the bipolar cell’s resting potential
[32]. In our model, ON bipolar cells receive excitatory synapses from horizontal
cells, which have a positive reversal potential taking as a reference the bipolar
cell’s resting potential, and OFF bipolar cells receive inhibitory synapses, which
have a negative reversal potential.

Among all types of amacrine cells, the model includes only the AII amacrine
cell since it is the most studied amacrine cell and the most numerous type in the
mammalian retina [18,22]. The AII amacrine cell is a narrow-field, bistratified
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Table 1. Parameter values of neuron models.

Cm(pF) gL(nS) EL(mV) Eex(mV) Ein(mV) θsyn(mV) ksyn ggap(nS)

Horizontal cell 100 10 −60 0 - −50 3 -

ON bipolar cell 100 10 −54 0 −70 −35 3 -

OFF bipolar cell 100 10 −45 0 −70 −35 3 -

AII amacrine cell 100 10 −60 - - −55 3 10

Ganglion cell 100 10 −62 0 −70 - - -

cell that is connected through gap junctions with ON bipolar cells and synap-
tically innervate OFF cone bipolar terminals and OFF ganglion cell dendrites.
The AII amacrine cell plays an essential role in the circuit for rod-mediated
(scotopic) vision. However, it is shown that the AII amacrine functionality also
extends to cone-mediated (photopic) vision [6,19]. Under cone-driven conditions,
ON cone bipolar cells excite AII amacrine cells through gap junctions and, in
turn, AII amacrince cells release inhibitory neurotransmitters onto OFF bipolar
cells and OFF ganglion cells. Thus, the AII amacrine network produces crossover
inhibition from the ON pathway.

Parameter values of neuron models were chosen as generic as possible (see, for
example, values of Cm, gL, Eex and Ein in Table 1). The leak reversal potential,
EL, was adjusted in horizontal cells and bipolar cells to force a resting potential
in the dark of about −45 mV, as observed experimentally [1,28], and in amacrine
cells for a resting potential of about −65 mV. For ganglion cells, we chose values
of the leak reversal potential and the threshold potential, Vth, to keep the cell
constantly depolarized, resulting in a spontaneous firing rate of about 40 spikes/s.
Values of the synaptic activation functions, θsyn and ksyn, were set to force a
synaptic threshold below resting potential [28].

Synaptic connections were made using the NEST Topology module [25]. In
the description of connections shown in Table 2, every cell to the left of the arrow
connects to all nodes to the right within a circular mask of radius Rs and with a
delay τs. Weights of synaptic connections are generated according to a Gaussian
distribution of standard deviation σs. The sum of the weights of all incoming
synapses is equal to the total weight Ws.

The value of σs in the red-green vertical pathway, formed by L and M cones,
midget bipolar cells, amacrine cells and midget ganglion cells, corresponds to the
radius of the receptive-field center of P cells [4]. The surround of the receptive
field is accounted for by horizontal cells. Diffuse bipolar cells contact multiple
cones so that their value of σs is larger than the receptive field center of P cells
but still smaller than the σs of horizontal cells. To create the spatially coextensive
receptive field of the blue-yellow pathway [5], the value of σs of S-ON bipolar
cells is the same as that of diffuse bipolar cells. To approximate experimental
results [5], both values are set to 0.05◦.

Values of synaptic weights were calibrated to reproduce the features of neu-
ronal activity of the primate retina but always keeping Ws between 1 and 10 nS.
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Table 2. Parameter values of synaptic connections.

Rs(deg) Ws(nS) σs(deg) τs(ms)

L-Cone → L-ON MB 0.09 3 0.03 1

L-Cone → L-OFF MB 0.09 2.5 0.03 1

L-Cone → DB 0.15 1 0.05 1

S-Cone → SB 0.15 3 0.05 1

L-Cone → H1 0.3 2 0.1 1

L-Cone → H2 0.3 1 0.1 1

S-Cone → H2 0.3 2 0.1 1

H1 → L-ON MB 0.3 2 0.1 5

H1 → L-OFF MB 0.3 −3 0.1 5

H2 → SB 0.3 2 0.1 5

H1 → DB 0.3 −2 0.1 5

AII → L-OFF MB 0.09 −2 0.03 1

AII → L-OFF MG 0.09 −2 0.03 1

L-ON MB → L-ON MG 0.09 10 0.03 1

L-OFF MB → L-ON MG 0.09 10 0.03 1

DB → SBG 0.09 5 0.03 1

SB → SBG 0.09 5 0.03 1

To reproduce the delayed response of the surround, which is measured, on aver-
age, between 5 and 15 ms [15], a delay of 5 ms was given to the connection from
horizontal cells to bipolar cells.

3 Results

3.1 Red-Green Pathway

In Fig. 2, we show model responses to a flashing spot of radius 0.5◦ situated in
the center of the grid and covering the whole receptive field of the center neuron.
By using a white spot (Fig. 2A) we aim to depict some general spatial properties
of the network. The effect of the center-surround antagonism in bipolar cells
clearly emerged during the time interval the spot was ON, from 500 to 750 ms.
ON bipolar cells at the edge of the spot receive less inhibition from the surround
and, thus, showed a marked increase of the response compared to center bipolar
cells. The response of OFF bipolar cells at the edge of the spot showed a similar
behavior but of opposite sign, resulting in a significant drop below the sponta-
neous firing. Similar responses were seen for a black spot (Fig. 2B) but with the
time windows swapped.

Temporal dynamics of membrane potentials are shown in Fig. 2C. White
spots evoked strong depolarizations in ON cells during the stimulus onset, fol-
lowed by a rebound inhibition for the stimulus offset. Dark stimuli evoked
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Fig. 2. Time-averaged topographical representation of the membrane potential of
L-ON and L-OFF midget bipolar cells to white flashing spots of radius 0.5◦ (A and
B). The intensity of the spots is 1600 trolands (td) and they are superimposed on a
spatially uniform background of 100 td. The three time windows at the top are used for
averaging the membrane potentials. C: Responses of cells situated in the center of the
different neuron grids to the stimulus shown in A (s. ON) and to the stimulus shown
in B (s. OFF).

responses of the opposite sign, i.e., pronounced hyperpolarization followed by
rebound excitation. This response pattern corresponds to the well-known mech-
anism of push-pull, inherent to all neurons in the first stages of the visual system.
After the overshoot of the response with the stimulus onset, inhibition is able
to partially counterbalance the initial excitation within the receptive field and
the membrane potential returned close to the resting potential (or spontaneous
rate for ganglion cells). The same analysis applies for OFF cells but taking into
account that the responses are now of opposite sign.

In the following experiment, we used spots and annuli in order to favor
either the center or the surround mechanisms of the receptive field [2] (see
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Fig. 3. Responses of cells situated in the center of the different neuron grids to a white
disk of radius 0.09◦ and a white annulus with inner and outer radii of 0.09 and 0.5◦

respectively. Stimuli are flashed from 500 to 750 ms.

Fig. 3). Notice that, as a consequence of isolating one of the two mechanisms,
the response did not return to the resting potential after the initial overshoot.
The center response, activated by the disk stimulus, showed a peak 35 ms after
the stimulus onset. The peak of the surround response, activated by the annu-
lus stimulus, was delayed by approximately 10–15 ms with respect to the center
response [2].

We simulated spatial frequency responses for luminance, chromatic and cone-
isolating gratings (Fig. 4) and our results are correlated with physiological mea-
sures [17]. Firstly, for Fig. 4A, the mosaic of cones that describes the spatial
distribution of the different cone types in the fovea is spatially uniform, such
as the one used so far. One important aspect shown here is how chromatic and
luminance signals were multiplexed in low and high spatial frequencies respec-
tively by midget cells in the retina. Thus, the spatial frequency tuning curve with
a chromatic grating was low-pass and with a luminance grating was band-pass.
The response to the luminance grating showed also a peak at about 3 cpd, as
shown for the cell in Fig. 4B of reference [17]. The spatial frequency tuning curves
for L- and M-cone-isolating gratings showed different high-frequency cutoffs, a
feature consistent with the spatial structure of the receptive field. The response
modulation to M- and L-cone-isolating gratings was 180◦ out of phase as long
as the response to the M-cone-isolating grating was nonzero.

However, the response to the L-cone-isolating grating was slightly band-pass,
as a consequence of the mixed input of L and M cones we chose for the H1 hori-
zontal cell, prioritizing morphological studies of the primate retina. The majority
of cells measured in [17] showed marked low-pass responses though. We thus next
asked the question of whether the spatial distribution of the mosaic of cones could
influence the response to the L-cone-isolating grating. In Fig. 4B and C, a more
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Fig. 4. A: Spatial frequency curves of center cells for luminance, chromatic gratings and
gratings isolating a receptive field cone class (L-cone and M-cone). Sine-wave gratings
are drifted at 2 Hz, with a mean luminance level of 1000 td and a contrast of 0.8.
The response amplitude corresponds to the first harmonic computed based on Fourier
analysis of either the membrane potential or the firing rate. The mosaic of the different
cone types is spatially uniform. B: Spatial frequency curves of a cell situated in the
center of a retina region with a high density of M-cones. Cones are randomly placed
according to an uniform distribution with the following probabilities: 30% of L-cones,
60% of M-cones and 10% of S-cones. C: Spatial frequency curves of a cell situated in
a region of the retina with a high density of L-cones. Probabilities are now: 60% of L-
cones, 30% of M-cones and 10% of S-cones. L-cone-B. and M-cone-B. are the responses
of the midget bipolar cell to the L- and M-cone-isolating gratings. L-cone-G. is the
response of the midget ganglion cell to the L-cone-isolating grating.

realistic scenario is presented, in which we randomly situated the different cone
types in the grid. We used two different sets of probabilities to simulate either
a region of the retina rich in M-cones (Fig. 4B) or a region with a high density
of L-cones (Fig. 4C). As expected, the spatial frequency curve for the mosaic in
Fig. 4B was low-pass as a result of the considerable degree of cone-specific input
to the surround of the receptive field.

3.2 Blue-Yellow Pathway

To study the receptive-field structure of retinal cells in the blue-yellow pathway
we used cone-isolating stimuli that modulate either S cones or L and M cones
independently [5] (Fig. 5). The small bistratified ganglion cell receives S-ON
excitatory input from the S-ON bipolar cell and LM-OFF excitatory input from
the diffuse bipolar cell. The response pattern of the small bistratified ganglion
cell in Fig. 5A correspond to a distinct blue-ON/yellow-OFF opponent cell type.

Receptive fields were further analyzed with drifting sinusoidally modulated
gratings that varied in spatial frequency (Fig. 5B). Focusing on the small bis-
tratified ganglion cell, it is shown that both the S and LM spatial frequency
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Fig. 5. A: Responses of center cells to a 0.5◦ spot. B: Spatial frequency curves for an
uniform cone mosaic.

responses have similar spatial tuning, as a result of the spatially coextensive
receptive fields of S-ON and diffuse bipolar cells [5]. These curves were mainly
low-pass although a small band-pass resonance peak is observed at 3 cpd that
stem from the receptive field surrounds of S-ON and diffuse bipolar cells. Note
that the response to the luminance grating is bandpass and it is greatly attenu-
ated. Parameters of the model were chosen to produce similar S and LM spatial
frequency responses rather than a more prominent response to the luminance
grating as observed in other studies [30].

4 Conclusion

We have implemented a conductance-based retina model that incorporates key
aspects of the neuroanatomical organization of the primate foveal retina [16].
Most of the parameters correspond to physiological magnitudes that can be
measured experimentally. The model aims to provide a coherent account of the
response of red-green and blue-yellow color opponent cell types. We have exhaus-
tively benchmarked the model against well-established visual stimuli, showing
spatial and temporal responses of the model neurons to light flashes, which can
be disk- or ring-shaped, and to sine-wave gratings of varying spatial frequency.
By providing a reliable model within which a broad range of neuronal interac-
tions can be examined at several different levels, the model offers a powerful
platform for further investigations in visual areas beyond the retina, focusing on
color-coding in the primate visual pathway.
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Abstract. This paper starts from summarizing different methods to
study numerical cognition, from comparative to developmental, from
experimental to simulative. Then the focus moves to different kinds
of simulative models that are introduced together with the example of
a simulative model applied to numerical representation and midpoint
calculation: Midpoint. This software allows to study relevant bias in
humans, such as the number interval position effect. Together with a
detailed description of the software and the underlying model, some
results are reported.

Keywords: Simulative models · Numerical cognition · Bisection of
number intervals · NIPE effect · Developmental studies

1 Introduction

The human beings have extraordinary numerical abilities and have reached a
very high sophistication in tools to work with numbers. But humans are not
the only species who can rely on some sort of numerical ability. From insects
[1] to primates [9] it is possible to find many interesting example of numerical
competence.

In the last years, the research in this field has become more intense and
many different approaches have been employed. In what follows a summary of
the different methods to study numbers is reported.

2 Methods to Study Numerical Cognition

Different methods can be used to understand the origins, the mechanisms and
the bias of numerical and mathematical cognition. Each method is able to reply
to specific questions.
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It is possible to run comparative studies on different animal species to under-
stand if there are common mechanisms. In this vein, the Approximate Number
System (ANS) has been identified [7,8]: a cognitive system that supports the
estimation of the magnitude of a group with more than four elements without
relying on language or symbols, together with the parallel individuation system,
or object tracking system for smaller magnitudes.

A great bulk of research is devoted to developmental studies. In this case
the children, starting from newborn are tested to verify their numerical skills.
In this case, the goal is to understand when and how numerical abilities are
born, if education has an effect on them and, if so, how it affects the starting
endowement.

Interesting insights may also come from the study of brain-damaged patients
in neuropsychological studies. Studying these subjects, it is possible to verify if
specific brain damages produce specific effects on numerical performance, what is
preserved, what ability is more likely to be lost. Comparative and developmental
studies rely on behavioural methods and use relevant experimental procedures,
for example free choice, training, habituation procedures, cross-modal studies
for human children and adults; laboratory and free environment observation for
animals. Moreover for human beings it is possible to ask precise mathematical
questions, often very simple, and record the replies. Experimenters can ask the
participant to reply as soon as possible in order to avoid that they use tips or
procedured learnt along the formal education pathway.

It is also possible to run genetic studies understanding if there is inheritance
of specific disturbs such as dyscalculia, for example in monozygotic or dizygotic
twins.

Understanding the structural and functional basis for numerical abilities is
made possible also by neuro-physiological studies. In this kind of studies, neuro-
imagining is used to get information on the brain areas that are involved in
numerical processing and under which condition they activate. Thanks to these
studies it was possible to identify a cerebral substrate connected to human ability
in arithmetics: the intraparietal sulcus that systematically activates in all number
tasks [2]. Neuro-physiological studies can be used also in a comparative way, to
verify if there are analogous areas in different species, phylogenetically close
or far. This methodology has led to relevant results: for example, the seminal
work by Nieder and Miller [13], they analyzed both behavioral and neuronal
representations of numerosity in the prefrontal cortex of rhesus monkeys and the
data clearly indicated a nonlinearly compressed scaling of numerical information,
according to the Weber-Fechner law for psychophysical magnitudes.

The last, but not least, approach we would like to introduce is modelling. In
this case models can be conceived to explain the general functioning of numerical
mechanisms or bias.Some models are meant to explain behavioural data, some
others to replicate neural dynamics: All these models can be roughly divided in
three groups:

a. Abstract models based on data
b. Biologically plausibles models relying on artificial neural networks
c. Embodied models with robots
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The first kind of models is represented by the triple-code model by Dehaene
et al. [3]. In this model, starting from the evidence on number representations
in animals, infants, normal and gifted adults, and brain-lesioned patients, a syn-
thesis is traced as a triple-code model, assuming that numbers are mentally
manipulated in an arabic, verbal or analogical magnitude code depending on
the requested mental operation.

An example of the second kind of models is offered by the models that try
to reproduce brain mechanism in artificial neural networks. In Stoianov and
Zorzi [19], it is shown that visual numerosity emerges as a statistical property
of images in ’deep networks’ that learn a hierarchical generative model of the
sensory input. The third kind of models tries to replicate not only the neural
networks dynamics, but also how they are related to input that can be selected
in the environment. This case is well-represented by Di Ferdinando et al. [4]:
a series of simulations involving neural networks that learned to perform their
task by self-organizing their internal connections and controlling artificial agents
with an orienting eye and an arm. Another meaningful example comes from
Gigliotta et al. [6] that trained artificial embodied neurorobotic agents equipped
with a pan/tilt camera, provided with different neural and motor capabilities, to
solve a well-known neuropsychological test: the cancellation task. As often, the
neural computationa is not enough to clarify how cognition emerges, it is useful
to use the modelling approach where the importance of the body is adequately
recognized.

In the context of numerical cognition, an embodied computational model can
be an interesting way to approach cognitive issues [11,16]. Artificial models, in
fact, offer the possibility to produce an artifact that can be anoverated in the
list of species to be studied and compared. If comparative sciences are a precious
source for insights about cognition, artificial models can give further insights in
reproducing a certain phenomenon.

The scientific challenge is building a new artificial species with its own spe-
cific features. These artificial networks can reproduce phenomena at various lev-
els: behavioural, physiological, neural with different granularity from the single
neuron to whole structures. This approach has been already used in modelling
neuropsychological phenomena, [20] linking these phenomena with neural repre-
sentation as well as organisms interaction with the environment [12].

This approach has produced interesting results in the case of geometric cog-
nition, that relying on lenghts and angles estimation can be considered as part
of mathematical abilities. In Ponticorvo and Miglino [10,15] the primacy and
the modularity of geometric information are put to test with embodied artifi-
cial robots governed by neural networks and evolved with genetic algorithms.
The data indicate that environmental exposition to different spatial information
during a learning/adaptive history can produce agents with no modular neuro-
cognitive systems that are able to process different types of spatial information
and display various orientation behaviors.
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We will now describe an artificial model to explain the NIPE effect, an exam-
ple of the second type of this models applied to numerical cognition.

3 The NIPE Effect

When healthy adults provide estimates of a number interval midpoint, error
biases vary as a function of the interval length and, length being equal, as a
function of the position occupied by the interval within tens (i.e. Number Inter-
val Position Effect) [5]. When 7-unit and 5-unit intervals are positioned at the
beginning of tens, subjective midpoints are shifted toward values higher than
true midpoints. When the same intervals are positioned at the end of tens, sub-
jective midpoints are shifted toward values lower than true midpoints. With
3-unit intervals a progressively increasing negative bias is found the more inter-
vals are placed at the end of tens. This bias has been observed consistently in
healthy adults, right-brain damaged patients and children.

To understand the functional origins of this phenomenon an artificial model
was conceived.

3.1 The Task

As illustrated in the previous section, one method of study of numerical cognition
is to propose simple arithmetics questions to human participants, demanding an
immediate reply. This way, participants cannot rely on their formal education
and related tips and procedures.

One such task foresees that participants have to identify the natural number
that divides equally a numerical series that is delimited by two natural numbers:
a bisection task.

For example, if we consider the series of the first natural ten (1–10), the
partecipant can be asked to identify the middle number between 3 (lower bound)
and 7 (upper bound) or between 4 (lower bound) and 6 (upper bound) and so
on. As the first natural ten includes even and odd numbers, this task takes
different forms: the limits may have an even or odd sum. The odd sum permits
two solutions.

For example, the middle number between 1 and 8 can be 4 or 5. To reply
indicating a natural number, the participant must choose the number that is
closer to the lower bound, rounding down, or the upper, rounding up. For this
reason, it is preferred to propose the task form with even sum.

This task has been used in neuropsychological literature, applying the tradi-
tional bisection task, used for investigating spatial neglect [17] to the study of
numerical representation. It has been administered to healthy adults right-brain
damaged patients [5] and children [18].

3.2 The Model

Let us now describe in detail the artificial model for number encoding. This
is a simulative artificial model based on artificial neural networks dynamics,
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as explained above. The starting point for this model is represented by two
principles about neural mechanisms that, along the years, have been confirmed
many times by empirical findings:

a. Natural numbers neural coding: basic numbers in a certain notation are coded
in an amodal way by distinct neural groups. In other words, if we consider the
decimal notation, there is a neural group whose activation is more probable
when the number 1 is presented regardless of the presentation form, another
one for number 2 and so on up to 10.

b. Neural accumulation mechanisms: neural elaboration takes place by energy
transfer between neural groups and arrives to its conclusion when some neural
group accumulates a certain energy level.

In this model we adopt an approach which considers nodes as made up by
group of neurons; it is a functional representation of brain areas, rather than
a single-cell simulation. As hinted above, in order to understand which are the
functional bases of the NIPE, a simple model consisting of two modules was
imagined.

The first module represents how number are encoded in the artificial system
whereas the second module is computes the midpoint for each interval. To focus
the investigation on number representation, the second module is a perfect cal-
culator whose output correctly bisects the interval received as input. Number
representations have been modeled through percolation networks. Typically, a
percolation network is a system of interconnected nodes in which information (or
metaphorically a liquid) injected into an input node can percolate to nearby con-
nected nodes. Figure 1 presents the percolation networks used to encode integer
number from 1 to 9. Information is given in input to nodes (in yellow in Fig. 1)
and it percolates, in all-or-none fashion, to one of the nearby 5 nodes (includ-
ing itself). This percolation happens according to a discrete probability density
function that, in the network, is translated into the connection weights between
nodes.

In case of a perfect representation, for example, the probability of the acti-
vation to percolate to nearby nodes would be 0 as depicted in Fig. 2. In this
case the bisection error would be 0. This means that when the magnitude or the
number 1 is presented only the corresponding group of neurons becomes active.

In order to model number interval bisection for different limits of intervals,
the activation was spread through the dedicated percolation network for one
step, then active nodes are used to compute the midpoint and the related error.
This computing is just the exact calculation of the mean of the active nodes.
Figure 3 illustrates how step by step error and midpoint are computed for a
single run for 1–3 interval bisection.

4 The Software Simulator: Midpoint

The above described model was implemented into an application developed in
C# and called Midpoint.
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Fig. 1. Percolation networks (Color figure online)

Fig. 2. Perfect encoding of number 1, activation does not percolates to nearby nodes
but is retained to the input node

Midpoint can be used to run simulation of numerical bisection task in a
percolation network. It can be used also by people with little background in
informatics because it has a user-friendly interface. In this interface, represented
in Fig. 4 every number is represented as a node and it is possible to set the
connection weights to the nearby nodes.

These connection weights in the percolation network correspond to the sta-
tistical probability that an activation is transmitted from one node to another
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Fig. 3. Step by step process of computing error and midpoint. The interval is 1–3
interval. At step one, nodes are activated only for node 1 and 3. After a one step per-
colation, computed according to a discrete density probability function (probabilities
to percolate are reported beside connection arrows), active nodes are used to compute
midpoint and error

node. A set of 9 sliders allows users to easily set connections for each node rep-
resenting numbers from 1 to 9. To each slider, the probability, multiplied by 100,
is pictured.

Resulting curves are displayed beneath the sliders panel. Each time a slider is
modified, Midpoint runs a new experiment by administering to the percolation
model 3-, 5- and 7-unit intervals for 10,000 times. Collected bisection errors are
then displayed through three graphs in the main window of the application.

To run new experiments it is possible to select Experiment where Run and
save option allows to save the average performance of 10,000 artificial subjects
for each interval described above. Data are saved in datFile that can be imported
in calculation sheets or software for data analysis.

The sliders indicate the probability that the number that is selected with the
radio button under select input number code is encoded as another number for
the effect of percolation. Every pattern of curves can be saved from the menu
File in a file .data. Some initial sets are already available and can be modified so
as to see the outcomes on error. Every time a slider is modified, the simulations
are run and graphics are updated.
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Fig. 4. Midpoint user interface with the slider to modify connection weights

Fig. 5. Data from the midpoint simulator for different intervals
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4.1 Results

The Midpoint simulator has been used to replicate the data observed in adults
and children [5,18], confirming the indications from a previous mode [14]. The
model, if the percolation model is arranged so as to replicate the compressed
scaling of numerical information found in primate prefrontal cortex [13], repli-
cates the patterns observed in human adults and children (Fig. 5). The artificial
model commits a systematic error, shows a bias, that is consistent with the NIPE
effect: the closer one boundary of the interval is to the border of a ten, the more
the midpoint is shifted. This is particularly evident for 5 unit intervals and 7
unit intervals.

These results show that a model which relies exclusively on percolation,
energy transfer and accumulation, can account for the bias observed in human
beings reproducing the NIPE effect.

5 Conclusions and Future Directions

In this paper we have reviewed different methods to study spatial cognition and
focused out attention on simulative methods. Moreover, an example of artificial
model to explain numerical bias has been illustrated. This model indicates that
the mental number line does not represents numbers in a spatial guise and the
arithmetics module can, at least in principle, work on energy transfer rather
than on number spatial representation. It is possible to affirm that in humans
or other species this is the mechanism that actually underlies number encoding
and representation, but it is a proof that the spatial representation of numbers
is not necessary to explain the data.

The NIPE effect can mirror the logarithmic central representation of numer-
ical magnitudo that is independent from school education and that is shared
by non-human species too. This opens the way to new questions: which is the
connection between space and number? Are these two core knowlegde connected
more strictly than others? Does this link have implication for number education?

To go on searching in this direction, an embodied model will be implemented
to better understand which are the links between space and number in a simple
embodied agent, such as a mobile robots. On a complementary side, an extended
model of the described one will be conceived with different layers, able to repro-
duce not only the behavioural side of NIPE effect but also the corresponding
neural circuitry, as discussed in neurophysiological and neuropsychological liter-
ature.
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Abstract. The difference of Gaussian model predicts that the retinal
computation reduces the spatial correlation of the natural images by
attenuating the range of low spatial frequencies. However, our cognitive
system is able to discriminate two images with the same high frequency
information but different low frequency content. This study is focused on
answering how the visual system could restore from the retinal output
those original information.
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geniculate nucleus · Restoration model · Dual-band filter · Stop-band
filter · Notch-band filter

1 Introduction

Theoretical neuroscientist and electrophysiologist of the visual system have been
on the hunt of a suggested efficient coding hypothesis first coined by Barlow [1]
that arose around the birth of information theory [11]. This hypothesis mostly
focused on the encoding process for efficiently transmitting the sensory informa-
tion to the brain but too little attention has been paid to the decoding process.
In this context, it has been claim that one of the roles of the retina within the
visual systems is to spatially decorrelate the redundant information that a nat-
ural scene contains [1]. That means roughly to remove the low spatial frequencies
of an image. However, our cognition system tells us that we can discriminate two
images with the same content of high frequencies but different low frequencies
or mean values (Fig. 1). It may suggest that the removed information should be
restored at some point of the visual pathway.

2 Methods

2.1 DoG Model

The difference of Gaussians (DoG) model [10] has been used in electrophysiology
experiments to characterize the contrast sensitivity behavior of several neurons
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 85–94, 2017.
DOI: 10.1007/978-3-319-59740-9 9
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Fig. 1. Intuitive view of the restoration process. In: image with same spatial frequency
but different mean value (left vs right). RGC: retinal output. LGNi: internueron output.
LGNr: relay cell output. Profiles: evolution of each signal along the middle cross section
of the image. Simulated with optimal parameters (σc = 1.75, rσ = 2.1, rv = 0.95, Ki =
1/DC, ri = 3.6)

in the visual system when they are stimulated with drifting sinusoidal gratings
of different spatial frequencies. In this study, we used this model to implement
computational simulations of retinal ganglion cells (RGC) spatial filters. The
model consists in a difference of two Gaussian functions: a positive narrower
Gaussian which represents the excitatory center receptive field behavior and a
negative wider one which represents the inhibitory surround.

FDoG(r) = kce
−r2/σ2

c − kse
−r2/σ2

s with kc > ks, σs > σc (1)

It requires four parameters: the amplitude of each Gaussian (kc, ks) and the
sigma of each Gaussian (σc, σs). However, in the results we used equivalently
another four parameters: the center sigma (σc), sigma ratio (rσ = σs/σc), volume
ratio (rv = ksσ

2
s/kcσ

2
c ) and a constraint which forces the filter to fulfill the

requirement of unity maximum gain (GainMax = 1).

2.2 Restoration Model

Within the framework of restoration, we can say that a DoG filter degrades
specially the low frequencies of an input signal and here we introduce a simple
computation to restore them. Although, in this study, we consider that the best
candidate to implement this restoration algorithm is the LGN, it could also be
implemented by some other neuronal structure along the visual pathway.

The restoration model takes the output of a DoG filter (RGC, Fig. 2) and
adds to this signal an estimate of the local mean signal (LGNi, Fig. 2). Strikingly,
this estimate can be computed by applying a normalized Gaussian filter to the
output of the DoG filter and then multiplying the result by a scaling factor.
We identify the scaling factor as the LGNi gain (Ki) and the sigma of the new
Gaussian (2) as the LGNi sigma (σi). However, we think more appropriate to
express this sigma parameter as the ratio between the LGNi sigma and the RGC
surround sigma (ri = σi/σs).

FGi
(r) =

1
πσ2

i

e−r2/σ2
i (2)
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Fig. 2. Control block diagram of the restoration model. The operational amplifier sym-
bols indicate the places where electrophysiology experiments can register the activity
while the sub-blocks indicate a possible block simplification. Those simplifications that
are noted with the “exp” subscript can be easily determined by electrophysiology but
the remaining ones require registering simultaneously a RGC and the LGN neurons
which it projects.

If we represent the restoration algorithm as a control block diagram (Fig. 2)
we can identify two types of transfer functions. The outer ones which are cal-
culated by dividing the output signals by the input signal and the inner ones
which are determined by dividing the output signals by the output of the RGC
(top equations, Fig. 5). The convenience of this classification is that outer trans-
fer functions can be reported in electrophysiology experiments and that is the
reason why we labeled with an “exp” subscript. Meanwhile, the inner transfer
functions are quite difficult to report by experiments because it is too difficult to
register simultaneously a RGC and the two types of neurons of the thalamus to
which it projects: local interneuron the (LGNi) and relay cell (LGNr). Thus, this
modeling framework has the potential to predict these inner transfer functions.

3 Results

3.1 The parameters of a RGC filter

Among the complete parameter space of the DoG model, we are interested in
assessing the subset that it is implemented by the RGC. Therefore, taking into
account experimental studies, we can notice that eccentricity changes do not
affect systematically the sigma ratio and the volume ratio [2]; however center
sigma increases with eccentricity. That means that sigma center is roughly inde-
pendent for the other parameters. Therefore, in the simulation it is enough to
compute the results for one single value of center sigma without loss of generality.

On the contrary, the values of sigma ratio and volume ratio reported in
retina experiments show that these parameters can take any value but within a
restricted range (Fig. 3). Even more interesting, if we use these experimental data
to compute the gain at zero frequency (DC), we can observe that although it can
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Fig. 3. The parameterization values of the DoG filters that occurs more frequency in
the retina. Histograms of sigma ratio (A), volume ratio (B) and gain at zero frequency
(C). Data extracted from X-RGC in the cat model [5,8]. It has only been removed from
the data an outlier which presents a high sigma ratio (rσ = 23).

takes values up to 50% of the maximum gain, the most common values rarely
exceed the 20%. Thus, among the complete parameter space we can identified
the DoG filters that can be more biologically plausible (start marked, Fig. 4A)
based on electrophysiology data (Fig. 3).

3.2 LGNi Gain: The Scaling Factor

The main goal of the LGNi in our restoration model is to estimate the lower fre-
quency components of the original input by means of the RGC signal. Although
this estimator would be able to restore that component, it could be out of scale.
Thus, it is essential to multiply this signal by a scaling factor (Ki, Fig. 2) to put
the signal in an acceptable scale. Besides that, as we said above, the DoG filter
attenuates the zero frequency of the original signal and as a consequence, we
think that a reasonable value for this scaling factor should be the inverse of this
attenuation (Ki = 1/DC). Notice that this scaling factor depends on the DoG
filter used.

3.3 LGNi Extension

There is a lack of experimental data to determine the ratio between the extension
of the receptive field of a RGC and the extension of the LGNi to which it projects
(ri, Sect. 2.2). In the absence of this information, we computed the restoration
model for different values of this unknown ratio (Fig. 4B) for each DoG filter
within its complete parameter space (Fig. 4A). Then, we calculate the mean
square error (MSE) between the LGNr output and the original input, as well
as the saturation percentage of the LGNr signal. Our results suggest that as
this ratio increases, the saturation always decreases, while the MSE exhibits a
minimum value (downward triangle marker, Fig. 4B). That means that there is
an optimal value for this ratio which restores the original image better than
others. An even more striking observation is that the restoration results that
exhibit the lower minimum MSE were computed with the biological plausible
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Fig. 4. (A) Parameter space of the DoG model in the spatial frequency domain for a
fix value of center sigma (σc = 1.75) while sigma ratio changes vertically and volume
ratio horizontally. It has been marked with a star those DoG filters that belong to the
parameterization subset of RGC (see Fig. 3). (B) Parameter space of the restoration
model. Every single plot shows the MSE and saturation results (circles and squares,
respectively) for a fix DoG parameterization (same arrangement as in A) while the
LGNi sigma ratio (ri) changes through the x-axis. It has been marked the minimum
MSE value for each plot (downward triangle).

DoG filters (star marked, Fig. 4B). Specially, the lowest minimum MSE occurs
for high values of volume ratio where a high attenuation of the zero frequency
takes place (DC ≤ 0.2). In turn, high volume ratio values present the highest
probability of occurrence in the RGC circuitry (Fig. 3B). Taking all of this into
account, we can state that the optimal value of the extension of a LGNi is
roughly three times and a half greater than the extension of a RGC receptive field
(ri = 3.6) for those RGC that occur more frequently in the retina. In addition,
it is important to mention that in this simulation (Fig. 4B) we use the image of
Lena as the input signal to compute LGNr output; however similar results were
obtained with other natural images (not shown). Thus, the performance of our
restoration model is input independence.

3.4 The Family of LGN Filters

For the sake of clarity, the following results were generated with a fix DoG filter
(σc = 1.75, rσ = 2.1, rv = 0.95) which belongs to the subset of the RGC filters
that occurs more frequency in the retina (Fig. 3A and B). Once the DoG filter
is set, we computed both, the experimental and inner transfer functions of the
restoration model (Fig. 5) for different values around the optimal LGNi sigma
ratio (around downward triangle marker, Fig. 4B).

Our simulations illustrate that, the FLGNi(exp) changes its behavior from
a DoG-like filter to a Gaussian-like filter as the LGNi sigma increased (first
column in Fig. 5). However, both behaviors are focused on letting pass the low
frequencies and both present a unity gain at zero frequency. On the other hand,
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Fig. 5. Transfer functions computed with a fixed RGC filter (σc = 1.75, rσ = 2.1, rv =
0.95) but different LGNi sigma ratios (A : ri = 1, B : ri = 2.25, C : ri = 3.6, D : ri = 8)

the FLGNr(exp) shows signs of a more elaborate behavior. In fact, we can classify
it into three categories. FLGNr(exp) type 1 behaves as a DoG-like filter (second
column, Fig. 5A) taking place for LGNi sigma values that roughly equals the
surround sigma of the RGC (ri = 1). FLGNr(exp) type 2 seems to perform a dual-
band pass filter (second column, Fig. 5B) with one of its band pass filers with
an evident higher maximum gain which is shifted towards low frequencies. This
filter occurs for LGNi sigma values about twice the surround sigma (ri = 2.25).
Finally, FLGNr(exp) type 3 can be considered that it is formed by a sum of a low-
pass filter and a band-pass filter (second column, Fig. 5C and D) and it arises
for greater values of LGNi sigma (ri ≥ 3.6). The most interesting feature of this
filter type is a remarkable stop band or even notch band interval which is shifted
towards low frequencies.

On the contrary, inner filters are easier to describe because both are based on
the same Gaussian (FGi

, see Sect. 2.2). As the results suggest, FLGNi is devoted
to amplify low frequencies with a gain well above the unity. Moreover, the upper
cutoff frequency of this filter shifts towards lower frequencies when LGNi sigma
increases (third column, Fig. 5). Finally, FLGNr is also focused on amplifying
low frequencies but additionally it allows passing the remaining frequencies with
a unity gain (fourth column, Fig. 5).
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3.5 The LGN Coding

In this section, it is shown how the restoration model restores a natural image
through the RGC output. In this case, we use the same RGC filter that has been
used in other sections which belongs to the type of filters which occurs more
frequency in the retina. Once the DoG filter is fixed, we determined the LGNi
and LGNr outputs (Fig. 6) for different values around the optimal LGNi sigma
ratio as has been done previously (see Sect. 3.4).

When LGNi sigma ratio equals one (ri = 1, Fig. 6A), the LGN images seem
to be burned for both brights and darks. In fact, the histogram presents two high
peaks in both the right and left sides indicating that the outputs are suffering of
saturation. Although subjectively the outputs seem to recover the low frequencies
of the original image, the truth is that the amplitude spectrum slopes of the
LGNi and LGNr outputs (α = −0.84 and α = −0.83, respectively) are more
flattened than the slope of the input image (α = −1.39). That reveals the DoG-
like behavior of these filters (first and second column, Fig. 5A).

If we set the LGNi sigma ratio around two (ri = 2.25, Fig. 6B), the LGNi
image seems slightly blurred while LGNr image looks quite similar as the input
image but it also seems as if some psychophysical aspect had been enhanced.
The histograms of both LGN outputs show a stretching in its dynamic range
but the LGNr output slightly saturates in the side of darks. As a consequence,
the histogram flattened and in turn the entropy subtly increased. The results
also show that, the slopes values of both LGN outputs are quite closed to the
original input; they just have to be a little bit bigger to restore completely the low
frequency component. It is also worth mentioning that the amplitude spectrum
of the outputs presents a section where is higher than the input. That section
match with the range of frequencies around which the maximum filter gain takes
place (second column, Fig. 5B). This is probably the cause of the psychophysical
enhancement that has been reported.

In accordance with the minimum MSE criterion, if we look at the results of
the optima LGNi sigma ratio (ri = 3.6, Fig. 6C), we can report that the LGNi
image is also quite blurred. Meanwhile, LGNr image looks almost equal the input
image but it also presents another enhancement feature that can be described
as a vaguely glossy effect. In line with this, the profile signal of the LGNi output
nicely matches with a local mean signal estimator (see Methods, Sect. 2.2) while
the profile of the LGNr output almost matches perfectly with the original image.
Besides, both LGN output histograms are very similar as the input one, as well
as its statistical indexes. Likewise, the amplitude spectrum slopes are almost
equal as the input one, especially the slope of the LGNr output. In this case,
there is a section of the LGNr amplitude spectrum that is lower than the input
around the range of frequencies that match with the stop-band range of the filter
(second column, Fig. 5C) and that could be the cause of the glossy effect.

Finally, if LGNi sigma ratio is greater than its optimal (ri = 8, Fig. 6D),
the LGNi image is evidently blurred while the LGNr image presents a stronger
glossy effect. The profile signals and the histograms of both LGN outputs are
further away in resembling the original ones. Again the most remarkable feature
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Fig. 6. LGN outputs computed with a fix DoG filter (σc = 1.75, rσ = 2.1, rv = 0.95)
but for different LGNi sigma ratios (A : ri = 1, B : ri = 2.25, C : ri = 3.60, D : ri =
8). For each LGNi sigma ratio it is shown the plots for the LGNi output image (top
rows) and for the LGNr output image (bottom rows). The profile plots illustrate the
evolution of each signal along the middle section of the image. The histogram plots
represent the probability density function of the image signals. Notice that these plots
include related statistical indexes: the mean (μ), standard deviation (σ), kurtosis (k),
skewness (s) and entropy (h). The amplitude spectrum plots represent in a log-log scale
the average amplitude spectrum among all spatial frequency directions. In these plots
are included the slope index of the spectrum (α) and the energy ratio index (rE , not
covered in the text).
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is that the LGNr amplitude spectrum falls above the input spectrum around the
frequencies where the stop-band of the filter occurs (second column, 5D) and
that is related for sure with the strong glossy effect.

4 Discussion

Our restoration model fits pretty well with the description of the putative push-
pull circuitry of the LGN [6]. In fact, our RGC output resembles the push while
our LGNi output can stand for the pull component. Another reported feature is
that the pull receptive field is larger than the push [6] and that is in line with our
results which suggest that an acceptable restoration is only possible for LGNi
sigma values 2–4 times greater than RGC surround sigma (Sect. 3.3). Although
the local interneuron is inhibitory in a conventional synaptic sense [15], func-
tionally operates as a desinhibition or net excitation when its excitatory drive
decreased. This is precisely the case of the LGN circuitry where these interneu-
rons prefer to contact relay cells with the reverse center sing [6]. Therefore,
adding our LGNi output to the RGC output is accordance with the suggested
circuitry (Fig. 2). Moreover, we conducted simulations (not shown) splitting the
RGC output into On-Off components by a rectification non-linearity. In this
context, the On-LGNr output was computed by adding the On-RGC signal and
subtracting the Off-LGNi signal which in turn was driven by Off-RGC outputs.
In that simulations we also obtain similar restoration results of those presented
here.

On the other hand, the transfer functions obtained in our results (Sect. 3.4,
Fig. 5) are also in accordance with most common spatial frequency tuning
responses registered in electrophysiology experiment in the LGN. That is truth
at least for the DoG-like and Gaussian-like behavior of the FLGNi(exp) and the
DoG-like behavior of the FLGNr(exp) type 1. However, the dual-band behav-
iour of the FLGNr(exp) type 2 and the stop-band or notch-band behavior of the
FLGNr(exp) type 3 are rarely reported in the thalamus [12]. Despite this, in recent
studies these unexpected behaviors were reported in the LGN of unanesthetized
rats [13,14]. Taking that and our results, it could be suggested that anesthesia
could affect the transmission of the information from the local interneuron to
the relay cell. Thus, if this transmission fails, the most likely scenario is that the
spatial frequency tuning functions reported in electrophysiology only show the
DoG-like and Gaussian-like behaviors. Another potential experimental bias is
the stimulus used to obtain the spatial frequency tuning function. Indeed, if the
stimulus size only covers the classical receptive field of the relay cells, the results
are not going to reflect the local interneuron contribution within the circuitry.
Thus, our results suggest that the stimulus used in electrophysiology should be
much greater than the classical receptive field of thalamus relay cells to see this
unexpected behavior [13].

Moreover, dual-band and notch-band filters were reported in other electro-
physiology experiments. The notch behavior was observed in M-cone driven RGC
[3,7] in the context of color processing. Meanwhile, in other study, both behav-
iors emerged in the RGC as a degenerative disease progresses [9]. In addition,
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notch-band filters were also present in temporal modulation transfer functions
in the visual thalamus [4]. Even more striking is that, the reported notch effect
only was present for those stimulus that extended beyond the classical receptive
field [4]. These studies lead us to think that our model could be useful to fit
quantitatively experimental data when the DoG model fails. Specially in those
cases in which a crossover inhibition take place [15]. Thus, the presented model
is a great candidate to be the building block for a new canonical computation
of the brain.
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Abstract. One of the basic questions in neuroscience is how visual infor-
mation is encoded in the retina. To design artificial retinal systems it is
essential to emulate the mammalian retinal behaviour as well as possi-
ble. Furthermore, this is a question of primary interest in the design of
an artificial neuroprosthesis where it is necessary to mimic the retina
as much as possible. This work selects the best algorithm from a set
of well-known evolutionary algorithms to perform a reliable tuning of
a retinal model. The proposed design scheme optimizes various para-
meters belonging to different domains (that is, spatio-temporal filtering
and neuromorphic encoding) to compare the biological and the simu-
lated registers. Five algorithms have been tested: three different Genetic
Algorithms (SPEA2, NSGA-II and NSGA-III), a Particle Swarm Opti-
mization algorithm and a Differential Evolution algorithm. Their perfor-
mances have been compared by using the hypervolume indicator.

Keywords: Retinal modelling · Evolutionary algorithms · Evolutionary
search · Multiobjective optimization · SPEA-2 · NSGA-II · NSGA-III ·
Particle Swarm Optimization · Differential Evolution

1 Introduction

The vertebrate retina is formed by three layers of nerve cell bodies and two
layers of synapses. The first layer contains the rod and cone cells, the second
layer contains the horizontal, bipolar and amacrine cells, and the third layer is
composed by ganglion cells and displaced amacrine cells. Between these three
layers there are two neuropils where synaptic contacts occur. The first one is
the outer plexiform layer (OPL) where the rods and cones connect with bipolar
and horizontal cells. The second one is the inner plexiform layer (IPL) where
the bipolar cells connect to ganglion cells, in addition to interacting different
varieties of horizontally and vertically directed amacrine cells with the ganglion
cells too [1].
c© Springer International Publishing AG 2017
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The development of cortical prostheses capable of eliciting visual percepts in
profoundly blind people involves to mimic the retinal behaviour in a real-time
manner. The produced signals should be as similar as possible to the output
signals of the vertebrate retina. The basic processing blocks of the bio-inspired
retinal model under study are shown in Fig. 1.

Fig. 1. Functional processing blocks of the bio-inspired retinal model under study.

Mathematically, the first stage of the model (Fig. 1) consists of a weighted
combination of different spatio-temporal filters over the captured images. The
second stage carries out the neuromorphic encoding. Finally, in the third stage
takes place the electrode mapping that addresses the output from the second
stage to the appropriate electrodes. Each processing block from the retinal model
has many parameters candidates to be adjusted, most of which are real numbers.
Thus, the process of fine tuning these parameters represents a difficult problem to
be addressed. To overcome this problem, we present an extension of our previous
works [2,3], where a proposal to use an automatic evolutionary multiobjective
strategy was presented. In this paper, we carry out a comparative study between
different strategies of the Evolutionary Computation field to compare which of
them can be used to adjust a retinal model more efficiently.

In the remainder of this paper, we first present a review of some of the most
widely used algorithms to solve multiobjective optimization problems. There-
after, in Sect. 3, we present the materials and methods used on this study. After
that, we present the experiments and the results of the study. Finally, conclusions
of this study are drawn in Sect. 5.

2 Multiobjective Evolutionary Algorithms

On nature, the ever-ubiquitous optimization problems usually have more than a
single objective or criterion to be satisfied so that they are actually multiobjec-
tive problems. In these problems, the goal is to find or approximate the set of
Pareto-optimal solutions. Multiobjective evolutionary algorithms (MOEAs) are
one type of stochastic search heuristics that are appropriate for multiobjective
optimization problems because of their capacity of computing a set of trade-off
solutions in one run. Details of the most popular and used methods, i.e. Genetic
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Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolu-
tion (DE), can be found below, where we describe these approaches in brief. For
more details, readers are encouraged to refer to the original studies.

2.1 Genetic Algorithms

GA is a search heuristic where the natural selection process is imitated through
three genetic operators: selection, crossover, and mutation [4,5]. The solutions
are represented as chromosomes and all of them make up the population. The
better chromosomes are selected to become parents to produce new offspring,
where the individuals with better fitness are selected with higher probabilities.
To avoid that the diversity of the population may decline, the mutation operator
is used to inject diversity into the population. Hereafter, some of the most widely
used algorithms are described.

The nondominated sorting genetic algorithm II (NSGA-II) was presented
by Deb et al. [6] as a fast nondominated sorting approach with O(M × N2)
computational complexity (where M is the number of objectives and N is the
population size). Here, the individuals of population are sorted in different fronts
according to the concept of Pareto dominance. The highest rank is assigned to
the individuals of the first front, the second highest rank to the individuals of
the second front, and so on.

The Strength Pareto Evolutionary Algorithm (SPEA2) is a genetic algo-
rithm for approximating the Pareto-optimal set for multiobjective optimization
problems [7]. Besides the population, SPEA2 uses an external archive with a
predefined size to store all nondominated population members. On the mat-
ting selection stage, the individuals are selected from the union of population
and archive through binary tournaments. Straightaway, the recombination and
mutation stages are performed. At the end, the population is replaced by the
offspring population.

Optimization problems with four or more objectives should be defined as
many-objective problems. The existing EMO algorithms may have trouble for
solving this type of optimization problems such as having a large fraction of non-
dominated individuals in the population or evaluating the diversity measure with
computationally expensive procedures. Deb and Jain suggested a reference-point
based many-objective nondominated sorting genetic algorithm (NSGA-III) for
handling many-objective optimization problems [8] where the maintenance of
diversity between population members is managed by using a number of well-
spread reference points. Results show that the NSGA-III approach had been able
to successfully find a well-converged and well-diversified set of solutions in all
test problems.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based heuristic search and
optimization technique of nonlinear functions, that is based on simplified animal
social behaviours such as fish schooling or bird flocking [9]. The initial step of
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the PSO algorithm is the random initialization of a population of individuals
(called particles) in the search space, but unlike other algorithms, there is no
recombination of genetic material between particles during the search. The algo-
rithm finds the global best solution by adapting the direction of each particle
toward its own best location and toward the best particle of the entire swarm
at each generation.

The original scheme of the strategy needs to be modified for solving mul-
tiobjective optimization problems. Several modifications of the PSO algorithm
have been published and a superb state-of-the-art of them has been published
by Reyes-Sierra and Coello [10]. In this work, we have used an external archive
to store the nondominated solutions which were found, working as leaders when
the positions of the particles of the swarm have to be updated.

2.3 Differential Evolution

Differential Evolution (DE) is an Evolutionary Algorithm published by Storn
and Price in 1995 to solve optimization problems [11]. DE is a population-based
procedure where the recombination and mutation operators are used to generate
new solutions. The basic operation is the mutation process where a new descen-
dant is created based on differences between pairs of solutions combined with
the candidate solution. The population size is maintained by using a replace-
ment mechanism where the newly generated descendant competes only against
its corresponding parent and replaces it if the descendant has a higher fitness
value. This is an important advantage because any improvement applies to the
whole population without having to wait until the end of the iteration.

As with PSO, the original scheme of the strategy needs to be modified for
solving multiobjective optimization problems. Several modifications of the DE
algorithm have been published and an excellent state-of-the-art of them has been
published by Mezura-Montes et al. [12]. In this work, we have used the approach
proposed by Robič and Filipič called Differential Evolution for Multi-Objective
Optimization (DEMO) [13], in particular, the “DE/rand/1/bin” variant.

3 Material and Methods

3.1 Electrophysiological Recordings

As we want to assess the reliability of the simulated bio-inspired retinal mod-
els, we have used biological data to compare them and for effectiveness evalua-
tion. The biological recordings from populations of retinal ganglion cells (RGCs)
where obtained from wild-type adults mice. Briefly, after enucleation of the eye,
the retinas were carefully removed and mounted on an agar plate ganglion cell
side up. After that, extracellular RGCs recordings were carried out by using a
100 multi-electrode-array (MEA), and were stimulated with two different visual
stimuli. Several repetitions of a 700 ms flash were displayed followed by dark-
ness for 2300 ms to classify the ganglion cells. Afterward, the biological retinas
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were stimulated with 250 μm wide white bars crossing a black screen at 0.5 &
1 Hz in 8 orthogonal directions. All experimental procedures were carried out
in accordance with the ARVO and European Communities Council Directives
(86/609/ECC) for the use of laboratory animals. For a more detailed description
of the procedure of obtaining extracellular recordings, the interested reader is
referred to [2].

3.2 Comparison of MOEAs

The aim of multiobjective optimization is to find a set of best compromise solu-
tions which cannot be improved according to one objective without deteriorating
the others. Because of the complex nature of most real-life problems, only an
approximation to such an optimal set can be obtained. To assess the performance
of different search heuristics, their resulting sets of best solutions have to be com-
pared. For this purpouse, unary quality measures are usually applied. Among
these, one of the most relevant in this context is the hypervolume (HV) indicator
[14,15] because it is a quality indicator in the evolutionary multiobjective opti-
mization field which allows the comparison between different search heuristics
due to its favorable properties. It measures the volume of the dominated section
of the objective space and is of exceptional interest because of possessing the
highly desirable feature of strict Pareto compliance. HV is simply defined as the
volume of the objective space enclosed by the set of Pareto-optimal solutions
and a predefined reference point.

Because of the exact Pareto-optimal surface is unknown, we have rejected
the inverted generational distance (IGD) [16] as a single metric to compare the
performance of different EAs. For this reason, we have chosen the HV indicator
as a performance metric, because it has the property that when a solution set is
better than another one in terms of Pareto dominance, the HV indicator value
of the former is higher than the one of the later.

4 Experiments and Results

Biological registers were used as golden patterns for tuning our retinal model
by means of five different EA approaches (SPEA2, NSGA-II, NSGA-III, PSO
and DE). Next, a one by one comparison were carried out between the resulting
models. Biological retinas were stimulated with 250µm wide white bars crossing
a black screen at 0.5 Hz and 1 Hz. Four pairs (eight moving bars) of stimuli were
used: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦.

The algorithms were implemented according to their description in the lit-
erature. Parameter settings suggested in their original studies have been used
for each algorithm. Any effort in finding the best parameter setting has been
made, leaving this task for a future study. On all test problems, 100 generations
were simulated per optimization run, the probabilities of crossover and mutation
were fixed (0.4 and 0.05, respectively). The population size N was fixed to 40
individuals. In PSO experiments, the parameters φ1 and φ2 where fixed both to
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2.05. In DE experiments, the parameter F was fixed to 1. For each algorithm,
identical population and archive sizes were used.

Four fitness functions were selected to compare real and simulated electro-
physiological recordings and also to test the behaviour of the proposed MOEAs
strategy. The electrophysiological recordings coming from the experimental set-
up are comprised of a raster and peristimulus time histogram (PSTH) data for
each isolated RGC, which are the same type of data produced by our retinal sim-
ulator. For the purpose of comparing PSTH data, Kullback-Leibler Divergence
(PSTH-KLD) is introduced to measure the quality of the PSTH response, due to
is widely used to compare probability distributions or histograms. The interspike
interval histogram (ISIH) data of each RGC has been compared by using the
same method (ISIH-KLD). To compare the firing rate we have used the absolute
difference (FRAD). Additionally, for the purpose of rebuild the receptive fields
of the populations of RGCs, we have used the method proposed by Dı́az-Tahoces
et al. [17]. At last, to compare these receptive fields we have used the absolute
difference (RFAD).

As in all multiobjective problems with more than 3 objectives, the visualiza-
tion of the results is very difficult. The more objectives the problem have, the
more difficulty for a decision-maker to choose a preferred solution will be. There-
fore, as a preliminary analysis, graphs from Fig. 2 show the Pareto front solutions
minimizing the values for all metrics at the same time for one experiment run.
Data are represented for pairs of criteria. In a general view, all Pareto-optimal
solutions are similar. We cannot say that one of the EAs is much worse or better
that the others if we only compare the metrics paired up. Both NSGA-III and
PSO present Pareto fronts with more solutions than the rest of EAs in most cases.
For example, in Fig. 2(a) the resulting Pareto front of the SPEA2 algorithm con-
tains 34 individuals while the NSGA-III algorithm contains 46 individuals and
the PSO algorithm contains 52 individuals. In Fig. 2(f) the NSGA-III algorithm
outperforms the rest of EAs with 21 individuals. In Fig. 2(d) the PSO exper-
iment obtains better results than the other EAs due to its well-spread Pareto
front that dominates the other Pareto fronts clearly. To summarize, if we com-
pare the metrics by pairs, maybe there is not a big difference between all the
EAs but NSGA-III and PSO appear to be the best search heuristics for this
experiment.

Considering that we want to compare stochastic search heuristics, in order
to avoid the influence of random efects altogether 10 independent runs were
performed per EA. Figure 3 shows the mean hypervolume of these 10 experiment
runs at their last generation. Here, to visualize the data distribution of the HV
samples, a violin plot has been used [18], which is a combination of a box plot and
kernel density plot. Results obtained by DE and NSGA-II are very similar due
presumably to the selected selection algorithm in DE for maintain the population
size. SPEA2 results are very similar to DE and NSGA-II too, but they are more
spread out. The worst results have been obtained with the NSGA-III algorithm.
Finally, we could see that the best result is produced by the PSO algorithm. We
have to remark that we are showing the HV distribution obtained in the last
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(a) PSTH-KLD against FRAD. (b) PSTH-KLD against ISIH-KLD.

(c) PSTH-KLD against RFAD. (d) FRAD against ISIH-KLD.

(e) FRAD against RFAD. (f) ISIH-KLD against RFAD.

Fig. 2. Pareto-optimal sets facing each pairs of criteria.

generation and these values does not necessarily have to be the highest values
obtained because no algorithm is optimizing the HV explicitly.

Figure 4 shows the average of the hypervolume indicator for each EA through-
out 100 generations. No EA from those presented here is optimizing the hyper-
volume indicator directly as well as other algorithms like Hype [19], therefore,
the fact that HV values can decrease during the search should not surprise us. As
can be noted from the above chart, the best results are obtained with the PSO
search heuristic. On the other hand, NSGA-III seems to be the worst approach
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Fig. 3. Distribution of the hypervolume quality indicator for 10 independent runs.

Fig. 4. Course of the averaged hypervolume indicator values for selected algorithms
over time.

for adjusting the retinal model presented on Fig. 1 since the HV average is worse
than the rest.

Statistical hypothesis tests have to be applied to validate the HV results
of different executions. In our case, we performed a Kruskal-Wallis test [20] to
determine if the algorithms have yield statistically significant different results or
not, or, in other words, if they were produced by the same probability distrib-
ution or not. A significance level, α, of 0.05 was used for the test. The p-value
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was equal to 1.21e−7 and therefore, we can assert that the results are not the
same, i.e. a significant difference does exist.

5 Conclusions

A comparison of some of the best known and used MOEAs for tuning a reti-
nal model has been presented. The main contribution of our work is two-fold.
First, the quality of the evaluated retinal models are compared with biological
extracellular recordings from mice by means of four proposed metrics, which
allows us to obtain a more accurate models. Secondly, we have proposed several
different search heuristics to carry out a fine tuning of some of the parameters
of a retinal model. Furthermore, we have selected the hypervolume as a quality
indicator to compare different search heuristics. We have demonstrate through
the Kruskal-Wallis that a significant difference does exist between the analysed
MOEAs. Finally, we conclude that for this multiobjective problem the PSO algo-
rithm is better than the others due to the hypervolume achieved is higher than
the rest.

Our ultimate goal is to apply the search heuristics presented here to studies
carried out in humans, as it would allow us to select well optimized retinal
models.
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Abstract. The problem of edge detection considers two stages: local-
ization and identification, where localization is the search of pixels in an
image and identification is the process of deciding if a pixel belongs, or
not, to an edge. The Canny edge detector has an effective identification
involving the analysis of every pixel that belongs to an image. On the
other side, artificial bee colony (ABC) algorithm simulates the foraging
behavior of honey bees, doing an efficient search of food sources. In this
proposal, ABC algorithm and Canny are integrated to create ABC-ED,
an efficient edge detector algorithm, that does not require to analyze all
the pixels of an image to detect its edges. The dataset BSDS500 was used
for experimentation, and results show that it is not necessary to analyze
every pixel in the image to detect the same edges detected when using
Canny.

Keywords: ABC-ED · ABC algorithm · Edge detection · Canny edge
detector

1 Introduction

In artificial vision and in image processing, edge detection deals with the local-
ization and identification of significant gray level variations in a digital image.
Localization refers to the search of points at a particular location in a grid of
pixels. Identification refers to the process of deciding if a particular pixel belongs
(or not) to an edge.

In image processing, an important number of edge detector have been pro-
posed, exhibiting differences in terms of mathematic and algorithmic properties
[6]. One of the standard edge detection methods is proposed by Canny [5], that
offers a very effective pixel identification and analyzes every pixel in the image.
In Canny, the first step is to smooth the image by using a Gaussian filter, then
the gradient magnitude and direction is computed; the third step is for thin-
ning edges through non-maximum suppression and, finally, it is applied a double
thresholding process and edge tracking by hysteresis.

Artificial Bee Colony algorithm (ABC), is a swarm intelligence algorithm that
simulates the natural foraging behavior of honey bees, which have a good balance
c© Springer International Publishing AG 2017
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between exploitation and exploration and use communication mechanisms as the
waggle dance to search optimally new and better food sources [3,9]. The term
swarm is used to refer to any restrained collection of interacting individuals.

ABC has been adapted for various problems in the area of image processing,
in particular, in edge detection. In [4], ABC was adapted for edge enhancement to
improve visual perception of blurred images. In [11], ABC was used to generate
Cellular Neural Networks (CNNs) cloning templates. In [12], ABC was used to
develop a method for edge detection without mask operator to compute the
fitness of a pixel. In [13], a hybrid model of saliency-based visual attention and
ABC was developed to narrow the searching region of an image with the purpose
of an unmanned combat air vehicle (UCAV) be able to recognize targets in
complex noisy environments.

We propose in this work to combine an effective identification mechanism as
Canny, with an efficient search mechanism, as the ABC algorithm, to show that
it is possible to develop an efficient edge detector algorithm for digital images,
called ABC-ED (Artificial Bee Colony - Edge Detector).

This article is structured as follows, the first section is the present introduc-
tion, the second section describes the design of the ABC-ED model, the third
section shows the results obtained and the final section shows the conclusions
and future work.

2 ABC-ED Model

The main steps and parameters of the ABC-ED model are described in
Algorithm 1. The algorithm considers two stages. The first stage is the inte-
gration of ABC with the first two steps of Canny procedure, which involves until
the end of the main loop of the algorithm. The second stage is the application of
the next three steps of Canny, but only for the food sources created on the first
phase, i.e., it is not necessary to take into account every pixel as Canny does.

A pixel of an image is a possible food source. The algorithm works only
with food sources which have a fitness greater or equal than μmin, in other
words, μmin is the minimum threshold value for classifying a pixel as a food
source. This condition considerably improves the algorithm efficiency in resources
management, amount of fitness computation or pixels analysis and execution
time. Every fitness computation is activated only once, at the moment of the food
source creation, applying a Gaussian filter to the neighborhood and computing
the gradient magnitude for the central pixel by using Sobel.

The Moore neighborhood is used for considering the eight neighbors around
every food source.

The parameters of the algorithm are as follows: IM is the input image matrix;
μmin and μmax are the same thresholds parameters used by Canny; SN , MCN
and limit are the same parameters used in ABC algorithm, with the exception
that limit ∈ [0, 8] is the maximum number of trials to consider a food source
exhausted and not abandoned; ε ∈ [0, 100], controls the search by selecting
to explore between a randomly generated new food source and an inactive or
abandoned food source.
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Algorithm 1. Pseudo-algorithm ABC-ED. Main steps.
Input: Image and set parameters.
1: IM : input image (I) matrix.
2: μmin : minimum threshold value to classify a pixel as food source.
3: μmax : maximum threshold value to classify a food source as weak edge.
4: SN : amount of food sources.
5: MCN : maximum cycle number.
6: limit : maximum number of trials for exhausting a food source.
7: ε : value to control the search by exploration.
Output: OM : image binarized after hysteresis.
8: procedure ABC-ED( )
9: Initialization( );

10: cycle ← 0;
11: while cycle < MCN ∧ SN > 0 do
12: Employed-bees-phase( );
13: Calculate-probabilities( );
14: Onlooker-bees-phase( );
15: Scout-bees-phase( );
16: cycle ← cycle + 1;
17: end while
18: non-maximum-suppression( );
19: double-threshold( );
20: hysteresis( );
21: end procedure

In order to represent and manage the possible states of a food source in the
first phase, four disjoint sets are defined as follows: AFS are the active food
sources, every source is associated only with one employed bee at the same time;
IFS are the inactive or abandoned food sources, these ones were active but were
replaced by a neighbor through greedy selection; EFS are the exhausted food
sources, given that their neighborhood have been analyzed.

In order to represent and manage the food sources in the second stage, FSP2
set is created in the first stage. When a food source is created, it is added to
FSP2, and hence, FSP2 = AFS ∪ IFS ∪ EFS.

Additionally, the set RP is defined for storing all the rejected pixels founded
in the execution that are not food sources, having a gradient magnitude lower
than μmin, in order to avoid to compute a magnitude more than once.

In the following, there is a more detailed description for the different com-
ponents of the algorithm presented in Sect. 2.

In Initialization, a population of SN food sources is created by doing a
random search, and adding every food source to AFS. Every checked pixel that
is not a food source is added to a special list (rejected pixels) for not to consider
them in future computations.
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In Employed Bees Phase, for each food source in AFS, the procedure
is as follows. A candidate neighbor is chosen through greedy selection and it is
marked. This is doing randomly on the neighbors of the food source that are
still not marked.

The greedy selection in ABC-ED is not the same as in ABC. In this algorithm,
the selection condition to replace an actual food source is that its neighbor must
have its fitness greater or equal to μmin, i.e., it is a food source and it does not
belong to AFS or EFS. Then, if the condition is satisfied, the neighbor replaces
the actual food source and it is added to AFS, and the replaced food source is
added to IFS, or to EFS if it is exhausted. Otherwise, the trials counter of the
current food source (limit) is increased in one unit.

In Calculate Probabilities, for each food source in AFS, the algorithm
proceed as follows. The probability p(fk) of a food source fk is computed using
expression (1), thus creating an AVL Roulette wheel selection using the self-
balancing binary search tree AVL [1], in order to search a food source based on
its probability efficiently. It represents the waggle dance of bees.

p(fk) =
fit(fk)

SN∑

k=1

fit(fk)
(1)

In Onlooker Bees Phase, SN food sources are chosen stochastically using
the AVL Roulette. For each food source chosen, it must be checked if it is not
exhausted, given that it could have been exhausted on the employed bees phase
and it can be chosen more than once in the same phase of the cycle. Then, the
algorithm proceeds as the employed bees phase already described.

In Scout Bees Phase, for each food source in AFS, it is checked if it is
exhausted to replace it. If it is exhausted, the food source is removed from AFS
and then added to EFS and the replacement mechanism is chosen between New
Random Exploration and Inactive Food Source. The parameter ε is used to chose
the replacement mechanism, where ε = 100 indicates replacement mechanism is
New Random Exploration and ε = 0, indicates that the replacement mechanism
is Inactive Food Source; ε ∈ ]0, 100[, indicates the probability of selecting New
Random Exploration as the replacement mechanism.

In the New Random Exploration mechanism, the new food source is added
to AFS. In the Inactive Food Source mechanism, the replacing food source is
removed from IFS and then added to AFS.

When the first stage of the algorithm is finished, the second stage is activated.
The set FSP2 is used to proceed with edge thinning by using non-maximum
suppression, double threshold and edge tracking through hysteresis, analogous
to Canny. The difference is that it considers only the food sources created and
not all the pixels of the image (as in Canny). Thus, ABC-ED is probably more
efficient. The food sources suppressed by edge thinning need to be removed from
FSP2.

It is important to notice that the algorithm can be adapted to every mask
filter operator for identification and fitness computation. It only changes the
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precision of identification, and it is possible to use other kernel filter. If it is not
necessary edge thinning, double threshold and hysteresis, the second phase of
the algorithm can be omitted, but it always remains the characteristic of the
algorithm that makes unnecessary to analyze all the pixels of an image to detect
edges.

3 Results

The performance is measured, as the percentage of pixels that needs to be ana-
lyzed to achieve the same results obtained by Canny, and a comparison with the
corresponding ground truth images is realized.

For experimentation it was used the dataset BSDS500 [2] (The Berkeley Seg-
mentation Dataset and Benchmark) that contains 2696 segmented images with
its corresponding ground truth image. For each image, four automatic threshold
methods were used to compute the threshold values μmin and μmax, which are:
Mean [7], Median, Matlab1 and Otsu [10]. In the average, the threshold values
computed for the different methods are similar, except for Matlab which obtains
significantly lower values.

The metric to evaluate the algorithm performance is pixels analysis, defined
as how many fitness computations have been made; Hamming Distance (HD)
[8], adapted to get the difference between two binarized matrices of same size,
thus defining a HD percentage as the difference between the image obtained
by using the algorithm and one of the following: the image obtained by using
Canny, or the corresponding ground truth image.

The algorithm parameters used are as follows: SN =
√

m ∗ n (amount of food
sources), the square root of the number of pixels of the input image; MCN =
1000 (maximum cycles number). limit = 8.

Table 1 shows the percentage range of pixels analyzed (FG), for the set of
considered images. Amount refers to the number of output images (for every
original image, there are four testing images, considering the four threshold com-
putations). Fit represents the fitness average percentage for those images, μmin

and μmax are average threshold values, and HD GT is the average difference per-
centage between the output image and the corresponding ground truth image.
MCN represents the number of necessary cycles for detecting the 100% of edges
detected by Canny.

The results for FG percentage ∈ ]26, 95[ contains less than 70 output images
which are, therefore, omitted.

Table 1 shows two interesting output groups. The first one considers a pixels
analysis up to 25% of the total of pixels for the image, and the second one is the
group that considers a pixels analysis ranging from 96% to 100% of pixels for
the complete image. Comparing both output concentrations, in the first one the
proposed algorithm output presents an average difference with the ground truth
lower than the second one, less average cycles are necessary and lower average

1 Given by the function edge using Canny on Matlab.
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Table 1. Summary table of all outputs results of the algorithm.

Amount FG Fit μmin μmax MCN HD GT

3,224 15 12.27 26 58 82 1.03

1,079 20 16.94 15 30 122 1.54

518 25 21.89 24 44 131 1.79

5,312 100 99.94 35 74 151 2.01

threshold values are obtained. Hence, the algorithm has an edge identification
precise, but for a reduced number of pixels analysis.

Figure 1 shows a sample of four images processed by the algorithm. The first
column shows the input image, the second column shows image obtained after
processing, and the third column shows the corresponding ground truth image.
Additionally first two rows correspond to images that require no more than 15%
of pixels analysis; the third and fourth row correspond to images requiring a
pixels analysis above 95%, for every image.

The reason for the difference of pixels that is necessary to analyze, lies on the
images characteristics. If edges are homogeneously distributed on the complete
image, the proposed algorithm behaves as a classical Canny algorithm but, if
edges are grouped into regions that do not cover all the image, the performance
of the proposed algorithm is clearly improved.

4 Conclusions and Future Work

This work presents the integration of ABC algorithm and Canny, to create the
algorithm ABC-ED with the purpose of reducing the pixels analysis work on
a specific image, to detect their edges. The dataset BSDS500, containing 2696
images, was used for experimentation in order to analyze the proposed perfor-
mance. The algorithm obtained the best average results using the automatic
threshold method Otsu.

Due to the fact that the algorithm integrates the Canny edge identification,
it detects every edge that Canny algorithm detects.

The algorithm performs better with images bounded to specific regions than
with images with homogeneously distributed edges, due the combination of local
and global search of the ABC algorithm.

A remarkable issue is that the proposed algorithm obtains results that differs
from ground truth values, in the average, in no more than 2.01%.

As future work, there are some issues that can be addressed: scout bees phase
by demand, i.e., to activate this phase only when a food source is exhausted;
to analyze the possibility of a complete local analysis of neighborhood at the
moment of a food source creation to suppress immediately rejected pixels posi-
tions; experiment with a lower size of the population SN , keeping a proportion
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(a) I:15,088level1. (b)Result. (c)Groundtruth.

(d) I:135,069level4. (e)Result. (f)Groundtruth.

(g) I:8,143level3. (h)Result. (i)Groundtruth.

(j) I:81,090level4. (k)Result. (l)Groundtruth.

Fig. 1. ABC-ED samples.

with the input image size; greater integration with Canny, moving the edge thin-
ning to the first phase of the algorithm in order to suppress food sources that
later would be eliminated.
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Abstract. In this paper we face a scheduling problem that consists in
charging a set of electric vehicles such that the total tardiness is mini-
mized. Building an efficient schedule is difficult due to some physical con-
straints of the charging station, such as a maximum contracted power
and a maximum imbalance between the lines of the three-phase elec-
tric feeder. We propose an artificial bee colony metaheuristic specifically
designed to solve this problem. Its performance is analyzed and com-
pared against the state of the art, obtaining competitive results and
outperforming previous approaches.

Keywords: Electric vehicle · Charging strategy · Scheduling · Artificial
bee colony · Metaheuristic

1 Introduction

Electric vehicles (EVs) are increasingly important nowadays for several reasons,
including economical and environmental ones. However, this emerging technol-
ogy requires new infrastructures, for example specialized charging stations. Addi-
tionally, these charging stations must solve a scheduling problem when deciding
which EVs to charge and when they are going to start charging, due to the high
charging time batteries of the EVs. This scheduling problem is very important
because ideally we have to avoid peak demand in order to balance the electri-
cal needs, while at the same time meeting the requirements of the users and
also taking into account the physical constraints of the charging station. In fact,
there is an increasing interest in the literature for this type of scheduling prob-
lems [4,11]. Each particular charging station has his own set of constraints and
objectives, and so the number of proposed methods is very large.

The problem tackled in this paper is described in [3,6] and [7] and it comes
from a charging station where we have to schedule the charging of a set of EVs.
Each vehicle has a due date, which is the expected time that the user is going to
take the vehicle away. We should schedule the charging in such a way that the
total tardiness is minimized.

The complexity of building an efficient schedule that fulfills all constraints
suggests the use of metaheuristics, because exact algorithms are efficient in small
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 115–124, 2017.
DOI: 10.1007/978-3-319-59740-9 12
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Fig. 1. Components of the charging station: (1) power source, (2) three-phase electric
power, (3) charging points, (4) masters, (5) server with database, (6) communication
RS 485, (7) communication TCP/IP, (8) slaves. The Gantt Chart shows the charging
interval of the vehicles.

instances but they usually behave poorly in real-world sized instances. Different
metaheuristics are used in the literature for similar problems, as ant-based swarm
algorithms [13] or particle swarm optimization [14]. In our work we are adapting
the artificial bee colony algorithm, which is a recent evolutionary metaheuristic.
In the experimental study we analyze and compare it with previous approaches.

The remainder of this paper is organized as follows: in Sect. 2 we present
the characteristics of the charging station and define the problem. In Sect. 3
we describe the proposed artificial bee colony algorithm, whereas in Sect. 4 we
report the results of the experimental study. Finally, Sect. 5 summarizes the
contributions of this paper and proposes some ideas for future work.

2 Problem Definition

The charging station we deal with has 180 charging points that are feeded by a
three-phase power source (60 charging points in each line). Figure 1 shows the
main components of the charging station. The interested reader is referred to
[12] for more details. When a vehicle arrives to the station, its user has to input
the charging time and a due date, which is the expected time that he/she is
going to take the vehicle away. The control system must schedule the charging
of all vehicles so that the total tardiness is minimized and all constraints are
fulfilled. First, the contracted power is limited, and hence there are a maximum
of N vehicles that can charge at the same time in any given line. Moreover,
due to economical and electro-technical reasons, the power used by the three
lines should be balanced at any given time. An added difficulty is that each
vehicle user is the owner of a particular space in the charging station, feeded
by a particular line, and so maintaining the balance between the lines is harder
because we cannot assign the most appropriate line for each vehicle. Additionally,
as soon as a vehicle starts charging, it cannot be disconnected until its charging
ends. Following [3], we consider the static and dynamic versions of this problem.
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2.1 The Static Problem

The static problem is not realistic, as it assumes that all arrival times, charging
times and due dates of all vehicles are known in advance. However, it is indeed
very interesting, for example, for assessing the quality of a schedule for the
dynamic problem.

We have three lines Li, 1 ≤ i ≤ 3 with ni charging points each. Each line Li

receives Mi vehicles, denoted by vi1, . . . , viMi
. The data we have for each vehicle

is its arrival time tij ≥ 0, charging time pij > 0 and due date dij ≥ tij + pij ,
that is the time at which its user is expected to take the vehicle away.

The objective is to create a feasible schedule, i.e. to decide the starting time
stij for the charging of each vehicle vij 1 ≤ i ≤ 3, 1 ≤ j ≤ Mi. The schedule
must fulfill the following constraints in order to be feasible:

∀vij , stij ≥ tij (1)

∀vij , Cij = stij + pij (2)

max Ni(t) ≤ N, t ≥ 0; 1 ≤ i ≤ 3 (3)

max
( |Ni(t) − Nj(t)|

N

)
≤ Δ, t ≥ 0; 1 ≤ i, j ≤ 3 (4)

Equation 1 forbids that vehicles can start charging before their arrival time.
Equation 2 ensures that vehicles can not be disconnected until they finish their
charging (Cij is the ending time of the charge of vij). Equation 3 represents
the maximum number N of active charging points at the same time in any
given line (Ni(t) denotes how many active charging points are in line Li at time
t). Finally, Eq. 4 details the maximum imbalance between lines by means of a
parameter Δ. Figure 2 shows an example of a feasible schedule for an instance
with 180 vehicles. Furthermore, we want to minimize the total tardiness objective
function, defined as:

3∑
i=1

Mi∑
j=1

max(0, Cij − dij) (5)

2.2 The Dynamic Problem

The dynamic problem is more realistic because we do not know in advance the
due dates, charging and arrival times of the vehicles. It can be modelled as a
sequence P1, P2, . . . , Pn of instances, each composed by some vehicles that are
already charging but have not yet finished and some vehicles that have arrived to
the station but are not yet charging. For them we know its charging time pij and
its due date dij . Again, we have to obtain a feasible schedule that minimizes the
total tardiness. To do that, we have to assign a starting time stij for charging all
vehicles that are in the station but are not yet charging such that all constraints
from the static problem are satisfied.
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Fig. 2. Example of a feasible schedule, showing in green the charging interval of vehicles
without tardiness, and in yellow and red the vehicles that end their charging after their
due date. The red portion indicates the interval after the corresponding due date. The
bottom graph indicates the maximum imbalance level at each time point. (Color figure
online)

In the charging station, at each time point Tk the server checks if any new
vehicle has arrived since the time point Tk−1 = Tk − ΔT . If some vehicle has
arrived then a new instance Pk is created and solved and we apply its solution,
otherwise the current solution remains valid until the next time point. Notice
that, as soon as a vehicle starts charging, its stij cannot be further modified,
but it can be modified in different Pk instances while it does not start charging.
The time interval ΔT is set at two minutes in order to not overload the server.

3 Artificial Bee Colony Algorithm

The Artificial Bee Colony algorithm (ABC ) is a relatively new swarm
population-based metaheuristic algorithm introduced in [8], inspired by the intel-
ligent foraging behaviour of honey bees. The method mimics the search for food
of three types of foraging bees: employed, onlooker and scout bees. ABC is often
used to solve scheduling problems because of its effectiveness and its good bal-
ance between diversification and intensification. A review of its fundamentals
and some applications can be found in [9].

The ABC proposed in this paper starts by creating SN initial solutions or
food sources. Then, the population iterates over a number of cycles. In each cycle
several steps are performed: employed bee phase, onlooker bee phase and scout
bee phase. The termination criterion is satisfied when the best solution is not
improved for a consecutive number of cycles, or also if we find a solution with
zero tardiness. In the following subsections we describe the main features and
the different steps of our ABC algorithm.
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3.1 Food Source Representation and Evaluation

We have codified the solutions as permutations of vehicles. Each solution has an
associated variable num trials, that represents how many consecutive times we
tried to improve it without any success.

To evaluate a food source, our scheduler algorithm creates a schedule S from
a permutation V by sequentially scheduling all vehicles of V choosing for them
the earliest possible starting time such that all the constraints defined in Sect. 2
are met with respect to the vehicles previously scheduled.

3.2 Initial Population

We propose to combine two dispatching rules with some random food sources
to create an initial population with good quality and diversity. In particular we
create one third of the food sources with each technique.

The first dispatching rule is the Due Date Rule (DDR), which sorts all
vehicles in increasing order of its due date dij . The second dispatching rule is
the Latest Starting Time (LST ), which sorts all vehicles in increasing order of
its latest starting time, defined as lstij = dij − pij .

Both rules are deterministic, so we follow the approach proposed in [3] to
create diverse food sources. To add the next vehicle to the permutation V , we
sort the vehicles not yet added to V using the corresponding dispatching rule
and then we perform a tournament selection. Therefore, we randomly select a
number tsize of vehicles and we add to V the best of them according to the
ordering given by the dispatching rule. This parameter tsize is relevant because
if it is too large the generated food sources may be too similar, whereas if too
small the food sources will be almost random.

Evidently, all created solutions are initialized with num trials = 0.

3.3 Employed Bee Phase

Employed bees search for new and better food sources within the neighborhood
of the food source in their memory. In our approach, new food sources are found
by applying a crossover operator between each food source and a selected out-
standing food source.

First of all, we select the food source that will be combined with all the food
sources in the population. In principle it will be the best solution found so far
in the search. However, if that solution has already been selected for this role in
previous cycles, then we select the food source in the population with the largest
value of num trials such that it was never chosen for this role. Therefore, it is
necessary to maintain a list of solutions that were already chosen as “common
parents” in previous cycles. This method improves diversity, as new solutions
are always created with different parents in successive cycles of the algorithm.

Then, each food source in the population is combined with the selected food
source, generating two new offspring solutions. We select the best of these new
solutions (according to its fitness value) and, if it is better than the original food
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source, it is substituted by the new solution and its num trials value is set to
zero (i.e. the employed bee saves it in its memory). Otherwise the original food
source remains intact and num trials is increased in one unit.

In this paper we consider two different crossover operators. The first one,
which is specially designed for this problem, is the Starting-time Based Crossover
(SBX), initially proposed in [3]. It randomly selects a time t0 and creates the
first offspring O1 with all vehicles of the first parent P1 such that they start
charging before t0 and it is completed with the remaining vehicles of the second
parent P2 in the same order as they appear. The second offspring O2 is created
similarly. The second crossover operator is the well-known Partially-Mapped
Crossover (PMX), originally proposed in [5]. We consider a third possibility: to
randomly select between SBX and PMX each time a combination is made. In
Sect. 4 we report some experiments to compare these crossover methods.

3.4 Onlooker Bee Phase

Employed bees share their information with onlooker bees waiting in the hive.
Then, onlooker bees probabilistically choose their food sources depending on the
information and they look for better neighboring food sources. In our proposal,
for each solution i in the population we calculate a probability value that depends
on the tardiness of each solution: probi = (1/tardi)/(

∑SN
j=1 1/tardj).

Notice that divisions by zero are not possible because our algorithm ends
as soon as a solution with zero tardiness is found. This is the probability that
the improvement procedure described in Algorithm 1 is applied to that solution.
That procedure randomly selects up to the 10% of the vehicles in the permutation
V . For each selected vehicle, it checks if its tardiness is zero or positive. When
it is zero, it means that this vehicle could possibly be delayed, and therefore
we try to swap it with all the vehicles from its position (vi) until the end of
the permutation (vn) until we find a solution that improves the current solution.
When the tardiness is positive we swap the vehicle (vi) with the previous vehicles
until the first position is reached (v0). In any case, as soon as an improved
solution is found, the procedure ends, replacing the old food source with the
new one and setting its num trials value to zero. Otherwise, if we cannot find a
better solution using the described procedure, the original solution remains and
we increase its num trials value by one unit.

3.5 Scout Bee Phase

When the solution of an employed bee cannot be improved through a number
of trials (denoted as limit), that bee becomes a scout bee, abandons its solution
and randomly searches for a new solution. This may happen if the abandoned
food source was initially poor, or also if have been made poor by exploitation.

To implement this phase in our algorithm, we simply check the num trials
value of all solutions in the population, and any solution with num trials ≥ limit
is substituted for a newly created random solution, with value num trials = 0.
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Algorithm 1. The improvement applied by the onlooker bees
Input A solution S

chosen vehicles ← 0;
while chosen vehicles < 10% of problem size do

Select one vehicle vi randomly;
if tardiness of vi = 0 then

for vj between vi and vn do
Create a solution S′ by swapping vi and vj in S;
if S′ is better than S then return the new solution S′; end if

end for
else

for vj between vi and v0 do
Create a solution S′ by swapping vi and vj in S;
if S′ is better than S then return the new solution S′; end if

end for
end if
chosen vehicles ← chosen vehicles + 1;

end while
return The current solution S;

4 Experimental Results

In this section we report the results of an experimental study designed to evaluate
our approach and compare it with the state of the art in this problem: the
dispatching rule method proposed in [7] and the genetic algorithm of [3].

We are using the first scenario of the benchmark described in [7], with 720
instances grouped in 24 sets of 30 instances. Each set is characterized by a tuple
(type, N , Δ). We consider three values for N : 20, 30 and 40, and four values for
Δ: 0.2, 0.4, 0.6 and 0.8. There are two types of instances: in type 1 instances
the vehicle arrivals are balanced, as one third of the vehicles arrive to each line,
whereas type 2 instances are unbalanced, and 60% of vehicles arrive to line 1,
30% to line 2 and 10% to line 3, so it is expected that type 2 instances are harder
to solve, due to the difficulty to maintain the maximum imbalance constraint.

Our ABC method is implemented in C++ in a single thread and target
machine is a Xeon E5520 running Linux (SL 6.0). We run our method 30 times
in order to obtain statistically significant results, due to its stochastic nature.

Table 1. Comparison between combination operators in a set of 24 instances. We
report average tardiness in hours of 30 executions, grouped by instance type.

Ins Static Dynamic

SBX PMX SBX-PMX SBX PMX SBX-PMX

Type 1 55.59 57.89 54.78 71.72 73.10 71.68

Type 2 1091.14 1120.28 1090.79 1115.03 1132.15 1114.77
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Table 2. Comparison with the state of the art. Each value represents the sum of the
tardiness (in hours) of the 30 instances of each group. Bold numbers indicate the best
value for each version of the problem.

N Δ Static problem Dynamic problem

GA [3] ABC EVS [7] GA [3] ABC

Type 1 instances

20 0.2 5442.3 5331.7 8386.3 7141.6 7027.9

20 0.4 2680.1 2586.1 4120.4 3976.7 3898.1

20 0.6 2299.7 2258.2 3670.6 3568.8 3558.0

20 0.8 2238.7 2200.4 3590.9 3501.9 3509.1

30 0.2 996.9 771.9 1959.3 1411.7 1445.7

30 0.4 92.1 76.8 421.2 374.7 366.6

30 0.6 50.0 34.9 347.9 318.9 317.7

30 0.8 49.2 34.1 347.6 316.8 316.4

40 0.2 364.1 238.6 735.0 511.0 545.2

40 0.4 0.4 0.0 14.0 6.4 7.8

40 0.6 0.0 0.0 3.4 3.4 3.4

40 0.8 0.0 0.0 3.4 3.4 3.4

Averages 1184.5 1127.7 1966.7 1761.3 1749.9

Type 2 instances

20 0.2 124380.0 123409.0 128185.0 124599.3 124168.0

20 0.4 45263.1 44152.7 46319.3 45461.3 45183.9

20 0.6 21205.6 20597.0 22966.8 22074.6 21847.7

20 0.8 13031.0 12734.1 14573.1 14337.1 14212.1

30 0.2 71129.0 69954.3 72860.8 71462.5 70942.6

30 0.4 20629.5 20097.6 21479.9 21321.0 21150.5

30 0.6 7188.0 7033.0 8088.9 8006.8 7923.0

30 0.8 3607.7 3536.4 4486.3 4407.8 4391.0

40 0.2 45216.0 44146.7 46135.4 45455.4 45192.6

40 0.4 10010.6 9775.7 10869.3 10799.0 10669.2

40 0.6 2916.8 2855.7 3599.1 3517.8 3515.1

40 0.8 922.8 876.3 1635.5 1568.8 1574.9

Averages 30458.3 29930.7 31766.6 31084.3 30897.5

For all experiments we have chosen a population size SN of 200 food sources,
we have set limit = 100, and the stopping condition is defined as 25 consecutive
cycles without improving the best solution found so far. Using this parameter
setting, the convergence pattern is adequate and the computational time is com-
parable to other methods of the state of the art.

We have made some experiments to select the combination operator. We
have considered three possibilities: always using the SBX operator, always using



Electric Vehicle Charging Scheduling Using an ABC Algorithm 123

PMX, or randomly choosing between SBX and PMX each time a combination
is made. For this comparison we do not use the full benchmark, but only 24
instances: the first one for each combination of parameters. Table 1 reports the
results of these experiments, where we can see that the best option in both the
static and dynamic problems is to randomly select between the two operators,
probably because of the increased diversity of the generated solutions.

Table 2 reports the results of the experiments in the full benchmark. For the
static problem we show the tardiness values reported in [3] (denoted by GA) as
well as those obtained by our ABC algorithm, whereas for the dynamic problem
we show the tardiness values reported in [7] (denoted by EVS ), in [3] and also our
results. As expected, the results in the static problem are better than those of the
dynamic problem, which means that the methods are able to exploit the extra
information. Moreover, it can be seen that our method is able to outperform
previous approaches in both the static and dynamic problems.

We have run statistical tests to check if the improvement is significant. As pro-
posed in [2], as we have multiple-problem analysis, we should use non-parametric
tests. We start with a Shapiro-Wilk test that confirms the non-normality of our
data. Afterwards we launch paired Wilcoxon signed rank tests to compare the
average results in all instances. In both the static and dynamic problems, p-values
lower than 2.2e-16 confirm that the differences in these instances are statistically
significant and we can conclude that ABC is better than GA and EVS.

The computational time that ABC requires to solve a subproblem in a
dynamic instance is 0.32 s in average, or 3.68 s in the worst case. These times
are much smaller than two minutes (see Sect. 2.2), so ABC could be used in a
real scenario. The average time required by GA is slightly higher, being 0.45 s
per subproblem, whereas the EVS approach is much faster, as expected in a
simpler dispatching rule approach. Regarding the static problem, ABC requires
84 seconds in average against the 93 s required by GA.

5 Conclusions

In this paper we have dealt with the problem of scheduling the charging of a
set of EVs in a charging station. To this end, we have proposed an artificial bee
colony metaheuristic specifically tailored for our problem. In the experimental
results we have seen that our approach performs significantly better than previ-
ous approaches for the problem, probably because of the good balance between
intensification and diversification in the search.

There are many possibilities for future work, although the most interesting
one is probably to consider more realistic energy models. For example consider-
ing that the energy cost may be variable depending on the time of day, as for
example in [10], or maybe that the vehicles can be charged at a non constant
rate, as modelled in [1]. Clearly, if we want to minimize energy costs as well
as total tardiness, we face a multi-objective optimization problem and so the
metaheuristics should be modified accordingly.
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Abstract. We have modeled the protein folding process with cellular
automata using the Face-Centered Cubic lattice model. An artificial
neural network implements a cellular automaton-like scheme that defines
the moves of each of the amino acids of the protein chain and through
several time iterations until a folded protein is obtained. Differential
Evolution was used to evolve these neural cellular automata, which take
the information for defining the folding process from the energy space
considered in the lattice model. Different proteins were used for testing
the process, comparing the results of the folded structures against other
methods of direct prediction of the final folded conformation.

1 Introduction

The importance of the knowledge of the native structure of a protein comes
from the fact that the native structure is related to its biological function. The
experimental determination of the native conformation (e.g. using X-ray crystal-
lography or NMR spectroscopy) is difficult and time-consuming. As a result, the
output of experimentally determined protein structures lags behind the output of
protein sequences (result of genome sequencing projects), and the computational
prediction of protein structure remains a “holy grail” of computational biology.
In the ab-initio modeling, considering only the information of the protein pri-
mary structure (sequence of amino acids), there is an ample research performed
on the direct prediction of the final folded conformation using simplified protein
models or even detailed atomic models. For the search of the final folded con-
formation the general assumption is that the native structure of a protein is its
minimum free energy conformation.

Typical approaches to ab-initio prediction simplify the complexity of the
interactions and the nature of the amino acids. For example, lattice models
assume that the amino acids are located in the sites of a lattice, whereas the
off-lattice models do not impose such a restriction. But even in this last case,
simplifications can be considered, like the low-resolution model employed by the
Rosetta environment [13], which considers only the atoms of the backbone pro-
tein chain whereas uses a pseudo-atom for the representation of the amino acid
residues. In this protein prediction problem many authors have been working on
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the use of search methods, especially evolutionary algorithms [22], for determin-
ing the final conformation using lattice models like the HP model [5,10,14,21].
Other authors have used other natural computing algorithms [22] like ant opti-
mization algorithms [19]. Fewer works have used evolutionary computing with
off-lattice models [9].

However, most of the research work has ignored the temporal folding process
to obtain the final folded conformation. This is different to the direct prediction
of the final folded conformation since the dynamic process of interaction of the
different amino acids has to be considered in order to model how the protein chain
folds through time to obtain the final folded conformation. We have modeled
this temporal process as an emergent and dynamic process using the classical
tool of cellular automata (CA), tool employed in Artificial Life to study and
characterize, for example, the emergent behavior property.

There is a very limited research in the modeling of the dynamic folding.
Krasnogor et al. [8] used CA and Lindenmayer systems to try to define the
folding process in 2D lattices, with a very limited success. The problem with their
work is that they evolved CA rules to obtain the folding of particular proteins,
without taking into consideration the specific amino acids the CA rule set is
being applied to. Calabretta et al. [2] tried to establish the tertiary structure
modeling the folding process through evolved matrices of attraction forces of the
20 amino acids in an off-lattice model. They tested the methodology only with
a short fragment of crambin (13 amino acids). Danks et al. [4] used a stochastic
Lindenmayer system to model protein folding with knowledge-based rewriting
rules (that alter the torsion angles), where the states used by the rules took
into account the probabilities of the amino acids to be in a particular secondary
structure state (like helixes or sheets). Although local structure preference can be
seen to emerge for some residues in a protein sequence, the resulting structures
did not converge to a preferred global compact conformation.

In previous works we have used CA to model protein folding using the basic
HP model [5], with the 2D square [15] and the 3D cubic lattices [16]. In the
present work we extend the methodology to a more complex lattice model, the
Face-Centered Cubic (FCC) lattice model [3], which allows a more detailed pro-
tein conformation representation. The next section details the methods used for
the modeling: The FCC model, the neural-CA that provides the folding and the
evolutionary algorithm (Differential Evolution) used to evolve such neural-CA.
The results section expounds the experiments whereas the last section highlights
the main conclusions obtained.

2 Methods

2.1 Hydrophobic-Polar Energy and Face-Centered Cubic Models

Most lattice models, like the HP model [5], use a reduced alphabet of amino acids
based on the recognition that hydrophobic interactions are a dominant force in
protein folding, and that the binary pattern of hydrophobic and polar residues
is a major determinant of the folding. In the HP model [5] (H representing
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hydrophobic residues and P polar residues), the elements of the chain can be of
two types: H (amino acids Gly, Ala, Pro, Val, Leu, Ile, Met, Phe, Tyr, Trp) and
P (Ser, Thr, Cys, Asn, Gln, Lys, His, Arg, Asp, Glu). The protein sequence is
embedded in a lattice that discretizes the space conformation, lattice that can
exhibit different topologies such as 2D square or triangular, and 3D cubic or
diamond topologies. Moreover, the total energy of a conformation based on the
HP model becomes the sum of pairwise contacts on the lattice as shown in the
Equation:

E =
∑

i<j−1

cij · eij (1)

where cij = 1 if amino acids i and j are non-consecutive neighbors on the protein
sequence and are neighbors (or in contact) on the lattice, otherwise 0; The term
eij depends on the type of amino acids: eij = −1 if ith and jth amino acids are
hydrophobic (H), otherwise 0. Therefore, the minimization of the energy E in
Eq. 1 is equivalent to the maximization of the number of non-consecutive HH
contacts.

Fig. 1. FCC lattice

With this basic categorization
of the 20 amino acids and this
hydrophobic-polar energy model,
the 3D FCC lattice has the high-
est average density compared to
other lattices like the cubic or the
body-centered cubic [3]. In this
FCC model, atoms are located in
the center and in the middle of
the edges of the cubic unit cell, as
it is shown in Fig. 1. As a result,
each lattice point has 12 neigh-
bors with 12 basis vectors that
are labeled as follows:

FR: (−1, 0, −1) FL: (1, 0, −1) BR: (−1, 0, 1) BL: (1, 0, 1)
FU: (0, −1, −1) FD: (0, 1, −1) BU: (0, −1, 1) BD: (0, 1, 1)
RU: (−1, −1, 0) RD: (−1, 1, 0) LU: (1, −1, 0) LD: (1, 1, 0)

Therefore, a protein conformation, using this model, is a sequence of adjacent
points with every amino acid position on the lattice. It will be a valid confor-
mation if the sum of the coordinates of each point is even and it consists of a
self-avoiding walk: that is, for all i �= j: pi �= pj (there are not two amino acids
in the same lattice position). Two points p = (x, y, z) and q = (x’, y’, z’) are
adjacent in the lattice if and only if |x − x’| ≤ 1, |y − y’| ≤ 1, |x − x’| ≤ 1 and
|x − x’| + |y − y’| + |z − z’| = 2.

The research performed on the protein prediction problem (PSP) with this
model is not as ample as with the simplest HP model. For example, Dotu et
al. [6] used a Large Neighborhood Search (LNS) for the PSP problem with this
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FCC model. Their algorithm starts with a tabu-search, whose solution is then
improved by a combination of constraint programming and LNS. Shatabda et al.
[17] presented a memory-based local search using the HP energy model and the
FCC lattice, employing the local search of Dotu et al. [6]. The idea consists of
memorizing local minima and then avoiding their neighborhood, which improved
the performance and energy levels of the local search algorithm.

There also works using evolutionary algorithms. For instance, Rashid et al.
[12] described a hybrid search framework that embeds a tabu-based local search
within a population based genetic algorithm. Shatabda et al. [18] defined an
efficient and non-isomorphic encoding for protein structures, which allows the
efficient twin conformations removal of the genetic population and Tsay and
Su [20] hybridized an evolutionary algorithm with three different local search
methods, including lattice rotation for crossover.

Using other methodologies, the constraint-based protein structure approach
(CPSP) by Backofen and Will [1] is one of the methods that produces the best
results on the FCC model and it is commonly used for comparison purposes. The
CPSP approach produces optimal structures by computing maximally compact
sets of points known as hydrophobic cores (sets of H-monomers without any
chain connectivity that depends only on the number of H-monomers) which can
be precalculated. Given a protein sequence S, the approach searches the list of
H-cores compatible with S. The H-monomers of S are constrained to the H-core
positions and it success in a structure with global minimal energy given sufficient
(possibly exponential) computation time [6].

2.2 Neural Cellular Automata

A cellular automaton defines the moves of the amino acids in the FCC lattice
and this cellular automaton is implemented by a simple feed-forward neural
network. Therefore, we call the structure that provides the folding as a neural
cellular automaton (neural-CA) since the ANN implements the rule set of a
classical CA.

The ANN is applied to each amino acid i of the protein chain sequentially,
beginning from the second amino acid until the penultimate amino acid (the first
move between the first and the second amino acids is fixed). The ANN selects
the move to apply between amino acid i and i + 1 of the chain.

The inputs to the ANN are determined by the energy changes that would
occur if the different moves were applied between amino acid i and i + 1. For
each input, an energy difference is calculated between the current protein con-
formation and the conformation modified at those amino acid positions with the
corresponding moves of the FCC model {FR, FL, BR, BL, FU, FD, BU, BD,
RU, RD, LU, LD}. The energy calculations take into account the HH contacts
(value −1) as in the basic HP model (Eq. 1) as well as the HP or PH contacts
(value 0.1). The inclusion of the latter repulsive values, as in the HP Functional
Model [7], allows a better discrimination between conformations with the same
number of HH contacts, as well as a better detailed information of the energy
landscape in protein conformations with very few H amino acids.
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Therefore, there are 12 ANN inputs that correspond with the energy
changes (positive, 0 or negative) when each of the moves are considered. Those
increases/decreases correspond with the energy after the move with respect to
the energy of the current conformation. Moreover, these changes are normalized
in the range [−1,1]. This input information provides a partial view of the energy
landscape to the ANN and can be associated with the central element and its
neighborhood states in a classical CA.

In addition, for the energy calculation, only the close amino acids to the
central amino acid i are considered, using the Euclidean distance with a given
radius. That is, the possible HH or HP/PH contacts are those that occur between
amino acids within a sphere centered on the amino acid i lattice site. Note that
this is one of the central ideas of cellular automata that take into account only
the state information of the neighborhood of a cell site to change that cell state.

Fig. 2. Neural-CA scheme: The ANN is applied
to each of the amino acids (i) of the protein
chain to decide its next move (between i and
i + 1). The inputs of the ANN are determined
by the consequences of the possible moves in the
amino acid the ANN is applied to. The same
process is applied sequentially to all the amino
acids and in different temporal steps until the
final protein folded conformation is obtained.

The ANN has a hidden layer
of nodes and an output layer
with 12 outputs that correspond
with each of the 12 possible
moves. An optimized (evolved)
ANN can decide the best appro-
priate move in each situation or
state in order to provide an opti-
mal final folded conformation.
The standard sigmoid function
is used as transfer function of
the ANN nodes. The ANN node
with the highest activation value
determines the move to apply in
each situation.

The same ANN is applied to
all the amino acids and in dif-
ferent temporal steps, beginning
with an unfolded conformation.
A folding step means that the
ANN is applied sequentially to
the amino acids of the protein chain. Therefore, the process of the neural-CA is
the same of classical CA, since the same ANN is applied iteratively to all the
sites (amino acids) of the lattice to obtain the emergent behavior, the protein
folded conformation in our case, and the neural-CA takes into account only the
local information in each site or amino acid. The main difference is that in our
application the information comes from the dynamic energy landscape instead
of the definitions of site states obtained from spatial information of the lattice.

2.3 Differential Evolution

Differential Evolution [11] is a population-based search method. DE creates
new candidate solutions by combining existing ones according to a simple formula
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Algorithm 1. Differential Evolution Algorithm.
Initialize the population randomly
repeat

for all individual x in the population do
Let x1, x2, x3 ∈ population, randomly obtained {x1, x2, x3, x different from each other}
Let R ∈ {1, ..., n}, randomly obtained {n is the dimension of the search space}
for i = 1 to n do

Pick ri ∈ U(0, 1) uniformly from the open range (0,1).
if (i = R) ∨ (ri < CR) then

yi ← x1i + F (x2i − x3i)
else

yi = xi

end if
end for{y = [y1, y2...yn] is a new generated candidate individual}
if f(y) ≤ f(x) then

Replace individual x by y
end if

end for
until termination criterion is met
return z ∈ population \∀t ∈ population, f(z) ≤ f(t)

of vector crossover and mutation, and then keeping whichever candidate solution
has the best score or fitness on the optimization problem at hand. The central
idea of the algorithm is the use of difference vectors for generating perturbations
in a population of vectors. This algorithm is specially suited for optimization
problems where possible solutions are defined by a real-valued vector. The basic
DE algorithm is summarized in the pseudo-code of Algorithm1.

Differential Evolution needs a reduced number of parameters to define its
implementation. Apart from the population size, the parameters are F or dif-
ferential weight and CR or crossover probability. The weight factor F (usually
in [0, 2]) is applied over the vector resulting from the difference between pairs of
vectors (x2 and x3). CR is the probability of crossing over a given vector of the
population (target vector x) and a “donor” vector created from the weighted
difference of two vectors (x1 + F (x2 − x3)). The “binomial” crossover (specified
in Algorithm 1) was used for defining the value of the “trial” vector (y) in each
vector component or position i. The index R guarantees that at least one of the
parameters (genes) will be changed in the generation of the trial solution.

Finally, the selection operator maintains constant the population size. The
fitness of the trial vector (f(y)) and the target vector (f(x)) are compared to
select the one that survives in the next generation. Thus, the fitness of the best
solution of the population is improved or remains the same through generations.

By combining different mutation and crossover operators various schemes
have been designed. The usual variants or schemes of DE choose the base vector
x1 randomly (variant DE/rand/1/bin, where 1 denotes the number of differences
involved in the construction of the mutant or donor vector and bin denotes the
crossover type) or as the individual with the best fitness found up to the moment
(xbest) (variant DE/best/1/bin). The fundamental idea of the algorithm is to
adapt the step length (F (x2 − x3)) intrinsically along the evolutionary process.
At the beginning of generations the step length is large, because individuals are
far away from each other. As the evolution goes on, the population converges and
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the step length becomes smaller and smaller, providing this way an automatic
balance in the search.

In our application DE is used for optimizing a neural-CA that provides the
folding of a protein. Since a neural-CA is implemented with a simple feed-forward
ANN, the individuals of the population encode the ANN weights. The fitness of a
neural-CA is defined by the final energy of the final conformation, considering the
HH contacts, as well as the HP/PH contacts, of the final protein conformation.
That is, it is the same definition for the calculation of the energy changes that
are inputs to the ANN, but considering only the final folded conformation and
without any restriction of neighborhood centered on a particular amino acid.

3 Results

The evolutionary methodology was applied to optimize the neural cellular
automata that provide the folding conformations with the FCC lattice restric-
tions and with several benchmark proteins commonly used with the FCC lat-
tice. The DE setup is: population size of 500 individuals, with standard val-
ues for the crossover probability (CR = 0.9) and the weight factor (F = 0.6).
The DE/rand/1/bin scheme (commented in Sect. 2.3, which provides the lowest
selective pressure), was used in 95% of cases to define a donor vector, whereas
the DE/best/1/bin scheme was used in the 5% of the cases. A maximum number
of fitness evaluations (5000000) is set for all the evolutionary runs.

Regarding the ANN implementation, the ANN weights are directly encoded
in the genetic population in the range [−1,1]. The same range is used when
decoding the values for each ANN, since this range allows saturating the nodes
using the standard sigmoid function as transfer function of the ANN nodes. The
configuration of the number of nodes in each ANN layer is 12:8:12, trying to
provide a trade-off between generalization and memorization. Finally, a radius
of 3 was used for the calculation of energy contacts centered on the amino acid
the ANN is applied to (Sect. 2.2).

Figure 3 includes an example of the folding provided by an evolved neural-
CA for a protein benchmark with an optimum number of 18 HH contacts. The
evolved neural-CA completes the process in 3 steps. The last snapshot corre-
sponds to the optimized conformation with the H central core with the 18 HH
contacts. In this example, in the folding process, the evolved neural-CA selected
in 55% of cases the moves that correspond with the greedy moves, that is, those
that provide the best improvement of local energy.

Table 1 summarizes results in terms of comparison of HH contacts obtained
by the evolved neural cellular automata and other methods with different bench-
mark sequences. These sequences are detailed in different works like [20]. For
each sequence its number of amino acids (L) is shown. The “neural-CA column”
specifies the number of HH contacts provided by the best individual in different
runs (10) of the evolutionary algorithm, together with the average number of
HH contacts of such best solutions (neural-CA) in the different runs (between
parentheses). The other columns specify the best values of HH contacts with dif-
ferent methods reported by the authors. We included the best algorithms in the
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initial unfolded conformation amino acid 3, step 1 amino acid 6, step 1

amino acid 7, step 1 amino acid 12, step 1 amino acid 18, step 1

amino acid 19, step 1 amino acid 1, step 2 amino acid 9, step 2

amino acid 13, step 2 amino acid 9, step 3 amino acid 11, step 3

Fig. 3. Different temporal steps in the folding process with protein sequence HPPH-
PPHPPHPPHPPHPPHPPH. The neural-CA was applied to define the move between
the amino acid specified in the caption and the next one.

prediction of the final folded conformation, such as the CSSP algorithm, using
constraint programming [1], and solutions based on genetic algorithms [12,20].
These works do not report the maximum number of fitness evaluations used for
obtaining the results. These results indicate that the best number of HH con-
tacts using direct prediction methods can also be obtained with the neural-CA
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methodology with short sequences, while the neural-CA results degrade, in terms
of HH contacts, with sequence length in comparison with the direct prediction
methods.

Table 1. Comparison of results with benchmark sequences.

Seq L neural-CA CPSP [1] Tsay - Su [20] Rashid et al. [12]

S1 20 23 (22.6) 23 23 -

S2 24 22 (20.0) 23 23 -

S3 25 17 (15.7) 17 17 -

S4 36 36 (34.1) 38 38 -

S5 48 60 (53.1) 74 74 -

S6 50 55 (44.8) 73 73 -

H1 48 60 (52.7) 69 69 69

H2 48 51 (45.9) 69 69 69

H3 48 59 (49.6) 72 72 72

4 Conclusions

We used neural cellular automata to model protein folding with the FCC lattice
model. On the contrary to the ample research performed on the direct prediction
of the final folded conformation, the neural-CA method provides an alternative
approach to tackle the PSP problem, since it models protein folding through
time to iteratively obtain the native folded conformation. For the improvement
of results, in terms of maximum number of HH contacts, the next work should
be focused on a better discrimination of the energy landscape to define the state
in each situation and to test the generalization capability of an evolved/trained
neural-CA with a protein or proteins in other different proteins.
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Abstract. We consider the job shop scheduling problem with fuzzy sets
modelling uncertain durations and flexible due dates. With the goal of
maximising due-date satisfaction, we propose a memetic algorithm that
combines intensification and diversification by integrating local search in
a genetic algorithm. Experimental results illustrate the synergy between
both components of the algorithm as well as its potential to provide good
solutions.

1 Introduction

Traditionally, it has been assumed that scheduling problems are static and cer-
tain: all activities and their durations are precisely known in advance and do not
change as the solution is being executed. However, for many real-world schedul-
ing problems design variables are subject to perturbations or changes, causing
optimal solutions to the original problem to be of little or no use in practice. It is
also common to handle all constraints as sharp, while in some cases there is cer-
tain flexibility and some constraints are better expressed in terms of preference,
so it is possible to satisfy them to a certain degree.

A source of changes in scheduling problems is uncertainty in activity dura-
tions. Within the great diversity of approaches dealing with this kind of uncer-
tainty, fuzzy sets and possibility theory provide an interesting framework, with
a tradeoff between the expressive power of probability and its associated com-
putational complexity and knowledge demands. Additionally, fuzzy sets can be
used to model flexibility or gradeness in certain management constraints such
as due dates [4].

The variant of job shop scheduling problem with fuzzy durations and, option-
ally, fuzzy due dates, is called fuzzy job shop [1]. Most contributions in the liter-
ature concentrate on minimising the project’s makespan, but some authors have
tackled the problem of maximising due-date satisfaction, either on its own or in
a multiobjective setting, combined with makespan.
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In this paper, we intend to advance in the study of the fuzzy job shop schedul-
ing problem, and in particular, in a metaheuristic method to maximise due-date
satisfaction when uncertain task durations and flexible due dates are fuzzy sets.

2 The Fuzzy Job Shop Problem

The classical job shop scheduling problem, also denoted JSP, consists in schedul-
ing a set of jobs {J1, . . . , Jn} on a set {M1, . . . ,Mm} of physical resources or
machines, subject to a set of constraints. There are precedence constraints, so
each job Ji, i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially
scheduled. Also, there are capacity constraints, whereby each task θij requires the
uninterrupted and exclusive use of one of the machines for its whole processing
time. Additionally, each job Ji may have a due date di by which it is desirable
that the job be completed. A solution to this problem is a schedule, i.e. an allo-
cation of starting times for each task, which, besides being feasible (in the sense
that all precedence and resource constraints hold), is optimal according to some
criterion, in our case, maximal due-date satisfaction.

2.1 Fuzzy Durations and Flexible Due Dates

In real-life applications, it is difficult, if not impossible, to foresee in advance
the exact time it will take to process a task. It is reasonable however to have
some knowledge (albeit uncertain) about the duration, possibly based on previ-
ous experience. The crudest representation of such uncertain knowledge would
be a human-originated confidence interval and, if some values appear to be
more plausible than others, then a natural extension is a fuzzy interval or fuzzy
number. The simplest model is a triangular fuzzy number or TFN, denoted
â = (a1, a2, a3), given by an interval [a1, a3] of possible values and a modal value
a2 ∈ [a1, a3], so its membership function takes the following triangular shape:

μâ(x) =

⎧

⎪

⎨

⎪

⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1or a3 < x

(1)

Triangular fuzzy numbers (or, more generally, fuzzy intervals) are widely used
in scheduling as a model for uncertain processing times [1,4,12].

In the job shop, we essentially need two operations on fuzzy numbers, the sum
and the maximum. These are usually defined by extending the corresponding
operations on real numbers. The resulting addition is pretty straightforward,
so for any pair of TFNs â and ̂b we have â + ̂b = (a1 + b1, a2 + b2, a3 + b3).
Unfortunately, computing the extended maximum is not that simple and the
set of TFNs is not even closed under this operation. Hence, it is common in
the fuzzy scheduling literature to approximate the maximum of two TFNs as
max(â,̂b) ≈ (max{a1, b1},max{a2, b2},max{a3, b3}). Besides its extended use,
several arguments can be given in favour of this approximation (cf. [12]).
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Fuzzy sets can also be used to model flexible due dates. Consider the case
where there is a preferred delivery date d1, but some delay may be allowed until
a later date d2. Satisfying the due date constraint thus becomes a matter of
degree, our degree of satisfaction that the job is finished on a certain date. A
fuzzy set ˜d = (d1, d2) can be used to model such gradual satisfaction level with
a decreasing membership function:

μ
˜d(x) =

⎧

⎪

⎨

⎪

⎩

1 : x ≤ d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(2)

This expresses a flexible threshold “less than”, representing the satisfaction level
sat(t) = μ

˜d(t) for the ending date t of the job [4].
When the job’s completion time is no longer a real number t but a TFN ĉ,

the degree to which ĉ satisfies the due-date constraint ˜d may be measured using
the agreement index [15]:

AI(ĉ, ˜d) =
area(˜d ∩ ĉ)

area(ĉ)
(3)

where area(˜d∩ ĉ) and area(ĉ) denote the areas under the membership functions
of (˜d ∩ ĉ) and ĉ respectively. This essentially measures the degree to which ĉ is
contained in ˜d following the standard definition of degree of subsethood. AI(ĉ, ˜d)
ranges between 0, when the due date is not satisfied at all, and 1, when the due
date is fully satisfied.

2.2 Fuzzy Schedules

To determine a solution for a fuzzy JSP, it is necessary to establish partial
task processing orders on all machines. These can be represented by a linear
processing order π. A schedule (starting and completion times of all tasks) may
be easily computed based on π. For every task x with processing time p̂x, let
PMx(π) and SMx(π) denote the tasks preceding and succeeding x in the machine
sequence provided by π, and let PJx and SJx denote respectively the predecessor
and successor tasks of x in the job sequence. Then the starting time ŝx(π) and
completion time ĉx(π) of x according to π are two TFNs given by:

ŝx(π) = max(ŝPJx
+ p̂PJx

, ŝPMx(π) + p̂PMx(π)), (4)
ĉx(π) = ŝx(π) + p̂x(π). (5)

The completion time of each job Ji, denoted ĉi(π), is the completion time of the
last task in that job. If there is no possible confusion regarding the processing
order, we may simplify notation by writing ŝx, ĉx and ĉi.

The resulting schedule is fuzzy in the sense that the starting and completion
times of all tasks are fuzzy intervals, interpreted as possibility distributions on
the values that the times may take. However, notice that the task processing
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ordering π that determines the schedule is deterministic; there is no uncertainty
regarding the order in which tasks are to be processed.

Having built a schedule from π, we can now evaluate the degree of satis-
faction of due dates. Indeed, the agreement index AIi(ĉi(π), ˜di) as defined in
(3), denoted AIi for short, measures to what degree is each job’s flexible due
date ˜di satisfied in this schedule, i = 1, . . . , n. The overall value of due-date
satisfaction for the schedule is then obtained by aggregating the individual AIi

values for i = 1, . . . , n. Two main approaches for aggregation can be found in
the literature: the minimum agreement index AImin = mini=1,...,n AIi, and the
average agreement index AIavg = 1

n

∑

i=1,...,n AIi. The minimum corresponds to
the classical approach of fuzzy decision making, while the average provides an
alternative for which the compensation property holds. Both aggregated indices
need to be maximised.

The resulting job shop problem, with fuzzy processing times and fuzzy due
dates, and where the objective is to maximise the aggregated agreement index
AIagg (where AIagg can be AIavg or AImin) can be denoted J |p̂i, ˜di|AIagg accord-
ing to the three-field notation from [7].

3 A Memetic Algorithm to Maximise AIagg

Hybrid algorithms, combining genetic algorithms with local search methods,
have proved to be very powerful in different optimisation problems. The reason is
their ability to integrate the intensification provided by the local search with the
diversification provided by the population-based algorithm. In particular, some
state-of-the-art methods for different variants of fuzzy job shop are hybrids of
this kind [11,12]. This motivates our proposal of a memetic algorithm, combining
a genetic component with local search.

3.1 Genetic Component

For the genetic component of our algorithm, solutions are codified into chro-
mosomes as permutations with repetitions [2]. Each permutation represents a
feasible task processing order π by identifying each operation θij with j-th occur-
rence of index i in the permutation. For example, in a problem with three jobs
and three machines, sequence (1, 3, 2, 2, 3, 1, 1, 3, 2) represents the task ordering
π = (θ11, θ31, θ21, θ22, θ32, θ12, θ13, θ33, θ23). For fitness evaluation, chromosomes
are decoded into schedules using an insertion schedule generation scheme as
proposed in [13] and the resulting AIagg is taken as fitness value.

The algorithm starts from a random population. It then iterates until
maxIter consecutive iterations pass without any improvement in the best solu-
tion found so far. At each iteration a new generation is built from the previous
one by applying the genetic operators of selection, recombination and replace-
ment. In the selection phase all chromosomes are randomly paired, and then each
pair is mated to obtain two offspring by applying crossover and mutation with
a certain probability. Two individuals are then selected using tournament from
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each pair of parents and their two offspring to pass onto the next generation. In
order to keep diversity, when possible the replacement strategy selects two indi-
viduals with different fitness values. For recombination, two classical operators
are used: JOX crossover [9] and insertion mutation.

3.2 Local Search Component

This component follows a typical local search schema: starting from a given solu-
tion, at each step it selects a promising element from a neighbourhood structure
to replace the current solution, until a stopping criterion is met. In our case, we
use a simple hill climbing, where the local search moves to the first neighbour
improving the objective value of the current solution. The search stops when
it reaches a solution without improving neighbours. This strategy is very fast
compared to other local search strategies, making it appealing for large neigh-
bourhoods.

For the deterministic JSP several local search methods have been proposed
where neighbours are generated by selecting (according to some criterion) two
tasks that are sequentially scheduled in a machine and changing their relative
order. This is equivalent to reversing an arc in a graph G representing a solution.
In this graph, nodes correspond to tasks and directed arcs, weighted with the
processing time of the task in the origin, represent immediate precedence between
the two tasks either in the job or the machine. Another node, representing the
start of the project is added and connected with zero weight to the first task in
each job. Also, depending on the objective function, there is a single end node to
which the last task of each job is (e.g. for the makespan minimisation) or there
is an end node per job (this is the case of some objective functions considering
due dates) [3].

The same approach is extended for the fuzzy JSP with makespan minimi-
sation in [6]. To select arcs to be reversed, the solution graph G (with fuzzy
arc weights) is decomposed in three parallel graphs Gj , j = 1, 2, 3, with iden-
tical topology but such that arcs are weighted with the j-th component of the
processing time of the task corresponding to the source node. This allows to
define critical paths in G as those paths from the start to the end that are criti-
cal (in the usual deterministic sense) in any of the parallel graphs Gj . Arcs to be
reversed are then chosen from the set of arcs in a critical path that correspond
to machine precedence. Neighbours thus generated are shown to be feasible solu-
tions. It is also shown that reversing any non-critical arc cannot possibly lead to
a solution with shorter critical paths and, hence, better makespan.

Based on these ideas, we propose two different neighbourhood structures,
one for each aggregation of agreement indices. In the case of AIavg, for its value
to increase in a neighbouring solution it must be the case that at least one of
the agreement indices AIi improves. This implies reducing the completion time
ĉi(π) of that job or, equivalently, reducing the length of the longest path from
the start node to the end node of job Ji in the solution graph. Therefore, we
consider that a path is critical for job Ji if and only if it is a longest path from
the start node to the last node of job Ji in any of the parallel graphs Gj . Notice
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that there might be more than one critical path for each job. Let CPi denote
the set of critical paths for job Ji, i = 1, . . . , n. An improvement in ĉi(π) (and
hence AIavg) can only be obtained by reversing machine arcs belonging to one
of the paths in CPi, i = 1, . . . , n. Furthermore, since AIi ≤ 1 for i = 1, . . . , n,
reducing the completion time of a job such that AIi = 1 cannot improve AIavg

either. Therefore, the neighbourhood NAIavg
is obtained by reversing machine

arcs that belong to a critical path in the set {CPi : AIi < 1, 1 ≤ i ≤ n}.
In the case that the objective function is AImin, a smaller neighbourhood

structure can be considered. Indeed, for the minimum aggregation, reducing the
completion time ĉi(π) of any job such that AIi > AImin does not improve the
objective function. Therefore we obtain a neighbourhood NAImin

⊂ NAIavg
by

reversing an arc if and only if that arc is in a critical path in the set {CPi :
AIi = AImin < 1, 1 ≤ i ≤ n}.

In summary, the local search component consists in a simple hill climbing pro-
cedure using one of the neighbourhood structures NAIavg

or NAImin
, depending

on the objective function considered. This results in quite a fast local search pro-
cedure which is applied to all the individuals that are evaluated by the genetic
algorithm.

4 Experimental Results

To provide an empirical evaluation of the proposed memetic algorithm, called
MA hereafter, we perform a series of experiments with a C++ implementation
running on a PC with Xeon processor at 2,2 Ghz and 24 Gb RAM with Linux (SL
6.0.1). The parameter values (obtained after a parametric analysis not reported
here due to lack of space) are population size 100, crossover and mutation prob-
ability 1.0 and 0.05 respectively and maxIter = 25 as stopping criterion. In all
cases, results correspond to 30 runs of MA. We evaluate solutions in terms of
1−AIagg for both AIagg = AImin and AIagg = AIavg, representing the distance
between the obtained overall due date satisfaction (measured with AIagg) and
the ideal situation where all due dates are fully satisfied. This ideal value of 1
provides an upper bound for solution performance, but if due dates are too tight
it may occur that this upper bound is actually unattainable.

In a first set of experiments, we compare MA with two methods from the lit-
erature which, to our knowledge, conform the state-of-the-art. The first method
is a genetic algorithm, denoted SMGA, proposed in [15] to optimise AImin. It
was tested on two new instances widely used in the literature thereafter (see the
review [12]): S6.4 of size 6 × 6 and S10.4 of 10 × 10. On these instances, SMGA
compared favourably to an alternative simulated annealing method SMSA. A
second approach is a random key genetic algorithm (RKGA) from [8], also max-
imising AImin. Both RKGA and the author’s own implementation of SMGA were
tested on a total of 10 instances: S6.4 and S10.4 above, 6 more instances from
the literature and 2 new ones. We find 3 instances of size 6 × 6, denoted S6.1-3,
and 3 of size 10 × 10, S10.1-3, originally proposed for a multiobjective approach
in [14]. The two new instances of size 15 × 10, denoted Lei01 and Lei02 [12], are
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meant to provide more challenging scenarios. It must be noted that the results
reported in [8] correspond to a different approximation for the maximum of fuzzy
numbers which may lead to smaller completion times (cf. [12]). Figure 1 shows
the performance of all three algorithms—SMGA, RKGA and MA using AImin

as objective function—on this test bed of 10 instances. The comparison is made
in terms of average values of 1−AImin across all runs of MA and RKGA (30 and
20 respectively) and the best average value for SMGA between the two values
reported in [8,15].
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Fig. 1. Comparison with algorithms SMGA and RKGA maximising AImin.

We can appreciate that differences among methods are almost negligible in
small instances (S6). In fact, MA obtains the same AImin value on all runs,
which suggests that this value is very close to or is actually the optimum for
these instances. For the larger instances S10.1-4 and Lei01-02, we can see that
MA yields the best results. While improvement with respect to the other methods
is small on instances S10.1 and S10.2, on S10.3 MA is 29.6% better in average
values than RKGA and on S10.4 it is 34.6% better than RKGA and 7.9% better
than SMGA. Differences grow on the largest instances: for instances Lei01 and
Lei02, the results obtained by MA are respectively 89.9% and 94.8% better than
RKGA. Moreover, the obtained average difference is close to 0, which shows the
potential of MA to solve these instances.

Additionally, we consider another method that maximises AImin, proposed
in [5]. In a multiobjective setting, a lexicographic genetic algorithm is proposed
to optimise makespan, AImin, and AIavg and tested on five instances, obtained
by fuzzifying well-known deterministic instances: FT06 (6× 6), La11, La12, La13
and La14 (20×5). The proposed method always obtains full due-date satisfaction
on all instances, with AImin = AIavg = 1. For the sake of completeness, we have
run our method on these instances, first optimising AImin and then AIavg. In
both cases, the obtained results reach the optimal value for all instances.



142 J.J. Palacios et al.

A second set of experiments is conducted on a set of more challenging
instances from [10]. These are obtained from 12 well-known benchmark prob-
lems for deterministic job shop which are considered hard to solve: FT10 (size
10 × 10), FT20 (20 × 5), La21, La24, La25 (15 × 10), La27, La29 (20 × 10), La38,
La40 (15 × 15), and ABZ7, ABZ8, ABZ9 (20 × 15). The deterministic processing
times from the original instances have been transformed into symmetric TFNs so
the original duration is the modal value, and flexible due dates have been intro-
duced. We refer the interested reader to [10] and references therein for further
information on the fuzzification process.

The results obtained on each benchmark instance when the objective function
is AIavg are summarised in Table 1. After a first column containing the name
of the instance, the second and third columns contain the value for the best
solution and the average and standard deviation (the latter between brackets)
of 1−AIavg across the 30 runs. The fourth and fifth columns are analogous, but
measuring overall due-date satisfaction with AIagg = AImin. Finally, the last
column shows the average runtime in seconds across the 30 runs.

Table 1. Results obtained using AIavg as objective function.

Instance 1 −AIavg 1 −AImin Runtime

Best Avg Best Avg

ABZ7 0.335 0.355 (0.018) 1.000 1.000 (0.000) 132.9

ABZ8 0.312 0.333 (0.012) 1.000 1.000 (0.000) 128.0

ABZ9 0.300 0.325 (0.015) 1.000 1.000 (0.000) 199.1

FT10 0.243 0.246 (0.008) 1.000 1.000 (0.000) 5.4

FT20 0.701 0.714 (0.010) 1.000 1.000 (0.000) 9.3

La21 0.358 0.381 (0.010) 1.000 1.000 (0.000) 23.9

La24 0.334 0.362 (0.015) 1.000 1.000 (0.000) 23.2

La25 0.319 0.342 (0.010) 1.000 1.000 (0.000) 25.7

La27 0.501 0.536 (0.021) 1.000 1.000 (0.000) 68.4

La29 0.457 0.479 (0.018) 1.000 1.000 (0.000) 58.3

La38 0.156 0.167 (0.007) 1.000 1.000 (0.000) 48.8

La40 0.116 0.137 (0.013) 1.000 1.000 (0.000) 56.6

Since MA is run using AIavg as objective value, the most relevant data are
those in the second and third columns. We can appreciate that the distance
to full due-date satisfaction varies significantly across the different instances,
ranging from less than 0.2 in instances La38 and La40 to an extreme value of
0.714 in instance FT20. We believe this is related to the method used in [10]
to generate due-date values. For FT20, with many jobs but just a few tasks per
job, due dates are very tight and there is little flexibility to schedule the tasks of
every job in such a way that due dates are met. On the other hand, for instances
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like La38 and La40, where both the number of jobs and tasks per job is large,
due dates result less rigid so the obtained satisfaction values are much closer to
the upper bound.

The fourth and fifth column of Table 1 illustrate how AImin turns out to be
too restrictive as aggregation method on this set of instances: even for those solu-
tions with an average agreement index AIavg relatively close the upper bound, at
least one of the due dates cannot be satisfied, resulting in AImin = 0. This is due
to the difficulty of the proposed instances, with very tight due dates that make
it very unlikely to find a solution such that AImin > 0. Indeed, when running
MA on this test bed using AImin as fitness function, the error of the obtained
solutions is always very close to 1 (1 in many instances). In fact, the initial pop-
ulation consists of random solutions for which AImin = 0 in most cases, so there
is no good solution to guide the algorithm to promising areas of the search space.
On the other hand, using AIavg as fitness value, the initial population already
contains many individuals with fitness greater than 0, allowing MA to converge.

In a final set of experiments, we assess if both components of our memetic
algorithm MA are actually contributing to the obtained results. To this end,
the genetic component, GA, and the local search, LS, are run independently on
the second set of more challenging instances. For a fairer comparison, LS is run
as a multi-start local search with as many restarts as the average number of
evaluations performed by MA on each instance. Analogously, GA is run with
the same setup as MA for as long as the latter takes to converge. Due to the
issues we have outlined regarding the optimisation of AImin in the harder set of
test instances, we take AIavg as objective function in all cases. The multi-start
local search starting from random solutions obtains the worst results, not only
in performance, Fig. 2, but also in runtime which is 44% larger than MA. On
the other hand, GA performs much better than the local search. Still, we can
appreciate a synergy effect when combining both strategies, with MA obtaining
much better results in the same running time than GA. This shows that MA
benefits from the exploration of GA and also from the intensification of LS.
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5 Conclusions

We have tackled the job shop scheduling problem with uncertain durations and
flexible due dates modelled as fuzzy numbers. We have proposed a memetic algo-
rithm, combining a genetic algorithm with a purpose-built local search. Exper-
imental results compare favourably with the state-of-the-art methods, showing
the potential of the proposed method.
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Abstract. The aim of evolutionary level set approximation is to find
a finite representation of a level set of a given black box function. The
problem of level set approximation plays a vital role in solving problems,
for instance in fault detection in water distribution systems, engineer-
ing design, parameter identification in gene regulatory networks, and in
drug discovery. The goal is to create algorithms that quickly converge to
feasible solutions and then achieve a good coverage of the level set. The
population based search scheme of evolutionary algorithms makes this
type of algorithms well suited to target such problems. In this paper, the
focus is on continuous black box functions and we propose a challenging
benchmark for this problem domain and propose dual mutation strate-
gies, that balance between global exploration and local refinement. More-
over, the article investigates the role of different indicators for measuring
the coverage of the level set approximation. The results are promising
and show that even for difficult problems in moderate dimension the pro-
posed evolutionary level set approximation algorithm (ELSA) can serve
as a versatile and robust meta-heuristic.

1 Introduction

The problem of black box level set approximation is to find all inputs (arguments)
of a function that give rise to an observed or targeted output. In general, we
demand the output to be within a range or below a threshold ε ∈ R and we aim
to approximate the set. Given a black box objective function f : S → R, with
S ⊂ R

d, we search for the set L(f ≤ ε) which is defined as:

L(f ≤ ε) := {x ∈ S | f(x) ≤ ε} (1)
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 146–159, 2017.
DOI: 10.1007/978-3-319-59740-9 15
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In the following we assume that x is taken from a compact domain S. More
specifically, we will in the following look at problems where the input variables
are constrained by box constraints:

S = [xmin
1 ,xmax

1 ] × · · · × [xmin
d ,xmax

d ]

Problems of level set approximation occur in various disciplines of science and
engineering.

– Fault Detection and Model-Based Diagnosis: The problem could be to find
all possible source locations of a contamination given a model of a water
distribution system [ZR07].

– Parameter Identification: Find all parameters of a system’s model that can
explain an observed behavior. The behavior can, for instance, be given by
gene activation time series and it is used to find unknown reaction rates
(propensities) in a gene regulatory network model [NE15].

– Design Engineering: Find all possible designs that comply with a prescribed
behavior. For instance, different designs of building shapes that are compliant
with maximum stress and with energy efficiency demands could be searched
for [PCWB00,ZR07].

– De Novo Drug Discovery: Represent the space of molecular compounds that
have chemical properties within a prescribed range. See for instance [vdB13].
Moreover, different low energy configurations and positions of molecules could
be searched for in molecular docking problems.

This paper contributes to the development of a robust evolutionary algo-
rithm for black box level set approximation. The steady-state algorithm ELSA
( Evolutionary Level Set Approximation) [EDK13] is tested on a broader range
of problems including for the first time problems in more than two dimensions.
To test the ELSA approach, we construct a set of nonlinear test problems that
cover a wide range of properties and we study the geometry of the solution
sets. We also study a dual mutation operator that can help to better identify
disconnected components of level sets.

The paper is structured as follows: After discussing related work in Sect. 2, we
describe the ELSA algorithm in Sect. 3. After this a set of benchmark problems is
introduced in Sect. 4 and we summarize experimental studies on the robustness
and precision of selected algorithm variants in Sect. 5. Finally, Sect. 6 concludes
the paper with a summary of main results and outlook to future studies in this
research line.

2 Related Work

Level set approximation has received some attention in numerical analysis
[Set99], where it is usually used for solving explicitly given problems and not
for black box formulation, but so-far little attention has been paid to target-
ing black box problems and population-based search heuristics for solving them.
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In practice, the use of complex simulation codes for function evaluations has
increased the need for such black box enabled techniques.

As opposed to the often discussed problem of black box optimization, in level
set approximation we are not in the first place interested in optimal solutions,
but rather in solutions that satisfy certain criteria. The underlying assumption
can be that the system’s measurements are not exact and a minimization of, for
instance, the deviation from the desired target could exclude possible explana-
tions or solutions. A closely related question, related to level set approximation,
is to find all solutions that are within a certain tolerance range close to the glob-
ally optimal solution [ZR07]. Moreover, approximating Pareto fronts in multi-
objective optimization has much in common with level set approximation, as in
both cases a set that satisfies certain conditions should be covered. However,
in multi-objective optimization, the Pareto dominance relation is considered for
qualification of whether a point belongs to the set to be covered relative to the
position of other points in the objective space. Still, many principles of multi-
objective algorithm design such as the use of indicators, population-based meth-
ods, and exploration/exploitation handling, are also of interest in the design of
evolutionary level set approximation [EBN05].

A closely related work is diversity optimization, a term used by Ulrich and
Thiele [UT11]. The idea of their algorithm NOAH is to find diverse sets of
optimal or near optimal solutions. The algorithm NOAH lowers the threshold
level gradually while evolving a population of points w.r.t. the maximization of
diversity. In particular, the Solow-Polasky diversity metric [SPB93] was chosen in
this context, which has several favorable theoretical properties but also requires
the choice of a correlation parameter in its definition. Similar to ELSA, NOAH
follows an indicator-based steady-state selection scheme, but it differs in the
range of diversity indicators to be applied and in the way infeasible solutions
are treated. Whereas ELSA uses augmentation, a kind of smooth penalization
of infeasible solutions, in NOAH different phases of the algorithm are defined
in which the constraints are gradually tightened. However, this scheme requires
setting of many parameters which makes benchmarking of NOAH difficult. In
our work, we use the Solow-Polasky metric, similar to NOAH. Hence ELSA can
be considered as a very similar algorithm or variant of NOAH.

As opposed to diversity maximization, level set approximation seeks to find
a representation of the level set. This should be expressed in the performance
assessment. It has been argued in [EDK13] that if a set in R

d is approximated
by a maximally diverse set, then the solution sets tend to distribute along the
boundary of the level set. This would imply larger distances between solutions
of the level set and gaps in the interior. In contrast, the problem of representing
the level set well would rather imply closeness of the approximation set to the
targeted set in the sense of minimal Hausdorff distance, meaning that all points
in the targeted set should be as close as possible to (some) points in the approxi-
mation set, and vice versa, all points in the approximation set should be as close
as possible to (some) points in the target set. Unfortunately, the first criterion
cannot be assessed if the target set is not yet known. It is therefore, inevitable to
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use proxy indicators to assess the performance of an approximation set within
the algorithm. Several such proxy indicators, including the Solow-Polasky indi-
cator, have been discussed in [EDK13].

3 Evolutionary Level Set Approximation (ELSA)

ELSA is a relatively novel, simple in design, evolutionary algorithm (EA) for level
set approximation. It is guided by quality indicators (QIs) that rate the fitness
of a population. ELSA is a (μ + 1)-EA (or steady-state EA), which means that
ELSA creates one child per generation and only one solution cannot survive to
the next generation. Steady-state selection is commonly adopted by indicator-
based EAs (IBEAs) to circumvent computationally expensive subset selection
problems [EBN05].

3.1 Quality Indicators for Level Set Approximation

A quality indicator (QI) assigns a single value to a level set approximation, that
is a finite set A ⊂ S. It should consider how many points of the level set have
been found and how well they are distributed. In [EDK13] a detailed discussion
is provided and here we will only summarize the most important definitions. A
quality indicator is monotonous, if it grows with the number of points in the fea-
sible set. It should also reward a good coverage of the level set. Indicators which
fulfill these properties are the Augmented Average Distance (ADI+), Augmented
Solow-Polasky (SP+), and three types of Augmented Gap indicators (GI+): Aug-
mented Min-Max Diversity (GI+N ), Augmented Arithmetic Mean (GI+Σ), and
Augmented Geometric Mean (GI+Π). In this study, only the GI+Π and the SP+

indicator are used, as the ADI+ indicator is computationally expensive and the
other augmented gap indicators had several disadvantages that were highlighted
in [EDK13]. The SP indicator is defined in [SPB93] and measures the number of
species in a population. This indicator has a θ parameter that scales the distance
matrix and θ = 10 is recommended [UBT10]. Let D(x, Y ) denote the (Euclid-
ean) distance of x to the closest point in a set Y . The Geometric Mean is defined
as GIΠ =

∏n
p∈A D(p,A\{p}), with A being the approximation set that is made

up of all solutions x combined. In level set optimization, we only measure the
diversity of the feasible subset and subtract a penalty for all infeasible points
that growth proportionally with the distance to the threshold ε. By this, each
indicator can be extended to an augmented indicator which in turn can be used
as a quality indicator: indicator+ = indicator(L ∩ A) − penalty(A \ L). For the
Gap indicator we chose penalty(X) =

∑
x∈X (Diameter(S) + (f(x) − ε)), where

Diameter denotes the longest distance in S. For the SP indicator, the penalty
reads penalty(X) =

∑
x∈X(f(x) − ε). By choosing these penalties, it is made

sure that replacing an infeasible point in A by a feasible point always yields an
improvement.
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Algorithm 1. Indicator-Based Evolutionary Level Set Approximation (ELSA)
1: P0 ← init() {Initialize population}
2: t ← 0
3: while not terminate do
4: u ∼ rand(0, 1) {Draw uniform number between 0 and 1}
5: if u ≤ ν then
6: q ← mutate(Pt, σ) {create new child solution by mutation}
7: else
8: q ← reinitialize(S) {create new child solution by random re-initialization}
9: end if

10: P ′
t ← Pt ∪ {q}

11: r = arg minp∈P ′
t
(ΔQI(p, P ′

t )) {Select solution that least contributes to QI}
12: Pt+1 ← P ′

t \{r}
13: t ← t + 1
14: end while
15: return Pt

3.2 Basic Algorithm

Algorithm 1 describes the steps of ELSA. Pt is the population of approximation
set solutions in generation t. It contains the points that represent the level set.
The first step in the main loop is to create the child q ∈ S, for instance by adding
a small perturbation to a solution in Pt.

ELSA adopts a mixed mutation strategy, for a constant mutation probability,
the algorithm either creates a child by randomly creating a new point in S
(random reinitialization), or by adding a perturbation to a point in Pt (parent-
based mutation). The perturbation is drawn from an i.i.d. multivariate normal
distribution with a standard deviation of σ (step-size) and mean value of zero.
The default pseudo-random number generator from MATLAB 11 was used in
this work, both for the normal and for the uniform distribution. The decision
of which mutation to use, is based on a random number itself. The parameter
ν ∈ {0, 1} is the probability that a parent-based mutation is used, and 1 − ν is
the probability of random reinitialization. The reinitialization step is a simple
means to prevent the algorithm getting trapped in a local optimum or to miss a
component of the level set and the setting of ν and σ will be subject to further
study in this paper. In the next step, P ′

t denotes the temporary new population
which includes solution r. To keep the population size constant, in step 11 and
step 12, the least contributing individual in P ′

t is identified and discarded from P ′
t

to form the new parent population Pt+1. The contribution of a point is decided
by its Quality Indicator Contribution (QIC) which, for a given quality indicator
(to be maximized) is defined as: ΔQI(p,A) := QI(A)−QI(A\{p}). The algorithm
is terminated when the number of evaluations exceeds a user-defined evaluation
budget.
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4 Benchmark Problems for ELSA

ELSA has only been tested on benchmark problems in two dimensions in pre-
vious research. Next we propose a set of benchmark problems for more than 2
dimensions. The benchmarks are divided into two categories: simple and complex
shapes. Simple shapes refer to basic geometrical objects, such as generalizations
of spheres. Simple shape benchmarks are Lamé, Ellipsoid, Hollow Sphere, and
Double Sphere:

LLamé(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

d∑

i=1

√∣
∣
∣
xi

3

∣
∣
∣ − 1 ≤ 0

}

(2)

LEllipsoid(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

d∑

i=1

(xi

ci

)2

− 1 ≤ 0

}

(3)

where c = [1 2 2.5] for 3D, and c = [1 2 2.5 1 2 2.5 1 2 2.5 1] for 10D

LHollow(x) =

{

x ∈ [−3, 3]d
∣
∣
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∣
∣
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∣

√
√
√
√
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∣
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}

(4)

LDouble(x) =

{

x ∈ [−3, 3]d
∣
∣
∣
∣
∣

(√
√
√
√

d∑

i=1

(xi + 1)2 − 1

)

·
(√

√
√
√

d∑

i=1

(xi − 1)2 − 1

)

≤ 0

}

(5)

Complex shapes refer to engineering relevant shapes described by functions
more complex than those found in the simple shapes benchmark category. The
shape functions used for the complex shape benchmarks are taken from mathe-
matical functions in multimodal optimization problems. They are used to show
the performance of the Indicator-Based Evolutionary Algorithms on more real-
istic landscapes in terms of practical test problems. The complex shape bench-
marks are Branke’s Multipeak [Bra98,Kru12], Rastrigin, Schaffer [Kru12], and
Vincent [vdGSB08]:

fBranke′s(x) =
1
d

d∑

i=1

(
1.3 − g(xi)

)

g(xi) =

⎧
⎨

⎩

−(xi + 1)2 + 1 if −2 ≤ xi < 0
1.3 · 2−8|xi−1| if 0 ≤ xi ≤ 2
0 otherwise

(6)

LBranke′s(x) =
{

x ∈ [−2, 2]d
∣
∣
∣
∣fBranke′s(x) ≤ 0.4

}

(7)

where this benchmark is not included as a level set benchmark for 10D

LRastrigin(x) =

{

x ∈ [−4.5, 4.5]d
∣
∣
∣
∣
∣
10d +

d∑

i=1

(
x2

i − 10 · cos(2πxi)
)

≤ 29

}

(8)
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LSchaffer(x)

=

{

x ∈ [−2.5, 2.5]d
∣
∣
∣
∣
∣

d−1∑

i=1

(x2
i +x2

i+1)
0.25 ·

(

sin2
(
50 · (x2

i +x2
i+1)

0.1
)
+1

)

≤2

}

(9)

LV incent(x) =

{

x ∈ [0.5, 5]d
∣
∣
∣
∣
∣
− 1

d

d∑

i=1

sin
(
10 · ln(xi)

)
≤ −0.8

}

(10)

The difficulty of the level set benchmark depends on the level set shapes and
their sizes. In general small objects are more difficult to locate, which leads to an
increase in difficulty for the benchmark. The same applies for thin parts or acute
angles in an object, which add a challenge when locally exploring a feasible com-
ponent. If a level set has disjoint parts, it is expected that the algorithm should
settle at least one solution on each disjoint part, unless the approximation set
size is smaller than the amount of disjoint parts. Many of the chosen complex
shape level sets have an exponential growth in the number of their disconnected
component when increasing the dimensionality of the level set benchmark. Hav-
ing large distances between the disjoint parts can serve as a way to test the
global search capabilities of the algorithm. To this end, the difficulty of the level
set benchmarks has been tailored according to the philosophy of the ELSA algo-
rithm to not consider points in the exterior of the approximation set. Therefore,
we avoid components of measure zero. The shape of the level sets can be seen
in Fig. 1.

5 Experimental Analysis

The experiments with ELSA consist of two main parts: First part shows that
implementing both global and local search is essential for black box level set
benchmarks. The importance of mixed mutation strategy is measured by com-
paring different ν values for ELSA on 3D Ellipsoid and Vincent level set bench-
mark for two different σ step-sizes (results presented in Table 1); In the second
part, the importance of choosing the right σ step-size is highlighted, this is
seen from the experiments of ELSA on all benchmarks. These experiments show
the robustness of ELSA with different σ step-sizes on 3D and 10D benchmarks
(Tables 2 and 3, respectively), where ν is set to 0.5 (a recommended parameter
value derived from the mixed mutation strategy experiments). Finally, Table 4
presents a comparison on the amount of evaluations to yield a population that
solely consists of feasible solutions, with respect to different step-sizes, for 3D
and 10D benchmarks. The Monte Carlo Search (MCS) is included as a reference
algorithm configuration in all the experiments. ELSA can easily be transformed
into the MCS approach by setting ν to 0 (σ is irrelevant as the algorithm never
produce children through parent perturbation).

The evaluation budget for a single ELSA run is set to 10 K for all 3D level
set benchmarks and 100 K for 10D benchmarks. Population size μ = 100 is used
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for all experiments. Each configuration has been run 40 times. Several σ step-
sizes are to be defined to use in ELSA. The generic form for the σ step-size is
described below, where d is the dimension:

σ =
ω · mean(xmax − xmin)√

d

√
d is derived from the longest diagonal of an n-dimensional hypercube. The

chosen ω values for the σ step-sizes are 1, 0.1, 0.01, and 0.001 (different magni-
tudes of 10). 3D Ellipsoid and 3D Vincent are used as the level set benchmarks to
compare the results for mixed mutation strategy. They represent the core oppo-
sites of having a non-disjoint level set with Ellipsoid versus the multisegmented
Vincent level set. The chosen ν values are 0, 0.25, 0.5, 0.75, and 1.

The following objectives are used for the comparison of the results:

– Diversity: The Quality Indicator value of the final population.
– EvalFeasible: The amount of evaluations it takes to yield a population that

solely consists of feasible solutions.
– Coverage of the final population on the level set determined by human

observation.

Table 1 allows us to reason about the effect ν has in scenarios of small and
big step-sizes, for single level set (Ellipsoid) and multiple level set (Vincent)
problems. For the Ellipsoid problem with ω = 0.1, we see that the higher the ν
value the better the diversity yielded with GI+Π and SP+. This behavior is mainly
explained by the fact that Ellipsoid is a single level set problem. In Vincent
problem with ω = 0.1 both GI+Π and SP+ indicators show that intermedium
values of ν (0.25 and 0.5) perform better than extreme ones such as 0 and 1
(best from worst for GI+Π and SP+: 0.25, 0.5, 0, 0.75, 1, with ν = 1 being
significantly worse).

For ω = 0.01, both GI+Π and SP+ indicators in the Ellipsoid problem also
reveal that intermedium values of ν such as 0.5 and 0.75 perform better than
extreme ones (GI+Π best to worst: 0.5, 0.75, 0.25, 0, 1; and SP: 0.75, 0.5, 0.25,
0, 1). A similar conclusion can be made for the Vincent problem with ω = 0.01,
intermedium values of 0.25 and 0.5 of ν allow for best GI+Π and SP+ results (best
to worst, GI+Π and SP+: 0.25, 0.5, 0, 0.75, 1).

Results from Table 1 show that the tuning/trade-off settings allowed by ELSA
mixed mutation strategy, is essential for the exploration and exploitation of single
and multiple level set problems. For the test on different values of ν it can be
observed that higher values of ν have priority, in case of simple problems with
connected level sets (Ellipsoid). On the contrary, a value of ν that lies between
0 and 1 should be chosen, if the level set is disconnected (Vincent). There is an
optimal setting of ν which is in the middle between the two extremes. This makes
sense, as in the multimodal case it is important to explore (find new components
of the level set by reinitialization), but also one has to distribute points well in
the found level set components (parent based mutation).
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Table 1. The diversity of the final populations from ELSA with ω = 0.1 and ω = 0.01
for σ step-size and different ν values on selected 3D level set benchmarks.

ν = 0 ν = 0.25 ν = 0.5 ν = 0.75 ν = 1

mean std mean std mean std mean std mean std

Ellipsoid
(ω = 0.1)

GI+Π 0.592 0.004 0.613 0.005 0.625 0.004 0.631 0.005 0.637 0.004

SP+ 99.198 0.029 99.327 0.021 99.381 0.016 99.413 0.015 99.439 0.012

Vincent
(ω = 0.1)

GI+Π 0.518 0.015 0.532 0.013 0.525 0.016 0.485 0.021 0.355 0.030

SP+ 98.736 0.243 98.953 0.125 98.920 0.202 98.665 0.379 94.613 2.098

Ellipsoid
(ω = 0.01)

GI+Π 0.592 0.004 0.637 0.006 0.647 0.005 0.641 0.007 0.504 0.050

SP+ 99.198 0.029 99.444 0.022 99.498 0.016 99.510 0.017 99.091 0.411

Vincent
(ω = 0.01)

GI+Π 0.518 0.015 0.562 0.015 0.541 0.019 0.440 0.025 0.178 0.028

SP+ 98.736 0.243 99.088 0.182 98.948 0.232 97.665 0.621 70.054 9.182

Experiment results in Table 2 show that ELSA is able to consistently find
entirely feasible populations with high diversity on all 3D level set benchmarks
for almost all the tested σ step-sizes. Even MCS can produce relatively good
results with the exception of Lamé benchmark which proves to be too difficult
to find feasible solutions with purely random search. The results from ω = 1
resemble the results of MCS, thus it can be considered a too large step-size.
ELSA with ω = 0.1 and ω = 0.01 are most successful at finding diverse approx-
imation sets, where the results with ω = 0.1 have noticeably better diversity in
3D Schaffer. Results from w = 0.001 however show a decline in diversity which
indicates that this σ step-size is too small for the level set benchmarks. Similar
patterns between the different step-sizes are reflected in the 10D level set bench-
marks (See Table 3). Again, the configurations with ω = 0.1 and ω = 0.01 are
observed to be most suited in general for these type of black-box level set bench-
marks. However, the limitations of ELSA are revealed in higher dimensions as it
struggles with finding an entirely feasible set for Lamé, Rastrigin and Schaffer
regardless of σ step-size. MCS and ELSA with ω = 1 are the most severe cases
whereby they cannot even find any entirely feasible populations. For the other
10D benchmarks, ELSA with ω = 0.1 or ω = 0.01 find diverse populations where
the results from Solow-Polasky on Ellipsoid and Hollow Sphere are near optimal
in measurement.

Table 4 experiments compare 3D and 10D convergence to the level set, it
shows that the setting of the step size parameter is crucial not only for finding
sets with a good coverage, but also for finding the components of the level set.
Step size settings are more critical in the high dimensional case and in the future
work automatic adaptation of the step size should be developed.
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Table 2. The diversity of the final populations from the tested algorithm configurations
on the 3D level set benchmarks.

MCS ω = 1 ω = 0.1 ω = 0.01 ω = 0.001

mean std mean std mean std mean std mean std

Lamé GI+Π −15.411 41.893 −6.820 23.989 0.326 0.006 0.284 0.015 0.121 0.022

SP+ 68.961 2.642 67.740 2.609 86.442 0.448 85.503 1.103 57.155 4.318

Ellipsoid GI+Π 0.592 0.004 0.593 0.006 0.625 0.004 0.647 0.005 0.594 0.007

SP+ 99.198 0.029 99.192 0.035 99.381 0.016 99.498 0.016 99.170 0.045

Hollow GI+Π 0.575 0.007 0.576 0.005 0.614 0.005 0.639 0.007 0.576 0.007

SP+ 99.131 0.043 99.144 0.038 99.362 0.016 99.504 0.020 99.091 0.065

Double GI+Π 0.413 0.006 0.413 0.007 0.463 0.003 0.464 0.007 0.396 0.010

SP+ 95.128 0.203 95.049 0.203 96.709 0.077 97.059 0.107 94.230 0.468

Branke’s GI+Π 0.254 0.009 0.260 0.006 0.295 0.007 0.291 0.011 0.205 0.019

SP+ 80.179 1.267 80.364 1.550 86.537 0.731 86.173 1.627 71.108 3.214

Rastrigin GI+Π 1.549 0.014 1.552 0.019 1.506 0.023 1.563 0.025 1.493 0.022

SP+ 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000

Schaffer GI+Π 0.302 0.016 0.307 0.012 0.395 0.005 0.302 0.016 0.190 0.032

SP+ 84.973 1.839 84.918 1.991 93.275 0.434 86.424 1.767 71.024 4.023

Vincent GI+Π 0.518 0.015 0.514 0.019 0.525 0.016 0.541 0.019 0.444 0.022

SP+ 98.736 0.243 98.716 0.212 98.920 0.202 98.948 0.232 97.132 0.571

Table 3. The diversity of the final populations from the tested algorithm configurations
on the 10D level set benchmarks.

MCS ω = 1 ω = 0.1 ω = 0.01 ω = 0.001

mean std mean std mean std mean std mean std

Lamé GI+
Π

−2199.11 3.39 −2182.17 3.21 −1922.81 11.17 −1422.44 859.12 −2067.21 36.38

SP+ −301.53 3.79 −284.76 2.86 −32.02 1.43 −41.11 48.43 −174.82 31.63

Ellipsoid GI+
Π

−2027.30 15.73 −1980.68 26.12 1.663 0.014 1.242 0.076 0.177 0.045

SP+ −139.80 5.24 −104.30 7.35 100.000 0.000 100.000 0.000 27.434 14.023

Hollow GI+
Π

−1944.75 19.53 −1872.49 38.62 1.760 0.005 1.502 0.023 0.215 0.041

SP+ −68.39 4.55 −44.02 4.14 100.000 0.000 100.000 0.000 34.293 9.441

Double GI+
Π

−2586.90 12.45 −2467.93 17.08 0.966 0.032 0.945 0.008 −402.69 791.54

SP+ −692.29 15.41 −571.12 13.84 99.948 0.018 99.946 0.002 −0.89 39.49

Rastrigin GI+
Π

−7355.82 98.02 −7144.56 82.24 −3095.72 546.12 −2101.94 1743.26 −1985.23 1837.74

SP+ −4531.24 71.23 −4324.87 80.48 −600.63 286.13 −281.08 526.95 −494.81 672.37

Schaffer GI+
Π

−2439.64 8.68 −2403.24 9.41 −1743.84 41.45 −2118.51 95.64 −2114.59 70.52

SP+ −859.49 7.69 −824.42 9.42 −175.86 52.09 −526.95 123.59 −553.91 64.94

Vincent GI+
Π

−1210.98 56.09 −1174.72 62.49 0.943 0.102 0.726 0.112 0.218 0.029

SP+ 9.88 3.63 13.87 3.56 99.933 0.041 98.281 2.331 51.121 9.313

Figure 1 represents the final populations of ELSA, generated with GI+Π under
the setting of ν = 0.5 and ω = 0.1, for 3D benchmarks of Lamé (a), Ellipsoid
(b), Branke’s Multipeak (c), Rastrigin (d), Schaffer (e) and Vincent (f). The
populations are selected in a way that their measured diversity comes closest
to the average diversity found over all runs. The populations from SP+ have a
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Table 4. EvalFeasible of the results from the tested algorithm configurations.
EvalFeasible is calculated as the average of the results from GI+Π and SP+ combined.
The “-” symbol marks a configuration that contains at least one population that does
not solely consist of feasible solutions.

3D 10D

MCS ω = 1 ω = 0.1 ω = 0.01 ω = 0.001 ω = 0.1 ω = 0.01 ω = 0.001

mean std mean std mean std mean std mean std mean std mean std mean std

Lamé - - - - 1067 113 911 137 957 238 - - - - - -

Ellipsoid 1030 101 1044 93 468 40 454 49 456 49 3045 493 9022 2436 40474 17868

Hollow 1279 122 1252 119 539 46 492 46 488 60 2715 362 7852 2245 29867 12113

Double 2570 278 2542 255 686 68 622 75 642 100 4377 473 13679 3507 - -

Branke’s 4488 468 4105 419 969 89 764 109 758 127

Rastrigin 1043 106 1062 93 710 66 465 44 453 42 - - - - - -

Schaffer 6316 663 6247 586 1101 120 862 135 833 143 - - - - - -

Vincent 2852 309 2843 283 1086 91 659 83 656 77 3152 534 2694 674 5946 2991

tendency for solutions to reside on the boundary of the level set which is not
always a desired behavior when taking practical applications into account. While
figures labeled with 1 (for example a1) represent 3D plots of the level sets, figures
labeled with 2 represent a 2D projection of the 3D plots (for example a2). The
level sets are depicted in light gray and are semi-transparent. In the 3D view,
the RGB-value (converted into gray scale) of a solution maps to the (x1, x2, x3)-
coordinate of the solution with respect to the search space. In the orthographic
view, gray scale coding is used to determine the location of the solution with
respect to the x3-axis.

By visual inspection of Fig. 1 we can state that the acute parts of Lamé are too
challenging for ELSA to evenly distribute solutions over them. The populations
are well-spread on simple shape benchmarks like Ellipsoid (while not depicted,
it also holds for Hollow Sphere and Double Sphere). Branke’s Multipeak has
each level set component covered by solutions for both quality indicators, but
the result from GI+Π does not balance the number of points evenly across the
components. For Rastrigin the majority of the solutions are settled on the center
raster-like structure, however ELSA is able to settle some solutions on the outer
rim disjoint parts. 3D Schaffer has similarities to Lamé in terms of general shape
and the same problems with ELSA are encountered, but ELSA manages to
distribute solutions on the exterior parts to some degree despite the lack of
connectivity. 3D Vincent has 64 disjoint level set parts and neither population
can cover them all, although the overall diversity is good.



Indicator-Based Evolutionary Level Set Approximation 157

Fig. 1. Visualization of results on 3D benchmark achieved with GI+Π indicator.
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6 Summary and Outlook

The current study shows that a mixed strategy of random reinitialization and
parent-based mutation is preferable to using only one of these strategies, because
it allows to explore and to refine at the same time, thereby minimizing the risk
that a component of the level set is overlooked. This mixed strategy might be
considered preferable, as we lose performance for the sake of reliability.

In contrast to previous work where only 2D problems were addressed, in
our study ELSA performance is assessed for low (3D) and high dimensional
level sets (10D). This study allowed to conclude that step size parameter is
crucial (specially in higher dimensions) to get both good coverage and to find
the components of the level set. Automatic adaptation of the step size (Self-
adaptive σ) should be developed to adapt the algorithm parameters to problem
specific properties.

Although ELSA has revealed very good performance in simple shape bench-
marks such as Ellipsoid for low and high dimensions, there is still space for
improvement in shapes with acute parts such as Lamé, Rastrigin and Schaffer,
specially in high dimensions. To this end, new selection and cross-over operations
can be designed for ELSA.

There are still some ways that can be tried to improve the performance of
ELSA: The current version of ELSA does not utilize cross-over, that might help
to improve the level set coverage (close gaps). However, it might also be dis-
ruptive, when applied to individuals from different components of the level set.
Moreover, creating more than one children or introduction of mating selection
could be beneficial for improving the quality of results, but would also signifi-
cantly increase computational costs of an iteration.

In contrast to evolutionary algorithms AIS feature a variable population size
and they also have some inherent mechanisms for diversity maintenance, which
makes them a promising technique for level set approximation [CZ06].
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Abstract. The expected widespread adoption of electric vehicles (EVs)
in the near future brings new challenges as for example that of schedul-
ing the charging times under limited power and other technological con-
straints. In this paper, we tackle a scheduling problem derived from a
EV charging model and control system recently proposed to organize the
charging times of a large fleet of EVs. This problem may be formalized
as that of scheduling a set of tasks with given processing times and due
dates on a machine whose capacity varies over time. We first introduce
a schedule builder and study its main properties. Then, we propose a
genetic algorithm that exploits the schedule builder as decoding algo-
rithm. Experimental results show the suitability of our approach.

Keywords: Scheduling · One machine sequencing · Electric vehicles
charging · Genetic algorithm

1 Introduction

One machine sequencing problems are of great interest for the community of
researchers and practitioners in scheduling. Sometimes, they appear as natural
relaxations of more complex problems and so they are useful to obtain lower
bounds [3]; while in other situations the resolution of some scheduling problem
may be reduced to solve a number of instances of some one machine sequencing
problem [2]. The later is the case of the problem considered in this paper in
which a number of tasks must be scheduled on a single machine with capacity to
process more than one task at a time, but whose capacity varies over time. This
problem was introduced in [6] in the context of scheduling the charging times of
a large fleet of Electric Vehicles (EVs).

The EV charging scheduling problem (EVCSP) considered in [6] is motivated
by a charging station whose design is outlined in [10] to be installed in a com-
munity park where each user has his/her own space. Figure 1 shows the general
structure and the main components of this charging station. Each space has a

c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 160–169, 2017.
DOI: 10.1007/978-3-319-59740-9 16
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charging point which is connected to one of the three lines of a three phase feeder.
The system is controlled by a central server and a number of masters and slaves.
Each slave takes control of two charging points and each master controls up to
eight slaves in the same line. The control system registers events as EVs arrivals
and sends activation/deactivation signals to the charging points in accordance
with a schedule.

Due to the EVs arrivals being not known in advance, the EVCSP is dynamic
and so that schedule must be calculated at different points over time. Further-
more, the physical characteristics and the operating mode of the charging station
impose some restrictions to the EVCSP which make it really difficult to solve.
In particular, the contracted power is limited and so it restricts the maximum
number of EVs that may be charging (active) simultaneously in a line. Besides,
the number of active EVs in the three lines must be similar to avoid an excessive
imbalance among the three phases. Figure 2(a) shows a feasible schedule for the
situation represented in Fig. 1; dark bars represent the EVs that are charging at
time Tk and light bars represent EVs that are scheduled at a later time. In this
example, the maximum number of active EVs in a line is 4 and the maximum
difference in the number of active EVs in two lines is 2. For these reasons, none
of the tasks 12 and 13 can be scheduled at Tk because if some of them were
scheduled at this time, lines 2 and 3 would be imbalanced after completion of
task 9.

4

3

6

8

7

1

2

10

5

9

Fig. 1. General structure of the charging station. (1) Three-phase electric power 400v
AC, (2) lines, (3) charging points Type 2/AC IEC 62196-2 with V2G communication
interface ISO 15118, (4) masters, (5) server, (6) communication Rs 485, (7) communi-
cation TCP/IP, (8) slaves, (9) active vehicles, (10) inactive vehicles.

To solve the EVCSP, in [6] the authors proposed an algorithm which con-
siders at each scheduling time the active EVs in each line (which cannot be
rescheduled), the demanding EVs (which have not yet started to charge), the
maximum number of active EVs in a line, N , and a profile of maximum load
in each line Ni(t), i = 1, 2, 3, which is iteratively adapted to keep the imbalance
among the lines under control. The objective is to schedule all the EVs in the
three lines such that all the constraints are satisfied and the total tardiness, i.e.,
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Fig. 2. (a) A feasible schedule for the problem in Fig. 1. Tasks 1–10 are the active EVs
in lines 1, 2 and 3 at time Tk, while tasks 10–13 are the inactive EVs in lines 2 and 3,
which are scheduled but not started to charge at time Tk. (b) Definition of the capacity
of the machine Cap(t) from the maximum profile Nj(t) and the active EVs at time Tk.

the delay w.r.t. to the times the users want to take their EVs away, is minimized.
If two of the obtained schedules are imbalanced at some time point, some of the
maximum profiles Ni(t) must be recalculated and a new schedule obtained for
line i. The details of this process are given in [6].

Therefore, scheduling the EVs in each line, subject to the maximum load and
taking into account the active EVs, may be viewed as the problem of scheduling
a set of tasks on a machine with variable capacity over time. The calculation of
the capacity of the machine from the active EVs and the maximum load profile
is illustrated in Fig. 2(b). It is important to remark that the capacity of the
machine is always a unimodal function. It is increasing at the beginning as long
as the active EVs complete charging and decreasing towards the end due to the
way the maximum profiles are updated. Furthermore, it finally gets stabilized at
a value greater than 0, what guarantees that the scheduling problem is solvable.

This problem may be represented as (1, Cap(t)||∑ Ti) in the conventional
(α|β|γ) notation proposed in [5]. In [6] it was solved by means of the well-known
apparent tardiness cost rule (ATC), which is usually exploited to solve scheduling
problems with tardiness minimization. This is a simple priority rule that takes
very low time and so it is suitable to be applied in a real time setting.

In this paper, we propose to solve this problem by means of a genetic algo-
rithm. We first introduce a schedule builder, that allows for defining a search
space to look for solutions to the problem. This schedule builder is exploited as
decoder in the genetic algorithm. We conducted an experimental study, com-
paring the genetic algorithm with ATC and other priority rules. The results
show that the genetic algorithm obtains (much) better solutions than any other
method, at the cost of taking larger time; however this time is still low enough
for the time requirementes of the EVCSP.

The remainder of the paper is organized as follows. In the next section we
give a formal definition of the (1, Cap(t)||∑ Ti) problem. Section 3 introduces
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a schedule builder for the problem and studies its main properties. In Sect. 4
we present the genetic algorithm designed to solve the problem. In Sect. 5 we
report the results of the experimental study conducted to evaluate the proposed
algorithm. Finally, in Sect. 6 we summarize the main conclusions and outline
some ideas for future work.

2 Problem Definition

The (1, Cap(t)||∑ Ti) problem may be defined as follows. We are given a number
of n jobs {1, . . . , n}, all of them available at time t = 0, which have to be
scheduled on a machine whose capacity varies over time such that Cap(t) ≥
0, t ≥ 0, is the capacity of the machine in the interval [t, t + 1). Job i has
duration pi and due date di. The goal is to allocate starting times sti, 1 ≤ i ≤ n
to the jobs on the machine such that the following constraints are satisfied:

i. At any time t ≥ 0 the number of jobs that are processed in parallel on the
machine, X(t), cannot exceed the capacity of the machine; i.e.,

X(t) ≤ Cap(t). (1)

ii. The processing of jobs on the machine cannot be preempted; i.e.,

Ci = sti + pi, (2)

where Ci is the completion time of job i.

The objective function is the total tardiness, defined as:
∑

i=1,...,n

max(0, Ci − di) (3)

which should be minimized.
In this paper, we consider that the capacity of the machine, Cap(t), is a

unimodal function, as this is always the case of the instances derived from the
EV charging problem described in Sect. 1. In general, Cap(t) is non decreasing for
lower values of t until it reaches a maximum value and then it is non-increasing
and gets stabilized at a value greater than 0. Figure 3 shows an example of two
feasible schedules for a problem with 7 jobs and a machine with a capacity that
varies between 2 and 5 over time. Due dates are not represented in the schedule.
As we can observe, in both schedules X(t) ≤ Cap(t) for all t ≥ 0.

One particular case of this problem is when the capacity of the machine is
constant over time; i.e., Cap(t) = P . This is the problem considered in [7], which
is denoted (P ||∑ Ti) and proven to be NP-hard.
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(a) Non left-shifted schedule
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(b) Left-shifted schedule

Fig. 3. Two feasible schedules for an instance of the (1, Cap(t)||∑Ti) problem with 7
tasks and a machine with capacity varying between 2 and 5.

3 Schedule Builder

Schedule builders constitute an essential component for designing efficient
scheduling algorithms. Also known as schedule generation schemes, these meth-
ods provide a way for computing and enumerating a subset of the feasible sched-
ules, thus enabling the definition of a search space to look for solutions to the
problem. We propose a schedule builder that produces all possible left-shifted
schedules for a given problem instance, which can be formally defined as follows:

Definition 1 (Left-Shift Movement). Let S be a feasible schedule, deter-
mined by starting times st1, st2, ..., stn. A left-shift movement on job k is
an operation that results in the feasible schedule S′ with starting times
st′1, st

′
2, ..., st

′
k, ..., st

′
n, such that st′k < stk and st′i = sti for i �= k.

Given a feasible schedule, a left-shift movement consists in scheduling a job
earlier without altering the starting time of any other jobs, as long as the capacity
constraints are satisfied. For example, we could apply a left-shift movement to
job 6 in the schedule shown in Fig. 3(a) moving it earlier to time 7. This operation
would result in the schedule shown in Fig. 3(b). The repeated application of left-
shift movements until reaching a fixed point results in a left-shifted schedule:

Definition 2 (Left-Shifted Schedule). Let S be a feasible schedule. S is said
to be a left-shifted schedule if it does not admit any left-shift movement.

Figure 3(b) is an example of a left-shifted schedule, since no job can be sched-
uled earlier without changing the starting time of some other job.
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Algorithm 1. Schedule Builder
Data: A (1, Cap(t)||∑Ti) problem instance P.
Result: A feasible schedule S for P.
US ← {1, 2, ..., n};
X(t) ← 0; ∀t ≥ 0;
while US �= ∅ do

Non-deterministically pick job u ∈ US;
Assign stu = min{t′|∀t with t′ ≤ t < t′ + pu : X(t) < Cap(t)};
Update X(t) ← X(t) + 1; ∀t with stu ≤ t < stu + pu;
US ← US − {u};

end
return Feasible schedule S = (st1, st2, ..., stn);

The proposed schedule builder is depicted in Algorithm1. This method sched-
ules one operation at a time, assigning it the earliest possible starting time so
that the total consumption does not exceed the capacity of the machine at any
instant. The algorithm maintains a set US with the unscheduled jobs that need
to be assigned a starting time, as well as the consumption X(t) due to the jobs
scheduled so far. US is initialized with all the jobs, and X(t) is initially set to
0 for all instants t in the scheduling horizon. Then, iteratively until all the jobs
have been scheduled, it selects one unscheduled job and assigns it the earliest
starting time so that the machine has enough capacity left during the processing
time of the job. After scheduling a job, US and X(t) are updated accordingly.

Note that the selection of a job to be scheduled at each iteration is non-
deterministic. Regardless of this, we can guarantee that the application of
Algorithm 1 always results in a feasible left-shifted schedule. For example, the
sequence of choices (1, 3, 4, 5, 6, 7, 2) would lead to building the schedule in
Fig. 3(b). It is easy to see that, since all the jobs are available at time 0, if
we consider all possible choices in this step we would obtain a search space char-
acterized by the set of all left-shifted schedules. The schedule builder could also
be instantiated by using any priority rule or heuristic, or used as a decoder in a
genetic algorithm as we will see in the next section.

An important property of the search space defined by the schedule builder
is that it is dominant, i.e. it contains at least one optimal schedule for any
(1, Cap(t)||∑ Ti) instance. This follows from the next result:

Proposition 1. Let S∗ be the set of all optimal schedules for a given
(1, Cap(t)||∑ Ti) problem instance P. There exists a left-shifted schedule S ∈ S∗.
Proof. Let S′ ∈ S∗ be a non left-shifted optimal schedule. S′ is not left-shifted,
so it admits a sequence of left-shift movements, each resulting in a feasible sched-
ule S′

1, ..., S
′
k, where S′

k is left-shifted. Since each left-shift operation schedules
earlier one job, leaving the other ones unaltered, the value of the total tardiness∑

i=1,...,n max(0, Ci − di) cannot increase from one schedule to the next one in
the sequence. The resulting left-shifted schedule S′

k has the same total tardiness
than that of S′, which is optimal. Therefore, S′

k ∈ S∗.
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Algorithm 2. Genetic Algorithm.
Data: A (1, Cap(t)||∑Ti) problem instance P and a set of parameters:

crossover probability Pc, mutation probability Pm, number of
generations #gen and population size #popsize.

Result: A feasible schedule for P
Generate and evaluate the initial population P (0);
for t=1 to #gen-1 do

Selection: organize the chromosomes in P (t − 1) into pairs at random;
Recombination: mate each pair of chromosomes and mutate the two
offsprings in accordance with Pc and Pm;
Evaluation: evaluate the resulting chromosomes;
Replacement: make a tournament selection among every two parents and
their offsprings to complete P (t);

end
return the best schedule built so far ;

4 Genetic Algorithm for the (1, Cap(t)||∑ Ti) Problem

Genetic algorithms (GAs) have been used to solve hard scheduling problems with
notable success (some recent examples include [1,8,9]). In this section, we review
the main components of the GA proposed in this work for the (1, Cap(t)||∑ Ti)
problem. Algorithm 2 shows its main structure: it is a generational genetic algo-
rithm with random selection and replacement by tournament among parents
and offsprings, which confers the GA an implicit form of elitism. We describe
the main components of the GA:

Coding Schema. Individuals are defined each by a permutation of the jobs
without repetition, i.e. a chromosome c is such that c = (c1, ..., cn), where
ci ∈ {1, ..., n} and ci �= cj for all i �= j. Permutation-based encodings are common
in scheduling, and allow for a number of effective genetic operators.

Crossover and Mutation. The GA uses the well-known Order Crossover operator
(OX) [4]. Given two parents, an offspring inherits a sub-sequence (selected at
random) in the same positions from the first parent and its other positions are
filled in accordance with their relative order in the second parent. The second
offspring is computed in the same way, but swapping the role of the parents.
The mutation operator simply swaps two random elements in the chromosome.

Decoding Algorithm. The GA searches for an optimal solution in the search
space defined by the schedule builder presented in Sect. 3. Given a chromosome,
the decoder builds a schedule using Algorithm 1, scheduling jobs in the order
they appear in the chromosome, i.e. at the ith iteration it schedules job ci. For
example, the chromosome (1, 3, 4, 5, 6, 7, 2) would result in the schedule shown in
Fig. 3(b). The chromosome (3, 1, 4, 5, 6, 7, 2) would lead to the same schedule. So,
the mapping is many-to-one. Once a schedule has been built, its total tardiness
is taken as the fitness value of the corresponding chromosome.
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5 Experimental Study

We have conducted an experimental study aimed at assessing the performance
of the proposed GA and evaluating the quality of the solutions it obtains. To this
aim, we implemented a prototype in Python 2.7, and ran a series of experiments
on a Linux cluster.

For comparison purposes, our prototype also implements some well-known
priority rules, often used in scheduling, such as earliest due date (EDD), shortest
processing time (SPT), and apparent tardiness cost (ATC). These priority rules
are integrated in Algorithm 1 and serve to select the job to be scheduled at
each iteration (among the unscheduled ones): EDD picks the operation with the
smallest due date, SPT selects the one with the least duration and ATC chooses
the job j that maximizes the expression:

Πj =
1
pj

exp

[−max(0, dj − Γ (α) − pj)
gp̄

]

, (4)

where Γ (α) denotes the earliest possible starting time among the unscheduled
jobs, p̄ refers to the average processing times of the jobs and g is a look-ahead
parameter to be introduced by the user.

The experiments were carried out over 12 sets of instances, with the num-
ber of jobs n ∈ {15, 30, 45, 60} and the maximum capacity of the machine
MC ∈ {3, 5, 7}. For each configuration we generated 10 random instances, so we
have 120 instances in all. The instances were built using uniform distributions:
processing times pi ∈ [1, 100]; for a job i its due date di ∈ [pi,max(pi+2,

∑
pj/2)]

the machine capacity is a unimodal function with each interval taking a duration
in the range [1,

∑
pj/MC]. All the sampled values are integers.

Each instance was solved using EDD, SPT, ATC with parameter g ∈
{0.25, 0.5, 0.75, 1.0}, as was done in [6], and the GA with parameters #popsize =
250, #gen = 300, Pc = 0.9 and Pm = 0.1. It is important to remark that for
GA, the initial population is generated at random.

Table 1. Summary of results. Error (in percentage) of the solutions returned by each
method w.r.t. the best solutions known, averaged for groups of instances with the same
number of jobs. Running times of GA are given in seconds.

n EDD SPT ATC GA

0.25 0.5 0.75 1.0 Best Avg Time

15 42.59 382.51 25.02 24.24 33.15 55.08 0.00 0.01 13.13

30 18.94 524.98 6.49 5.26 5.97 8.21 0.00 0.09 21.49

45 27.76 1146.33 11.84 13.27 12.65 23.31 0.00 0.85 30.22

60 36.28 3895.37 14.59 15.09 18.47 29.48 0.00 1.47 38.48

Avg 31.42 1526.90 14.40 14.37 17.80 29.02 0.00 0.60 25.83
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Fig. 4. Comparison of ATC and GA regarding the average error in percentage terms
w.r.t. the best known solutions.

Table 1 compares the different approaches regarding the quality of the solu-
tions computed. It shows the relative error in percentage terms of the cost of
the solution returned by each approach w.r.t. to that of the best solution known
for each problem instance. The results are averaged for groups of instances with
the same number of jobs. The GA was run 10 times on each problem instance,
and the best and average costs over the 10 runs are shown in the table, as well
as the average solving time for one run (in seconds). As we can observe, for all
the instances, the best known solution is given by the best solution found by
GA over the 10 runs. Among the priority rules, the best method overall is ATC,
with g ∈ {0.25, 0.5}; EDD is in average slightly worse than ATC in its worse
configuration (with g = 1.0) and SPT performs very poorly. It is important to
note that the reported errors for the priority rules are in general rather large,
which means the GA finds (much) better solutions. Also, the average solutions
of the GA over the 10 runs are in general very close to the best one, with an
average improvement of one order of magnitude w.r.t. the best priority rule, in
many cases being this improvement greater. Regarding running times, priority
rules are clearly faster (taking negligible time), but the GA is quite efficient,
taking less than 40 s for the largest instances. Also, note that the prototype was
coded in Python, and an implementation in C or C++ would be expected to
achieve very significant time reductions.

Figure 4 shows the errors achieved by ATC in its four configurations, and
by GA. For the sake of clarity, the y-axis was limited to 100, although all the
configurations of ATC included some values above this limit. This plot confirms
the superiority of GA over ATC regarding the quality of the solutions computed.
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6 Conclusions

In this paper we study the (1, Cap(t)||∑ Ti) problem, which was recently pro-
posed in the context of scheduling the charging times of a fleet of electric vehicles
under time dependent power availability [6]. This problem consists in schedul-
ing a set of jobs on a machine whose capacity varies over time. We propose a
schedule builder which guarantees the possibility of finding an optimal solution
to the problem. This schedule builder is then exploited by a genetic algorithm.
The results from an experimental study show that the GA algorithm reaches
high-quality solutions in short time.

A promising line for future research would be to investigate the heuristic gen-
eration of the initial population, enabling the genetic algorithm to reach better
solutions and converge faster. Also, the development of local search methods for
this problem seems a promising research avenue.
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Abstract. A dynamic population model of 2-dimensional lattice based
on Cellular Automata and metaheuristics is used to simulate prey-
predator behavior. The equations of movement from metaheuristics
African Buffalo Optimization (ABO) are used for the behavior of the
migration of predators. The simulations describes that a difference in
the learning factors used by the ABO metaheuristic, increases the pos-
sibility of prey survival.

Keywords: Spatial dynamics · Cellular Automata · Swarm intelli-
gence · African Buffalo Optimization · Animal Behavior · Simulation

1 Introduction

Models based on Cellular Automata [4,19] are a support tool because of their
ability to be able to describe in detail the approximations of the increase or
decrease of a species [5–8]. Being able to determine future scenarios entails being
able to determine from another point of view, which land could be a priority to
focus conservation resources [1–3,9]. These population simulation models should
be simple in order to be treatable and be able to modify internal aspects quickly.
To do this, the equations of motion of the ABO metaheuristic will be used in
the dynamic simulation model.

African Buffalo Optimization (ABO) is a metaheuristic based on the behavior
of the African buffalos [12,14]. There are several investigations using ABO. As a
comparative study of ABO and randomized insertion algorithm for asymmetric
Travelling Salesman’s Problem (TSP) [15]. Numerical Function Optimization
Solutions using the ABO [13]. Solving the TSP using the ABO [10,16]. ABO
and the randomized insertion algorithm for the asymmetric TSP [11]. ABO for
PID parameters tuning of Automatic Voltage Regulators [18]. ABO approach to
the Design of PID Controller in Automatic Voltage Regulator System [17].

c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 170–180, 2017.
DOI: 10.1007/978-3-319-59740-9 17
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The scope of the research is perform a simulation of a Dynamic Prey-Predator
Spatial Model based on Cellular Automata using the behavior of the metaheuris-
tic African Buffalo Optimization. These contributions, to our knowledge, have
not been reported yet.

This paper is organized in this way: In Sect. 2 the theory of Cellular Automata
is revised. In Sect. 3 explains the African Buffalo Optimization algorithm. In
Sect. 4 describes how to implement the Model Prey-Predator Dynamics via ABO.
In Sect. 5 explains the experiments and discussion. Finally, in Sect. 6 concludes
and provides guidelines for future work.

2 Cellular Automata

A Cellular Automaton (CA) is a type of model system of cellular objects that
have the following characteristics:

– Cells (individuals) live on a grid of a finite number n of dimensions.
– Each cell in the grid has a state. The number of state possibilities is typically

finite. For example, a cell can have two possibilities: 1 or 0, on or off, alive
or dead.

– Each cell has a neighborhood. The neighborhood can be defined in different
ways, but it is typically a list of adjacent cells.

2.1 Formal Definition

A cellular automaton is defined by the tuple A = (d,Q,N, f), where:

– d ∈ Z
+, is the d-dimension of the euclidean lattice L ⊆ Z

d.
– Q is a finite set of states.
– N is a d-dimensional neighborhood vector N = (n1, n2, . . . , nm), where each

ni ∈ Z
d and ni �= nj .

– f : Qm → Q is a local transition function that specifies the new state of a
cell, taking into account the states of its neighbors.

A configuration of a d -dimensional cellular automaton is a function c : Zd →
Q, that assigns a state to each cell in the lattice. The state of cell n ∈ Z

d at
time t is given by ct(n), the set of all configurations is defined by Q

Z
d

. The local
transition function causes a global change in the configuration of the cellular
automata. The configuration c is changed into configuration c′, where for all
n ∈ Z

d: c′(n) = f [c(n+n1), c(n+n2), . . . , c(n+nm)]. The transformation c → c′

is the global transition function of the cellular automaton, which is defined as
G : QZ

d → Q
Z
d

.
In a 2-dimensional cellular automaton the Moore neighborhood is often used,

it comprises the cell to evolve and its 8 nearest neighbors. It can be general-
ized as the d -dimensional Md

r neighborhood defined as Md
r = {ni ∈ Z

d|ni =
(ni1, . . . , nid), nij ≤ r}, where r is the radius of the neighborhood.
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3 African Buffalo Optimization

African Buffalo Optimization (ABO) is a stochastic metaheuristic population
algorithm. The ABO is inspired by the behavior of African buffalo, mainly in
the migration of the herd. The migration of buffaloes has as main aim to find
better lands for grazing. Finding good areas with lots of grass are considered as
good solutions to solve an optimization problem. For this, they tend to follow the
movement of the rainy seasons. To find good herbs the buffalo can be organized
through two basic modes of communication: The “waaa” warning sound indicates
the presence of hazards or lack of good grazing fields. It also allows animals to
explore other places that may be more beneficial. The “maaa” alert sound is used
to say a grazing area with a good benefit to the herd. It is also an indication
that the animals continue to take advantage of the resources that are available.

3.1 African Buffalo Optimization Algorithm

The ABO steps are detailed in Algorithm 1.

Algorithm 1. African Buffalo Optimization algorithm
input : N, λ, lp1, lp2.
output: A solution.

1 Initialize the parameters: N , λ, lp1 and lp2.
2 Generate random and feasible solutions of N buffaloes in a search space.
3 while the criterion of the term has not ended do
4 for all buffaloes do
5 Update the buffaloes using the equation 1.
6 Update the location wk using the equation 2.
7 if the problem is minimization then
8 if fitness mk < fitness bpmaxk then
9 Update the bpmaxk.

10 end

11 else
12 if fitness mk > fitness bpmaxk then
13 Update the bpmaxk.
14 end

15 end

16 end
17 Update bgmax from the best solution obtained from bpmax solutions.

18 end
19 Output the best solution.

The description of the parameters used in line 1 of the algorithm are described
below:
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– Number of buffaloes. Defined by the variable N .
– The Index k for the buffaloes, with k in {1, . . . , N}.
– The lambda λ value with a domain in [−1, 1], excluding the zero.
– The learning factors lp1 and lp2.

In the line 5, the Eq. 1 is used. The mk variable represent the exploitation
move. The bgmaxk variable is the herd’s best fitness. The bpmaxk variable is
the individual buffalo k best found location. Finally, the wk variable represent
the exploration move.

mk+1 = mk + lp1(bgmax − wk) + lp2(bpmaxk − wk) (1)

In the line 6, the Eq. 2 represents when the location of buffalo k is update.

wk+1 =
(wk + mk)

±λ
(2)

4 Dynamic Prey-Predator Spatial Model via African
Buffalo Optimization

The dynamic prey-predator model simulates as a theoretical population of prey
and living predators [5]. For the model, the following concepts have been defined.

Lattice Definition: The lattice L ⊆ Z
2 used has the shape of a torus. The values

of allowed states for each cell is Q = {0, 1, 2, 3}, where:

– 0 is an empty cell.
– 1 is a cell inhabited by a prey.
– 2 is a cell inhabited by a predator.
– 3 is a cell that containing a prey and a predator at the same.

Cellular Automata Definition: There are two types of Cellular Automata. Preda-
tors (buffaloes) and prey (grasslands). Predators are those who use the behavior
of ABO metaheuristic. They have been designed in such a way to support an
extra group of variables (see left Fig. 1). Prey are those that use the behavior
determined by the prey-predator dynamic model rules (see right Fig. 1).

Season Definition: The model is composed of a life cycle that has the following
stages or seasons (see Fig. 2).

Intraspecific competition. Preys die with a probability proportional to the
number of individuals of the prey species surrounding them, this rule uses Md

rc

neighborhood. If ct(n) = 1, the probability of death is given by p(death) = αy
m ,

where α is the intraspecific competence factor, y is the number of preys in
the neighborhood, and m is the number of neighbor (m = |Md

rc|). The value
of bgmax is updated according to Eq. 2.
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Fig. 1. Cellular Automata with African Buffalo Optimization.

Fig. 2. Season - life cycle.

Migration. During this stage, the predators (buffalos) move within the space of
the lattice according to their own experience and the experience of the herd.
To perform the migration of a predator, the new position (x, y) is calculated
according to Eqs. 3 and 4.

m(x)k+1 = m(x)k + lp1(bgmax(x) − w(x)k) + lp2(bpmax(x)k − w(x)k)

w(x)k+1 =
(w(x)k + m(x)k)

λ

(3)

m(y)k+1 = m(y)k + lp1(bgmax(y) − w(y)k) + lp2(bpmax(y)k − w(y)k)

w(y)k+1 =
(w(y)k + m(y)k)

λ

(4)

Finally, the value of bgmax is updated according to Algorithm 2.
Reproduction of predators. At this stage, each predator creates new indi-

viduals at random within the neighborhood.
Death of predators. Predators that do not have a prey in a cell (Cellular

Automata with state equal to 2), die from starvation.
Predation. Preys that share a cell with a predator die due to the predator’s

action (Cellular Automata with state equal to 3).
Reproduction of preys. At this stage, each prey creates new individuals at

random within the neighborhood.
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Algorithm 2. Calculate bgmax
input : Predators.
output: bgmax x and bgmax y.

1 Initialize the aux variables: max number prey = 0, bgmax x = 0 and
bgmax y = 0.

2 Generate random and feasible solutions of N buffaloes in a search space.
3 while the criterion of the term has not ended do
4 for all N predators (buffaloes) do
5 predator k ← get predator k in the lattice.
6 number prey ← get number of neighbor of predator k by Moore
7 Neighborhood.
8 if max number prey < numberprey then
9 bgmax x ← Get x value of the predator k.

10 bgmax y ← Get y value of the predator k.
11 max number prey ← number prey.

12 end

13 end

14 end

5 Experiments and Discussion

This section details the experiment performed and the observations found in the
simulations.

Implementation: All simulation were coded in Java version 1.8.0 92 using IntelliJ
IDEA 15 (15.0.6). For running the Dynamics Prey-Predator model we using
Java(TM) SE Runtime Environment (build 1.8.0 92). The hardware features
that have been run instances are a MacBook Pro computer (Retina, 13-inch, Late
2013), with an Intel Core i5 2,4 GHz, 4 GB RAM 1600 MHz DDR3. Running
OS X El Capitan version 10.11.6 (15G1004).

Model Configuration: The experimental parameters using for the model are
described in the Table 1.

Metaheuristic Configuration: The experimental parameters using for the ABO
metaheuristic are described in the Table 2.

Table 1. Dynamic prey-predator model parameters

Prey Value Predator Value

Initial density 1000 Initial density 5

Reproductive capacity 1 Reproductive capacity 3

Radius reproduction neighborhood 3 Radius reproduction neighborhood 1

Intraspecific competition coefficient 0.05 Radius update bgmax 1

Radius competition neighborhood 3



176 B. Almonacid

Table 2. Metaheuristic parameters

Parameter Case A Case B Case C Case D Case E

lp1 1 2 3 4 5

lp2 1 2 3 4 5

lambda 0.5 0.5 0.5 0.5 0.5

Simulation 1: This simulation uses the parameters of Table 1 and the parameters
of Case E of Table 2. The Table 3 show the results for the simulation. Column
ID is the identifier for each row. Column ID-S is the identifier for each season.
Column ID-SS is the identifier for each step in the season. Column Name-SS
Corresponds to the name of each step of the simulation. Column ID-M corre-
sponds to the identifier for the migration (the simulation have five migration).
Column N-Prey and N-Predator shows the number of predator in the lattice.
Column N-S0, N-S1, N-S2 and N-S3, describes the number of the different types
of states in the lattice.

Simulation 2 - Five Configurations: A set of simulations were carried out using
the 5 cases of parameters described in Table 2. The Table 4 shows the initial
amount of prey and predators. Subsequently, after 10 seasons have elapsed, the
number of prey and predators has been extracted again. The results in general
terms for cases A, B, C and D are that a low number of prey and a high pop-
ulation of predators. On the other hand, in the case E, a balance of dams and
predators has been observed in the final stage of the simulation, even more prey
has been obtained than predators. The important point of why this difference
occurred is the value of the parameters of the ABO metaheuristic. The para-
meters that have given this behavior in case E are lp1 and lp2, both with the
value 5.
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Table 3. Simulation 1

ID ID-S ID-SS Name-SS ID-M N-Prey N-Pred N-S0 N-S1 N-S2 N-S3

1 1 1 Intraspecific competition - 710 5 1785 710 5 0

2 1 2 Migration 1 710 5 1789 706 1 4

3 1 3 Migration 2 710 5 1789 706 1 4

4 1 4 Migration 3 710 5 1789 706 1 4

5 1 5 Migration 4 710 5 1789 706 1 4

6 1 6 Migration 5 710 5 1789 706 1 4

7 1 7 Reproduction of predators - 710 204 1648 648 142 62

8 1 8 Death of predators - 710 121 1731 648 59 62

9 1 9 Predation - 648 121 1731 648 121 0

10 1 10 Reproduction of preys - 1422 121 957 1422 121 0

11 2 1 Intraspecific competition - 1256 121 1123 1256 121 0

12 2 2 Migration 1 1256 121 1122 1257 112 9

13 2 3 Migration 2 1256 121 1122 1257 112 9

14 2 4 Migration 3 1256 121 1122 1257 112 9

15 2 5 Migration 4 1256 121 1122 1257 112 9

16 2 6 Migration 5 1256 121 1122 1257 112 9

17 2 7 Reproduction of predators - 1256 402 960 1138 274 128

18 2 8 Death of predators - 1256 266 1096 1138 138 128

19 2 9 Predation - 1133 266 1096 1138 266 0

20 2 10 Reproduction of preys - 1640 266 589 1645 266 0

21 3 1 Intraspecific competition - 1507 266 722 1512 266 0

22 3 2 Migration 1 1507 266 722 1512 259 7

23 3 3 Migration 2 1507 266 722 1512 259 7

24 3 4 Migration 3 1507 266 722 1512 259 7

25 3 5 Migration 4 1507 266 722 1512 259 7

26 3 6 Migration 5 1507 266 722 1512 259 7

27 3 7 Reproduction of predators - 1507 460 609 1431 372 88

28 3 8 Death of predators - 1507 330 739 1431 242 88

29 3 9 Predation - 1424 330 739 1431 330 0

30 3 10 Reproduction of preys - 1782 330 381 1789 330 0

31 4 1 Intraspecific competition - 1635 330 528 1642 330 0

32 4 2 Migration 1 1635 330 523 1647 327 3

33 4 3 Migration 2 1635 330 523 1647 327 3

34 4 4 Migration 3 1635 330 523 1647 327 3

35 4 5 Migration 4 1635 330 523 1647 327 3

36 4 6 Migration 5 1635 330 523 1647 327 3

37 4 7 Reproduction of predators - 1635 475 424 1601 426 49

38 4 8 Death of predators - 1635 365 534 1601 316 49

39 4 9 Predation - 1592 365 534 1601 365 0

40 4 10 Reproduction of preys - 1828 365 298 1837 365 0

41 5 1 Intraspecific competition - 1684 365 442 1693 365 0

42 5 2 Migration 1 1684 365 440 1695 360 5

43 5 3 Migration 2 1684 365 440 1695 360 5

44 5 4 Migration 3 1684 365 440 1695 360 5

45 5 5 Migration 4 1684 365 440 1695 360 5

46 5 6 Migration 5 1684 365 440 1695 360 5

47 5 7 Reproduction of predators - 1684 472 359 1669 441 31

48 5 8 Death of predators - 1684 380 451 1669 349 31

49 5 9 Predation - 1659 380 451 1669 380 0

50 5 10 Reproduction of preys - 1848 380 262 1858 380 0
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Table 4. Simulation 2 - five configurations

ID Case ID-Case Star season End season

N-Prey N-Pred S0 S1 S2 S4 N-Prey N-Pred S0 S1 S2 S3

1 A 1 674 5 1821 674 5 0 5 1366 1077 57 1366 0

2 2 664 5 1831 664 5 0 50 1374 952 174 1374 0

3 3 677 5 1818 677 5 0 28 1397 950 153 1397 0

4 4 676 5 1819 676 5 0 0 1375 1093 32 1375 0

5 5 674 5 1821 674 5 0 28 1381 977 142 1381 0

6 6 658 5 1837 658 5 0 3 1385 1065 50 1385 0

7 7 665 5 1830 665 5 0 0 1387 1062 51 1387 0

8 8 688 5 1807 688 5 0 54 1357 952 191 1357 0

9 9 660 5 1835 660 5 0 8 1380 1047 73 1380 0

10 10 689 5 1806 689 5 0 91 1357 906 237 1357 0

11 B 1 687 5 1808 687 5 0 226 1280 766 454 1280 0

12 2 682 5 1813 682 5 0 20 1363 1027 110 1363 0

13 3 667 5 1828 667 5 0 271 1288 709 503 1288 0

14 4 689 5 1806 689 5 0 0 1365 1101 34 1365 0

15 5 641 5 1854 641 5 0 0 1383 1060 57 1383 0

16 6 681 5 1814 681 5 0 0 1370 1088 42 1370 0

17 7 684 5 1811 684 5 0 65 1361 945 194 1361 0

18 8 677 5 1818 677 5 0 12 1396 1024 80 1396 0

19 9 680 5 1815 680 5 0 120 1323 842 335 1323 0

20 10 687 5 1808 687 5 0 35 1386 991 123 1386 0

21 C 1 670 5 1825 670 5 0 830 989 315 1196 989 0

22 2 653 5 1842 653 5 0 0 1365 1056 79 1365 0

23 3 662 5 1833 662 5 0 69 1378 895 227 1378 0

24 4 687 5 1808 687 5 0 5 1363 1057 80 1363 0

25 5 675 5 1820 675 5 0 92 1359 907 234 1359 0

26 6 676 5 1819 676 5 0 9 1388 1060 52 1388 0

27 7 677 5 1818 677 5 0 5 1409 1019 72 1409 0

28 8 645 5 1850 645 5 0 0 1363 1088 49 1363 0

29 9 671 5 1824 671 5 0 34 1328 1033 139 1328 0

30 10 664 5 1831 664 5 0 28 1390 982 128 1390 0

31 D 1 672 5 1823 672 5 0 10 1369 1027 104 1369 0

32 2 675 5 1820 675 5 0 544 1177 504 819 1177 0

33 3 694 5 1801 694 5 0 301 1258 683 559 1258 0

34 4 683 5 1812 683 5 0 40 1372 995 133 1372 0

35 5 644 5 1851 644 5 0 23 1377 991 132 1377 0

36 6 675 5 1820 675 5 0 1 1388 1057 55 1388 0

37 7 683 5 1812 683 5 0 2 1390 1063 47 1390 0

38 8 667 5 1828 667 5 0 7 1402 1030 68 1402 0

39 9 681 5 1814 681 5 0 4 1378 1055 67 1378 0

40 10 662 5 1833 662 5 0 2 1425 1029 46 1425 0

41 E 1 688 5 1807 688 5 0 1176 851 466 1183 851 0

42 2 674 5 1821 674 5 0 1768 494 229 1777 494 0

43 3 664 5 1831 664 5 0 265 1380 846 274 1380 0

44 4 678 5 1817 678 5 0 129 1465 900 135 1465 0

45 5 659 5 1836 659 5 0 404 1307 784 409 1307 0

46 6 690 5 1805 690 5 0 670 1165 659 676 1165 0

47 7 649 5 1846 649 5 0 71 1451 975 74 1451 0

48 8 652 5 1843 652 5 0 827 1053 619 828 1053 0

49 9 671 5 1824 671 5 0 104 1453 940 107 1453 0

50 10 663 5 1832 663 5 0 1548 637 295 1568 637 0
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6 Conclusions

In this research we have considered simulations of a dynamic prey-predator
model using the equations of movement of the ABO metaheuristic. The learning
factors (lp1 and lp2) of ABO metaheuristics have been found to modify popu-
lation density for both prey and predator. In discrete learning factors between
1 and 4 for lp1 and lp2, preys have to decrease and predators to increase their
population. Instead with the learning factor lp1 with a value of 5, the preys and
predators have a balance. As future research lines, dynamic learning factors can
be implemented in the ABO. In addition to being able to integrate other meta-
heuristics in the dynamic prey-predator model. On the other hand, these models
can be integrated in the area of biodiversity conservation. In which several cases
of studies can be analyzed to determine new conservation areas.
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Abstract. One of the most frequent disorders in childhood is the
attention-deficit/hyperactivity disorder (ADHD). The symptoms of
ADHD are present in approximately 5% of children and adolescents
with a strong over-representation of boys, irrespectively of their cultural
background. There are different treatment approaches but conventional
therapies and pharmacological proposals have proved to be insufficient
to supply an effective rehabilitation in all cases. The most promising
therapies make use of neurofeedback to train attention self-regulation in
children with ADHD. In this paper, a new tool that enables therapists to
design their own therapies by creating specific neurofeedback videogames
adapted to each child is presented.

1 Introduction

One of the most frequent disorders in childhood is the Attention-Deficit /Hyper-
activity Disorder (ADHD). This fact has facilitated to be the most deeply stud-
ied disorder [17]. Studies have focused on different aspects of ADHD along time,
from the attention problem to the excessive motor activity or Hyperkinesia. Cur-
rently, most authors consider that ADHD reflexes an executive dysfunction, and,
more specifically, controls the behavioral inhibition or executive attention [16].
Despite the high number of papers on ADHD many issues are still unsolved.

Hyperactive children tend to have slower reaction times when performing
cognitive tasks that require quickness, showing problems to adjust their own
motor response to the requested speed. In addition, hyperactive children devote
less time to perform an activity than other children do, no matter whether the
type of activity be cognitive, emotional or motor, showing performance problems
for tasks of sustained attention and control of the interference. This problem is
known as [12], impulsivity, that is characterized by an inappropriate use of time
and speed, resulting in a premature style, lack of persistence and weakness in
the control mechanisms. Moreover, it has also been observed that children who
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 183–192, 2017.
DOI: 10.1007/978-3-319-59740-9 18
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have temperamental difficulties do not properly manage changes in their daily
routines, showing a low frustration threshold and strong responses. All these
difficulties are related to their problems of social interaction, rejection, and so
on, which normally harms their social development.

ADHD is usually treated from three different perspectives: psychology, edu-
cation and pharmacology. An important part of the psychological treatment
focuses on family intervention, counseling and training for managing the difficul-
ties related to this disorder. This is specially important because between 10–20%
of cases with pharmacological treatment do not improve. This demonstrates the
need for treatments different from drugs. This interest is highlighted by a recent
survey [14] that identified 110 studies on non-pharmacological interventions in
ADHD. Since 1980 this type of treatment has been centered on cognitive training,
self-instruction programs and self-control to improve the behavior of the children
in the classroom as well as their academic performance, as for instance [13]. In
general, this type of treatment is preferred to a pharmacological one due to the
reliability of the structure of the content and implementation methodology.

This paper focuses on non-pharmacological interventions in ADHD. We are
particularly interested in the neurocognitive treatment for training attention and
work memory, by using computerized tasks as well as biofeedback and neurofeed-
back. Specifically, this paper introduces a tool that can be used by specialists to
design therapies for training the attention of children with ADHD. The rest of
the paper is organized as follows. First, the related work is presented in Sect. 2.
Then, the authoring tool and execution environment are presented in Sect. 3.
Finally, the conclusions and future works are illustrated in Sect. 4.

2 Neurofeedback in ADHD Treatment

As stated by Pope et al. [11] humans have the capacity and inherent inclination
to regulate their physiological processes. If they receive sufficient informative
feedback, their body processes it in the right form. This capability is not only
applied to neurofeedback but can also be found in other biofeedback training.
But, for this aim, biofeedback training must take into account some specific
requirements [6]: (1) the target physiological function must be monitored in
real-time; (2) information about the function must be presented to the trainee
so that the trainee perceives immediate changes in the parameter; and (3) the
feedback information should also serve to motivate the trainee to be attentive
to the training task.

Thus, biofeedback training consists in placing sensors on the patients’ body
to measure some biological activity and, through some computer output device
(screen, audio or haptic devices) to show them what is going on inside their bod-
ies. When patients are made aware of some specific changes in their physiological
activity, they can learn to control some body functions that are usually outside
their conscious control. In brainwave-based biofeedback or neurofeedback, train-
ing systems provide patients with real-time information about some brainwaves
signals, showing them how well they are producing brainwave patterns that could
be considered to be beneficial on their health.
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Moreover, the immersion of this neurofeedback training in a game environ-
ment improves these treatments’ effectiveness. The use of video game technology
provides advantages over standard neurofeedback treatment in terms of both
children’ enjoyment and positive parent’s perception, resulting in a lower attri-
tion rate on the treatment [11]. One of the attractiveness of using games is the
possibility to receive rewards as the user achieves some specific milestone. As
noticed by Pigott et al. [10] “rewarding experiences lead to the release of neu-
romodulators (such as dopamine) that influence structural plasticity within the
brain – so with sufficient repetition, the circuits and pathways whose activation
leads to the reward are reinforced”.

The use of neurofeedback in the treatment of ADHD is not new. This type
of treatment has received “Level 1 Best Support” according to the American
Academy of Pediatrics. This classification means that there have been studies
with sufficient sample size indicating that neurofeedback treatment is safe for use
with children. These treatments have also demonstrated effectiveness in reducing
ADHD symptoms in children [9].

Although EEG-based Brain-Computer Interface (BCI) systems have been
widely studied in research labs, these EEG recording devices are still too expen-
sive for end-users and the costs of neurofeedback treatments are initially higher
compared to traditional psychotherapy [10]. In addition, these devices use a lot
of sensors so that the time needed to place the electrodes on the head scalp is a
very time-consuming task. Recent advances in EEG technology have facilitated
the development of cheaper and easier products, such as NeuroSky MindWave
or Emotiv Epoc headset. Thus, among all the proposals that include neurofeed-
back in the treatment of ADHD, we have selected those which include a game
environment and use a cheap EEG device (consumer BCI).

One of the first proposals that used a consumer BCI for treating ADHD
was presented by Lim et al. [7]. In their study, they analyze the effects of a
BCI-based attention training game system on 20 unmedicated ADHD children
with significant inattentive symptoms. They use a BCI system consisting of a
headband with dry-mounted EEG sensors (manufactured by Neurosky). Thanks
to this device they obtain information about attentional activities. Their game
combines the use of neurofeedback and some specific keys to control an avatar’s
movements. Participants need to achieve a concentration level in order to move
the avatar; then they must press a key to make the avatar jump to collect the
fruits that appear along the journey. The authors propose three difficulty levels.
In the first one, the users only use their concentration level to move the avatar,
and in the next levels they must combine their concentration for moving the
avatar with the use of a specific key of the keyboard to catch some objects
for achieving the game’s goal. Their treatment consists of an 8-week training
comprising 24 sessions followed by 3 once-monthly booster training sessions.
Authors noticed significant positive effects on the treatment of ADHD symptoms.

Another proposal that makes use of a BCI device (MindWave) is that pre-
sented by Blandon et al. [2]. They created a video game for the sake of rein-
forcing four aspects related with ADHD: (i) waiting ability, (ii) planning ability,
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(iii) ability to follow instructions and (iv) ability to achieve objectives. In this
case, the BCI device is used to measure the child’s attention level, which is used
to control some aspects of the game. Thus, this video game is presented as a
tool for sustained attention training in children with ADHD. To assess their pro-
posal, 9 ADHD diagnosed children (between the ages of 5 and 12 years) played
the video game in two 30-minutes sessions. The article concluded that there
was an improvement in the game performance, reflecting an enhancement of the
sustained attention skill during the game.

Although the devices used in the previous proposals could be appropriate for
detecting neutral and attentive states of mind, their limited number of sensors
(only measuring brainwaves on the forehead) does not allow controlling more
complex states. Another commercial BCI device, namely the Epoc Emotiv, uses
a set of electrodes placed with fixed arrangements based on the international
10–20 locations. This BCI device incorporates 14 different electrodes in addition
to two reference ones (see Fig. 1). In spite of the fact that some studies indicate
that the signal has a better Signal-to-Noise Ratio in a medical system than in
the Emotiv Epoc device, in general, data provided by both systems are alike
[3]. So, it is a good (and much cheaper) option for non-critical applications.
There are studies that confirm that is possible to use this type of headset in a
clinical context, where the usability of the device can positively influence the
compliance of the subject [1]. Moreover, Mondéjar et al. [8] also noticed that
this device enables being used during a long time. All these factors along with
the fact of being wireless and very light makes it appropriate for children.

Thomas et al. [15] present a game that analyzes the user’s attention while
he controls the gameplay using an Emotiv EPOC. The player has to focus on
and memorize a set of numbers displayed in a 3× 3 matrix textbox. After that,
he/she must correctly refill the matrix. The subject will only be able to refill the
matrix if his/her attention level is higher than a specific threshold. For managing
the system, his/her attention level is continuously analyzed, helping the user to
regulate his/her concentration level. Although the authors present their game as
adapted to ADHD children, they used five healthy subjects for the evaluation
of the game. After three sessions an enhancement of performance in terms of
attentions skills and memory power was observed.

Another proposal using the Emotiv Epoc device for cognitive training is
presented by Benedetti et al. [1], which focus on adult subjects with an atten-
tion disorder. In this study, another capability of the Epoc device is exploited.
The authors make use of the possibility of training the system to detect spe-
cific thoughts. Specifically, the user must train specific thoughts, that are then
used by the engine to continually process the brainwaves and match them to
the patterns of thought trained. The trained thoughts are related to imagined
motor movements (Up, Down, Left and Right). Then, the user evokes a spe-
cific thought indicated on the screen at the beginning of the trial and that
refers to the direction to which the user must move a cube. Upon exceeding the
65% intensity of the required brainwave pattern, a positive reinforcement visual
stimulus appears. It is progressively extended until 100% intensity is reached.



An Innovative Tool to Create Neurofeedback Games for ADHD Treatment 187

After evaluating their system with a man who suffers from a frontal syndrome
with medium–high severity character, including cognitive and behavioral disor-
ders, they conclude that significant positive results were obtained regarding the
subject’s attention deficit. Although the evaluated proposals differ in terms of
the device used and the brainwave signals analyzed, they have several common
factors. First, they try to increase the attention of the patients by recording
some brainwave activity, and showing a specific feedback that enables them to
control the mental activity. Second, they integrate the therapy in a game envi-
ronment in order to increase the patient’s motivation. And finally, the designed
game is the same for all users, just facilitating several difficulty levels. Although
some proposals need a specific training phase for each participant, the game is
not really tailored to each user. This contradicts Gingerich et al. claim [4] “for
the individual with ADHD to receive appropriate evaluation and treatment an
understanding of the effect of diversity variables must be carefully considered”.
Thus, therapists need to have the opportunity to apply some adaptations to
improve the success of the therapies.

Fig. 1. Emotiv Epoc device and location of the electrodes.

3 Vi-SMARt-Neurofeedback: Creating ADHD Therapies
Based in Neurofeedback Videogames

Vi-SMARt-Neurofeedback is a tool created to improve the treatment of ADHD
children. Several experts in the treatment of this problem have collaborated in its
design. We have designed this tool jointly with the experts for offering therapists
a videogame that they can adapt to each patient. As the tool is designed for
treating children, we have used a story customized to their age. Moreover, the
“magic carpet” metaphor is used to improve the motivation and engagement of
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the children. Controlling the carpet movements with their mind could be seen
as something magic making them feel as a “superman”.

The proposed tool consists of two different parts. On the one hand, an
authoring tool enables the therapist to design custom games for each patient
(see Sect. 3.1). On the other hand, a therapy execution environment that is in
charge of running the different games created by means of the authoring tool
(see Sect. 3.2). In the following sections both of them are detailed.

3.1 Authoring Tool

One of the main components of the proposed system is the authoring tool.
Therapists use it to create customized game configurations for each patient.
The authoring tool provides a straightforward user interface to create such cus-
tomized games. The tool has three tabs to edit players as well as game configu-
rations and sequences among them for each player (see Fig. 2).

Fig. 2. Exercise edition interface

In order to understand how the editor works, Fig. 3 shows the data model
supported by the application.

The elements that the system manages are the following ones:

– Player : The systems stores the name of the players, as well as the initial
configuration and the camera (point of view) each player will start the game
with. Concretely, each player can play with the following cameras:
• Back fixed : The camera will record the player’s avatar from behind, with-

out following it.
• Back following : Similar to the previous one, but following the player’s

avatar.
• Lateral fixed : The camera will record the game from the right side, remain-

ing still (see Fig. 4).
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Fig. 3. System data model

Fig. 4. Child executing an exercise (color figure online)

• Lateral rotating : Similar to the previous one, but pivoting to face of the
player’s avatar.

– Configuration: This element is used to describe a game configuration
considering:
• Lamps: The number of lamps to be shown in the game.
• Lamps to success: The number of lamps that the player needs to pick up

in order to end the game successfully.
• Lamps up: Whether or not the avatar will have to jump to pick up the

lamps (see Sect. 3.2)
• Distance: Distance in meters between each pair of lamps.
• Distance increment : Distance to add to the original distance between two

lamps according to distance(1+increment) For instance, if distance is set
to 1, a distance increment of 0.5 will set the lamps in positions 11.5, 21.5,
31.5...

• Max. Seconds: Time that the player will have to pick up all the lamps.
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• Seconds without stimulus: Time that the user can play without emitting
any stimulus (see Sect. 3.2).

– Sequence: It determines the set of configurations to be played by a child.
Hence, a sequence determines which configurations have to be activated
depending on the current player, as well as which is the (Initial Configuration)
and which will be the next configuration (Final Configuration) depending on
the (success) while playing the initial configuration. If Final Configuration is
not set, then whenever the (Initial Configuration) finishes, the game session
will be over.

– Game result : This element stores the result of a child when playing game
configuration. Furthermore, the game start time, as well as its result (success)
are saved. Ir order to enable the therapist to perform a deeper analysis of the
results, the time when the players picked up each lamp (lamp collection) and
emitted each stimuli are also saved.

3.2 Therapy Execution Environment

Once the therapy authoring tool has been explained, this Section details the
execution environment. In order to make this game engaging, it was decided
to implement it by using Unity ([5]). First of all, the player has to train the
Emotive Epoc software (see Fig. 5). This training consists in thinking of moving
a training object forward and, optionally, up (if the therapist decides to put the
game lamps in an upper position).

Fig. 5. Emotive Epoc training tool

When the Emotive Epoc device has been properly trained, the child can start
to play. The game first shows a relaxing scene where the player only has to select
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his name, in order to load his configuration. Then, the game stage appears (see
Fig. 4) loading the (initial configuration) defined.

The game rules are simple. The player only has to focus on moving forward
(and optionally jumping). When the Emotive Epoc detects that the player has
focused on one of the trained movements, it sends a signal to Unity to move
the character forward or make it jump. It is worth noting that the game’s user
interface always shows the remaining time without receiving a stimulus (red and
green bar), the remaining total time (sand clock) and the number of lamps picked
up (bottom-right corner of Fig. 4). Moreover, the player can switch among the
four cameras point of views by pressing keys from 1 to 4.

The player keeps on playing in the same level (configuration) until the total
time or the time without stimulus is over, or every lamp on the level has been
picked up (see Sect. 2). At that point, should the player have picked up the
required lamps, the game will end successfully. In the opposite case, it ends
unsuccessfully. Then, the execution environment checks if there is a new con-
figuration for that player depending on the previous result. If so, a new game
configuration is loaded and the game restarts with the new parameters. If not,
the player is notified that the game is over and the execution environment will
restart, thus enabling the same player or a new one to start another session.

4 Conclusions and Future Works

This paper has presented an authoring tool for the creation of neurofeedback
videogames. This work is included as part of the Vi-SMARt research project,
whose goal is the creation of rehabilitation environments that enable the thera-
pist to define adapted therapies to each patient’s specific impairments.

After having analyzed several previous proposals, we presented the Vi-
SMARt-Neurofeedback tool for ADHD that enables therapists to create specific
neurofeedback videogames. They can also define game sequences related with a
specific therapy in order to control the evolution of its difficulty level. Moreover,
the therapist can get information about the therapy execution of each particular
patient. Although this tool has been designed with the collaboration of experts
in the treatment of ADHD, our next task is to evaluate it in a controlled trial
to analyze its effects in the treatment of ADHD patients.
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Abstract. Recently, distress has become a major problem in most
advanced societies because of its negative side effects in physical and
mental health. In this sense, the assessment of different physiological sig-
nals such as electroencephalogram (EEG) provides new insights about
the body’s reaction against distressful stimuli. Moreover, the non-linear
and dynamic behaviour of the brain suggests the application of non-
linear methodologies for EEG analysis. In this work, a symbolic tech-
nique called conditional entropy was applied for the assessment of 279
32-EEG channel segments of calm and distress emotional states. Results
of all EEG electrodes were combined in a simple decision tree classifier,
reporting a discriminatory power above 70%. Furthermore, a decreasing
tendency of irregularity when changing from calm to distress conditions
was observed for all EEG channels. The simplicity of this classification
model allows an easy interpretation of the results, together with a pos-
sible implementation of the algorithm in a real-time monitoring system.

Keywords: EEG · Distress · Nonlinear analysis · Conditional entropy

1 Introduction

Nowadays, people living in developed countries are surrounded by count-
less physical, mental and social factors that might cause positive or negative
stress [5,8,18]. Positive stress, also called eustress, helps to improve the con-
centration on a task, leading to a better performance. On the contrary, negative
stress, or distress, is considered cause and consequence of failure and difficulties in
a wide variety of daily situations. High levels of negative stress may also provoke
such a mental blockage state that it becomes almost impossible to properly solve
problems. As a result of that negative situation, psychological distress increases
even more. In this sense, it is said that the subjectively perceived level of stress is
usually higher than the actual externally-induced level [25]. Unexpected sudden
stimuli provoke short-term distress, triggering a response to protect the integrity
of the organism. The body secretes hormones like adrenaline and cortisol, and
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 193–202, 2017.
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194 B. Garćıa-Mart́ınez et al.

blood pressure and bumping rate gets increased, preparing us for a fight or flight
response [18]. This bodily reaction is acceptable in short periods of time. Nev-
ertheless, the frenetic lifestyle of advanced societies creates an atmosphere of
continuous negative stress.

As a consequence of long-term distress, physical and mental health can be
severely affected. Disorders like anxiety, depression, cardiovascular diseases, irri-
table bowel syndrome or back pain might be caused or aggravated by dis-
tress [1,3,19,22]. For that reason, distress has become a major disorder in
advanced countries in the last few years [9]. On the other hand, it is said that
the contrary effects of distress on the body can also occur. More concretely, a
calm emotional state decreases the levels of adrenaline and cortisol. The heart
activity and blood pressure are also notably diminished. That high intercorre-
lation between calm and distress is the reason why these emotions are usually
studied together [25].

Distress has been widely analysed in dozens of situations, such as stressful
driving tests [10], surgical procedures [7], or control of levels of distress in age-
ing adults living alone at home [17]. In this sense, many works have assessed
changes in different physiological signals of subjects under negative stress con-
ditions. Having those bodily reactions perfectly defined, it would be possible
to implement accurate real-time distress recognition algorithms. In this sense,
the affective computing science [21] is focused on the development of affective
human-machine interfaces able to detect different levels of distress and make
decisions according to those measurements.

Although many physiological signals are studied for distress, electroen-
cephalogram (EEG) recordings are especially interesting since brain signals rep-
resent the primary responses to any stimulus, while the rest of physiological
variables are secondary effects of cerebral activity [12]. According to the liter-
ature, many studies of distress with EEG signals have been published. Most of
those works are focused on EEG spectral features, especially in α (8–13 Hz) and
β (14–29 Hz) bands. It is said that, during relaxation moments, spectral power
in α band increases, while power in β is decreased. The contrary effects have
been assessed under distress conditions, when α power decreases and β power
increases [25]. In any case, frequency-based methodologies have reported incon-
sistencies in terms of inter-subject variability and changes in different frequency
bands [26]. Recently, further research have depicted that neural processes follow
a completely non-linear behaviour [4]. In this sense, it seems logical to apply non-
linear analysis instead of traditional linear methodologies. Indeed, it has been
demonstrated that non-linear techniques provide better results than frequency-
based and other linear models for EEG analysis [27]. The aim of this work is to
apply a predictability-based entropy metric, namely conditional entropy (CEn),
for the assessment of EEG signals in order to determine how the brain works
when a negative stress stimulus is perceived.

The remainder of this manuscript is structured as follows. Section 2 describes
the main characteristics of the database analysed, together with the definition of
CEn and the statistical analysis methodologies used. Section 3 shows the results



Conditional Entropy for Distress Detection 195

obtained after the application of all analytical techniques. Finally, Sect. 4 dis-
cusses the results obtained, and presents some final conclusions.

2 Materials and Methods

2.1 Database

EEG recordings assessed in this work are contained in the Database for Emotion
Analysis using Physiological Signals [13]. This publicly-available dataset provides
EEG and other physiological variables from thirty-two participants (50% male,
mean age 26.9 years). These signals where acquired during the visualisation of
forty emotional video clips of one minute duration. After each video, subjects
rated their levels of valence (pleasant or unpleasant) and arousal (excitement
or calmness) by means of self-assessment manikins [20]. For acquisition of EEG
recordings, 32 electrodes were located over the scalp at standard 10–20 system
positions, and data were recorded with a sampling rate of 512 Hz. As preprocess-
ing method, these data were down-sampled to 128 Hz and filtered using a band-
pass filter between 3 and 45 Hz. Consequently, no further filtering was necessary
to remove direct current and electrical power line. In addition, artefacts such as
eye blinks and interferences from cardiac or muscular activity were eliminated
using an independent component analysis. More information about this database
is available in [13].

Not all the samples in the database were analysed. Only segments from calm
and distressed patients were chosen. The group of calm individuals contained
samples with valence between 4 and 6, and arousal lower than 4. On the other
hand, negative stress group was formed by segments with valence lower than 3
and arousal higher than 5. In total, 279 samples (146 calm and 133 distress)
were assessed in this work.

2.2 Conditional Entropy

CEn is based on a symbolic representation of the amplitudes of the elements of
the signal [24]. It has been especially proposed for the estimation of entropy in
very short time series. The first step for CEn computation is the transformation
of x(n) into a positive valued signal xp(n) by the subtraction of its minimum
value: xp(n) = x(n) − min{x(n)}. The full dynamic range of the time series,
Γ = max{x(n)} − min{x(n)}, is then divided into ξ quantization levels. In
addition, xp(n) is quantified with a resolution of Γ/ξ. The result is a symbolized
signal xs(n) from the limited alphabet of symbols {0, 1, . . . , ξ − 1}. Being N the
length of window, the symbolized signal is then divided into N − m + 1 vectors
of size m, Xs,m(i) = {xs(i), xs(i + 1), . . . , xs(i + m − 1)}, which is a number in
base ξ that corresponds to this decimal number:

Xm(i) → wm(i) = xs(i) · ξ0 + xs(i + 1) · ξ1 + . . . xs(i + m − 1) · ξm−1 (1)

With this process, the time series is converted into a sequence of integer
numbers {wm(i)}i=1,...,N−m+1 that range from 0 to Nm = ξm − 1. Hence, the
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probability density function of wm gives information about the distribution of
the patterns Xm(i). Furthermore, the probability of the patterns is calculated as
the relative frequency of wm(i), denoted by p

(
wm(i)

)
. This process is repeated

for dimension m − 1 and, finally, CEn is calculated as the difference in Shannon
entropies for dimensions m − 1 and m:

CEn(m, ξ) =

Nm−1+1∑

k=1

p
(
wm−1(k)

) · ln (p(wm−1(k)
))−

Nm+1∑

k=1

p
(
wm(k)

) · ln (p(wm(k)
))

(2)

where CEn is the representation of the amount of information given by the most
recent sample of x(n), knowing the previous m−1 samples. The maximum value
of CEn is obtained when x(n) is complex and unpredictable. On the contrary,
CEn is zero when the past m − 1 samples allow to accurately predict a new
sample.

With the purpose of limiting the presence of single points, it is recommended
that N > ξm−1 [23]. Moreover, the parameters of CEn computation for short
data sequences are suggested to have small values [23]. In this work, m = 2,
ξ = 10 and N = 1280 were chosen.

2.3 Statistical Analysis

Shapiro-Wilk and Levene tests were applied to check the normality and
homoscedasticity of the distributions. As a result, values for each group are
expressed as the mean ± standard deviation. In addition, a one-way ANOVA
test was used to assess the statistical differences between calm and distress sam-
ples for each EEG channel. Only values of ρ < 0.05 were considered to be statis-
tically significant. Furthermore, receiver operating characteristic curves (ROC)
were applied to assess the discriminatory power of each channel in terms of sen-
sitivity (Se), specificity (Sp) and accuracy (Acc). Sensitivity is the relation of
positive values correctly classified, while specificity is the relation of negative
values accurately identified. ROC curves are represented as Se against 1−Sp at
different thresholds to discern between calm and distress samples. The optimal
threshold is chosen for each EEG channel as the one that provides the highest
classification accuracy. Finally, all EEG channels were combined in a simple deci-
sion tree model to improve the global discrimination ability. The growth of the
tree-based classifier was controlled, stopping when each node contained less than
20% of samples of a class. Gini index was also applied as a splitting criterion for
each EEG channel [2].

3 Results

Almost all EEG channels in all brain regions presented relevant results.
More concretely, frontal channel Fz showed the highest classification accuracy
Acc = 63.3% (Se = 70.1%, Sp = 55.7%). Right fronto-central FC2 and right
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Fig. 1. Statistical significance and distribution of calm and distress CEn values for the
most relevant EEG channels.

frontal F4 also reported discriminatory values 61% and 60.6%, respectively.
Other relevant channels were left central C3 (59.5%), left centro-parietal CP1
(59.2%) and left parietal P3 (59.1%). The rest of EEG channels presented accu-
racy results ranging from 52% to 58%. Statistical significance values of the most
relevant channels are shown in Fig. 1. Furthermore, distribution of calm and dis-
tress samples corresponding to the aforementioned channels are also depicted in
that figure. As it can be observed, the mean value of CEn is higher for calm group
than for distress samples in all cases. This decreasing tendency was reported by
all 32 EEG channels.

In addition, Fig. 2 shows the mean value of CEn for all EEG locations
analysed in this work. As it can be observed, calm samples present the high-
est CEn mean values along the lines between fronto-polar and temporal elec-
trodes of both hemispheres. On the contrary, frontal channels F7 and F8, and
fronto-central Fz, FC1 and FC2 do not show such a high level of complexity,
despite being in the same brain lobes as those electrodes with larger values of
CEn. The lowest unpredictability in this case can be found in parietal channel
Pz. With respect to the group of distressed subjects, it can be seen that frontal
electrodes Fp1, Fp2 and AF3 present almost the same CEn mean values than in
calm group. Nevertheless, complexity in the rest of brain regions under distress
conditions is notably lower than in the case of calm samples. This finding is in
accordance with Fig. 1, in which mean CEn values were higher in calm samples
than for distressed participants.

Differences of CEn mean values between calm and negative stress group were
also computed, as shown in Fig. 3. It can be observed that the highest differences
of complexity occur in right frontal and fronto-central regions (channels F4, FC2
and FC6), as well as in left centro-parietal and parietal areas (electrodes CP1 and
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Fig. 2. Representation of mean values of CEn for all EEG channels in (a) calm group
and (b) distress group.
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Fig. 3. Differences of mean CEn values in all EEG channels.

P3). These findings are in accordance with the most relevant channels in terms
of classification accuracy results (see Fig. 1). On the other hand, as expected,
left frontal channel Fp1 presents no difference of mean CEn value between calm
and distress groups. Right parieto-occipital channel PO4 also reports a small
difference in CEn mean value.

In order to improve the global discrimination ability of the model, a simple
tree-based classifier was used. All EEG channels were introduced to this clas-
sification model. However, only channels Fz, T8 and Fp1 were finally selected,
as depicted in Fig. 4. With this combination, the decision tree model reported a
classification accuracy of 70.7% (Se = 87.6%, Sp = 51.6%). This discrimination
result is an improvement of 7.4% with respect to the highest individual Acc of
ROC analysis (63.3% in Fz).
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Fig. 4. Combination of all EEG channels in a decision tree classifier for an improvement
of global accuracy.

4 Discussion and Conclusions

In the literature, a wide variety of works that are focused on the study of brain
activity under different emotional states can be found [9,15,16]. Given the rele-
vant statistical significance reported by many EEG channels in this work, CEn
can be considered a suitable technique for distress recognition. Most of the elec-
trodes in all brain regions presented an important discriminatory power between
calm and distress stimuli. As observed in Fig. 1, right frontal and fronto-central
electrodes, together with left central and parietal channels presented the highest
discrimination ability. These results were in accordance with Fig. 3, in which the
difference of complexity between calm and distress was especially relevant in
right fronto-central and left centro-parietal areas.

In terms of predictability, Fig. 2 depicted that the mean value of CEn was
higher for calm segments than for distress samples in all EEG channels. It
means that the brain follows a more dynamic and unpredictable behaviour in a
relaxed emotional state. On the other hand, brain responses elicited by negative
stress stimuli present a more predictable performance than in euthymic (neither
depressed nor highly elevated) moods. This decreasing tendency has been pre-
viously reported in other studies. For example, a reduction in fractal dimension
in subjects dealing with distressful situations was assessed in [11].

Finally, the combination of all EEG channels in a decision tree-based classifi-
cation model improved the global accuracy to 70.7%. It is worth noting that only
electrodes Fz, T8 and Fp1 were chosen by the model shown in Fig. 4. Channel
Fz was firstly selected because it provided the highest classification accuracy.
Nevertheless, T8 and Fp1 did not report any relevant results in ROC analysis.
The reason why those channels were selected is that they explain cases that
Fz is not able to describe. In other words, T8 and Fp1 are complementary to
Fz when discerning between calm and distress, despite not having a relevant
discriminatory power individually. Having only three input channels in a small
decision tree simplifies the clinical interpretation of the results. Previous studies
reached higher values of classification accuracy than in this work. However, their
classification models consisted of hundreds of input variables and complex statis-
tical approaches, blurring any clinical interpretation of the results. The simple
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model applied in this study allows to easily know which brain areas help to
an improvement of the global discriminatory ability between calm and distress
samples.

In addition, it would be possible to implement this emotion recognition algo-
rithm in a real-time monitoring device in future works. Different real-time sys-
tems have been implemented previously. For example, a human-machine inter-
face able to recognise up to six different emotions in real-time has been proposed
so far [14]. A music therapy site based on the assessment of EEG signals was
then designed. Moreover, an on-line music player was created to select which
music to display according to the user’s feelings [14]. On the other hand, a
method for adaptation of a game difficulty in terms of the user’s emotions is
also available [6]. For that purpose, EEG and peripheral signals were acquired
to distinguish between three different emotional states [6]. In the case of this
work, the algorithm could be applied for a real-time control of distress level in
countless daily situations.
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Abstract. Nowadays, electroencephalographic (EEG) recordings rece-
ive increasing attention in the field of emotions recognition with physio-
logical variables. Moreover, the nonlinear nature of EEG signals suggests
that nonlinear techniques could be more suitable than linear method-
ologies for the assessment of mental processes triggered under different
emotions. One of the most relevant states is distress (the negative aspect
of stress), because of its enormous influence in developed countries and
its countless adverse effects in health. As a result, many researches have
shown their interest in distress in the last few years. In the present study,
a predictability-based entropy measure called amplitude-aware permuta-
tion entropy (AAPE) was applied to discern between calm and distress
states. EEG signals from 32 channels were individually assessed to obtain
the discriminatory ability of each single electrode. After that, only 2 out
of 32 EEG channels were combined in a logistic regression model, reach-
ing a global classification accuracy over 73%.

Keywords: Distress · EEG · Permutation entropy · Nonlinear analysis

1 Introduction

Emotions are complex psycho-physiological processes automatically generated
as a reaction against externally-induced stimuli [13]. Emotions play a key role
in countless daily situations like verbal and nonverbal communication, learn-
ing and rational decision-making [13]. Nevertheless, automatic systems cannot
still interpret human feelings because of their lack of emotional intelligence [31].
Hence, human-machine interfaces (HMIs) are not able to properly decide which
actions to execute according to the user’s emotions [31]. In this sense, the aim
c© Springer International Publishing AG 2017
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of the affective computing science is to endow those HMIs with emotional intel-
ligence, enhancing their capability of recognising different moods and emotional
states [27]. With this purpose, many automatic systems are based on the assess-
ment of different physiological signals for emotions detection, being the elec-
troencephalogram (EEG) one of the most relevant physiological variables.

EEG recordings have received increasing attention in the last years since
they are a representation of the first impulse of the body against any external
stimulus [17]. The rest of physiological signals are secondary processes produced
by the autonomic nervous system as a result of the primary processes started in
the brain [17]. In addition, the brain presents a nonlinear and dynamic nature at
both cellular and global level [1,11]. Consequently, it has been demonstrated that
nonlinear methodologies provide better results than traditional linear techniques
in the assessment of mental disorders like Alzheimer [1,19,20], epilepsy [33] or
depression [2]. Thus, this study aims to evaluate the results derived from the
application of a nonlinear entropy metric for the recognition of different emo-
tions in EEG signals. More concretely, a symbolic index called amplitude-aware
permutation entropy (AAPE) will be computed for the recognition of negative
stress and calm emotional states in EEG recordings.

Among the large number of emotions defined in the literature, negative stress
(also called distress) has been chosen because of being one of the most relevant
and influential in advanced societies [3,9]. Distress is defined as a change from
a calm to an excitement state for the protection of self-integrity [9,15]. Long-
time distress conditions might severely affect cerebral, immune and endocrine
systems [4]. Thus, countless physical and mental diseases might be triggered or
aggravated [8,10,25,28]. On the other hand, it has been verified that calm emo-
tional conditions produce effects on the body that are contrary to the effects
produced by negative stress [22,30,32]. A consequence, calm and distress emo-
tional states are highly intercorrelated [29]. Thus in this work both emotions will
be assessed in order to define the differences in brain’s behaviour under calm and
negative stress conditions.

In this manuscript, Sect. 2 presents a brief description of the database
analysed, and defines the entropy index computed in this study. Statistical analy-
sis techniques used are also described in Sect. 2. Results derived from the appli-
cation of those methodologies are presented in Sect. 3 and discussed in Sect. 4,
together with some final conclusions.

2 Materials and Methods

2.1 Database

Samples analysed in this study were selected from a publicly available dataset
called Database for Emotion Analysis using Physiological Signals (DEAP) [18].
The experiment to create this database consisted of the visualization of forty
one-minute length videoclips with emotional content. Meanwhile, EEG and other
physiological signals of thirty-two subjects were acquired. For each video, par-
ticipants rated their levels of valence (unpleasantness-pleasantness) and arousal
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(calmness-excitement) with self-assessment manikins (SAM) [26]. EEG record-
ings were acquired at a sampling rate of 512 Hz with 32 electrodes located over
the scalp following the standard 10–20 system. The preprocessing method con-
sisted of a downsampling to 128 Hz and the application of a band-pass filter
between 3 and 45 Hz. Furthermore, an independent component analysis (ICA)
was applied to eliminate artifacts such as eye blinks or interferences from cardiac
or muscular activity. More information about the DEAP database can be found
in [18].

Samples in the database covered the whole valence-arousal space. Neverthe-
less, only segments corresponding to calm and distress emotions were selected
in this work. For this purpose, samples with arousal lower than 4 and valence
between 4 and 6 were included in calm group. On the other hand, distress seg-
ments presented an arousal level higher than 5 and a valence level lower than 3.
Thus, a total of 279 samples (146 in calm group and 133 in distress group) were
analysed in this study.

2.2 Amplitude-Aware Permutation Entropy

In this work, a symbolic entropy measure was used to discern between calm and
distress samples. The main characteristic of symbolic entropies is the assessment
of ordinal sequences of symbols resulting from the transformation of a time series.
The distribution of those symbols is quantified by means of Shannon’s entropy
(ShEn), thus the predictability of the time series is accurately estimated [5].
Symbolic entropies take into account the order of the symbols in a pattern,
which is crucial for a proper assessment of the dynamics of a signal. In this
study, a symbolic entropy called AAPE was computed for all EEG channels to
detect negative stress states.

AAPE is a modification of permutation entropy (PE). This simple-concept
estimate presents an easy method of parametrization, together with a high level
of robustness against noise and a quick computation algorithm [7]. The calcu-
lation of PE starts with the association of each ordinal sequence with a vector
Xm(i), considering that the sequence is the permutation κi = {r0, r1, . . . , rm−1}
of {0, 1, . . . ,m − 1} for which x(i + r0) ≤ x(i + r1) ≤ . . . ≤ x(i + rm−2) ≤
x(i + rm−1). Vectors of length m are associated to m! ordinal sequences or sym-
bols πk. For instance, the symbols of a vector of length m = 2 are π1 = {0, 1}
and π2 = {1, 0}. Those sequences have a probability of appearance in a signal
that can be calculated as the relative frequency of the patterns, p(πk), within
the N − m + 1 vectors of the time series. Finally, PE can be estimated as the
ShEn of the m! symbols πk:

PE(m) = −
m!∑

k=1

p(πk) ln p(πk) (1)

The presence of permutation sequences of a time series can provide valuable
information about the underlying dynamics of the model under study. When
the probability of appearance of all symbols is the same, then PE presents a
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maximum value of ln(m!). On the contrary, a minimum PE of 0 is obtained in
the case of having a totally predictable time series with just one symbol.

In any case, results reported by PE only involve the order of the amplitudes,
ignoring the value of those amplitudes. Hence, AAPE was defined to solve this
deficiency [6]. AAPE is an entropy estimate that quantifies the symbols of a time
series according to its changes of amplitude. In this sense, AAPE associates
the histogram of probability appearance of each pattern with an amplitude-
dependent value. In other words, each symbol presents a normalised value of
relative probability [6]:

p(πk) = p(πk) +

(
A

m

m∑

i=1

|yt+(i−1)l| +
1 − A

m − 1

m∑

i=2

|yt+(i−1)l − yt+(i−2)l|
)

, (2)

In the previous equation, A is an adjustment coefficient regarding the average
and differences between correlative samples of the signal, and l is a time delay.
Then the probability of appearance of each symbol is normalised by the sum of
all contributions:

p(πk) =
p(πk)

∑N−m+1
t=1

(
A
m

∑m
i=1 |yt+(i−1)l| + 1−A

m−1

∑m
i=2 |yt+(i−1)l − yt+(i−2)l|

) (3)

The final step of AAPE computation is the same as for PE, the Shannon entropy
of the m! symbols πk:

AAPE(m) = −
m!∑

k=1

p(πk) ln p(πk). (4)

2.3 Statistical Analysis

The normality and homoscedasticity of the distributions were checked with
Shapiro-Wilk and Levene tests. Consequently, results obtained for each group
are denoted as mean ± standard deviation. Then, a one-way ANOVA test was
applied for the assessment of the statistical differences between samples of dis-
tress and calm in each EEG channel. Only significance values ρ < 0.05 were con-
sidered as significant. In addition, a ten-fold cross-validation approach was used
to assess the discriminatory power of each channel. In each training step, that
discriminatory ability was calculated by means of receiver operating characteris-
tic curves (ROC). ROC curves are the representation of sensitivity (Se, relation
of positives accurately classified) against 1-specificity (Sp, relation of negatives
properly identified) at different thresholds. Classification accuracy (Acc) is the
total rate of samples correctly identified. Then, the threshold chosen as the
optimal is the one which provides the highest classification accuracy. The final
value of classification accuracy is the average of the ten iterations of the ten-fold
cross-validation model.
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As a second analysis, all data were combined in order to find subsequent
relationships between different brain regions. Nevertheless, not all EEG chan-
nels were included as input variables in the classification model. Instead, a fea-
ture selection method based on a forward stepwise technique was used. This
approach starts with a reduced initial model that is then compared with larger
models created by the addition of new terms from a multilinear system based
on their statistical significance in a regression. At each step, the statistical sig-
nificances of a model with and without a new term are compared to evaluate
the possible contribution of that term to the classification procedure. Once all
terms were chosen, they were included as input parameters in a logistic regres-
sion classification approach. Logistic regression is based on the determination
of a binary dependent variable in terms of a set of independent or predictor
variables, searching for the combination that best fits the relationship between
both dependent and independent features.

3 Results

Different brain areas were activated in calm and distress conditions. Figure 1
shows the mean value of AAPE of all EEG channels for calm and distress
groups. It can be seen that calm subjects (Fig. 1(a)) presented the highest levels
of entropy mainly in frontal, temporal and left occipital regions. In contrast,
central and parietal areas reported lower activity levels. With respect to dis-
tressed participants (Fig. 1(b)), it is observed that complexity in all EEG chan-
nels is notably lower than in the case of calm individuals. It was verified that
this decreasing tendency was reported by all the EEG channels assessed in this
study.

Moreover, the application of ROC analysis reported significant statistical
values (ρ < 0.05) and high classification accuracies in many channels of all
brain lobes. The highest discriminatory ability was reported by left parietal
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Fig. 1. Representation of mean values of AAPE for (a) calm and (b) distress groups
of study.
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channel P3, with a classification accuracy of 65.39%. Other channels like right
frontal electrodes F8 and FC2, left parieto-occipital PO3 and left centro-parietal
CP5 also reported high discriminatory results around 61%. Values of statistical
significance ρ and ROC parameters (sensitivity, specificity and accuracy) of the
aforementioned channels can be found in Table 1. Discriminatory results of the
rest of electrodes were ranging from 55% to 60%.

Table 1. Statistical significance and ROC results for the most relevant channels of
AAPE.

EEG channel Significance value ρ ROC results

Se (%) Sp (%) Acc (%)

P3 2.71 × 10−5 78.83 50.05 65.39

F8 1.82 × 10−3 71.56 50.84 61.84

FC2 1.34 × 10−3 73.71 48.43 61.79

PO3 6.53 × 10−5 58.49 64.82 61.46

CP5 5.31 × 10−4 70.09 50.81 61.00

In addition, Fig. 2 shows the differences of AAPE mean level between calm
and distress samples. According to ROC results reported in Table 1, the highest
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Fig. 2. Differences of mean values of AAPE between calm and distress segments for
all EEG channels.
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differences are mainly located in left parietal region, including channels P3, CP5
and PO3. These electrodes reported the highest discriminatory ability in ROC
analysis. Moreover, right frontal hemisphere (channel P4) also presents a slightly
higher difference of activation than the left frontal lobe. On the other hand,
fronto-polar channels Fp1 and Fp2, right temporal T8 and right central C4
presented the smallest differences of mean level of AAPE between calm and
distress samples.

Finally, all EEG channels were combined with the purpose of improving the
global classification accuracy of this approach. With this purpose, a stepwise
analysis was applied to reduce the number of channels included in the classifier.
In this case, only parietal channels P3 and P4 were chosen and introduced as
input variables in a logistic regression model. This combination reported a dis-
criminatory ability of 73.75% (Se = 77.37%, Sp = 69.67%), thus improving the
highest individual accuracy (channel P3) in more than 8%.

4 Discussion and Conclusions

Many works have tested the effectiveness on nonlinear methodologies for the
assessment of EEG signals under different emotional states [14,23,24]. The rel-
evant statistical significance values reported in this study suggest that AAPE
is a suitable index for negative stress detection. Almost all brain areas pre-
sented electrodes with a considerable discriminatory power between distressful
and relaxing stimuli. The highest discriminatory ability was located in electrodes
of right frontal and fronto-central, left central and left parietal regions. Those
findings were also obtained in Fig. 2, where right fronto-central and left centro-
parietal regions reported relevant differences of predictability between calm and
distress samples. On the other hand, Fig. 1 reported a higher mean value of
AAPE for calm subjects than for distressed participants in all EEG electrodes,
which means that the behaviour of the brain in calm is more dynamic and unpre-
dictable than in distress situations. A similar decreasing tendency was reported
by Hosseini et al., declaring a reduction in fractal dimension in participants
elicited with distressful stimuli [16].

In the present manuscript, a logistic regression model was applied to combine
all EEG channels for an improvement of the discriminatory ability of each single
electrode. After a stepwise analysis, only channels P3 and P4 were introduced
in the model. Left parietal electrode P3 was firstly selected since it presented
the highest discriminatory ability (Acc = 65.39%). Then, right parietal P4 was
chosen because of complementing the information reported by P3, despite not
presenting a relevant discriminatory power to discern between calm and distress
emotional states. Finally, this logistic regression model provided a classification
accuracy of 73.75%, which is an improvement of more than 8% with respect to
the highest individual accuracy (channel P3). Furthermore, the simplicity of the
classification model allows to easily interpret the results from a clinical point
of view, since only 2 out of 32 channels are combined. In this sense, these new
findings could be essential to enlarge our knowledge of the brain’s behaviour
under distress conditions.
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Moreover, the implementation of this negative stress detection algorithm
in real-time monitoring systems would be possible. In a previous study, Liu
et al. [21] presented a human-machine interface prepared for the real-time recog-
nition of six different emotions and a posterior control of a music player that
automatically selected which music to play according to the user’s emotional
state. In other work, Chanel et al. [12] developed an algorithm of adaption of a
game difficulty according to the user’s feelings detected by means of EEG and
other physiological signals. The algorithm presented in this study could also be
implemented in a wide variety of systems for real-time control of distress levels
in daily situations.
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ment based on EEG univariate features and functional connectivity measures.
Physiol. Meas. 36(7), 1351 (2015)
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25. Mönnikes, H., Tebbe, J.J., Hildebrandt, M., Arck, P., Osmanoglou, E., Rose, M.,
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Raúl Alcaraz, Beatriz Garćıa-Mart́ınez,
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Abstract. Automatic recognition of emotions is an emerging field,
because it plays a key role to improve current affective human-computer
interactions. Although for that purpose a variety of linear methods have
been applied to the electroencephalographic (EEG) recording, nonlin-
ear analysis has recently revealed novel and more useful insights about
the brain behavior under different emotional states. This work briefly
reviews the main progresses in this context, also highlighting the main
challenges that will have to be mandatory tackled in future.

Keywords: EEG · Emotion recognition · Nonlinear analysis

1 Introduction

From a psycho-physiological point of view, the emotions are mental processes
characterized by a strong activity and high degree of hedonistic content [8]. Their
study is highly interesting because they are present in a variety of daily human
activities, including learning, verbal and nonverbal communication and rational
decision-making processes [8]. Moreover, although recognition of emotions plays
a key role in communication and interaction among people, nowadays automatic
systems are not completely able to interpret human feelings [35]. This dysfunc-
tion often makes current human-machine interfaces (HMI’s) unable to execute
proper emotion-based actions [35]. Hence, more research is essential to improve
affective computing systems, which are becoming increasingly applied to emerg-
ing fields such as medicine [28], digital society [38] or computer games [6].

A major problem to identify emotions is the lack of a standardized model
for their definition [40]. In fact, several theories attempting to classify numer-
ous emotional states can be found in the literature. Thus, Ekman firstly defined
six basic emotions universally accepted, including happiness, surprise, sadness,
fear, disgust and anger, their combination being also able to characterize more
complex feelings [10]. However, nowadays the most widely used emotion classifi-
cation model is the 2-dimension approach proposed by Russell [36]. This model
c© Springer International Publishing AG 2017
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is based on how pleasant or unpleasant (valence) a stimulus is, as well as on its
ability to produce excitement or calmness (arousal) on a normal subject. A wide
range of emotions can then be defined depending on the combination of different
levels of arousal and valence [36].

Another relevant problem dealing with emotions is that they are highly inter-
correlated. Thus, subjects rarely describe isolated positive or negative feelings [8].
Additionally, a stimulus can trigger different emotions within several people,
mainly depending on their mood, personality, disposition or motivation [8].
Hence, this high variability in expression of emotions makes their automatic
identification highly complicated [40]. Nonetheless, some recent works have been
able to discern among different emotional states from some physiological signals,
like the electromyogram (EMG), the electrocardiogram (ECG), the electroen-
cephalogram (EEG) and the electro-dermal activity (EDA) signal [40].

Given that the EEG signal is able to provide more information than other
physiological variables, automatic recognition of emotions from this recording is
currently receiving growing attention [17]. In fact, the emotional response to any
external stimulus is firstly generated by the brain and, thereafter, distributed to
the rest of biological systems [17]. Although the EEG signal has been character-
ized both from linear and nonlinear points of view, more relevant insights have
been provided by nonlinear analysis [40]. This is not surprising, since nonlinear-
ity in the brain can be observed both at cellular and global levels. Precisely, the
dynamical behavior of individual neurons is governed by threshold and satura-
tion approaches [5]. Moreover, the brain function during sophisticated cognitive
tasks is far from being completely stochastic [5]. Hence, the purpose of this work
is to review the most recent advances released through the application of non-
linear methods to the EEG recording in automatic identification of emotional
states. The most relevant challenges in this context will also be remarked.

2 The EEG Recording and Its Typical Preprocessing

EEG signals measure brain electrical activity at many locations simultaneously
by one electrode at each position on the human scalp. These recordings are
electrical potentials acquired with respect to a reference electrode (usually placed
at the earlobe). The number of electrodes depends on the application, normally
ranging from 2 to 128 [39]. Nonetheless, to ensure reproducible measurements, as
well as comparison among recordings from different subjects, a system limiting
the number and location of electrodes has been internationally standardized, i.e.
the 10–20 system [39]. Anyway, since every EEG signal presents an amplitude
between −100 and +100µV, approximately, a previous preprocessing to reduce
artifacts is required for further accurate characterization [21]. Briefly, different
spatiotemporal filtering approaches are commonly used to remove baseline, high-
frequency noise and power-line interference [39]. Moreover, most of technical
artifacts (e.g., electrode-pops) and physiological ones (e.g., facial and ocular
movements) are often reduced making use of independent component analysis
(ICA) [32]. The resulting clean signal is then analyzed in terms of the nonlinear
metrics that will be described below.
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3 Nonlinear Characterization of Brain Time Series

The main goal of nonlinear time series analysis is to quantify a system com-
plexity, which is related to the rate of intrinsic patterns hidden in the generated
dynamics [11]. To date, a broad variety of indices, based on different mathemat-
ical foundations, can be found to measure different faces of the complexity of
physiologically derived time series. These metrics can be grouped into five sets,
according to the following subsections.

3.1 Quantification of Fractal Fluctuations

Time series dynamics can be explored through its correlation properties, or in
other words, through its time ordering. To this respect, fractal analysis is an
appropriate method to characterize complex time series by focusing on their
time-evolutionary properties and correlation features. Thus, detrended fluctua-
tion analysis (DFA) has been developed specifically to distinguish between intrin-
sic fluctuations generated by complex systems and those caused by external or
environmental stimuli [30]. This method quantifies temporal organization of the
fluctuations in a given non-stationary time series by a single scaling exponent
α, which can be considered as a self-similarity parameter representing the long-
range power-law correlation properties of the series. Another index widely used
to quantify correlation properties of a time series is the Hurst exponent (HE). It
is associated with the long-term statistical dependence of the series, thus assess-
ing its statistical self-similarity and providing information of the recurrence rate
of similar patterns at different scales [4].

The combination of these two metrics with other linear measures, such as
spectral, bispectral and wavelet-based parameters, have revealed an interesting
ability to track changes of six emotional states (i.e., happiness, sadness, fear,
anger, surprise and disgust) over time in subjects with Parkinson’s disease [42].
In a similar way, but dealing with healthy subjects, the combination of HE with
other nonlinear characteristics, as well as with spectral and wavelet-based fea-
tures, has also provided a high discriminant power around 90% between positive
(valence > 5) and negative (valence < 5) emotional states [41]. In both works,
nonlinear metrics have reported a slightly lower contribution than linear indices,
but their role is still key to improve automatic identification of emotions [41,42].

Fractal dimension (FD) has also been proposed to analyze temporal order-
ing of time series [30]. In the literature numerous algorithms can be found to
compute this parameter directly from the time series, such as those proposed by
Katz, Petrosian and Higuchi [30]. Each method presents advantages and disad-
vantages and, thus, most of them have been considered to deal with physiological
signals [30]. Regarding recognition of emotions, Hatamikia and Nasrabadi [13]
have combined two of these FD measures with other two entropy-based metrics
to discern emotional states from the four quadrants defined by the dimensions
of valence and arousal (i.e., high valence and high arousal, high valence and low
arousal, low valence and high arousal and, finally, low valence and low arousal).
The accuracy reported in this work was around 70%. A similar discriminant
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ability has also been reported by Sourina and Liu [37], who have only used two
FD estimates to discriminate among positive, negative and neutral emotional
states. The combination of FD with other statistical and spectral features has
also been useful to discern among four opposite emotions, such as pleasantness,
happiness, fright and fear [23]. Moreover, in this work FD also showed a great
stability to identify the same emotions from the same patients during successive
days [23].

Despite these promising results, some physiological times series are extremely
complex and exhibit a multifractal scaling behavior, thus requiring more than
one scaling exponent to characterize inhomogeneous fluctuations derived from
crossover timescales [30]. To consider this aspect, some recent works have stud-
ied the possibility of improving previous results in automatic recognition of emo-
tions by analyzing multifractal DFA and FD indices [26,31]. To this respect, the
combination of multifractal FD with other statistical and spectral features has
provided a diagnostic accuracy around of 85% to discriminate among eight emo-
tions, such as happy, surprised, satisfied, protected, angry, frightened, uncon-
cerned, and sad [26]. A similar discriminant power has also been reported by
several multifractal DFA features to discern between positive and negative emo-
tional states [31]. As a consequence, nonlinear multifractal analysis can improve
about 10% identification of several emotions, thus suggesting the need of further
research in this line.

3.2 Quantification of Chaos Degree

The basic principle of chaos analysis is to transform properties of a time series
into topological features of a geometrical object (attractor) embedded in a
state/phase space. The concept of phase space reconstruction is essential in
nonlinear analysis of dynamics. A valid phase space is any vector space where
the state of a dynamical system can be unequivocally defined at any point [19].
The most used way to reconstruct full dynamics of a system from scalar time
measurements is based on the embedding theorem, which states that one can
“reconstruct” the attractor from the original time series and its time-delayed
copies [19].

To characterize a reconstructed phase space, a variety of methods and algo-
rithms are currently available. A widely used index is the correlation dimension
(CD) [30], which assesses the attractor dimensionality, i.e., the organization of
points in the phase space. It can be computed by first calculating the correlation
sum of the time series, which is defined as the number of points in the phase
space that are closer than a certain threshold r [19]. Then, CD is defined as the
line fitting slope in the log-log plot of the correlation sum as a function of the
threshold r.

Recently, several works have explored the capability of CD to gain new
insights about the brain behavior under different emotional states. Indeed,
Hoseingholizade et al. [14] have observed that CD decreases significantly in
frontal, temporal and parietal EEG channels for emotional experiences both with
negative and positive valences compared to rest states. According to the authors,



Recent Advances and Challenges in Nonlinear Characterization 217

these results suggest a more active involvement of these brain areas during emo-
tional experience than rest [14]. On the other hand, Khalili and Moradi [20] have
also proven that CD computed from EEG recordings is able to provide informa-
tion related to subjects positively and negatively excited, as well as calm, beyond
statistical features obtained from other peripherical signals, such as galvanic skin
resistance, respiration, blood pressure and temperature.

Lyapunov exponents (LEs) are also habitually used to characterize the
dynamics of the trajectories found in the phase space. These exponents quan-
tify the exponential divergence or convergence of initially close trajectories,
thus reflecting the amount of instability or predictability of the process. An m-
dimensional dynamic system has m exponents, but in most of the applications
it is sufficient to compute only the largest LE (LLE), which can be computed as
follows. First, a starting point is selected in the reconstructed phase space and
all the points closer than a predetermined distance, ε, are found. Then, aver-
age value of the distances between the trajectories of the initial point and their
neighbors are calculated as the system evolves. The slope of the line obtained
by plotting the logarithms of these average values versus time gives the LLE. To
remove the dependence of calculated values on the starting point, the procedure
is repeated for different starting points and the LLE is taken as the average.

This index has also been able to report statistically significant differences
from brain dynamics recorded under several emotional states. To this respect,
Acar et al. [1] have recently described notable differences in values of LLE com-
puted for all brain regions from 20 subjects elicited to feel happiness, sadness
and fear. Similarly, Natarajan et al. [29] have also noticed an increase in the
predictability of some brain dynamics via LLE for healthy individuals under
classic music and reflexologic stimulation. In this work, similar findings were
also noticed making use of other nonlinear features such as CD, HE and some
entropy-based metrics [29]. Nonetheless, it has to be remarked that numerous
algorithms to characterize the attractor of time series have still not been tested
in the context of emotion recognition, thus their analysis being a pending task.
In this way, novel insights about the brain behavior under different affective
states could be expected in future.

3.3 Quantification of Information Content

Symbolic analysis of time series involves the transformation of original data into
a sequence of discrete symbols that are processed to extract useful information
about the state of the system generating the process [30]. After the symboliza-
tion, words are constructed by collecting groups of symbols considering their
temporal order. This process typically involves definition of a finite word-length
template that can be moved along the symbol series one step at a time, thus
each step revealing a new sequence.

Quantitative measures to estimate word sequence frequencies often include
statistics, such as word frequency or transition probabilities between words. In
this line, a metric widely used is the proposed by Lempel and Ziv [30], which is
commonly referred to as Lempel-Ziv complexity (LZC). It provides a measure
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of complexity related to the number of distinct substrings and the rate of their
occurrence along a given sequence, with larger values of LZC associated to more
complex word sequences. This index has been recently used to discern among
different emotional states, reporting a diagnostic accuracy about 80% [7]. This
outcome is very interesting because, in contrast to most studies which require
combinations of numerous markers with advanced classifiers to report a signifi-
cant discriminant power [21], only a single index is considered in this case.

On the other hand, symbolized time series are also frequently characterized
by computing their entropy, which evaluates the probability that different words
occur [30]. In the context of emotion recognition, two different entropy estimates
have only been used. Thus, Aravind et al. [2] have proposed the application of
common Shannon entropy (ShEn) to the window-based symbolized γ band (30–
45 Hz) for discerning among emotional states of excitement, happiness, sadness
and hatred. A promising accuracy greater than 90% was observed in this study.
Similarly, Li et al. [24] have analyzed the ability of permutation entropy com-
puted from the EEG to discern between emotional states of excitement and
fear, thus reaching a discriminant power around 80%. Despite that these results
are highly interesting, developing new ways to symbolize brain time series and
to quantify more accurately their underlying dynamics under different affective
states are intriguing challenges yet.

3.4 Quantification of Irregularity

Approximate entropy (ApEn) is a well-known measure of time series irregularity.
This index obtains a non-negative number, with larger values corresponding
to more irregular data and smaller values corresponding to time series with
more instances of recognizable features or patterns [19]. It is computed as the
logarithmic likelihood that runs of patterns that are close (within a tolerance r)
for length m continuous observations remain close (within the same tolerance
r) on next incremental comparison. Although ApEn can be applied to relatively
short time series, the amounts of data points have an influence on the obtained
entropy estimates. This is due to the fact that the algorithm counts each sequence
as matching itself to avoid the occurrence of ln(0) in the calculations. To avoid
this bias, Sample entropy (SEn) has been proposed as an ApEn improvement by
excluding self-matches, thus being less dependent of the length of data series [33].
Recently, a modification of SEn has been also proposed to make this index
insensitive to the tolerance r. It is called quadratic SEn (QSEn) and is computed
by adding the term ‘ln(2r)’ to SEn [22].

These indices have been widely analyzed in the context of emotion recog-
nition. In fact, many works have proven their superior ability to other linear
and nonlinear metrics to discern among different emotional states. Thus, QSEn
has been revealed as the most promising single metric to identify negative stress
in healthy individuals [12]. In this study, more than 270 samples from subjects
appropriately stimulated with music videos were analyzed, the combination of
QSEn values computed from left frontal and right parietal brain areas reporting
an accuracy about 80% [12]. Although with a lower discriminant power, ApEn
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and SEn have also proven to be useful in discerning between calm and nega-
tively stressed subjects [12,15], as well as among emotional states from the four
quadrants defined by the dimensions of valence and arousal [18,34].

As previously mentioned, same physiological time series can exhibit different
structures over multiple time scales [30]. To consider this aspect, a more robust
regularity measure of time series is the named Multiscale entropy (MEn). This
index is based on computing and averaging entropy estimates from different time
scales, thus providing scale-independent values of regularity [9]. Several ways
have been proposed to obtain different time scales. The most common approach
consists of averaging different number of consecutive and non-overlapped sam-
ples. Li et al. [25] have used this algorithm to identify several emotional states
with an accuracy around 70%. However, they have also reported an improvement
in accuracy of about 12% by computing time scale through empirical mode
decomposition of the original brain time series [25]. Thus, every preprocessed
EEG channel was decomposed into intrinsic mode functions (IMFs) and SEn
was computed on each one. This methodology has been also used by Zhang
et al. [43] to reach a discriminant ability around 95% in the identification of
emotions with high valence and high arousal, high valence and low arousal, low
valence and high arousal and, finally, low valence and low arousal. In a very sim-
ilar context, Mert and Akan [27] have shown that, in addition to SEn, ShEn also
obtains accurate entropy estimates from IMFs. Nonetheless, since a broad vari-
ety of alternatives to compute MSEn has been proposed in last years [16], this
index role in automatic recognition of emotions requires further investigation.

3.5 Quantification of Geometric Structure

A Recurrence plot (RP) is a visual representation of all the possible distances
between the points constituting the phase space of a time series [19]. Whenever
the distance between two points is below a certain threshold, there is a recur-
rence in the dynamics, i.e., the system visited multiple times a certain area of
the phase space. This transformation is well-suited for the study of short non-
stationary signals, nowadays existing many indices to characterize geometrically
the resulting graph [19]. Nonetheless, four basic characteristics of a RP can be
highlighted: isolated points (reflecting stochasticity in the signal), diagonal lines
(index of determinism) and horizontal/vertical lines (reflecting local stationarity
in the signal). The combination of these elements creates large-scale and small-
scale patterns from which it is possible to compute many other features, mainly
based on the quantification of number of points within each element.

Despite its potentiality, this tool has been poorly surveyed in the context of
emotion recognition. To the best of our knowledge, only a study has considered
RP analysis to discern between emotional states with high and low valences, high
and low arousals and high and low likings, respectively [3]. In brief, 13 features
were used to characterize the RP constructed from each EEG channel, includ-
ing determinism, averaged diagonal length, entropy of the diagonal length and
laminarity, among others. However, spatial information from the different brain
areas was removed by averaging the features obtained for all the EEG channels.
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Thus, accuracy values between 60 to 70% were only reported [3]. Overall, it is
still possible to explore a long way regarding the application of RP analysis to
automatic identification of emotional states.

4 Conclusions

The state of the art summarized in the present work suggests that the use
of methods of nonlinear analysis can facilitate the understanding of the brain
behavior under different emotional states by complementing the information
reported by traditional linear techniques. However, only a few nonlinear tools
have been considered to date in too limited studies, in terms of number of
analyzed subjects and validation of results. Hence, further and more thorough
research is still required to discover the true potential of nonlinear analysis of
brain dynamics in automatic recognition of emotions.
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Pastor Garćıa, J., Alcaraz, R.: Application of entropy-based metrics to identify
emotional distress from electroencephalographic recordings. Entropy 18(6), 221
(2016)

13. Hatamikia, S., Nasrabadi, A.: Recognition of emotional states induced by music
videos based on nonlinear feature extraction and SOM classification. In: 21th
Iranian Conference on Biomedical Engineering (ICBME), pp. 333–337. IEEE
(2014)

14. Hoseingholizade, S., Golpaygani, M.R.H., Monfared, A.S.: Studying emotions
through nonlinear processing of EEG. Procedia Soc. Behav. Sci. 32, 163–169 (2012)

15. Hosseini, S.A., Khalilzadeh, M.A., Changiz, S.: Emotional stress recognition system
for affective computing based on bio-signals. J. Biol. Syst. 18, 101–114 (2010)

16. Humeau-Heurtier, A.: The multiscale entropy algorithm and its variants: a review.
Entropy 17, 3110–3123 (2015)

17. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recog-
nition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

18. Jie, X., Cao, R., Li, L.: Emotion recognition based on the sample entropy of EEG.
Biomed. Mater. Eng. 24(1), 1185–1192 (2014)

19. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambrigde University
Press, Cambrigde (2003)

20. Khalili, Z., Moradi, M.: Emotion recognition system using brain and peripherical
signals: using correlation dimension to improve the results of EEG. In: International
Conference on Neural Networks, pp. 1571–1575 (2009)

21. Kim, M.K., Kim, M., Oh, E., Kim, S.P.: A review on the computational methods
for emotional state estimation from the human EEG. Comput. Math. Methods
Med. 2013, 573734 (2013)

22. Lake, D.E., Moorman, J.R.: Accurate estimation of entropy in very short physiolog-
ical time series: the problem of atrial fibrillation detection in implanted ventricular
devices. Am. J. Physiol. Heart Circ. Physiol. 300(1), H319–H325 (2011)

23. Land, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring
using stable features. Vis. Comput. 32, 347–358 (2016)

24. Li, X., Qi, X., Tian, Y., Sun, X., Fran, M., Cai, E.: Application of the feature
extraction based on combination of permutation entropy and multi-fractal index
to emotion recognition. Chin. High Tecnol. Lett. 26(7), 617–624 (2016)

25. Li, X., Xie, J., Hou, Y., Wang, J.: An improved multiscale entropy algorithm and
its performance analysis in extraction of emotion EEG features. Chin. High Tecnol.
Lett. 25(10), 865–870 (2015)

26. Liu, Y., Sourina, O.: EEG-based subject-dependent emotion recognition algorithm
using fractal dimension. In: IEEE International Conference on Systems, Man and
Cybernetics, pp. 3166–3171 (2014)

27. Mert, A., Akan, A.: Emotion recognition from EEG signals by using multivariate
empirical mode decomposition. Pattern Anal. Appl. (2016)

28. Mitchell, A.J., Lord, K., Slattery, J., Grainger, L., Symonds, P.: How feasible is
implementation of distress screening by cancer clinicians in routine clinical care?
Cancer 118(24), 6260–6269 (2012)

29. Natarajan, K., Acharya, U.R., Alias, F., Tiboleng, T., Puthusserypady, S.K.: Non-
linear analysis of EEG signals at different mental states. Biomed. Eng. Online 3(1),
7 (2004)



222 R. Alcaraz et al.

30. Paraschiv-Ionescu, A., Buchser, E., Rutschmann, B., Aminian, K.: Nonlinear
analysis of human physical activity patterns in health and disease. Phys. Rev.
E Stat. Nonlinear Soft Matter Phys. 77(21), 021913 (2008)

31. Paul, S., Mazumder, N., Ghosh, P., Tibarewala, D., Vimalarini, G.: EEG-based
emotion recognition system using MFDFA as feature extractor. In: International
Conference on Robotics, Automation, Control and Embedded Systems (2015)
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Abstract. The paper introduces a method of digital image processing
for visually impaired people with central vision field loss. The method
is based on image pixels relocation from the “blind zone” outside of
its limits, and has been implemented within the CImagenMDI library.
Transformed visual inputs are then used within the assistive tool with
the aim to support a patient when performing everyday activities at work
and home.
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1 Introduction

World Health Organization, in the report about word blindness and visual
impairments for 2014, estimated the number of visually impaired people in the
world as 285 million, 39 million of which are blind and 246 million having low
vision; 65% of people visually impaired, and 82% of all blind are 50 years and
older [23].

A significant part of the visual impairments deal with people with cen-
tral visual field loss (CFL). There are many sight diseases which may cause
CFL, which include age related macular degeneration (AMD), glaucoma, dia-
betic retinopathy and cataract. Injuries can also result is CFL. The prevalence
of CFL in Spain reaches 3–4% in people with an age equal to or greater than
65 years, and is increasing with age. As a consequence of the population aging,
it has been estimated that the number of cases of AMD in Spain could reach
565,810 in 2025 [5].

Drastic decrease of visual acuity in most cases may result in scotoma and
entire or partial losses of vision. In other words, patients are blind in some area
of their visual field, i.e., they cannot use the foveal, the highest resolution part
of the retina to explore visual scenes, as it is damaged.

Depending on the intensity of the loss of vision, scotomas can be divided
into relative (areas where objects with lower luminescence cannot be seen but
c© Springer International Publishing AG 2017
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those with the higher) and absolute (nothing is seen within the area) scotomas.
Scotoma is surrounded by the area or reduced optical sensitivity depression.

However, patients with CFL are not blind, as they sight is partially damaged.
For example, in case of central scotoma patients cannot see in a central part,
and they try to adapt to this situation using reinforcing peripheral vision. These
patients are very limited in carrying out their most essential everyday tasks.
That means that in case necessary assistant tools are provided, patients can
improve they perception of visual scenes and increase the number of everyday
tasks they can do independently.

Unlike someone who is blind, a person with scotoma (central o peripheral)
retains a part of her useful sight, although having “blind spots” or specific areas
of their visual field where they cannot see. Because of that “partial” vision and
because some part of the visual field perceives images, many patients intent to see
with the not damaged areas of the eye. In this way, a patient use the peripheral
part of the visual field, which has a lower visual acuity than the fovea [6]. As
a result, visually impaired learn to use the eccentric vision through preferred
retinal locus (PRL), which is formed in this case [19]. Eccentric viewing training
is a time consuming process, and the results can be obtained in the long run.

In this paper we introduce a method for image transformation for people
with CFL, which provides real-time personalized processing of visual inputs, and
can be used within assistive wearable devices like smart glasses. The proposed
method of image transformation can also be used with the aim to shorten the
period of eccentric viewing training.

The paper is organized as follows. The Sect. 2 introduces the relation between
the brain and the vision, and emphasize the importance of assistive solutions for
the people with CFL. The Sect. 3 discuss the importance of the assistive tools
for visually impaired. The Sect. 4 presents a method of scotoma zone relocation.
Next, in the Sect. 5, the preliminary testing is introduced. The Sect. 6 discusses
the proposed methods and its applications.

2 Vision and Brain

The appearance of a central cicatricial lesion in the retina, which causes a visual
scotoma, results in the absence of neuronal potential stimulus inputs from the
retinal photoreceptors to the retinotopically assigned regions of the occipital
visual cortex. Animal studies have shown evidence of reorganization in mam-
malian adults for such experimentally induced central scotoma cortical areas [8].
However, it is still unknown if the reorganization occurs in the primary visual
cortex V 1 of patients with foveal lesion in AMD. It is also unknown if the adop-
tion of a preferred retinal locus (PRL) corresponds to changes in the retinotopic
mapping of V 1 [21]. At this level, there are isolated published clinical cases that
support the possibility of an improvement in visual quality by training a new
PRL of fixation in healthy retina adjacent to the lesion [3].

Regarding occipital neuronal reorganization in patients with scarring foveal
lesions (no entry in the first neuron), there are research works that support this
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possibility [3,7,21] and others that do not find occipital neuronal reorganization
after foveal cicatricial lesion [1,17]. All the spoken above is referred to the case
of a dry cicatricial lesion and a training capacity of the healthy peripheral retina
adjacent to the lesion.

The usage of advantages of digital image transformation for patients with
foveal lesions would be a solution for this case. Enhanced visual inputs in accor-
dance with individual requirements of a patient, would be used within supportive
electronic aids or smart glasses previously to the PRL training procedure.

Therefore, this work initially aims to determine personalized scales of visual
perception in patients with complete foveal lesions through a battery of digitally
processed images. This knowledge makes grounds for the development of assistive
systems for visually impaired people in the future.

Once this phase is defined, a second phase supposes the daily use of the
electronic aids followed with monthly evaluations of perceived subjective visual
acuity through collection of occipital brain potentials. This procedure is carried
out using multifocal electroretinogram to check for neural reorganization in the
optic pathway from the photoreceptors to V1 in Cortex occipital.

3 Assistive Solutions for People with Visual Impairements

Assistive technology for the patients with CFL facilitates carrying out their
daily activities within the preferred environments. Visual impairment, as any
other disability, affects the lifestyle of the people who suffer from it. In case of
visual disability, this impact maybe even more sensitive, as vision is the main
source of information for the brain.

Perception of visual scenes makes a patient to react agree with the received
information. In case this information is not full or it is skewed, the response
if the individual can be inadequate or even dangerous. Thus, people with CFL
may appear not to see alarm signals or not be aware of potentially dangerous
situations. For example, have twice the risk of falling, and four times or more
probability to have a hip fracture [2,13]. Basically, they also have difficulties
on a communication level, and in working places, which affects they well-being,
and can cause stress and depression [20]. As it is shown in [14], 50% of persons
affected with AMD mention that they have certain difficulties while doing daily
activities, 16.7% feels psychological pain of discomfort, and 50% confessed that
their levels of anxiety and depression have increased. That alarming factors are
especially notable within the youngest group of the test respondents. Indeed, in
the one hand, visual impairment impedes collaboration with other persons, but,
on the other hand, the same difficulties are met while visually impaired interact
with other devices and environments. Figure 1 shows the principal benefits for
visually impaired persons, which penetrate in all the spheres of their life.

In general, the benefits of the assistive technology for visually impaired per-
sons would start with enabling their daily activities which include orientation,
reading, going shopping, going in for sport, and making other activities at their
work and leisure time. One of the daily activities that can be corrected is the



226 M.V. Sokolova et al.

Fig. 1. Benefits of the assistive technology in everyday life

patient’s perception of written text, independently if it is a book or an announce-
ment in a shopping center or at the airport. In many cases like that, there is
a need for image and video processing. It concentrates in particular on systems
that use image and video processing for their transformation that can enable
significant improvement of visual perception.

4 A Method of Scotoma Zone Relocation

Within the digital modification of the image, the new technologies enable a series
of tools and software that can aid in the management and planning of aids to
improve visual acuity through a healthy peripheral retina in patients with low
visual acuity [22].

Digital image transformation makes it possible to enhance the input visual
scene, allowing to a visually impaired person to perceive the image in a better
way. There are many approached based on transformation of particular image
characteristics, which include elevating its contrast levels [16], sharpening the
edges [16,24], modifying its color and lighting parameters [11], magnifying [15],
local image remapping [9], etc. Many claimed having achieved considerable feed-
backs from the test participants. Nevertheless, to our opinion, there is still a way
to improve the scene perception by a person with CFL. Even in case the image
parameters are modified and adapted to the needs of patients, they still do not
see a part of the image. They can find the missing element of a puzzle, but in
this case they should move the eye, the head, or just guess about the possible
answer.

A method of scotoma zone relocation which is presented in this paper, is
based on the idea to relocate the image pixels from the “scotoma zone” (SZ)
and made them visible to a subject. In more details the pixels from the SZ
are moved outside of its limits. Figure 2 shows how the horizontal relocation
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Fig. 2. Horizontal relocation.

Fig. 3. The screenshot of the “Scotoma module”

is executed. Some points chosen for the example, A and B, are remapped into
the points A∗ and B∗ outside of the SZ. This algorithm has been implemented
within the CImagenMDI library.

CImagenMDI is a full and multifunctional C library for digital image process-
ing [4]. It allows application of any generic filters, which are common for standard
image processing [10,12]. The latest version 3.6 includes a “Scotoma module”.
This module provides a test maker with a set of tools to create personalized test
images for any patient with CFL. Figure 3 shows a screenshot of the “Scotoma
module”.

The “Scotoma module” has been developed with the idea to allow precise and
detailed configuration of the processed image. First, there is a geometrical local-
ization of a scotoma and adjustment of its boundaries. Thus, the tab “Type” has
two options: horizontal and vertical, which stand for the way of image relocated.
If it is marked “Without visual camp loss” then the image is readjusted in such
a way that non visual information is lost.



228 M.V. Sokolova et al.

Fig. 4. Scotoma zone relocation for the textual image

Figure 4 presents an example of horizontal SZ relocation for a textual input.
Figure 4a shows an original text. Figure 4b shows the way a person with CFL
perceives this image (with a part of text not visible), where the black rectangle is
correspondent to the patient’s SZ. Thus, the word “four” is within the SZ, and,
hence, is not perceived. Figure 4c demonstrates the image after the proposed
method has been applied to the text, the pixels from SZ have been relocated,
and the word “four” is within the patient’s visual field.

Moreover, the relocation algorithm provides that there is no loss of the visual
camp. Because of this, the whole line of the text is visible, though an area equal
to the SZ has been inserted.

Figure 5 shows a scheme of image relocation when it is used within the assistive
tool. The tool includes intelligent glasses, which receive a visual input. A part of
the input image is not visible to the patient with CFL, because it is occluded with
scotoma. After the image is received, and transformed, the final output, which is
shown to a patient, contains an subimage, which has been previously occluded.

Fig. 5. A general scheme for visual input relocation.
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5 Preliminary Study

The purpose of the current study is to find digital solutions for assistive devices
(smart-glasses) which would be integrated into their environments (home and
working) and would help for people with CFL to be more independent within
them. The software CImagenMDI, used in this study, first, process and generates
images for the patient before the training. These images are used to obtain the
best perceptive visual characteristics for every patient.

Before starting to use the assistive device, a patient with CFL should undergo
two preliminary tests.

1. Visual acuity measurement with ETDRS and the patient with CFL should
undergo the Pelli-Robson Contrast Sensitivity test (see Fig. 6a), which deter-
mines the ability to perceive slight changes in luminance between regions
which are not separated by definite borders [18].

2. Exploration of scotoma size and functionality of the surrounding retina:
– Microperimetry test (see Fig. 6b). This test is aimed to detect if there

are pathologies affecting the macular area, and describe them. Moreover,
the microperimetry test has additional abilities to record and control a
fixation activity of a patient during the visual field measuring. This test
is carried out with the equipment of TOPCON (Micro-meter Maia 2,
Topcon) with grid 102 of 68 stimuli.

– Automated visual field (see Fig. 7) (Zeiss Model Campus Zephyr Visual
Field Analyzer 750) in model 30-2 and model 102 focused on fovea, to
determine the actual size of perceptual visual field loss.

Fig. 6. Outcomes of the Pelli-Robson Contrast Sensitivity test and of the microperime-
try test for a patient with scotoma in the right eye.
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Fig. 7. Healthy automated visual field with central scotoma.

Subsequently in a second phase, once the image is individually adapted to the
retinal lesion of a patient, occipital cortex wave through multifocal electroretino-
gram is registered in order to obtain data of a possible neural reorganization as
some studies have found [3,7,20].

After obtaining and analyzing the results of the tests mentioned above,
we obtain parameters that include information about the visual acuity of the
patient, the location and morphology of the scotoma zone, and the sensitivity
surrounding the retinal lesion. From there, the next task is with the help of CIm-
agenMDI to prepare a customized battery of images appropriate to his injury,
for each patient, and collect on a numerical scale his visual perception according
to the digital modification of the image.

6 Discussion

This paper aims to introduce the method of scotoma zone relocation, and to
lighten the ways how this method is going to be implemented within an assistive
device for visually impaired. Though the project is on its beginning, a substan-
tial part of the computational work is done. The presented method has been
implemented and thoroughly tested within our research laboratory. Much work
is still to be done, but at this point we can made some statements about the
current state of the research.

Although mane research has been carried out in this area, out intention was
to take into consideration limitations as well as achievements of the previous
works. Thus, our method is focused on image remapping and its personalized
adaptation for the needs of any concrete patient. Different types of visual inputs
has been used in order to cover the maximum number of environments covered,
though in this paper we concentrated in two types, which include images and
texts as the most common inputs. Many researchers claimed that patients with
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CFL confirmed that image modification algorithms such as equalization, contrast
changes, etc., were better perceived. In this order our future modification of the
method presented in this paper, would include these transformations as well.

Further development of the experiment supposes preparation of the personal-
ized batteries of digitally transformed images with the proposed method. These
images are given as the inputs for a person with CFL. The final testing sug-
gests that test participants are wearing smart glasses with incorporated real
time image enhancement.
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Abstract. This paper describes a comparative study of performance
of two models predicting surface quality in high-speed milling (HSM)
processes using two different machining centers. The models were created
with experimental data obtained from two machine-tools with different
characteristics, but using the same experimental model. In both cases,
work pieces (probes) of the same material were machined (steel and alu-
minum probes) with cutting parameters and characteristics proper of
production processes in industries such as aeronautics and automotive.
The main objective of this study was to compare surface quality predic-
tion models created in two machining centers to establish differences in
outcomes and the possible causes of these differences. In addition, this
paper deals with the validation of each model concerning surface qual-
ity obtained, along with comparing the quality of the models with other
predictive surface quality models based on similar techniques.

Keywords: High-speed machining · High-speed milling · Softcomput-
ing · Bayesian networks · Predictive models

1 Introduction

High-speed milling (HSM) is a technique used for producing industrial pieces
using materials such as plastic or metal alloys. One of the reasons for using HSM
is the high-quality surface finishing possible to get [13]. Currently, HSM is one
of the processes producing the greatest economic impact on the metal making
industry owing to the surface finishing influencing the functional behavior of
a resulting piece, which is subjected to demanding friction conditions, sudden
temperature changes, etc. [2,4].
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The surface quality obtained with material removal techniques such as HSM
greatly depends on experimental design (DOE) [18]. This must include several
factors such as properties of the material to be milled, characteristics of the
machining center, and the tool used. In the field of surface quality, there is a trend
to use data management techniques such as Soft computing to obtain data for
improving HSM quality outcomes using a given DOE. Soft computing techniques
help identify factors influencing HSM and their most convenient values to achieve
the best surface quality (Ra), minimizing associated costs such as instrument
calibration, experimentation, intermediate or final quality measures, etc. [7].

Surface quality is frequently associated with texture or surface roughness; this
can be calculated from several parameters [18]. In practice, Ra is the parameter
most used for estimating the quality of a piece and may be quite easily measured
[9] using, for example, profilometers. According to ISO standard 4288:1996, Ra
values may be calculated with a equation, in [5] this procedure is described.

In addition, Ra has a great influence on other interesting factors for making
metal pieces such as friction, electric and thermal resistance, and the appearance
of a finished piece. In the same context, Ra is important because it contributes
with ideas about the behavior of a surface in contact with others or dimensional
warping [12]. In this way, the DOE and Ra are importants, since that the costs,
machining time can be reduced [9,22]. Recently, studies as one presented in
[1] introduce Artificial Intelligence techniques on DOE and pre-process designs,
adding variables as power-consumption or results of previous experiences (learn-
ing) in order to achieve a automatic cutting parameters configuration.

1.1 Bayesian Models

A Bayesian network is a directed acyclical graph with nodes representing pre-
dictive variables and the class and arcs representing their relational conditions.
Nodes may represent variables such as cutting parameters in a HSM process. So,
given two variables X1, X2, an arc between X1 and X2 represents the conditional
relation between X1 and X2 [10]. The acyclical graph contains the probabilistic
distributions of the influences among variables P(X1, X2, . . . , Xi, . . . , Xn). This
can be written as the product of local distributions of each node as follows [11]:

P (X1,X2, . . . , Xn) =
k=n∏

k=1

X1,X2, . . . Xn (1)

The distribution of the conditional probability P(Xi) in Eq. 2 is determined
by the set of parameters Parents(Xi). The Bayesian classifier selects the most
probable classification P(Xi), given distribution values X1, X2, . . . Xi, . . . , Xn.
The Bayesian classifier results from the Bayes theorem application (Friedman
et al. 2005), which calculates the a posteriori probability P(Cj|Xi) from condi-
tional probabilities P(Xi|Ck) and a priori probability P(Ck) as:

P (Xi) =
P (Cj|Xi)∑n
k=1 P (Ck)

(2)
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where: P(Cj|Xi) represents the a posteriori probability of Xi giving the class
Cj. That is: giving the class Cj in the presence of the value Xi, the probability
that sample Xi (with given characteristics) belong to a given class Cj. P(Cj)
represents the a priori probability. This is the initial probability for a sample Xi
to belong to a given class Cj, without Xi characteristic information.

The Bayesian classifier can be used to predict class or classify new or unknown
instances of a class. In addition, the probabilities of Eq. (2) can be estimated
from expert knowledge or training data, using predictive variables and class in
the latter case [15]. There are several Bayesian classifiers for creating predic-
tive models from data. This study uses the Tree Augmented Nave Bayes model
(TAN), which is a variant of Nave Bayes model. TAN allows calculating condi-
tional mutual data for each pair of predictive variables for a given class [6].

1.2 Related Studies

The use of Soft computing techniques to generate Ra predictive models has
increased in the last few years. One of the reasons for this is the quality and
accuracy of the estimation of a parameter such as Ra done with Soft computing
techniques [3,14]. For example, in [8] a technique based on Artificial Neural
Networks is proposed to optimize the selection of parameters participating in
the process of mechanical cutting using steel Inconel 718. Other studies propose
the use of Artificial Neural Networks to study the surface roughness on-line [22].

The Artificial Neuronal Networks are used also on [19] to studied the variables
influence on final Ra where a milling process on aluminum alloys, variables as
feed rate, milling deep or speed milling are been studied here. Other methods to
Ra estimated based on Neuronal Artificial Networks are described on [17] using
AISA1054 alloys or [7] that describe a Soft Computing experience to generate a
Ra predictive model using neuro-fuzzy and artificial neuronal networks. To make
this work, variables as milling speed or milling deep had been used.

2 Models Description

In this study, Bayesian networks were used to create probabilistic Ra prediction
models in HSM by milling metal alloys. The models were created using data
from two different machining centers, but only one experimental design (details
in [6,9]). Two HSM geometries kinds had made here: slots and girth. Slots were
made in the first essay and various geometries were conducted in the second one.

Essays were first conducted in a Kondia HS1000 machining center with 3
degrees of freedom equipped with a CNC Siemens 840D, maximum engine power
of 17.5 KW, and maximum spindle speed of 24000 rpm. In the second essay, a
machining center made by Nicolás Correa S.A., Versa model (variant 675004)
with 5 degrees of freedom (hereinafter M-Versa) was used. This machining center
is equipped with a CNC Heidenhain TNCi530, with maximum engine power of
50 KW and maximum spindle speed of 15000 rpm.
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A Kistler dynamometric platform was used for collecting power data in axes x
y, and z and a Kistler 5070 amplifier to improve signals. The signals collected were
later registered with a data acquisition software (designed with Labview software
tool) and installed in an industrial computer. The models were created with
software Weka (http://www.cs.waikato.ac.nz/∼ml/weka/index.html. Weka is a
software licensed by GNU. It is implemented with Bayesian algorithms necessary
to do this study).

2.1 Description of Experimention with Slots

To mill slots, 180 × 100 × 25-mm F114 steel probes were used and 2–6 teeth
Karnash tools (models 30.6455 and 30.6465) were used for milling the probes.
Tools with different diameters were used in the experiments: 6, 8, 10, and 12 mm
for each number of teeth. Slots were milled at different depths, varying the
progress and spindle speed with the same tool to render several combinations
of experiments (with increases of 25%, 50%, and 75%). Then, the essays were
repeated for each tool. Table 1 shows values of variables in the essays.

To calculate Ra values, post-process measures were taken with a Karl Zeiss
Handysurf profilometer, model E-35A. In the case of the Kondia machining
center, experimentation rendered 625000 measures which were grouped in 250
cases from averaging roughness values, according to the experimentation objec-
tives described in [6]. In the case of experimentation, the result was 1475 cases
obtained in the same way.

To create the Ra predictive model with slots, a Bayesian model with 7 vari-
ables (6 predictive variables plus class Ra) were used. The variables associated
with cutting conditions are: axial depth of cut (ap), feed rate (F), and spindle
rotation speed (n). The variables associated with the tool are: number of teeth
(z) and diameter (diam). Variable FT corresponds to the force resulting from
measures in axes x, y, and z.

2.2 Slots Models Validation

Figure 1a and b illustrate the TAN structure learned from experimentation with
slots in the Kondia HS1000 and M-Versa machining centers. Figure 1 also shows
the causal arcs between predictive variables and the class.

The causal arcs in Fig. 1 represent the influence of physical relations between
predictive variables and the class. The causal structure on Fig. 1a show the influ-
ence of variable rpm over diam, and the influence of variable diam on the rest of
predictive variables. The rpm causal influence can be wear-machine attributed,
losing all influence in M-Versa model. The networks in Fig. 1a show the influence
of variable diam on the rest of the predictive variables in Kondia model, losing
influence in M-Versa model.

The clear influence of variable F (feed rate) on the rest of the predictive vari-
ables is observed in the model of M-Versa machining center, while this influence

http://www.cs.waikato.ac.nz/~ml/weka/index.html
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Fig. 1. TAN structure learned from slot experimentation.

does not exist in the model of the Kondia machining center. The causal struc-
ture on Fig. 1b show the influence of variable feed rate on the rest of predictive
variables, while this influence does not exist in the model of the Kondia.

Differences in the conditional relationships obtained may correspond to the
physical influence as vibrations of machines or other factors such power equip-
ment, where the classification results are analyzed, they show interesting finds
respect to Bayes classifier blessing [20]. Tables 3 and 4 shows these results. The
Table 3 shows that 76.80% of cases are correctly classified instances (CCI) for
Kondia, while 72.74% are CCI for M-Versa (Table 4). The variation between
Kondia classification and M-Versa classification can be explained by the DOE
and Bayesian model were designed for Kondia.

2.3 Description of Experimentation with Islands and Pockets

To create cases with geometries (islands and pockets), aluminum pieces of 65–70
Brinell hardness and 170×100×25 mm were milled. Milling was done with Sanvik
tools of 2 teeth and 8, 10, 12, 16, and 20-mm diameter at a maximum of 10-mm
depth of cut. Millings consisted of two types: pockets and islands. Pockets were
milled on 35-mm and 55-mm diameter circumferences, respectively, reaching 10-
mm depth.

Two types of geometries were designed for pockets: the first ones were
designed with 60-mm diameter pockets (pocket ++), milling the material at
a 0.5-mm axial depth of cut and a 10-mm radial depth of cut. The second ones
were designed with 35-mm diameter pockets (pocket +), milling the material at
a 1-mm axial depth of cut and a 5-mm radial depth of cut. To create the Ra
predictive model, an 8-variable Bayesian model (7 predictive variables and class
Ra) was used. The variables are feed rate (fz), tool diameter (diam), radial depth
of cut (ae), material hardness in Brinell (HB), geometry (geom) resulting from
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Table 1. Stratification and confusion matrix for Kondia milling center with slots
cutting

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 192 76.80 %

Incorrectly Classified Instances 58 23.2%

Kappa statistic 0.6708

Mean absolute error 0.1392

Root mean squared error 0.2754

Relative absolute error 38.6323%

Root relative squared error 64.9107%

Total Number of Instances 250

=== Confusion Matrix ===

a, b, c, d, <– classified as

29 17 4 0 | a = Smooth

1 90 8 1 | b=Fine

0 11 33 6 | c = Semi-fine

0 1 9 40 | d= Medium

Table 2. Stratification and confusion matrix for Kondia milling center with slots
cutting

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 1073 72.74 %

Incorrectly Classified Instances 402 27.25%

Kappa statistic 0.465

Mean absolute error 0.1552

Root mean squared error 0.2827

Relative absolute error 59.8084%

Root relative squared error 78.5208%

Total Number of Instances 1475

=== Confusion Matrix ===

a, b, c, d, <– classified as

524 195 0 0 | a=Smooth

179 549 0 0 | b=Fine

27 1 0 0 | c = Semi-fine

0 0 0 0 | d= Medium
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the combination of the characteristics of cut radio and curve, spindle rotation
speed (n), and the resulting cutting force on the plane (Fxy) (Table 2).

Fig. 2. TAN structure learned from islands and pockets experimentation.

2.4 Islands and Pockets Models Validation

Figures 2a and b illustrate the TAN structures learned from experimentation
with islands and pockets. In the TAN network of the Konia model (Fig. 2a) the
influence of variable Fxy on the other predictive variables can be observed; on the
contrary, in the model obtained for the M-Versa center (Fig. 2b), the variable Fxy
loses importance. In the two models, variable geom and variable hardness (HB)
has reverse influences each other. This can indicates that the cutting geometry
and material hardness relation of the workpiece to be machined must be taken
into account in this type of milling.

In addition, the variations in conditional relations observed may correspond
to the physical influence of the machining centers, although there are not enough
data to interpret the phenomenon. It is sensed in this case being M-Versa a
machining center stronger and better anchor (less vibration occurs), in add, on
this case the relationship can be given by the type of material being cut.

Tables 3 and 4 summarize the classifications obtained. In the case of M-Versa,
96.09% cases were correctly classified, while in the case of Kondia, classification
is quite significant (94.05%). The classification closest to this value is the one
generated with the essays conducted in the Kondia machining center, thus sup-
porting the good selection of predictive variables with respect to the class for
this machine-tool.
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Table 3. Stratification and confusion matrix for Kondia milling center with islands
and pockets cutting

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 1187 94.0571%

Incorrectly Classified Instances 75 5.9429%

Kappa statistic 0.9105

Mean absolute error 0.0381

Root mean squared error 0.1359

Relative absolute error 11.4089%

Root relative squared error 33.2712%

Total Number of Instances 1262

=== Confusion Matrix ===

a, b, c, d, <– classified as

492 15 0 3 | a = Smooth

50 324 0 0 | b = Fine

0 0 17 1 | c= Semi-fine

6 0 0 354 | d = Medium

Table 4. Stratification and confusion matrix for M-Versa milling center with islands
and pockets cutting

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 1575 96.0952%

Incorrectly Classified Instances 64 3.9048%

Kappa statistic 0.8454

Mean absolute error 0.0444

Root mean squared error 0.1781

Relative absolute error 18.2638%

Root relative squared error 51.0883%

Total Number of Instances 1639

=== Confusion Matrix ===

a, b, c, d, <– classified as

1364 43 0 0 | a = Smooth

21 211 0 0 | b = Fine

0 0 0 0 | c= Semi-fine

0 0 0 0 | d= Medium
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3 Conclusion

The contribution of this study is mainly associated with the validation of an
experimental design ad hoc for a machining center (Kondia) in another machine-
tool with different characteristics. This validation is rather unusual in the domain
of this industry because experimentation is rather costly. The models perfor-
mance had been found during tests and analysis made on classifiers results.

This study proved that this experimental design can be applied in other
machining centers with similar characteristics to Kondia center. That is the case
of M-Versa, in which classification outcomes show accuracy higher than 70%
correctly classified for slots cases and higher than 96% correctly classified for
islands and pockets cases.

This allows to believe that the DOE and model designs are good quality for
Ra estimation when machining center characteristics has been given. Another
important contribution is that the models were created without considering the
forces during milling as part of predictive variables, unlike previous studies. This
makes the models rather independent of possible classification distortions, which
may be caused by the different millings in the machining centers (e.g., spindle
wear).
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Abstract. Much is currently being studied on emotions and their tem-
poral and spatial location. In this framework it is important to consid-
erer the temporal dynamics of affective responses and also the underlying
brain activity. In this work we use electroencephalographic (EEG) record-
ings to investigate the neural activity of 13 human volunteers while look-
ing standardized images (positive/negative). Furthermore the subjects
were, at the same time, listening to pleasant or unpleasant music. Then
we analyzed topographic changes in EEG activity in the time domain.
When we compared positive images with positive music versus negative
images with negative music we found a significant time window in the
period of time 448–632 ms after the stimulus appears, with a clear right
lateralization for negative stimuli and left lateralization for positive stim-
uli. By contrast when we compared positive images with negative music
versus negative images with positive music, we found a delayed window
compared to the previous case (592–618ms) and the marked lateraliza-
tion disappeared. These results demonstrate the feasibility and usefulness
of this approach to explore the temporal dynamics of human emotions
and could help to set the basis for future studies of music perception and
emotions.

Keywords: EEG · Emotions · Music · IAPS

1 Introduction

The emotional interaction between humans and machines is one of the most
important challenges in advanced human-machine interaction. One of the most
important requisites in this field is to develop reliable emotion recognition sys-
tems, and for it we need to correctly identify emotions.

Some researchers support the notion of biphasic emotion, which states that
emotion fundamentally stems from varying activation in centrally organized
c© Springer International Publishing AG 2017
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appetitive and defensive motivational systems that have evolved to mediate the
wide range of adaptive behaviors necessary for an organism struggling to sur-
vive in the physical world [1,2]. In this framework, neuroscientists have made
great efforts to determine how the relationship between the stimulus input and
the behavioral output is mediated though specific neural circuits that are highly
organized [3].

The majority of studies in this area are based on techniques such as Positron
Emission Tomography (PET) [4] or functional Magnetic Resonance Imaging
(fMRI) [5] with exceptional spatial resolution but a very reduced temporal one
(seconds). An alternative, which offers an excellent temporal resolution (in the
range of milliseconds) is Electroencephalography (EEG).

In this study we investigated the temporal dynamics of neural activity associ-
ated to emotions (like/dislike) generated by looking at complex pictures derived
from the International Affective Picture System (IAPS) [6] while the subjects
listen to pleasant or unpleasant music. We used EEG to solve the problem of
temporal resolution. We evaluated the correspondences between subjective emo-
tional experiences induced by the pictures and then the role of the music in the
resulting brain activity. Then we estimated the underlying neural places in which
event-related potentials (ERPs) were generated and the tridimensional location
of this locations was used for the assessment of changes in the activation of
cortical networks involved in emotion processing.

Our results offer valuable information to better understand the temporal
dynamics of emotions generated to visual and auditive stimuli and could be
useful for the development of effective and reliable neural interfaces.

2 Methods

Participants

Thirteen persons participated in this study (mean age: 19.8; range: 19–38; seven
men, six women). All of them were right handed with a laterality quotient of at
least +0.4 (mean 0.7, SD: 0.2) on the Edinburgh Inventory [7].

All participants had no personal history of psychiatric or neurological disor-
der, alcohol or drug abuse, or current medication, and had normal or corrected to
normal vision and audition. All were comprehensively informed about the details
and the purpose of the study and gave their written consent for participation.

Visual and Auditory Stimuli

A set of standardized visual stimuli (80 pictures in total) was selected from the
IAPS dataset [6]. These stimuli were validated in a previous study [8].

The images were divided into four groups, each one consisted of 20 images.
Stimuli were presented in color, with equal contrast and luminance.

Pleasant music were two excerpts of joyful instrumental dance tunes: A.
Dvorák, Slavonic Dance No. 8 in G Minor (Op. 46); J.S. Bach, Rejouissance
(BWV 1069) and other fragments of music used previously in similar studies [9].
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Unpleasant music were electronically manipulated (stimuli were processed
using Cool Edit Pro software): For each pleasant stimulus, a new soundfile was
created in which the original (pleasant) excerpt was recorded simultaneously
with two pitches-shifted versions of the same excerpt, the pitch-shifted versions
being one shade above and a return below the original pitch. Both pleasant and
unpleasant versions of an excerpt, original and electronically manipulated, had
the same dynamic outline, identical rhythmic structure, and identical melodic
contour, rendering it impossible that simply the bottom-up processing of these
stimulus dimensions already contributes to brain activation patterns when con-
trasting effects of pleasant and unpleasant stimuli.

Subjects were instructed to give each stimulus a score from 1 to 9 avoiding
5 depending on subjective taste (1: dislike; 9: like). Their verbal response was
written.

Procedure

Figure 1 summarizes the serial configuration of the study. Each image was pre-
sented for 500 ms and was followed by a black screen lasting 3500 ms. The music
started five seconds before the images started and finished five seconds later.
The images appeared randomly and only once. The participants’ task was to
observe the images and rate the arousal and valence of its emotional experience.
Pictures score ranged from 9 (very pleasant) to 1 (very unpleasant).

Fig. 1. Experimental scheme. The sequence of stimuli was presented in a random and
continuous mode by using python software

Data Acquisition

The participants were seated in a comfortable position and asked to move as
little as possible. Following the preparation phase, participants were instructed
about the task. The pictures were presented through to a 21.5-inch computer
screen to the subject in the dark.
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We inculcated subjects to avoiding blinking during image exposure and trying
to keep the gaze toward the monitor center. EEG data was continuously recorded
by means of cap-mounted Ag-AgCl electrodes and a NeuroScan SynAmps EEG
amplifier (Compumedics, Charlotte, NC, USA) from 64 locations according to
the international 10/20 system (FP1, FPZ, FP2, AF3, GND, AF4, F7, F5, F3,
F1, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7,
C5, C3, C1, CZ, C2, C4, C6, T8, REF, TP7, CP5, CP3, CP1, CPZ, CP2, CP4,
CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4,
PO6, PO8, CB1, O1, OZ, O2, CB2) [10]. The impedance of recording electrodes
was examined for each subject prior to data collection and the thresholds were
kept less 25 kΩ as recommended [11]. All the recordings were performed at a
sampling rate of 1000 Hz. Data were re-referenced to a Common Average Refer-
ence (CAR) and EEG signals were filtered using a 0.5 Hz high-pass and low-pass
45 Hz filters. Electrical artifacts due to gesticulation and eye blinking were cor-
rected using Principal Component Analysis (PCA) [12]. They were identified
as signal levels above 75µV in the 5 frontal electrodes (FP1, FPZ, FP2, AF3
and AF4). These electrodes were chosen because they are the most affected by
potential unconscious movements. The time interval for artifact detection was
within the interval (−200 ms, +500 ms) from stimulus onset.

The images were separated according to their valence (positive or negative)
and the accompanying music (positive or negative).

Statistical Analyses

We studied topographic changes in EEG activity [13–16] with the help of Curry
7 (Compumedics, Charlotte, NC, USA). We considered the total time course and
the whole pattern of activation across the scalp by testing the total field power
from all electrodes (see for additional description [17]) since this method is able
to detect not only variances in amplitude, but also differences in the underlying
sources of activity.

Topographical differences in EEG activity between different images were
tested using a non-parametric randomization test (Topographic ANOVA or
TANOVA) and a significance level of 0.01 as described elsewhere [8,18].

On significant windows we performed standardized low resolution brain elec-
tromagnetic tomography (sLORETA) calculations [19]. This technique is an
advanced low resolution distributed imaging technique for brain source local-
ization that provides smooth and better localization for deep sources, with less
localization errors but with low spatial resolution.

3 Results

Subjective Scores

The participants identified correctly the positive songs heard in each of the
blocks, however, did not obtain very low scores for the unpleasant music (see
Fig. 2). In fact, none was scored below five.
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Fig. 2. Average score music for all volunteers. Music 1 and 2 correspond to the pleasant
excerpts, while Music 3 and 4 correspond to unpleasant ones.

EEG

Upper Fig. 3 shows the main significant differences when we showed positive
images (score 9 or 8) while the participants were listening to pleasant music
regarding images with negative valence (score 1 or 2) presented simultaneously
with negative music. We found a large significant time window between 448 ms
to 632 ms (sig< 0.05). If the significant criteria is decreased to 0.01, the time
window was reduced to 501–553 ms.

When the subjects were looking at positive images (score 9 or 8) while lis-
tening to negative music or looking at or negative images (score 1 or 2) while
listening to positive music, there was also a large significant time window between
553 ms to 692 ms (sig< 0.05), see Fig. 3. When we decreased the significance to
0.01, the time window was also reduced to 592–618 ms.

sLoreta

Figure 4 shows the main results when we considered all possible source locations
simultaneously applying standardized LORETA (sLORETA). We found a left
lateralization when both the visual and auditory stimulus had positive valence
whereas there was a clear right lateralization when both, visual and auditory
stimuli were negative (Fig. 4). However, when we mixed positive images with
negative sounds or viceversa there was not a clear laterality.



250 M.D. Grima Murcia et al.

Fig. 3. Significant differences in EEG activity to each case. The vertical rectangle
contains the interval with significant differences (sig< 0.05).

Fig. 4. Activation maps for sLoreta corresponding to a time window (sig< 0.01).
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4 Discussion and Conclusion

Our results showed an increased activity in the left hemisphere for emotions with
a positive valence whereas there was an increased activity in the right hemisphere
for emotions with a negative valence. These results support our previous studies
[8] and suggest that the visual emotional valence is reinforced when it coincides
with the valence of the music. Furthermore these results agree with the valence
hypothesis, which postulates a preferential engagement of the left hemisphere
for positive emotions and of the right hemisphere for negative emotions [20,21].

In addition we found a delay of a few milliseconds in the whole brain process-
ing when images and music have different valences. Thus when both stimuli are
not concordant, emotional processing takes more time.

Although more studies are still needed, our results demonstrate the feasibility
and usefulness of presenting simultaneously visual and auditory information to
explore the temporal dynamics of human emotions.

These results demonstrate the feasibility and usefulness of this approach to
explore the temporal dynamics of human emotions and could help to set the basis
for future studies of music perception and emotions. Furthermore this approach
could be useful to better understand the role of specific brain regions and their
relation to specific emotional or cognitive responses.
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research program (MAT2015-69967-C3-1), by a research grant of the Spanish Blind
Organization (ONCE) by the Ministry of Education of Spain (FPU grant AP-
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Abstract. Long-term interactions in groups can be monitored through
games in which the participants need to show their social preferences by
making choice to help or to use egoistic game strategy. In this paper we
analyse the facial expressions of a group of isolated individuals (astro-
nauts) during repeated interactions in subsequent encounters in a game.
The astronauts were taking part in the Mars-500 isolation experiment
and their relations were influenced by the everyday interaction in this
untypical environment, and monitored through the cooperative game. We
analysed different statistical properties of the recorded emotional facial
expressions of the astronauts, where emotions were determined by the
FaceReader software. We found that there is a memory effect between
the collective emotional expressions corresponding to subsequent exper-
iments, separated by two weeks time period. This dependance suggest
that it is possible to predict the development of interpersonal relations in
groups of isolated individuals. In a broader perspective, this finding can
inform the design of long-term interaction behavior of artificial agents.

1 Introduction

Measuring and analyzing the emotional states in long-term interactions is impor-
tant for groups of individuals that need to engage in such interactions and espe-
cially if these interactions are in confined and isolated environments, such as
submarines, arctic expeditions, and space ships. Healthy emotional states are as
important for the success of the long-term missions and influence the interper-
sonal relations in the group.

The topic of measuring emotional behavior and interactions trough games
gains an increasing interest [3,13,15]. Games provide semi-structured context for
interaction between humans or between humans and agents. This is one among
several reasons for using games as interaction medium between humans and
agents [2,4,5,15]. In addition, the use of games can increase the entertainment
quality of the interaction, and can help to reveal relationships that are hidden
in different contexts or even relationships that are subconscious.

The computer games could be a tool for measuring and establishing long-term
relations since they may include many different aspects of real life interactions
between people. In this case they can be used to understand and teach the
c© Springer International Publishing AG 2017
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rules of collaboration and even create artificial agents that can function as a
collaboration partner [2,15]. Many game designers are currently exploring the
added value of cooperative strategies within their games [8] such as reaching
a goal with limited resources. Gorbunov et al. [14,15] redesigned and tested a
game which utilizes on collaborative patterns to induce cooperation within the
game. The game was designed to be played multiple times - each time a player
would choose to help or ask for a help expecting that next game the chosen
partner may help back or request a help.

In this paper we show the analysis of the longitudinal game interactions
through data from the Mars-500 isolation experiment. During this experiment
six participants have been isolated for 520 days to simulate a flight to Mars. Every
other week the participants played the game that was specially adapted from
the existing Collored Trails game that is used in game theory and experimental
economics to study cooperation and fairness. During the game sessions the crew
members interacted with each other through a computer-based environment.
To monitor emotional states in the group we use video records capturing facial
expressions of the crew members during the game play. In this way, correlations
between the events that occurred during game play and the coinciding facial
expressions can be made. We need to mention that in this work we do not focus
on the problem of facial expressions recognition. Instead, we utilize the progress
in this field made by other researchers and companies by using commercially
available software that can quantify facial expressions with good accuracy. This
allows us to shift the focus from the problem of facial expressions recognition
to the problem of interpretation of the time dependent facial expressions in
a way that is relevant in the context of interpersonal relations and long-term
effects of isolation. We discuss the general properties of the recorded data and
the software that we used to automatically generate data describing the facial
expressions of the participants. The main contribution of the paper is that we
found memory effect observed for the collective emotional states, as revealed by
the facial expressions, for the neighboring experiments separated by two weeks.

2 Background

2.1 Board Games for Long-Term Interaction

Several games have been used for monitoring and analysing collaborative behav-
iors of players. One example is Colored Trail game that has been designed to
enable analyzing of the decision making strategies of multiple players in varying
settings and complexity [16]. Different variations of the game have been used to
study human-human and human-agent interactions [1,10–14,16–19,22,23]. The
Colored Trail game resembles real life situations in which people have differ-
ent goals and need some resources to reach these goals i.e., the resources can
have different values to different players. A redistribution of the resources can
be done if the players exchange resources (chips) so one or more players can
came closer to the goal. If a player helped other player without having a benefit
(because with any combination he/she would not have won this time) he can
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expect that in the next game the helped player will return the favor. Therefore,
the game is interesting for analyzing long-term relationships since it contains
both competitive and collaborative (social) components.

More specifically, the game is played on a rectangular board composed of
colored squares (see Fig. 1).

Fig. 1. Example of the colored trails game on the response phase. (Color figure online)

In the beginning of the game every player is placed on one of the colored
squares of the board. Additionally to that one square is assigned to be the goal
that should be reached by each player. Every player receives a set of colored
chips which represent the resources of a player. The colors of the chips are taken
from the same set as the colors of the board squares. Players can move on the
board using their chips - a chip with a certain color will make possible one
move to a neighbouring square with the corresponding to the chip color. The
moves are restricted to horizontal or vertical moves to one of the neighboring
squares. By making a step on the board a player irreversibly spends a chip. The
goal of the player is to move as close as possible to the goal-square, spending a
minimum of chips. Before making their moves players are allowed to exchange
some of their chips with another player. Any exchange of chips is possible if both
participants of the exchange agree to do this exchange. This redesigned version
of the Colored Trails game is a redesign of the initial game that was proposed
in Harvard university by Gal and colleagues [13] and is used in the game theory
and experimental economics to study cooperation and fairness.

3 Analyzing Emotional States Caused by Interpersonal
Relations

We assume that by measuring and analyzing emotional states of the group mem-
bers caused by the natural development of their interpersonal relations and their
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emotional states are very tightly bound and influence each other. Healthy emo-
tional states are as important for the success of the long-term missions as the
interpersonal relations in the group. To monitor emotional states in the group
we use video records capturing facial expressions of the crew members during
the game play. In this way, correlations between the events that occurred dur-
ing game play and the coinciding facial expressions can be made. We need to
mention that in this work we do not focus on the problem of facial expres-
sion recognition. Instead, we utilize the progress in this field made by other
researchers and companies by using commercially available software that can
quantify facial expressions with good accuracy. This allows us to shift the focus
from the problem of facial expressions recognition to the problem of interpre-
tation of the time dependent facial expressions in a way that is relevant in the
context of interpersonal relations and long-term effects of isolation.

3.1 Video Records from Mars-500

The video records of facial expressions were collected during the Mars-500 isola-
tion experiment in which six participants were isolated for 520 days to simulate
a flight to Mars. Every second week the participants had to interact with each
other through a computer environment for approximately 30 min as a part of this
experiment. During these sessions the participants were sitting in front of the
computers performing different learning tasks supplied by the MECA software
[20] and playing the CT game [16] with each other. The frontal video records of
facial expressions were made by the cameras located on the participants’ com-
puters. To monitor emotional states in the group we applied correlation analysis
between the events that occurred during game play and the coinciding facial
expressions.

3.2 Face Reader

To extract facial expressions from the available video records we have used the
FaceReader commercial software developed by VicarVision and Noldus Informa-
tion Technology [6]. The FaceReader software can recognize facial expressions
by distinguishing six basic emotions (plus neutral) with accuracy of 89% [6].
In particular, FaceReader recognizes happy, sad, angry, surprised, scared, dis-
gusted and neutral components of the facial expressions. The system is built to
correspond to Ekman and Friesen’s theory of the Facial Action Coding System
(FACS), that states that basic emotions correspond with facial models [7]. For
an overview of the progress in the field of automatic facial expressions recog-
nition see [9,21]. In the current study we have used FaceReader to generate
components of the facial expression for every third frame of the video. It gives
the time separations between the two neighboring data points (components of
the facial expression) equal to 120 ms. By considering only every third frame
we could reduce the computational time needed for the generation of the data
describing facial expressions in a quantitative way, and the computational time
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required for the analysis of these data. By the chosen frame rate we still were
able to get smooth dependencies describing the facial expressions.

3.3 Classification of Statistical Properties of the Data

The data generated by the FaceReader software can be considered as a set of
real numbers depending on four variables: v (c, u, e, f), where c indicates the
component of the facial expression, u is used to indicate the participant, e is
the index of the experiment and f is the frame index. The type of the facial
expression can have one of the following seven values: “neutral”, “happy”, “sad”,
“angry”, “surprised”, “scared” and “disgusted”. In our data from the Mars-500
experiment, the second argument (u) can have six different values, since we have
six participants in this experiment. The third argument (e) is the index of the
experimental session. Since we had 33 experiments, the index runs from one to 33.
The separation between every experiment was two weeks except for experiments
18 and 19, which were separated by four weeks because of the simulation of a
landing on Mars during which it was not possible for the crew members to play
the game. The last argument (f) is the index of the frame in the given video.

The arguments present in the data can be classified based on their proper-
ties. First we distinguish between homogeneous and inhomogeneous variables. By
homogeneous variables we understand those over which averaging makes sense.
In our case all variables except the type of the facial expressions are homoge-
neous. It means that we can average facial expressions over users, for example,
to calculate the average happiness of the crew. We can also average the facial
expressions over different experiments to find how the happiness of a given user
changes depending on the duration of the experiment. It is also possible to aver-
age a given component of the facial expressions over the frames of the video to
find the average happiness of the given user in the given experiment. In contrast,
we cannot average happiness and sadness because these properties have differ-
ent meanings. However, the different components of the facial expressions can be
combined in a way that is more sophisticated than averaging. For example, we
could combine different components of the facial expressions in a way done by
principal component analysis or independent component analysis, which could
be helpful for identification of the most important or independent features. The
variables can also be classified depending on whether they are subsequent or
not. By subsequent variables we understand those variables for which a natural
ordering of values exists. In the considered case the two variables, frame index
and experiment index, are subsequent. These indexes can be ordered chronolog-
ically. In contrast, there is no preferred ordering of the components of the facial
expressions and the users. We can group different values of a component of a
facial expression if these values correspond to different values of a given homoge-
neous variable and to the same values of other variables. This procedure can be
applied to several homogeneous variables at the same time. In this way we can
get seven different properties. We will denote these measures by the removal of
the arguments that were used for the grouping. Specifically, we get the following
measures:
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3.4 Averaging over Experiments

Averaging over users and experiments, i.e. the first two properties did not result
in significant dependencies. We will give the results of averaging over the subse-
quent experiments, the third property (v (c, u, e)), since it relates to the memory
effects. This property removes the dependency on the time frame, since we aver-
age over different frames from the same experiment. As a result we get different
components of the facial expressions of different users as functions of the experi-
ment index. These properties can be of particular interest since they potentially
could capture a long-term effect of the isolation. For example, we could expect
that the facial expressions of given users become more (or less) happy the more
time they spent in isolation.

As an illustration, in Fig. 2 we show the dependence of three different com-
ponents of the facial expressions (neutral, happy and sad) as functions of the
experiment calculated for the one of the users.

With the black histograms we show the number of the available data points,
divided by 105, as a function of the experiment number.

In Fig. 2 we cannot see any obvious dependence on the experiment number.
However, we can see that some components of the facial expressions systemat-
ically increased for five experiments in a row. Since it is not obvious if there
is some regularity in the considered dependencies, we have performed a quan-
titative estimation of this regularity. In particular, if a vector depends on a
parameter, the distance between a pair of vectors decreases on average, if we
decrease the difference between the pair of parameters corresponding to the
two considered vectors. Therefore, we can use the average distance between the
neighboring vectors as a measure of the regularity of the dependency of the
vectors on a parameter. In our case the vector is composed of seven average
components of the facial expressions and the parameter is the integer index of
the experiment. To measure the similarity between a pair of seven dimensional
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Fig. 2. Three different components of the facial expressions of an user through the
evolution of the experiment

(7D) vectors we used the Euclidean distance. The average distance between the
average values of the facial expressions corresponding to all available neighboring
(subsequent) experiments has been calculated for all six users. Then we gener-
ated a new sequence of the 7D vectors just by shuffling the original sequence. If
there was some dependence of the vectors on the experiments it was destroyed
by shuffling. For the new sequence of the 7D vectors (average facial expressions)
we have also calculated the distance between the neighboring vectors. This pro-
cedure has been repeated 104 times to determine in what percentage of cases
the average distance between the neighboring vectors can be as small as, or even
smaller than those calculated for the original ordering of the vectors.

This procedure has been performed for all six users and the following per-
centages have been found: 2.5%, 85.4%, 5.2%, 9.7%, 43.7% and 42.4%. These
results indicate that the used measure of regularity calculated for the depen-
dencies shown in Fig. 2 is very close to the values of the measure of regularity
calculated for irregular sequences of vectors. Based on that, we can conclude that
we have no solid reason to think that we are able to see some regular dependence
of the average facial expressions on the experiments.

4 Dependency on Users

The fourth property (v (c, u)) removes the dependency on experiment and frame
index. In other words, we get a property that depends only on the type of the
component of the facial expressions and the user. In this way we can determine
how happy or sad or angry a given group member was on average during the long-
term isolation. This property can be used to characterize the person and his/her
reaction in isolation. However, to study effect of isolation on the emotional state
(facial expressions) we need to have video records for non-isolation conditions.
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As a result of the considered averaging over the frames and experiments we get
6 · 7 = 42 values. These values are shown in Fig. 3.
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Fig. 3. Average values of seven different components of the facial expressions given for
six participants of the Mars-500 experiment

4.1 Dependency on Subsequent Experiments

The fifth property (v (c, e)) is obtained by averaging over users and time frames.
This property gives the combined emotional state of the crew as a function of
the experiment index. For example, with this property we could see how the
average happiness of the crew depends on the time (number of weeks) spent in
isolation. This property is shown in Fig. 4. This figure is very similar to Fig. 2.
The difference between Figs. 2 and 4 is that Fig. 4 shows the values averaged
over all six users and Fig. 2 only shows values corresponding to user3. Moreover,
in Fig. 4 we also show the “disgusted” component of the facial expression as a
function of the experiment index. Like in the case of the separate considera-
tion of the users we have performed a numerical estimation of the regularity of
the dependency. For that we used the average distance between the neighboring
vectors as a measure of the regularity. As a result we found that, after averag-
ing over the users, the difference between the averaged facial expressions from
neighboring experiments is, on average, smaller than the difference between the
averaged facial expressions taken from two randomly chosen experiments. The
probability that the difference between the neighboring experiments, in terms of
the average facial expression, can be as small as it is, or even smaller, is equal
to 8 · 10−4. From this result we can conclude with high confidence that there is
a relation (similarity) between the emotional states of the crew corresponding
to the experiments separated by two-week time intervals. As a consequence, the
averaged emotional state of the crew in a current experiment can be used as a
predictor of the average emotional state that will be observed in two weeks. The
sixth and seventh property did not show significant results.



262 R. Gorbunov et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20  25  30  35
Experiment

(Number of Data Points)/106

Neutral
Happy

Sad
Disgusted

Fig. 4. Averaged (over frames and users) components of the facial expressions as func-
tions of the experiment index

5 Discussion

In this paper we have proposed measures that can be used for analysis of the
data generated by facial expressions recognition software in groups of people
who are involved in interactions that can provoke emotional reactions. We used
repeated cooperative (economic) games for monitoring the groups behavior, but
also for provoking emotional reactions in the players. Fe proposed measures to
find dependencies in the obtained data. Based on these measures we have found a
statistically significant correlation between the average emotional states from two
neighboring experiments separated by two weeks. This result means that there
is a memory in the dynamics of the average emotional state of the crew so that
two weeks cannot completely destroy the memory about the previous emotional
state. This property of the dynamics of emotional states can potentially be used
to predict emotional states of the group for the next few weeks.

The proposed method can be used for monitoring and predicting of the emo-
tional state of group of isolated individuals. The method can also be used to
design social agents. Previous findings of this research have been used for the
design of social agents [14]. These agents were shown to outperform agents that
do not utilize on the social behavioral strategy proposed in [14]. These design
principles can be exploit for design of social strategies for long-term interactions
between humans and virtual agents and in human-robot interaction.
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Abstract. The development of a suitable EEG-based emotion recog-
nition system has become a target in the last decades for BCI (Brain
Computer Interface) applications. However, there are scarce algorithms
and procedures for real time classification of emotions. In this work we
introduce a new approach to select the appropriate parameters in order
to build up a real-time emotion recognition system. We recorded the
EEG-neural activity of 5 participants while they were looking and lis-
tening to an audiovisual database composed by positive and negative
emotional video clips. We tested 11 different temporal window sizes, 6
ranges of frequency bands and 5 areas of interest located mainly on pre-
frontal and frontal brain regions. The most accurate time window seg-
ment was selected for each participant, giving us probable positive and
negative emotional characteristic patterns, in terms of the most informa-
tive frequency-location pairs. Our preliminary results provide a reliable
way to establish the more appropriate parameters to develop an accurate
EEG-based emotion classifier in real-time.

Keywords: EEG · Emotions · Video database · BCI · Real-time

1 Introduction

The interest on human-machine interactions has been increasing due to the aim
of improving users’ experiences and also to the growing necessity of the BCI
branch to be more accurate in their interaction with the patients. Therefore,
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research in human emotion recognition systems has become an important tar-
get in this field. In the past decades, most of the studies have focused on using
facial expressions and speech in order to identify human emotions [1]. However,
both features are easy to fake or change consciously. For this reason, researchers
explored new methods as physiological markers such as heart rate [2] and gal-
vanic skin response [3]; and neuroimaging techniques, being the EEG the “gold
standard” due to its millisecond temporal resolution [4].

Nowadays, the goal of the EEG-based emotion recognition research is to find
a suitable system, which gives good enough results, to be implemented in real-
time. In order to develop a system capable of recognize different emotions, some
factors, such as the model of emotion, the stimulus and the classifier, must be
specified, since the difficulty when comparing results among studies is due to
differences in the selection of these parameters [5].

There are several methods to elicit emotions such as using pictures, sounds,
odor and combinations of them [6]. But in the real world we have all the senses
active at the same time, so the idea of stimulate only one of them is not a
realistic approach for real-time emotion recognition. Behind this presumption,
some authors began working with audiovisual stimuli resulting in the creation of
audiovisual databases such as Database for Emotion Analysis using Physiological
Signals (DEAP) [7], the Emotional Movie Database (EMDB) [8] or own-film
selection [9]. However, these databases select considerable long extracts of movies
at which the emotion is only present at some points of the plot, this fact make
the classification difficult.

When studying emotions with the EEG technique, the target is the study of
the spontaneous activity, i.e. the characteristic pattern of the different frequency
bands for a specific stimulation. However, not all the EEG-bandwidths carry
the relevant information for emotion recognition and not all channel locations
participate in the same way on this process. For this reason, the correct electrode
location and the appropriate frequency band of study must be set prior to any
real-time classification. On the other hand, by using unsuitable window size, the
emotion may be misclassified [5]. In this framework Candra et al. [10] develop a
study in order to assess the effective window size using the dimensional model
of emotion [11]. They concluded that the information regarding emotions in
the EEG signal may be appropriately localized at around 3–12 s time segments.
Unfortunately this range seems too wide for a real-time approach. Therefore,
more efforts are still needed for efficient and automatic classification of EEG-
based emotions.

In the present study, we used the biphasic model of emotion, which states
that emotion vary the activation of the appetitive and defensive motivational
systems that mediate the wide range of adaptive behaviors [12]. We elabo-
rated a customized video-database able to provide sustained emotions during
the whole video presentation and we classified each video-clip into positive or
negative according with their emotional content. Moreover, due to the high inter-
individual emotion experience variability, we used a subject-dependent model
approach were the classifier must be trained for each participant. The main
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objective was to carry out a preliminary study in order to set the principal
parameters for developing a real-time EEG-based emotion recognition system.

Our results are very encouraging and suggest that there are different band-
width patterns at frontal regions when comparing positive and negative video
clips. Furthermore, we also found that the best time window was slightly dif-
ferent for each volunteer what suggest the usefulness of developing customized
procedures of real-time EEG-based emotion recognition systems.

2 Methods

Participants

5 voluntaries participated in the study (mean age: 24.02; range: 19–27; three men
and two women). The participants were right handed with a laterality quotient
of at least +0.4 (mean 0.9, SD: 0.2) on the Edinburgh Inventory [13]. None
of them had personal history of psychiatric or neurological disorder, alcohol or
drug abuse, or current medication, and they had normal or corrected to normal
vision and audition. All participants were informed about the procedure and
purpose of the study; they provided their written consent, approved by the Ethics
Committee of the University Miguel Hernandez.

Stimulus

A total of 14 video clips were selected from the internet. Half of them with pos-
itive emotional content such as natural landscapes, comedy shows or cartoons;
and the other seven with negative emotional content as for example excerpts
from horror movies, violence scenes, dental surgery, etc. The audio content of
the films met the requirement of been in the mother tongue of the participants
(Spanish) or at least with instrumental non-verbal music. The video clips had
durations between 43 and 180 s. All of the clips were extracted and edited using
the Camtasia Studio 8 software.

Participants were instructed to seat comfortably while watching the clips.
They were also instructed to not make abrupt movements and try to avoid
blinking as far as possible. Films were presented continuously, preceded by a
black screen lasting for 30 s. After viewing each clip, participants were asked to
rate the emotional experience in terms of valence ranging from 9 (very pleasant)
to 1 (very unpleasant). Video clips were presented in a random order, counter-
balanced for each voluntary, by using python software.

Data Acquisition and Signal Preprocessing

We recorded EEG data through a cap-mounted 64 Ag-AgCl electrodes according
to the International 10/20 System (FP1, FPZ, FP2, AF3, GND, AF4, F7, F5,
F3, F1, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8,
T7, C5, C3, C1, CZ, C2, C4, C6, T8, REF, TP7, CP5, CP3, CP1, CPZ, CP2,
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CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ,
PO4, PO6, PO8, CB1, O1, OZ, O2, CB2) [14], the data were amplified and reg-
istered by the NeuroScan SynAmps EEG amplifier (Compumedics, Charlotte,
NC, USA). The electrode impedance for every electrode was kept under 25 kΩ as
recommended [15]. All the data were acquired with a sampling rate of 1000 Hz.
The recordings were re-referenced to a Common Average Reference (CAR) and
EEG signals were filtered using a high-pass and low-pass filters, 0.5 Hz and 45 Hz
respectively. This step was performed by means of the Curry 7 software (Com-
pumedics, Charlotte, NC, USA). Artifact rejection were performed by removing
the IC (independent components) corresponding to muscle noise (head move-
ment and face gesticulation) and eye-blinking, selected by visual inspection,
based on the Independent Component Analysis (ICA) [16] carried out with the
MatLab toolbox EEGLAB [17].

Feature Extraction and Emotion Classification

The preprocessed EEG data corresponding to each video clip were segmented
into different time windows ranging from 2 s (the smallest bandwidth period
of interest), increasing by 1 s till reaching 12 s, which is the upper window size
recommended for classifying emotions [10]; every segment was considered as a
trial. In total, 11 sets of trials were extracted. Linear trends were removed. Each
trial was z-scored so that they have zero mean and unit standard deviation. After
that, a tapered cosine window (0.2 factor) was applied. For each trial, the power
of 6 groups of frequency bands, Delta (1–3 Hz), Theta (4–7 Hz), Alfa (8–13),
Beta1 (14–23 Hz), Beta2 (24–30 Hz) and Gamma (31–44 Hz), was estimated in
every single channel. Although we have information from 64 channel location,
at the present study we have just analyzed the prefrontal and frontal regions.
The prefrontal and frontal channels were divided into 5 areas of interest, as
represented in Fig. 1: Left-Prefrontal area (FP1, AF3); Right- Prefrontal area
(FP2, AF4); Left-Frontal (F1, F3, F5, F7, FC1, FC3, FC5); Right-Frontal (F2,
F4, F6, F8, FC2, FC4, FC6); and Frontal-midline (FPZ, FZ, FCZ).

The band power was estimated by using the Welch’s method. The band power
in every area of interest was used as a feature for classification. In total, 30
features were used. The features were normalized by using a 30-second baseline
prior to the first stimulus. 50% of the video clips were utilized to train a Support
Vector Machine (SVM) classifier. The remaining videos were classified into two
classes, high-valence (positive) and low-valence (negative) emotion. Finally, the
accuracy of the binary classification was computed for every group of frequency
and area of interest.

3 Results

The classification process described previously was repeated for every subject
with the 11 different sizes of window segments. We obtained the accuracies for
every pair of frequency band – area of interest of every subject. Those pairs with
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Fig. 1. Scheme of the 64 electrode positions across the scalp. The 5 grouped channels
correspond to each of the areas of interest of study. (1. Left-Prefrontal area; 2. Right-
Prefrontal area; 3. Left-Frontal; 4. Right-Frontal; 5. Frontal-midline. GND: ground
channel. REF: reference channel).

a percentage of accuracy higher than a 70% were selected; the window size with
the highest number of informative features was set as the more appropriate time
trial-segmentation for each subject.

Once we had the appropriate size of window segment, we looked at those
frequency bands – area of interest pairs with percentage of accuracy higher than
70% as being the most significant for the emotion classification into positive and
negative valence. The selected time parameter and features for every subject are
listed in Fig. 2.

We obtained, in general, good classification accuracies for subjects 2, 4 and
5. However the classifier failed when classifying the negative valence video clips.
This result could be in line with the given subjective valence ratings of the
subjects (Fig. 3). Thus almost all of the subjects rated correctly the positive
valence video clips, but not the negative ones, which in some cases had scores
above five.

For subjects 1 and 3 the classifier showed very good results for both positive
and negative clips. Figure 4 shows the spatial distribution of the main informative
frequencies of subject 1 with a 7 s window size. In this particular case the Beta2
bandwidth is lateralized toward the left hemisphere for positive emotional video
clips and toward the right-hemisphere for negative emotional clips.
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Fig. 2. Selected appropriate time segments for every subject and their most informative
features based on frequency band – area of interest pairs, in front of the positive and
negative emotional video clips. *Subjects for whom the classifier detects considerably
better the positive valence clips than the negative ones.
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Fig. 3. Mean subjective scores and standard deviation for the valence of the positive
and negative emotional video clips.

Fig. 4. Spatial distribution of the Beta2 frequency band for positive and negative video
clips along the prefrontal and frontal electrodes. Images obtained with the help of Curry
7 software.

4 Discussion

Factors such as the model of emotion, the temporal window size for stimuli
segmentation, the stimuli itself and the goal-directed electrode positioning and
band frequency patterns are crucial parameters that must be specify to provide
an efficient real-time classification of human emotions.

The results of this study, although very preliminary, suggest that there are
different bandwidth patterns, specially at frontal regions when comparing posi-
tive and negative video clips. Furthermore, provide some insights for the selection
of the appropriate time window and the most-informative channel locations and
target frequency bands. Thus, the Beta2 bandwidth showed a preferential left
hemispheric frontal lateralization for positive emotions whereas negative emo-
tions were lateralized toward the right hemisphere. However, although our results
showed a possible trend, it is too early to make conclusions, due to the small
number of subjects and the problems encountered for classifying negative stimuli,
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fact that for some subjects our system failed to classify some negative stimuli. We
believe that this failure could be due to the stimulation itself, considering that
subjective valence score of such participants reflected a low-negative to neutral
emotional experience.

Our results also emphasize that due to the high inter-subject variability, it
is difficult to set global parameters and completely automatic real time classi-
fication algorithms that can be efficient for all subjects. Having said that, our
main interest resides on finding the common characteristics that would allow
the accurate and reliable classification between positive and negative emotions.
However, we are fully aware that it is necessary to expand our studies, reconsid-
ering some stimuli of our audiovisual database, increasing the sample size and
finally, analyze the whole regions of the brain to find out the more appropriate
electrode positioning for the analysis of the EEG signals driven by emotions.
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Abstract. Emotional robots as therapist tools are the next frontier in
care assistance, specially in the case of persons diagnosed with autism
spectrum disorder (ASD). The current development in emotion estima-
tion by robots is based mainly in face gestures, gaze attention, head
position, etc., but that are exactly some areas where ASD patients have
more difficulties to express their emotions. We consider that, in order to
obtain a good interaction between robots and users, it is very important
to have and accurate feedback of the emotional reaction detected during
interaction, so we propose the merge between the emotional capabilities
of actual robots and electroencephalogram tools to decrease the level of
uncertainty of emotion state estimation.

Keywords: Human robot interface · Autism spectrum disorder ·
Socially assistive robotics · Electroencephalogram

1 Introduction

Emotional robots can open paths to research on new paradigms for the treatment
of psychological disorders such as the autism spectrum disorder (ASD) [19]. In
this paper, the focus is on the idea that robots, as therapist tools, may provide
assistance through social interaction for children that suffer this disabilities.

ASD is known as a lifelong disability with no cure, including a wide range of
symptoms. It is important to point the main general symptoms that define ASD,
such as the deficit for communication, the incapabilities for understanding social
cues, difficulties for social interaction as talking to each other as well as express
their personal feelings [6]. Also, ASD patients suffer from the lack of eye contact,
that is always related with their difficulties in joint attention [7,10]. Moreover,
individuals diagnosed with ASD show repetitive patterns of behavior and they
usually are extremely sensible to physical contact. These are the motivations
that lead us to investigate an alternative to address their need for assistance.

c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 274–285, 2017.
DOI: 10.1007/978-3-319-59740-9 27



Exploring the Physiological Basis of Emotional HRI Using a BCI Interface 275

Robots as therapy tools have been used in the last decade to improve social
behaviors in ASD patients and to provide assistance through social interaction.
In this way, a new field of research has been developed called socially assistive
robotics (SAR) [6,8,9]. This new field, tries to solve some questions relative to
the circumstances involving the interaction between patients and robots, such
as, the effectiveness of robots for social assistance or how to model the behavior
of these therapists robots.

Linking the need of support by ASD patients with this SAR systems, some
researchers [1,2] have reported that the treatment in this new paradigm can
increase the level of attention, improve their capacity for joint attention and the
arising of spontaneous imitation. Researchers suggest that robots are considered
socially as inanimate toys with some characteristics of social beings.

1.1 Emotional Robots

Since 90’s, the research on social robots has been widely developed. Here we
mention some of the best known socially intelligent robots. There is a great
motivation behind the development of this type of robots, since there are a lot
of possible applications. One of the best known motivation concerns giving assis-
tance for children at hospitals due to the difficulties to provide socio-emotional
support for patients during care [3]. There is a lack of attendance at hospitals
so this high demand of social interaction can be covered by this new type of
robots, as well as assistance for elderly people as a accompanier or assistance for
handicapped people.

In this sense, it is worth noting The Huggable project [11]. They have demon-
strated in [20] that a social interaction between child patients and robots are
emotionally closer than between these child patients and a virtual character,
reflecting the potential of such robots. The Huggable robot is covered with a
teddy bear shape that permits a complete emotional experience for the children.
This interesting project has been made in collaboration with the Boston Chil-
dren’s Hospital and the Northeastern University. The principal focus rely on the
aim to mitigate the stress, the anxiety and pain of patient’s through interactive
games.

The second robot as a reference is Kismet, one of the first robot able
to express feelings through its face expressions. It was developed by Cynthia
Breazeal in early 90’s. Its main capabilities include, expressiveness, visual and
audio perception and proprioceptive control that enable him to focus the gaze
direction to the source of stimulus. In that way, it is able to analyzing visual
and auditory perceptions to interact in a natural way as a human being does.
To close the loop in emotional interaction with humans, it can show different
emotional states through its face gestures and tone of voice. As Breazeal and
Scassellati suggest in [4], “the design of Kismet’s motivation and behavior sys-
tems enable it to socially interact with a human while regulating the intensity
of the interaction via expressive displays”.

The third robot to mention is named Leonardo. This robot was built by
the “personal robots group” of MIT and, attending the behavior and emotional
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responses of its caregivers, it can learn emotional meanings about new objects.
Leo, as it is called by its developers, learns the names of new objects and, analyz-
ing the gaze of its caregivers, it can detect where to focus its attention. Moreover,
it is capable of detecting voice tones to appraisal its caregivers emotion and link
it to the object that is learning about. Leo’s memory is made affective, conform-
ing and influencing Leo’s reactions to the learned objects. In that way it can
maintain such affective memories in a persistent way that permit to be evoked
by re-presenting these objects.

The last mention goes to the PARO Therapeutic Robot developed by AIST,
a leading Japanese industrial automation pioneer. PARO robot is being used
in therapies for prevention of dementia. One of the last trends in USA for
senile therapies implies the use of animals to improve the emotional relations
of patients. In the last decade, some researchers have proposed the use of ani-
mal like robots to avoid some of the risks of working with real animals. As they
suggest in [22], their main goal is to expect three effects:

– Psychological, e.g., relaxation, motivation.
– Physiological, e.g., improved vital signs.
– Social, e.g., stimulation of communication among inpatients and caregivers.

For our proposal, it is necessary to employ emotional robots that satisfy a series
of principles of both software design and physical properties. This is important to
develop a robot that fits the needs of the problem to deal with. We will therefore
perform a brief description of the requirements for each aspect of the design.

The principles of software design are characterized by the need of the robot to
interact with the patient in the most natural way and always under the treatment
requirements. This implies a series of robot capabilities. The robot must be able
to obtain information about both the environment and the patient’s mood and
behavior. On the one hand, the robot must detect the environment to move
through it autonomously. On the other hand, it must evaluate the patient’s
mood and behavior, to generate the corresponding action, either initiating an
interaction or requesting help from an external source. This second requirement
is under the design paradigm called Human Robot Interaction (HRI) [5].

Under the HRI paradigm, the robot is expected to be able to model social
interaction, which requires the robot to perceive and interpret human behavior.
This is possible by detecting body and facial gestures and thus, monitor the
activity of the patient, so that it is then possible to classify such activity and
measure the feedback obtained in the interaction.

As for the physical properties, it is necessary for the robot to have a phys-
ical appearance that allows it to meet the expectations of the patient, and to
enable the robot to perform the desired social interaction avoiding “the uncanny
valley” as it was described in [21]. Much of the communication in social interac-
tion is non-verbal, that is, much of the projected emotions depend on physical
appearance. Therefore, the robot must project an amount of “humanness” while
together projects an amount of “robotness”, so that it does not create false
expectations regarding its communicative capacities.
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We consider that the Pepper robot (Fig. 1) from SoftBank Robotics pos-
sesses this set of characteristics, since externally it appears to be an intelligent
social being, while maintaining a friendly robotic aspect. Pepper is based on a
functional design approach, that is, its design is not made from the bioinspired
perspective, except in its external aspect. Its core is a computer with limited
operational and performance objectives that focuses on being able to effectively
perform specific behavioral tasks.

Fig. 1. Pepper robot from SoftBank robotics.

2 Detection of Emotions in EEG

We consider a classification of emotions in two states: positive and negative
(biphasic emotion), which states that emotions fundamentally stems from vary-
ing activation in centrally organized appetitive and defensive motivational sys-
tems that have evolved to mediate the wide range of adaptive behaviors necessary
for an organism struggling to survive in the physical world [18].

Emotion recognition through electroencephalogram (EEG) has a wide vari-
ety of practical applications. EEG is one tool that can directly measure brain
activity and is the most effective way to measure neurons [12,13]. This activity,
occurring simultaneously through the brain, involves a large number of neurons
to generate minimum levels of electric potential enough to allow EEG record
electrical signals. Electroencephalography records electrical brain activity on a
millisecond time scale and thus permits temporal dynamics of brain function to
be analyzed. There are five major brain waves distinguished by their different
frequency bands (number of waves per second). These frequency bands from
low to high frequencies, respectively, are called Delta (1–3 Hz), Theta (4–7 Hz),
Alpha (8–13 Hz), Beta (14–30 Hz), and Gamma (31–50 Hz).

Most studies of the correlations between emotionally relevant stimuli and
EEG features have adopted one of two approaches. One approach is to study
the relationships between emotion and well-defined EEG features, such as frontal
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asymmetry in alpha activity [14], frontal midline theta [15], and the late positive
potential (LPP) over central and posterior midline areas [16]. In contrast, the
second approach has used machine learning methods to evaluate the relationships
between emotion and classifiers that incorporate many EEG features (e.g., the
powers in many frequency bands at many scalp locations)[17]. We have used the
second method to classify the signal obtained by a portable EEG system.

When an emotional stimulus occurs, it is hard to predict which brain areas
are supposed to be activated since this strongly depends on the memories the
participant used to relive the emotion. Moreover, as the structures involved in
recollection of events are deep in the brain and hard to precisely capture using
EEG electrodes. We propose to realize a BCI system as shown in Fig. 2.

Fig. 2. Parts of a BCI.

EEG data was continuously recorded at a sampling rate of 1000 Hz from 64
locations (FP1, FPZ, FP2, AF3, GND, AF4, F7, F5, F3, F1, FZ, F2, F4, F6,
F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5, C3, C1, CZ,
C2, C4, C6, T8, REF, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7,
P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1,
O1, OZ, O2, CB2) using the international 10/20 system [8]. EEG was recorded
via cap-mounted Ag-AgCl electrodes, with a 64-channel NeuroScan SynAmps
EEG amplifier (Compumedics, Charlotte, NC, USA), but a less cumbersome
device could be used (see Fig. 3). All the recordings were performed in a silent
room with soft lighting. Signal processing was performed with the help of Curry
7 (Compumedics, Charlotte, NC, USA). Data were referenced to a Common
Average Reference (CAR). EEG signals were filtered using a 45 Hz low-pass and
a high-pass 0.5 Hz filters. Artifacts, such as flickers were filtered using Matlab
software. The power features are obtained by first performing Fourier transform
on the EEG signals and Support Vector Machine (SVM) as a classifier for each of
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the 64 channels. In this way, it is classified if the emotion is negative or positive
and this information is sent to the robot.

Fig. 3. Pepper interacting emotionally.

3 Emotional “engine” of the Pepper Robotic System

The emotional “engine” of the Pepper robot is based on the ALMood package
[23]. This module is composed by several other modules that are integrated and
coordinated through the ALExtractor module. In a simple way, ALMood module
takes the information provided by the emotional extractor manager (ALExtrac-
tor) and from the user profile to provide the estimation of the instantaneous
emotional state of the user. A simplified scheme is shown in the Fig. 4.

Through ALMood module, it is possible to subscribe to the ALGazeAnalysis,
ALFaceCharacteristics, ALVoiceEmotionAnalysis and ALAudioDevice extrac-
tors. These extractors provide information relative to the emotional state of
the human in front of the robot and also about the ambience sound level in the
surroundings. All this information is dynamically triggered and adapted by the
extractor manager depending on the events frequency of each extractor. The
information provided is the emotional perception of people and the environment
ambiance.

First, ALGazeAnalysis module, allows to analyze the direction of the gaze
of a detected person, then it is possible to measure if the patient is looking at
the robot by measuring the face orientation of the user. This module can also
measure if the eyes are open or close. This module can calculate three different
states of the user behavior relative to the robot: Evasion, Attention, Diversion.

Secondly, ALFaceCharacteristics module provides information relative to the
face expression properties of the user and information about the smile. There are
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Fig. 4. ALMood diagram.

some traits in the face of each person that once measured can give information
relative to the gender and age category. The module gives a measurement of
the “smile degree” on a face, so it is capable of measure the difference between
a faint smile and a frank smile. It also analyses facial expressions and tries to
estimate whether a face is neutral, happy, surprised, angry or sad.

Another important module is ALVoiceEmotionAnalysis, which allows us to
get relevant information about the acoustic voice emotion such as: the utterance
acoustic tone, and some linguistic semantics of speech.

Finally, the module ALAudioDevice gets information from the ambience and
calculates the general sound level, so that it return: the energy level of noise.

As a summary, for each user in front of the robot, structured data
as shown in Listing 1.1 can be obtained simply by calling the method
currentPersonState() in the ALMood API. It means that this library can-
not get more emotions than these, but nevertheless, it allows us to play with
the combinations of these emotions to perform a more realistic and complex
mapping of user emotions.

4 Augmented Emotional Motor Capabilities

Some symptoms in ASD patients, like difficulties to express their personal feel-
ings and lack of eye contact, could make the emotion state estimation of ALMood
library to fail or to give inaccurate results, as it is based on face expressions,
gaze direction, etc. Our proposal to make robots useful in ASD assistance is to
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Listing 1.1. User data about emotional state.

PersonState =
{

"valence" : { value, confidence },
"attention" : { value, confidence },
"bodyLanguageState" : { "ease" : { level, confidence } },
"smile" : { value, confidence },

"expressions" :
{

"calm" : { value, confidence },
"anger" : { value, confidence },
"joy" : { value, confidence },
"sorrow" : { value, confidence },
"laughter" : { value, confidence },
"excitement" : { value, confidence },
"surprise" : { value, confidence }

}
}

enhance the data provided by Pepper with emotional information from EEG
system. Also, the EEG record can provide some relevant information about the
brain processes in ASD patients that can be useful for learning and getting a
better understanding of this set of diseases. The diagram in Fig. 5 shows the
design approach of our proposal.

The experiment consists in showing a series of videos to the patient through
the tablet on the chest of the robot, in order to facilitate the information acqui-
sition by Pepper, that must be in front of the patient to visualize the patient’s
face and gesture properties among other relevant data. The patient will carry
the EEG portable brain computer interface, which will provide additional infor-
mation to Pepper with the current emotional state. This information will be
analyzed in real time and finally combined with the information obtained by the
robot to improve the whole emotional detection capabilities of the robot. The
main objective is to reduce the uncertainty of the information extracted by the
robotic system.

In order to achieve the objective, the first approach is to focus in the “valence”
field from the PersonState data provided by ALMood currentPersonState()
method and to include a similar new field “EEGstate” with data from the EEG
system, and finally to combine both fields to produce a new global field of mood
or emotional reaction of patient. Therefore, our method consist in generating
a combined structure with the information obtained in the whole system as is
shown in Listing 1.2.
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Fig. 5. Our proposal emotional “engine” diagram.

Listing 1.2. Augmented emotional “reaction” structure.

Reaction =

{

"valence" : { value, confidence },

"EEGstate" : { value, confidence },

"global" : { value, confidence }

}

In this first approach, the value part of each field (“valence”, “EEGstate”
and “global”) will be codified in the continuous range [−1, 1], where value <0
maps to “negative” emotional reactions, value near zero is a “neutral” reaction,
and value >0 means a “positive” reaction. The confidence part of the 3 fields
will be codified in the continuous range [0, 1] expressing the percentage of success
(probability) while classifying the corresponding emotion state.

To compute the global emotional reaction from “valence” and “EEGstate”
more relevance will be given to values depending on their higher corresponding
confidence. We will define the following shorter notation: v is valence value, cv
is valence confidence, s is EEGstate value, cs is EEGstate confidence, g is global
value and cg is global confidence. Then, the value of global reaction is

g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v + s

2
if cv = 1 and cs = 1

v · (1 − cs) + s · (1 − cv)
(1 − cs) + (1 − cv)

otherwise

(1)
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and the corresponding global confidence is

cg = 1 − 1
L

((

1 − cv + cs
2

)

· (L− |v − s|) + |v − s|
)

(2)

Equation 1 models the global value of emotional state by the weighted average
between the valence value from robot and the EEGstate value, using as weights
the corresponding probabilities estimated from confidences, pv = 1

L · 1
1−cv

and
ps = 1

L · 1
1−cs

, where L = 2 is the interval length (from −1 to +1). On the same
way, the global confidence in Eq. 2 is computed from the corresponding width
of the global confidence interval estimated from the average of both confidence
intervals of valence and EEGstate, wv = L · (1 − cv)and ws = L · (1 − cs), and
then corrected to account for the relative separation of values, wg = 1

L ŵg ·
(L− |v − s|) + |v − s|, where ŵg = 1

2 (wv + ws), so that cg = 1 − 1
Lwg.

The proposed merge of valence from robot ALMood estimation and the state
signal from the EEG system has the advantage to provide a mean value as a
global reaction, if both systems have similar confidence, but on the other hand,
it will give more importance to one of them if the other has a lower confidence. In
this way, each system can supply the information that is missing from the other,
depending on the expressiveness of the person being monitored. Specially, in the
case of ASD patients, for whom sometimes it is difficult to asses an emotion state
only from visual clues (face gesture, gaze attention, head position, etc.) that is
mainly used by the Pepper robot.

5 Conclusions

The idea of using robots as therapist tools in care assistance, specially for ASD
patients, has been growing in the last decade. Research in this field has been
increasing, thus providing in both ways, a better understanding on the set of
diseases known as ASD and the developing on interaction between humans and
robots.

The detection of emotions has been a large challenge during last decades,
and many different approaches has been tested, where the EEG systems is only
one of them, but it promises to have better results than many others. Our aim is
to improve the emotional detections capabilities of robots with the EEG system
to decrease the level of uncertainty of emotion detections. For such objective,
we have proposed a first approach to extend the information data structure
provided by the ALMood module in the Pepper robot emotional system by
including the emotional state estimated from an EEG system, and the merge of
both information sources to estimate a global reaction for the person in front of
the robot.

In future works, we will merge our system with a set of other physiological sig-
nal monitors (electrocardiogram, electrooculogram, galvanic skin response, etc.),
to provide even more reliability to the emotional state of ASD affected persons
and hence to improve the results in the use of robots for the care assistance of
such patients.
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Tecnoloǵıa de la Región de Murcia.

References

1. Diehl, J.J., Schmitt, L.M., Villano, M., Crowell, C.R.: The clinical use of robots for
individuals with autism spectrum disorders: a critical review. Res. Autism Spectr.
Disord. 6(1), 249–262 (2012)

2. Scassellati, B.: How social robots will help us to diagnose, treat, and understand
autism. Robot. Res. 28, 552–63 (2007)

3. Jeong, S., Dos Santos, K., Breazeal, C., et al.: Designing a socially assistive robot
for pediatric care. In: Proceedings of the 14th International Conference on Inter-
action Design and Children, pp. 387–390. ACM, New York (2015)

4. Breazeal, C., Scassellati, B.: A context-dependent attention system for a social
robot. In: IJCAI 1999 Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, pp. 1146–1153 (1999)

5. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots.
Robot. Auton. Syst. 42(3), 143–166 (2003)
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Abstract. (Aim) Unilateral sensorineural hearing loss is a brain dis-
ease, which causes slight morphology within brain structure. Tradi-
tional manual method can ignore this change. (Method) First, we
used dual-tree complex wavelet transform to extract features. After-
wards, we used kernel principal component analysis to reduce feature
dimensionalities. Finally, multinomial logistic regression was employed
to be the classifier. (Result) The 10 times of 10-fold stratified
cross validation showed our method achieved an overall accuracy of
96.17± 2.49%. The sensitivities of detecting left-sided sensorineural hear-
ing loss, right-sided sensorineural hearing loss, and healthy controls were
96.00± 2.58%, 96.50± 2.42%, and 96.00± 3.16%, respectively. (Conclu-
sion) Our method performed better than five state-of-the-art methods.

Keywords: Unilateral sensorineural hearing loss · Dual-tree complex
wavelet transform · Kernel principal component analysis · Multinomial
logistic regression · Magnetic resonance imaging

1 Introduction

Hearing loss is a partial or even inability to hear. It is caused by a massive of
different problems, such as birth complication, infection, medications, ageing,
genetics, noise, trauma, toxins, etc. A hearing loss is determined by tests when
the subject cannot hear 25 decibels for more than one year. Until 2013, there
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are more than one billion people suffering from hearing loss [1]. Sensorineural
hearing loss is a type of hearing loss [2]. It may occur in one or both ears. In
this study, we aim to detect unilateral sensorineural hearing loss (USHL) into
two types: left-sided and right-sided.

Magnetic resonance imaging (MRI) is an efficient tool to help diagnose USHL,
because the USHL patients have a distinct difference with healthy controls
from the view of brain structures, such as left superior/middle/inferior temporal
gyrus, bilateral posterior cingulate gyrus and precuneus, lingual gyrus, and right
parahippocampal gyrus [3]. Nevertheless, these differences are slight and subtle
especially in the prodromal stage in USHL disease. Therefore, computer vision
techniques are essential to help neuroradiologist to find those minor alterations.

In the last decade, Li [4] used fractional Fourier transform (FRFT) to detect
left-sided and right-sided hearing loss. Chen [5] used wavelet packet decomposi-
tion (WPD) technique and least-square support vector machine (LSSVM). Wang
et al. [6] combined wavelet entropy (WE) and directed acyclic graph support vec-
tor machine (DAG-SVM). Chen and Chen [7] employed three successful tech-
niques: discrete wavelet transform (DWT), principal component analysis (PCA),
and generalized eigenvalue proximal support vector machine (GEPSVM). Sun
[8] employed wavelet energy, and proposed a quantum-behaved particle swarm
optimization method. Wu [9] used contrast-limited adaptive histogram equaliza-
tion approach. Lu [10] used radial basis function neural network. Chen [11] used
fractal dimension based on Minkowski-Bouligand method to detect pathological
brains.

After studying above literatures, we found they were confronted with three
common problems: (i) Their datasets are imbalanced. This is because healthy
controls are easily enrolled, while hearing loss patients are usually with other
brain diseases, and hence those patients are not obedient for MRI scanning. (ii)
They used wavelet or its variant as the feature, but wavelet decomposition can
only detect textures along horizontal, vertical and diagonal directions. (iii) The
performance of these detector systems are not satisfying and can be improved.

To solve these problems above, we enrolled more USHL patients so that the
numbers of each class are equal. Besides, we proposed to use dual-tree complex
wavelet transform, which has more accurate directional selectivity than standard
wavelet transform. We also introduced kernel principal component analysis to
reduce the features. The multinomial logistic regression was chosen as the clas-
sifier. Finally, the experiment shows our proposed method was better than the
state-of-the-art methods.

2 Subjects

This study employed the 49 subjects in Reference [7], and then enrolled 11
new patients. Finally, we have 20 healthy controls (HC), 20 left-sided sen-
sorineural hearing loss (LSHL) patients, and 20 right-sided sensorineural hearing
loss (RSHL) patients. The dataset is now balanced. The inclusion and exclu-
sion criteria, the pure tone audiometry implementation, the imaging parameters
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are all the same as in Reference [7]. Ethics Committee of Southeast Univer-
sity approved this research. The updated demographic data of all subjects are
listed in Table 1, which clearly shows that all three classes are well matched with
regards to gender, age, and education level.

Table 1. Demographic data of all subjects

LSHL RSHL HC

Number 20 20 20

Age (year) 51.3 ± 9.8 53.5 ± 8.2 53.6 ± 5.4

Gender (m/f) 10/10 9/11 8/12

Education level (year) 12.4 ± 1.8 12.2 ± 2.2 11.5 ± 3.2

Disease duration (year) 17.5 ± 17.2 14.4 ± 15.0 -

PTA of left ear (dB) 78.2 ± 17.6 21.9 ± 3.4 22.2 ± 2.1

PTA of right ear (dB) 20.6 ± 4.1 80.7 ± 17.7 21.3 ± 2.2

(Data are mean ± SD, PTA= pure tone average, m = male,
f= female)

Image preprocessing follows the standard steps. First, the brain extraction
tool v2.1 software [12] was employed to extract brain tissues. All the brain images
of 60 subjects were normalized to the Montreal neurologic institute (abbrevi-
ated as MNI) template. Then, we resampled them to 2 mm isotropic voxels,
and smoothed them by a Gaussian kernel. Three experienced otologists were
instructed to select the optimal slice for each subject that covers his/her major-
ity tissues related to hearing. The selected slice was at Z = 88 (i.e., 16 mm) in
MNI coordinate space. Figure 1(a) shows original image. Figure 1(b) shows the
BET result. Figure 1(c) shows the selected brain image.

(a) Original head image (b) BET (c) Selected brain image

Fig. 1. Brain extraction result (The yellow line marks the brain region) (Color figure
online)
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3 Dual-Tree Complex Wavelet Transform

The physical structures of the brain are similar to fingerprints, which can be
analyzed by wavelet successfully [13,14]. Hence, brain structure can also be ana-
lyzed by wavelet. The dual-tree complex wavelet transform (DTCWT) is an
improvement of wavelet approach, based on the use of two separate two-channel
filter banks, in order to improve the directional selectivity [15]. In the implemen-
tation, we need to design two separate DWT decompositions (tree a and tree
b) [16]. Thus, the wavelet and scaling filters of tree a can produce both scaling
and wavelet function [17], which are approximate Hilbert transforms of tree b.
Figure 2 shows the two trees (a and b) used in a DTCWT, here ga(k) and ha(k)
are the low-pass and high-pass filters for tree a, respectively. gb(k) and hb(k) are
the low-pass and high-pass filters for tree b, respectively.

Fig. 2. Diagram of a 2-level DTCWT

For a 2D DTCWT, it produces at each decomposition level 6 directionally
selective subbands [18] with six different rotation angles for both real (R) and
imaginary (I) components. The real and imaginary components can form the
magnitude M by the following formula

M =
√

R2 + I2 (1)

4 Kernel PCA

From the view point of computer scientist, each pixel of the subband coefficients
of DTCWT can be regarded as a feature, the size of which is too large and
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needs to be reduced. The shortcoming of principal component analysis (PCA)
is it only deals well with dataset with linear structure. For nonlinear structure
dataset, PCA performs not satisfying. The kernel principal component analysis
[19] extends standard PCA, and it implements the same procedure but trans-
forms the dataset into a higher dimensional space. Two important kernel PCAs
are introduced below: One is polynomial kernel PCA (shorted as PKPCA):

zp(x, y) = (a1 × (x × y) + a2)
a3 (2)

The other is radial basis function kernel PCA (shorted as RKPCA):

zr(x, y) = exp

(

−‖x − y‖2
a2
4

)

(3)

Note zp and zr represents the polynomial kernel and radial basis function
kernel, respectively. Here a1, a2, a3, and a4 are hyper-parameters. Their opti-
mal values can be obtained by grid searching approach. Note that KPCA is an
important feature reduction method. In the future, we shall test feature selection
method, which are also efficient in reducing dimensionality of features.

5 Classifier

5.1 Logistic Regression Model

Logistic regression (LR) [20] extends traditional regression analysis to the binary
situation. Assume we have M independent variable as

x = [x1, x2, . . . , xM ] (4)

and assume there is one dependent variable y with value of either 0 or 1. In this
way, the decision can be regarded as in following way:

y =
{

1 β0 + β1x1 + β2x2 + ... + βMxM + ε > 0
0 o.w.

(5)

where the values of the parameter vector β = [β0, β1, β2, . . . , βM ] should be
optimized, and β0 is the intercept [21]. Besides, ε represents the unobservable
Bayesian error.

To create the LR model, we create a latent variable z as

z = β0 + β1x1 + β2x2 + ... + βMxM (6)

Obviously z is a linear combination of x. By mimicking the logistic sigmoid
function (z ) defined by

μ (z) =
1

1 + exp(−z)
(7)

We can finally define the binary LR model as

F (x) =
1

1 + exp [− (β0 + β1x1 + β2x2 + ... + βMxM )]
(8)

where F (x ) represents the probability of dependent variable y = 1 [22].
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5.2 Multinomial LR

Traditional LR can only handles binary class problem. The multinomial logistic
regression (MLR) generalizes traditional LR to multiclass problem [23], and it
is widely used in academic and industrial fields, such as credit evaluation [24],
item detection [25], etc. The idea of MLR is simple. Suppose we have C different
classes,

y =

⎧
⎪⎪⎨

⎪⎪⎩

1 Class 1
2 Class 2
... ...
C Class C

(9)

then we can generate (C -1) LR regression models. Usually, the last class is chosen
as the pivot [26], and the other (C -1) classes are regressed against the pivot class
in sequence. In mathematical way, we have

ln P (Y=1)
P (Y=C) = β1,0 + β1,1x1 + β1,2x2 + ... + β1,MxM

ln P (Y=2)
P (Y=C) = β2,0 + β2,1x1 + β2,2x2 + ... + β2,MxM

...

ln P (Y=C−1)
P (Y=C) = βC−1,0 + βC−1,1x1 + βC−1,2x2 + ... + βC−1,MxM

(10)

In this study, since we need to handle a 3-class problem (LSHL, RSHL, and
HC), the multinomial logistic regression was employed. Some other classifiers can
also handle the multi-class problem, such as perceptron, feedforward neural net-
work, decision tree, support vector machine (SVM) [27], fuzzy SVM [28], kernel
SVM [29], twin SVM [30], etc. Nevertheless, the MLR has several advantages. It
is one of the simplest classifiers, and it is fast to implement. Therefore, we chose
MLR in this work.

6 Experiments and Discussions

Except the low-pass coefficients, every decomposition yields 12 coefficient sub-
bands (six direction and each has a real and an imaginary component). We let
the decomposition level vary from 1 to 4 with increment of 1. The results are
pictured in Fig. 3.

Figure 3 shows the indicators change with the decomposition level. As is seen,
all indicators achieve their highest when the decomposition level is three. The
reason may be two fold: On one hand, more decomposition level will give better
analysis of the brain image. On the other hand, too large decomposition level
will introduce calculation error, thus decreasing the performance. Therefore, we
believe three-level is the optimal for the DTCWT.

Table 2 offers our proposed method with five methods: FRFT+ PCA + SFN
[4], WPD + LS-SVM [5], WE+ DAG-SVM [6], DWT+ PCA + SVM [7], and
DWT + PCA + GEPSVM [7]. The 10-fold stratified cross validation, we segment
the entire dataset into ten folds randomly with equal distribution of each fold.
Remember we have 60 subjects: 20 LSHLs, 20 RSHLs, and 20 HCs. Then each
fold will contains 2 LSHLs, 2 RSHLs, and 2 HCs. In each trial, nine folds were
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Fig. 3. Decomposition level comparison (Sen = Sensitivity; Acc= Accuracy)

used as training, and the rest for test. This procedure repeated such that each
fold was used once for test. To further reduce the randomness, we repeat the
10-fold stratified cross validation ten times.

Table 2. Algorithm comparison

Method Accuracy Rank

FRFT + PCA+ SFN [4] 95.10% 3

WPD+ LS-SVM [5] 95.51% 2

WE+ DAG-SVM [6] 95.10% 3

DWT + PCA+ SVM [7] 94.08% 5

DWT +PCA+ GEPSVM [7] 92.24% 6

DTCWT+ KPCA+ MLR (Proposed) 96.17% 1

The comparison results in Table 2 show that our proposed DTCWT +
KPCA + MLR method yielded the largest accuracy of 96.17%. Next is the
WPD + LS-SVM [5] algorithm that yielded an accuracy of 95.51%. Both
FRFT+ PCA + SFN [4] and WE+ DAG-SVM [6] ranked third with an accu-
racy of 95.10%. The DWT+ PCA + SVM [7] ranked firth with an accuracy of
94.08%. Finally, DWT+ PCA + GEPSVM [7] performed the worst. Its accuracy
only achieved 92.24%.

7 Conclusion

In this study, we proposed a novel unilateral sensorineural hearing loss detec-
tion method, which can identify left-sided hearing loss and right-sided hearing
loss from healthy controls. Our method is based on three successful techniques:
dual-tree complex wavelet transform, kernel principal component analysis, and
multinomial logistic regression. The results showed our method is superior to
five state-of-the-art approaches.
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In the future, we may apply our method to other brain disease detection,
such as Alzheimers disease [31], etc. Another research direction is to use class
separation ability to validate our pre-selection slice.
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Abstract. In this work, we normalize the intensity of 40 FP-CIT
SPECT images from the Parkinson’s Progression Markers Initiative
assuming that the histogram of intensity values follows an α-stable distri-
bution. Then, we study the normalized images. The interclass separation
of the Parkinson’s disease (PD) brain images and the healthy control
(HC) are calculated by means of the Mann-Whitney-Wilcoxon U-test.
The intensity transformed images present higher inter-class separation
according to the estimation of the U-test.

1 Introduction

[123I]FP-CIT (DaTSCAN) single photon emission computerized tomography
(SPECT) brain images is a modality which is currently used to assist in the diag-
nosis of Parkinsonism [1,2] and the differentiation of parkinsonism and essential
tremor [3].

The typical pattern of an image with this modality is a noisy and non-
informative image of the brain except in an specific region, the striatum where
the image exhibits higher intensity level [4]. 123I-FP-CIT binds to the dopamine
transporters in the striatum. A healthy normal control (HC) patient is expected
to present higher intensity values in the striatum than an image from a subject
with Parkinson disease (PD). Specific binding regions in the striatum (putamen
and caudate nuclei) appear more intense in HC than in PD subjects.

For this reason, when FP-CIT SPECT brain images are used for Parkinson’s
diagnosis, the count per voxel or intensity level in the striatum are compared
between different subjects [5].

Nevertheless, the count per voxels depends not only on the type of subject
(NC or PD) but also on the dosis of radiotracer used. For this reason, it is crucial
to perform the intensity normalization of the images before to perform inter
or intra subject comparison [6]. This preprocessing step is usually performed
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 298–304, 2017.
DOI: 10.1007/978-3-319-59740-9 29
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by the so-called ‘binding ratio’. The ratio between the intensity values in a
specific region and a non-specific region (commonly the occipital cortex). The
occipital cortex is the usual choice as a reference because the density of dopamine
transporters is negligible in this region.

In this work, we perform the intensity normalization of the images from the
Parkinson’s Progression Markers Initiative (PPMI) database using an α-stable
distribution approach [7]. This method assumes that the histogram of intensity
values of the FP-CIT SPECT images follows an α-stable distribution.

2 Material and Methods

2.1 PPMI Database

The Parkinson’s Progression Markers Initiative is the top leading observational
clinical study carried out nowadays for the study of Parkinson’s disease. The
goal of this international project is to comprehensively evaluate people with
Parkinson’s disease and those at greater risk of developing the disease, and their
differences with healthy controls. In order to identify the biomarkers of Parkin-
son’s disease progression.

Currently this longitudinal study, following over 1,000 participants for up to 8
years, is taking place at 33 clinical sites worldwide. In this work we have selected
40 images from the PPMI database (13 HC and 27 PD).

2.2 Stable Intensity Normalization

Assuming that the intensity values of the FP-CIT SPECT brain data is a random
variable with α-stable distribution with parameters α, β, γ and μ (see Fig. 1).
The distribution of random variables can be easily transformed to another α-
stable distribution with parameters α, β, γ∗ μ∗ applying the following linear
transformation [7]:

Y ∼ aX + b (1)

where a = γ∗

γ and b = μ∗ − γ∗

γ μ.

2.3 Mann-Whitney-Wilcoxon U-Test

We use the absolute value of the U -statistic of a two-sample unpaired Wilcoxon
test to estimate the voxel separability between classes. The Mann-Whitney-
Wilcoxon U -test is more robust to outliers in the data than the t-test and does
not assume that the data is Gaussian [8,9].

In order to perform the U-test all the observations are arranged into a single
ranked series. We add up the ranks for the observations which came from group
1 (PD images). The statistic U is then given by:

U1 = R1 − n1(n1 + 1)
2

(2)
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Fig. 1. Histogram of the brain intensity values for a sample image. Continuous line:
predicted α-stable density.

where n1 is the number of PD images, and R1 is the sum of the ranks in sample 1.
Analogously we make the same calculation for sample 2 (or group 2, HC

images):

U2 = R2 − n2(n2 + 1)
2

(3)

The distance U given by the Wilcoxon test is the smaller value of U1 and U2,
U = min{U1, U2}.

The U-test is a procedure that allows us to rank voxels of the brain FP-
CIT SPECT images. Thus, this method let us to perform selection of regions
of interest for later statistical classification. Voxels with highest U-test values
present the greatest difference between HC and PD intensity values.

3 Results

Figure 2 depicts a montage showing a transaxial slice for each of the 40 orig-
inal images selected from the PPMI database. This image depicts clearly the
difference in intensity values between the images.

Figure 3 shows the same transaxial slice as in Fig. 2 after the application
of the α-stable intensity normalization approach. The intensity normalization
renders more homogeneous the visual aspect of the brain images.

Figure 4 depicts the histogram of the intensity values for the original images
(left) and the histogram of stable transformed images (right). This Figure shows
that the variability of the original images is reduced considerably after the nor-
malization.
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Fig. 2. 40 transaxial original brain images.
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Fig. 3. 40 transaxial stable brain images.

Figure 5 shows the Mann-Whitney-Wilcoxon U-test calculated for the stria-
tum region for ‘original dataset’ and the ‘stable dataset’. The U-test values are
ranked in descending order. This figure shows that the intensity values of the
striatum in the HC and PD classes are more separated after intensity normal-
ization.
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Fig. 4. Histogram of intensity values of the 40 images under study. Left: original
dataset. Right: transformed data using α-stable normalization
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Fig. 5. Ranked U-test in descending order for voxels in striatum

Figure 6 shows the boxplot with the intensity values in the striatum for orig-
inal and stable brain images. On each box, the central mark is the median.
The edges of the box are the 25th and 75th percentiles, the whiskers extend to
the most extreme data points not considered outliers, and outliers are plotted
individually.
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Fig. 6. Boxplot considering the intensity values in the striatum.

4 Conclusion and Future Work

In this work, we have applied a linear intensity normalization method to 40
images from the PPMI dataset. This method assumes that the intensity of a
FP-CIT SPECT image is a random variable with α-stable distribution. The
interclass distance between PD and HC images has been measured using the
Mann-Whitney-Wilcoxon U-test. The intensity variability between images is
decreased after normalization. Moreover, we have proven that the separation
between intensity values in PD and HC images increases, specially in the stria-
tum. In the future, the proposed methodology will be extended to the whole
PPMI database. In addition, the results included in this contribution will be
used as a preprocessing step of a feature selection procedure for statistical clas-
sification purposes.
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Abstract. In the theory of semi-supervised learning, we have a train-
ing set and a unlabeled data that are employed to fit a prediction
model or learner with the help of an iterative algorithm such as the
expectation-maximization (EM) algorithm. In this paper a novel non-
parametric approach of the so called case-based statistical learning in
a low-dimensional classification problem is proposed. This supervised
model selection scheme analyzes the discrete set of outcomes in the clas-
sification problem by hypothesis-testing and makes assumptions on these
outcome values to obtain the most likely prediction model at the train-
ing stage. A novel prediction model is described in terms of the output
scores of a confidence-based support vector machine classifier under class-
hypothesis testing. The estimation of the error rates from a well-trained
SVM allows us to propose a non-parametric approach avoiding the use
of Gaussian density function-based models in the likelihood ratio test.

Keywords: Statistical learning and decision theory · Support
vector machines (SVM) · Hypothesis testing · Partial least squares ·
Conditional-error rate

1 Introduction

Machine learning has been successfully applied to many areas of science and
engineering [11]. Some examples include time series prediction [2], optical char-
acter recognition [18], signal and image classification in biomedical applications
for diagnosis and prognosis [19,20], etc. The support vector machine (SVM) is a
recently developed paradigm in machine learning [18] with applications to brain
image processing and classification [1,4,6,10]. In this scenario, the purpose of
these techniques is to provide objective clinical decisions and an early detection
of abnormal perfussion/metabolic patterns [19].
c© Springer International Publishing AG 2017
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The performance control of a SVM is a major requirement in any classi-
fication problem [3], i.e. the development of computer-aided diagnosis (CAD)
systems [5]. Typically, it is specified in terms of minimum error rate or overall
accuracy [8,15] although many factors including noise, the inherent complexity
of the classification task, computational constraints, etc. may inhibit the system
from achieving the performance requirements for an specific application [14].
Fortunately, other solutions based on the optimal classification theory proposed
in [3], i.e. the ones based on controlled error rates [14], have been analyzed and
demonstrated their reliability and efficiency as methodologies for the classifier
design. On the other hand, decision theory [12], that is, the application of sta-
tistical hypothesis testing to the detection problem, is a well-known statistical
technique that allows model/feature selection in the cross-validation (CV) loop
[5]. The so-called case-based learning (CSL) employs a model selection algo-
rithm in order to select the optimal classifier that minimizes the CV error (see
Fig. 1) in a semi-supervised fashion. In a nutshell, this method consists in per-
forming hypothesis testing on the set of unlabeled responses by the extraction of
extended datasets under null & alternative hypotheses. The method results in a
relabeling process for those patterns whose labels are rejected by the test. Other
approaches for model/feature selection are based on Information Theory, filter
methods, embedded and wrapper methods, etc. [9]. Unlike the latter methods
CSL evaluates a likelihood ratio test on the class-dependent features and selects
the most probable model among them. In particular, supervised feature extrac-
tion (SFE) allows to obtain different datasets of features by hypothesizing on
the unknown outcomes or responses of the processed pattern.

Fig. 1. Diagram of the non-parametric CSL model selection approach vs. baseline

2 Bayes Formulation of the Classification Problem

Consider a set of patterns Z = {X ∈ R
p, Y ∈ R}, represented by a set of vectors

X in a d-dimensional Euclidean space and admissible classes Y ∈ {w0, w1}. The
evidence of the feature vector can be written as:
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p(x) = p(x|w0)p(w0) + p(x|w1)p(w1) (1)

where p(wi) is the prior probability of class wi and, accordingly to Bayes’ for-
mula, the posterior probability is defined as:

p(wi|x) = p(x|wi)p(wi)/p(x) (2)

Given the ideal learner or mapping f̃ : Rd �→ {w0, w1} that assigns each feature
vector to its real class, the classification problem can be tackled by minimizing
the sample conditional error with respect to the set of mappings {f}:

min
f

p(wi|x) when f̃(x) = wj , i �= j (3)

The classifier f naturally divides the feature space R
d into two regions named

R0 and R1, at least, assigning any new pattern to the category lying on the same
side of the decision surface. The error rates Ei can be computed by integrating
on these subspaces the conditional probabilities:

Ei =
∫
Ri

p(wj |x)p(x)dx (4)

3 Case-Based Learning on the Conditional Error

Under the CSL approach [5], a class is considered as an hypothesis on a Neyman-
Pearson hypothesis testing framework, that is, Hi = wi for i = {0, 1}. Thus
we try to maximize the probability of detection PD = P (wi;wi) of one of the
hypotheses (classes) when it is true for a given significance level or probability of
false alarm PFA(wi;wj), for i �= j. In particular, w1 is decided if the LRT holds:

L(x) =
p(x;w1)
p(x;w0)

> γ (5)

where γ is a constant threshold. Although this ratio is equivalent, in terms
of ability to classify, to having the class posteriors for optimal classification
[11], class posteriors allows us to introduce a non-parametric approach in this
framework by formulating an overall error-rate ratio test from the integrated
version of the conditional probability in Eq. 3 as:

L(x) =
E0(w1) + E1(w1)
E0(w0) + E1(w0)

> γ (6)

where Ej(wk) =
∫
Rj

p(wi|x;wk)p(x)dx is the error rate under wk hypothesis in
region Rj for i �= j and k = {0, 1}. The precision in that regions can be defined
as Pj = Ej/

∫
Rj

p(x)dx. The hypothesis w0 is decided if the LRT in Eq. 6 holds,
that is, the one with minimum error rate in regions R0 and R1. In the CSL
approach the sample realizations x = (x1, . . . , xd) of the processed pattern under
the class-hypotheses wk, denoted by (x;wk), are obtained by using a SFE scheme
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[5]. In this case, Eq. 6 allows us to select the class whose conditional-error rate
is minimum when one of the two class-hypotheses is true.

Given a pattern x, the admissible classes {w0, w1} and the training set X =
[xT

1 , . . . ,xT
N ]T , two extended training sets are built for SFE as:

Xe = [xT ,xT
1 , . . . ,xT

N ]T

Yk = [wk,YT ]T (7)

where Y = [y1, . . . , yN ]T , is the training label vector. Performing FE on these
novel datasets, i.e. by LS or PLS approaches [5] we finally achieve the pre-
processed extended datasets as Zk = (Xk,Yk) for k = {0, 1}, where Xk = T (Xe)
where T is the selected feature extractor, i.e. in LS estimate the projection oper-
ator Pw.

3.1 An Implementation Using SVM

The effectiveness of the proposed methodology is demonstrated using SVM as the
baseline classifier. The non-parametric method used here, in order to implement
Eq. 6, is based on the empirical cumulative density (ECD) function for a trained
SVM as defined in [14]. Many works have been reported on transforming output
scores to probabilities [16] therefore the probabilities detailed throughout the
paper can be estimated by them. The score output by the SVM for each feature
indicates the likelihood that the input pattern belongs to a class thus it ranks
input samples from the most likely members to the most unlikely members of a
class [14]. Given a extended training dataset Xk with N samples, consisting of
Ni samples of class wi, the ECD function for class wj under hypothesis wk is
defined in the output-score space of the SVM as:

Fj(t;wk) =
card(f(x) < t,x ⊂ Rj ;wk)

Nj
(8)

Following Eq. 4 the error rate function Ei in the region Ri = {x ⊂ Xe; t1 <
f(x) �→ wi < t2} can be approximated as:

Ei(t1, t2;wk) =
∫
Ri

p(wj |x;wk)p(x)dx
= p(wj)

∫
Ri

p(x|wj ;wk) � card(f(x)<t2,x⊂Rj ;wk)−card(f(x)<t1,x⊂Rj ;wk)
N

(9)

where
∫
Ri

p(x|wj ;wk) � p(wj)(Fj(t2;wk) − Fj(t1;wk)) and p(wj) = Nj/N . The
selection of the limits t1, t2 under the confidence based-classifier design theory
[14] allows to define a negative/positive bound below/above which the error rate
is smaller than a targeted error and therefore, a decision on the input pattern can
be achieved (x ⊂ R0/R1). On the contrary, the samples are rejected (x ⊂ Rr)
because the decision is too risky.

In order to be conservative we need to include all the available samples of the
dataset in the computation of error rates, thus these magnitudes are computed by
locating the limits t1 and t2 on the boundaries of the regions. Thus, we select the
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decision surface of the SVM (f(x) = 0) and the minimum fmin (maximum fmax)
output-score value for class w1 (w0) in the previously defined region R0 (R1).
In other words, Rr is assumed to be negligible or the targeted error to be huge.
Finally, taking into account the definition of the error-rate and its correspondent
ratio test, the decision rule can be formulated in terms of precision in regions
R0 and R1 as:

L(x) =
P0(w1) + P1(w1)
P0(w0) + P1(w0)

(10)

where the precision functions are defined as:

P0(wk) =
card(f(x) < 0,x ⊂ R0;wk) − card(f(x) < fmin,x ⊂ R0;wk)

card(fmin < f(x) < 0;wk)

and

P1(wk) =
card(f(x) < fmax,x ⊂ R1;wk) − card(0 < f(x),x ⊂ R1;wk)

card(0 < f(x) < fmax;wk)

As a conclusion, we take advantage of the misclassified support vectors and rank
them according to their output scores from the minimum/maximum value to
zero. All the samples with scores included in these regions allows us to compute
an approximation for the error rates as shown in Eq. 10. Once the most probable
model is selected by this procedure, the set of training patterns are re-labeled
accordingly and the resulting knowledge can be applied to new unseen patterns.
The novelty of this approach is based on the correction in the degree of uncer-
tainty of the labeling process using biomedical image databases, i.e. it is usually
performed by visual assessment with the corresponding subjective bias. Nowa-
days, visual inspection of the neuroimages obtained by SPECT [17] or Magnetic
Resonance Imaging (MRI) [13] is no longer acceptable for diagnostic purposes
since it often misses crucial information and therefore can be misleading, thus
learning from these examples could degrade the performance of any pattern
recognition system.

4 Experiments

A set of experiments are carried out on synthetic and image databases where the
small sample size problem is typically an issue, i.e. a SPECT image database [7].
To this purpose, a fair comparison using the same FE and statistical validation
schemes for the proposed non-parametric approach and the baseline methods
is performed. In both cases the error estimation is obtained by LOO-CV and
a linear SVM classifier to avoid over-fitting. The number of extracted compo-
nents for the FE methods should be small to proper estimate the error rate in
the output score space. Firstly, we evaluate the posterior probability-based deci-
sion on a 2D experiment with known distributions. Two hundred samples are
randomly drawn from two Gaussian distributions with means μ0 = (0, 0) and
μ1 = (1, 1) and covariance matrices S0 = [1.4; .41] and S1 = [1 − .1;−.11]. At



310 J.M. Górriz et al.

the FE stage of the proposed method LS is applied to the input data to obtain
the extended datasets. Under the class-hypotheses the extended datasets and
the different SV configurations are obtained as shown in Fig. 2, where the same
processed-pattern is considered. A zoom on these figures reveals an increase in
the number of support vectors in the wrong subspace, that is, the conditional
probability p(wi|x) for the computation of the error rate on this subspace Rj ,
for i �= j, is increased. As shown in these figures, the processed sample (close to
the margin) used to describe the operation of the proposed method is relevant
[5] in the sense that a substantial change between the extended datasets and
their SV configuration is obtained. The SVM-based classification stage on the
selected dataset would benefit from the right assumption (the real pattern class)
following a good performance of the SVM classifier (see Table 1). By increasing
the number of input patterns up to 500 samples, a smoothed histogram of the
SVM output scores, for each class, can be obtained in order to compare the
regions Ri under class-hypotheses when one of them is true. The overlap of the
output scores between training classes decreases on average when the correct
assumption is considered, i.e. Kullback-Leibler distances drc among distributions
assuming class c with real class r, is d+− = 0.1030, d++ = 0.0278; d−

+ = 0.0813,
d−

− = 0.0278.
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Fig. 2. SVM decision surfaces of extended datasets and support vector configuration
for a processed-pattern with class w0. Down: zoom on upper figures

Baseline SPECT data from 96 participants were collected including con-
trols and AD subjects [7]. The SPECT images were reconstructed, pre-
processed (intensity and spatially normalization) and labeled following the cri-
teria as detailed in [7], where the demographic details are also shown. Over-
all, the database consists of 41 NOR, 29 AD1, 22 AD2 and 4 AD3 patients.
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Table 1. Confusion matrix on training set (500 samples) using linear SVM for Gaussian
data

Prediction Acc (%)

Positive Negative

Nonp CSL Positive 200 50 75.2

Negative 74 176

Baseline Positive 202 48 70.4

Negative 100 150

Additionally, the SPECT images are converted into feature vectors, prior to
classification, by means of two masking procedures. Firstly, all the brain-volume
voxels are consider as features in the classification task. Secondly, several stan-
dardized brain regions in MNI space (Brodmann areas) are extracted from sub-
jects and then classified, separately. Only the first PLS-component is considered
(highest variance) transforming a complex task into a one-dimensional classifi-
cation problem, as shown in the previous examples with Gaussian pdfs and the
classical LS. The statistical measures to assess the performance of the CSL app-
roach on the SPECT dataset are summarized in Table 2, where a linear SVM
classifier in a CV loop is used for classification. This table shows how even using
a small-sample size the improvement on the baseline, under the same experi-
mental framework, is substantial. The PLS-based CSL method outperforms in
18 out of 20 BA the baseline although this improvement consist only in 4 posi-
tive samples and 14 negative samples. This performance yields an accuracy rate
higher than the baseline in one point, as shown in Table 2.

Table 2. Statistical measures of performance for the proposed PLS-based method and
the baseline approach on the SPECT database

PLS C-PLS PLS C-PLS

Acc (%) 0.8130 ± 0.0340 0.8228 ± 0.0273 BAs 0.8333 0.8545 Brain volume

Spe (%) 0.7478 ± 0.0444 0.7597 ± 0.0370 0.7778 0.8000

Sen (%) 0.8765 ± 0.0232 0.8830 ± 0.0201 0.8824 0.9020

PL 3.47 3.67 3.97 4.50

NL 0.16 0.15 0.15 0.12

ConfM [699 238] [703 224] [35 10] [36 9]

[121 862] [116 876] [6 45] [5 46]

5 Conclusions

In this paper, the application of the non-parametric CSL method to a neuroimag-
ing dataset and some connections with previous approaches are presented. The
non-parametric CSL approach is evaluated on synthetic/SPECT image datasets
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[7]. The CSL approach combines FE, hypothesis testing on a discrete set of
expected outcomes and a cross-validated classification stage. This methodology
provides extended datasets (one per class-hypothesis) by means of FE methods,
which are scored probabilistically using the output scores of a properly trained
SVM inside a CV loop. Our results demonstrate that, although the method can
only be applied to the low-dimensional problem, due to the poor estimate of the
conditional-error probability for a low ratio N/d, the resulting system provides a
CV error estimate that outperforms the one obtained by baseline methods that
do not consider such FE optimization.
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Abstract. Medical image classification is currently a challenging task
that can be used to aid the diagnosis of different brain diseases. Thus,
exploratory and discriminative analysis techniques aiming to obtain rep-
resentative features from the images, play a decisive role in the design
of effective Computer Aided Diagnosis (CAD) systems, which is spe-
cially important in the early diagnosis of dementias. In this work we
present a technique that allows extracting discriminative features from
Positron Emission Tomography (PET) by means of an Empirical Mode
Decomposition-based (EMD) method. This requires to transform the 3D
PET image into a time series which is addressed by sampling the image
using a fractal-based method which allows to preserve the spatial rela-
tionship among voxels. The devised technique has been used to classify
images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
achieving up to a 92% accuracy in a differential diagnosis task (AD vs.
controls), which proves that the information retrieved by our methodol-
ogy is significantly related to the disease.

Keywords: Hilbert curve · EEMD · SVM · PET · Alzheimer’s Disease

1 Introduction

Currently, computer-based medical image analysis methods have attracted con-
siderable research attention, as they usually determine the performance of the
Computer Aided Diagnosis tools. These techniques are especially important in
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neuroimaging techniques for the diagnosis of dementias, as three-dimensional
and high resolution images are often available. This is the case of neuroimaging
modalities for the diagnosis of neurodegenerative diseases such as the Alzheimer
Disease, the most common type of dementia with more than 35.6 million peo-
ple affected, and 7.7 million new cases every year (according to the World
Health Organization). In this case, techniques such as Magnetic Resonance
Imaging (MRI), Single Photon Emission Computed Tomography (SPECT) or
Positron Emission Tomography using the 18F-fluorodeoxyglucose (FDG) radio-
tracer (18F-FDG PET) are being intensively used. These allow not only the
manual processing of the images to obtain helpful data related to the neurode-
generation that occurs, but the early diagnosis of the disease by predicting the
conversion from prodromal stages (Mild Cognitive Impairment, or MCI) to AD
[18]. However, the large amount of data provided by these images, makes nec-
essary to develop specific processing techniques. In fact, feature extraction in
medical image processing still remains a challenge, as in real-world data the
expected number of available samples is considerably lower than the dimension
of the feature space. Thus, the development of effective techniques to reduce
the number of features while preserving the information plays a decisive role, as
they avoid the use of raw data (eg. VAF technique [19]) sidestepping the curse of
dimensionality problem [4]. There are two alternative and complementary ways
to reduce the dimensionality of the feature space. The first consist on selecting
the most discriminative features which can be addressed by filter or wrapper
techniques [3,7,13,20]. The second consist on the computation of a reduced set
of new features from the raw data (i.e. the original feature space), obtaining a
new, low-dimensional feature space [11,15,21]. These techniques has been pre-
viously used in functional PET imaging [12,14,16,17] to build CAD systems.
This is, however, a challenging task since structural and functional changes in
the early stages of AD are similar to those that appear due to the ageing natural
process.

In this paper we propose the extraction of representative features from image
data with a different approach. These features are computed in the time and
frequency domains, but instead of using raw 3D image data, we first convert
the images into a time series by sampling them using space-filling fractal curves
that preserves the neighbourhood to avoid the spatial information loss in the
vicinity of a voxel. As a result, a time series of voxel intensities is obtained
for each image, and then, temporal and spectral features are computed from
the components obtained by Empirical Mode Decomposition (EMD). A similar
approach has been used in [2] to avoid the bidimensional extension of EMD
which is computationally expensive.

Temporal (mean, variance and skewness) and spectral (centroid, variation
coefficient, skewness and kurtosis) features computed over 6 Intrinsic Mode Func-
tions (IMFs) (i.e. components) extracted in this work have demonstrated their
discriminative ability, showing a classification accuracy of 90% and AUC of 0.91,
beating the results obtained by VAF but using a reduced number of features.
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The article is organised as follows. First, in Sect. 2 the methodology is pre-
sented, and the fractal curve-based sampling method used is explained. Later,
in Sect. 2.3, the database and the results are presented and analysed. Finally,
some conclusions are drawn in Sect. 3.

2 Methodology

2.1 Fractal Sampling Using 3D Homogeneous Hilbert Curves

A Hilbert curve is a continuous fractal space-filling curve geometrically described
by Hilbert [8]. It can be defined as a continuous function whose domain is the
unit interval [0, 1] and its rang is in a 2D euclidean space, formally: f : [0, 1] −→
[0, 1]2. Thus, for any point t on the unit line segment [0, 1], this function assigns
the corresponding point x, y in the unit square [0, 1]2. However, the range of the
Hilbert curves can be extended to n-dimensions. The R −→ R

n mapping pro-
vided by Hilbert curves have the following properties [5] (for simplicity, n = 2):

– Continuity is preserved: values close in the [0, 1] line have similar values in
the [0, 1]2 unit square (adjacency condition).

– The mapping is quasi-invertible: the conversion of similar (x, y) points into
t values might not guarantee similar values of t. However, the construction
of Hilbert curves tends to correspond similar values of (x, y) coordinates to
similar t values. This is especially

– The curve is uniquely defined by fixing the mapping of the initial and final
subintervals, as well as a rotation matrix.

– They can be generated by the iterative application of affine transformations
to a starting mapping and can be implemented by recursive algorithms.

Figure 1 show an example of Hilbert curves in 2D and 3D.
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Fig. 1. Example of 2D (a) and 3D (b) Hilbert curves
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Hilbert Huang Transform. The Hilbert-Huang transform [9] is an
empirically-based method to analyze nonlinear and non-stationary time series.
The method proposed by Huang et al. consist on decompose the signal into a
number of components (namely, Intrinsic Mode functions, IMF hereafter) by
means of Empirical mode Decomposition (EMD). Unlike other decomposition
methods such as Fourier decomposition or wavelet decomposition, EMD does
not use a priori basis to represent the original signal but it is adaptive in
order to produce physically meaningful representations of data. Subsequently,
Hilbert Spectral Analysis allow to explore the frequency-time distribution of
signal amplitude. These two steps are described in the following as well as the
way they are used in this work to extract features from the images.

Empirical Mode Decomposition (EMD). The EMD algorithm decomposes
a signal x(t) as a sum of oscillatory components, namely Intrinsic Mode Func-
tions (IMF) using the sifting process [9]. Although there are many ways to
descompose a signal into components (e.g. Fourier analysis or Wavelet decom-
position), EMD does not make any assumption about the stationarity or lin-
earity of the data and stays in the time domain. Moreover, the decomposition
performed by EMD implies completeness, it is, the original signal can be exactly
recovered by summing up the components.

The basic idea behind EMD decomposition is to consider a signal as a super-
position of high frequency oscillations dti(t) and low frequency oscillations ri(t).
Thus, the method iterates on the slow oscillations component considered as a
new signal to be decomposed:

x(t) =
N∑

i=1

di(t) + rN (t) (1)

where di are called Intrinsic Mode Functions (IMFs) and rN is the residual signal
that represents the overall trend.

In this work we used the Ensemble EMD (EEMD) method [6,22], which is an
improved version of EMD that makes it more robust for noisy signals. The core
idea of EEMD is to add white noise to the signal original, composing a number
n of trials

xi(t) = x(t) + wi(t), i = {1, ..., n} (2)

Then, EMD decomposition is applied to xi(t), obtaining a set of n noisy
IMFs. Finally, the (ensemble) means of corresponding noisy IMFs of the decom-
positions is computed and used as final IMFs. The use of EEMD in this work
aims to deal with the intra-class inherent variability in real PET image data.

2.2 Feature Extraction by Hilbert Transform

After EEMD decomposition of the time series representing the subimages cor-
responding to each brain region, features are extracted from each IMF. These
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are obtained by means of the Hilbert Transform, which allows to obtain the ana-
lytic signal zi(t) from the i− th IMF. Specifically, the analytic IMF xi(t) can be
obtained as

zi(t) = xi(t) + jH{xi(t)} (3)

From zi(t) it is straightforward to compute the instantaneous amplitude as

a(t) =
√

re(zi(t))2 + im(zi(t))2 (4)

and the instantaneous phase

φ(t) = tan−1 im(zi(t))
re(zi(t))

(5)

A visual analysis of the IMFs obtained from healthy and epilepsy patients during
interictal and ictal periods after Hilbert transform (Fig. 2) reveals that they are
quite different from one another.

Visually exploration of the real and imaginary parts for different IMFs
obtained for CN and AD subject figures out differences between classes. Conse-
quently, real and imaginary parts of zi(t) are used as features instead of com-
puting more complex descriptors. Figure 2 show the real and imaginary parts for
CN and AD subjects (blue and red line, respectively).

2.3 Experimental Results

2.4 Database

The database used in this work contains multimodal PET/MRI image data from
138 subjects, comprising 68 Controls (CN), 70 AD and 111 MCI patients from
the ADNI database [1]. This repository was created to study the advance of
the Alzheimer disease, collecting a vast amount of MRI and Positron Emission
Tomography (PET) images as well as blood biomarkers and cerebrospinal fluid
analyses. The main goal of this database is to provide a way to the early diagnose
of the Alzheimer disease. Patient’s demographics are shown in Table 1. However,
in this work only MRI data is used.

Table 1. Patient demographics

Evaluation Sex (M/F) Mean age ± Std Mean MMSE ± Std

NC 43/25 75.81 ± 4.93 29.06 ± 1.08

AD 46/24 75.33 ± 7.17 22.84 ± 2.91
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Fig. 2. First four IMFs (a) for AAL region 37 (Left Hippocampus) and their corre-
sponding trajectory in the complex plane (b) for CN (blue) and AD (red) subjects.
(Color figure online)

2.5 Image Preprocessing

PET images from the ADNI database have been spatially normalized according
to the PET template, ensuring that each image voxel corresponds to the same
anatomical position. After image registration, all the PET images were resized to
79× 95× 68 voxels with voxel-size of 3 mm (Sagittal)× 3 mm (Coronal)× 3 mm
(Axial). Subsequently, PET images are also normalized in intensity in order to
compute comparable levels among the images. Intensity normalization is per-
formed by means of the mean image, which is used as a normalization template.
Specifically, the normalization value applied to each image is calculated as the
mean of the 1% of the voxels with a higher activation level in the template.
This helps to homogenize the activation levels, using the same scale and making
them comparable. Moreover, we used the 116-regions Automated Anatomical
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Labelling Atlas (AAL) to extract the voxels corresponding to these areas. Vox-
els on the outside of the atlas-defined areas are considered as background. On
the other hand, only 42 regions out of the 116, distributed in the frontal, pari-
etal, occipital and temporal lobes, have been selected here for brain connectivity
modelling, as they are considered to be potentially related to AD [10].

2.6 Classification

In the experiments performed, 6 IMFs were extracted from each brain region
using 20 stages in the EEMD method and adding 1% of noise. Subsequently,
the Hilbert transform is used to compute the analytic version of each IMF and
the coordinates in the complex plane were used as features. These features are
used to train a Support Vector Machine (SVM) for each region. These SVM
classifiers act as weak classifiers that are combined using the majority voting
rule. The whole process is shown in Fig. 3. It is worth to note that a Principal
Component Analysis (PCA) stage is used to reduce the dimensionality of the
features to avoid the curse of dimensionality problem since only 138 subjects are
available in the PET image database.

Fig. 3. Block diagram of the HHT-based method.

Classification results are summarized in Figs. 4 and 5 and Table 2. Specifi-
cally, Fig. 4 show the accuracy, sensitivity and specificity values obtained varying
the number of principal components in the PCA stage. Moreover, these figures
compare the performance obtained using the VAF approach, PCA over VAF
values and HHT-based method presented in this paper. As these figures show,
HHT-method provides a higher performance and a smaller dependence with the
number of principal components used to reduce the dimensionality of the feature
space. On the other hand, the ROC curves obtained for the three alternatives
previously mentioned are provided in Fig. 5.
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Fig. 4. Accuracy (a), Sensitivity (b) and Specificity (c) values obtained in the classifi-
cation experiments for VAF, PCA and HHT-method.
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Fig. 5. ROC curves for VAF, PCA over VAF and HHT-method.

Table 2. Classification results for VAF, PCA and HHT-based method.

Method Accuracy Sensitivity Specificity AUC

VAF 0.87 ± 0.08 0.84 ± 0.12 0.90 ± 0.10 0.92

PCA (all regions) 0.90 ± 0.09 0.90 ± 0.11 0.89 ± 0.12 0.93

HHT method (42 regions) 0.92 ± 0.09 0.93 ± 0.10 0.92 ± 0.11 0.95

3 Conclusions and Future Work

In this paper, we propose a method to process 3D images using time-series
data analysis techniques. This is addressed by converting the 3D image data
into a time series by sampling the voxels using a fractal curve-based method
which preserves the spatial relationship. The Huang-Hilbert Transform is then
used to extract features from each brain region. The individual SVM classifiers
acting over each region are combined as an ensemble to leverage the classification
performance, and allowing to obtain up to 92% of accuracy and an AUC of 0.95
for the CN vs. AD classification task, which is close to the limit imposed by the
ADNI clinical labels and outperforming the results obtained by VAF and PCA.



322 A. Ortiz et al.

The method presented here can be improved and new proposals using tem-
poral and spectral features computed from the IMFs, as well as the use of instan-
taneous frequency values will be explored in the future. On the other hand, the
adaptive basis provided by EMD have clear advantages in this case, in compar-
ison to Fourier or Wavelet analysis. Moreover, the use of sparse, �1-based SVM
models could be also explored as they are usually more efficient to select dis-
criminative features. Additionally, experiments using MRI data to explore GM
and WM profiles by means of the extracted features could provide an interesting
new way to model changes in brain tissues associated to the evolution of specific
neurological diseases.
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11. Álvarez Illán, I., Górriz, J.M., Ramı́rez, J., Salas-Gonzalez, D., López, M.,
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Ramı́rez, J.: Automated diagnosis of Parkinsonian syndromes by deep sparse
filtering-based features. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C.
(eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 249–258.
Springer, Cham (2016). doi:10.1007/978-3-319-39687-3 24

17. Plant, C., Sorg, C., Riedl, V., Wohlschläger, A.: Homogeneity-based feature extrac-
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Abstract. Parkinsonism is the second most common neurodegenera-
tive disease, originated by a dopamine decrease in the striatum. Sin-
gle Photon Emission Computed Tomography (SPECT) images acquired
using the DaTSCAN drug are a widely extended tool in the diagno-
sis of Parkinson’s Disease (PD), since they can measure the amount of
dopamine transporters in the striatum. Many automatic systems have
been developed to aid in the diagnosis of PD, using traditional feature
extraction methods. In this paper, we propose a novel system based on
three-dimensional Convolutional Neural Networks (CNNs), that aims to
differenciate between PD-affected patients and unaffected subjects. The
proposed system achieves up to a 95.5% accuracy and 96.2% sensitivity
in the diagnosis of PD.

1 Introduction

Parkinsonism is the second most common neurodegenerative disease, surpassed
only by the prevalence of Alzheimer’s Disease [11]. The most common cause
of Parkinsonism is Parkinson’s Disease (PD), a disease originated due to the
progressive loss of dopamine transporters (DaT) of the nigrostriatal pathway,
which leads to a decrease in the dopamine content of the striatum [5,6].

Currently nuclear imaging is being used consistently to assist the diagnosis
of PD. The most common drug is 123I-ioflupane (also known as DaTSCAN),
a tracer that binds to the DaT in the striatum [3] emitting photons that can
be detected using Single Photon Emission Computed Tomography (SPECT)
equipment.

DaTSCAN images have been widely used in Computer Aided Diagnosis
(CAD) systems, that aim at differentiating between PD affected subjects and
normal controls (CTL) [2,13–15,18,20,24], or even differentiate between other
diseases that lead to parkinsonism, such as multiple system athropy (MSA) or
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 324–333, 2017.
DOI: 10.1007/978-3-319-59740-9 32
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progressive supranuclear palsy (PSP) [21,22]. These methods use feature extrac-
tion techniques, such as moments [18], Independent Component Analysis (ICA)
[14], Partial Least Squares (PLS) [20] or Texture analysis [13] to correctly classify
PD affected subjects.

Convolutional Neural Networks (CNN) are a particular type of Artificial
Neural Networks (ANN) which are becoming increasingly popular in image
analysis [10,15,22], given their adaptability to many types of projects. They
have been used in medical imaging previously [15,22] with great success. There-
fore, we propose that the use of a three-dimensional CNN based on Tensorflow
[1] can be of great help to assist in the diagnosis of PD and provide useful
information about the variability contained within.

In this work, we present an application of CNNs to the diagnosis of PD and
SWEDD subjects. In Sect. 2 we present the methodology used to build the con-
volutional neural network and the evaluation methodology. In Sect. 3 we present
and discuss the performance of the system under two different experiments, and
finally, at Sect. 4, we draw some conclusions about this and propose future work.

2 Methodology

2.1 Volume Selection

DaTSCAN binds mainly to dopamine transporters at the striatum. Therefore,
most of the space contained within these images is not relevant for diagnosis.
Without loss of generality, we can extract the volumes of interest containing the
striatum and obviate the rest, thus obtaining an significant feature reduction.

The procedure used here consist of a simple thresholding that has been pre-
viously used in PD [13,15], by which we binarize the average of all images in the
dataset:

IBW = Imean > Ith (1)

For which the intensity threshold Ith is computed as a percentage T of the
maximum value of the average image. That is:

Ith = T × Imax (2)

Once we obtained IBW , we use the minimum and maximum indices in all
directions where any of the voxels of Imean is greater than the threshold to define
a box. Finally, the portion of any image that falls between these coordinates is
taken as the input image Icut. Figure 1 shows the final box using T = 0.35
superimposed on a sample subject.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific type of Artificial Neural
Network (ANN) that is becoming increasingly important in the Machine Learn-
ing community [4,10,15,22]. They are a bioinspired variant of Multilayer Per-
ceptrons (MLPs), in which the response of a neuron is approximated by a con-
volution operation. Since 2012, when an ensemble of CNNs [10] achieved lowest
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Fig. 1. Example of selected area for different threshold values.

error on the ImageNet classification benchmark [19], CNNs prevail over any other
pattern recognition algorithm in the literature.

The architecture of CNNs usually comprises many types of layers, of which
the most important are: convolution layers, max pooling layers and fully con-
nected layers. Many combinations of these can be found throughout literature
[1,4,10,15,16,22]. All CNNs share these properties: a local connectivity of the
hidden units, use of pooling to introduce translation invariance, and parame-
ter sharing. A 1-layer typical approach would include convolution of the input
image with a set of filters and applying its corresponding activation function,
downsmapling of the resulting signal by max-pooling and an output MLP that
transform the activation signal into probability of classes (Fig. 2).

Fig. 2. Schema of our system.

Convolutional Layer. CNNs owe their name to the convolutional layer. The
operation at a convolutional layer can be defined as follows. Let Vi−1 be a
tensor the activation map of the (i − 1)-th layer (in the case of i = 1, it is the
input volume). Let Wi be the set of K filters of the i-th layer, and bi a bias
term, a vector of length K. Then, the mathematical operation performed at the
convolutional layer is:

Vi = fa (Wi ∗ Vi−1 + bi) (3)

with fa(∗) being the activation function, that we will detail later.
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In the case of two-dimensional convolutions, Vi−1 is a tensor of size H×W×C
(height, width and number of channels), and Wi a tensor of size P ×Q×R×K,
containing K filters of size P × Q × R, with Ri = Ki−1 and R1 = 1 for the first
layer. With this definitions, the k-th convolution term for the k-th filter is:

Wik ∗ Vi−1 =
P−1∑

u=0

Q−1∑

v=0

Wik(P − u,Q − v)Vi−1(x + u, y + v) (4)

which, extended to a three-dimensional environment, with a Vi−1 of size H ×
W × D × C, and a Wi of size P × Q × R × S × K would result in:

Wik ∗Vi−1 =
P−1∑

u=0

Q−1∑

v=0

R−1∑

w=0

Wik(P −u,Q−v,R−w)Vi−1(x+u, y+v, z+w) (5)

After the convolution, the activations for each of the K filters are stacked,
and passed to the following layer, usually a max-pooling layer.

Fig. 3. Summary of the activations in the first and second layers, after feeding a normal
control patient with a threshold T = 0.35.

The filter size P × Q × R is an hyperparameter that is usually set a priori,
often making P = Q = R to create a cube, taking values of 3, 5 or even 7 in the
literature. In this work we will use a value of P = Q = R = 5, with a structure
of 2 layers with K1 = 8 and K2 = 16 filters respectively. In Fig. 3 we display the
activation of the filters at the first and second layers after inputting a normal
control patient.

The other two hyperparameters that control the output size of the activation
layers are stride and zero-padding. Stride controls the step at which the convo-
lution is computed, or in other words, how much overlapping there is between
convolutions. That defines the receptive field of a neuron in the convolution layer,
which is the part of the image to which each convolution filter is connected to.
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Using a stride of 1, the convolution is performed at each voxel of the input. With
a higher stride, there is less overlapping between receptive fields, and the output
volumes will be smaller.

The zero-padding is a convenient technique that provides control of the out-
put volume by padding the input volume with zeros. That way, after the convo-
lution, the output volume can have the same size as the input volume, which in
some cases is desirable. In this work we use a stride of 1 and zero-padding of 2
so that the output volume is the same size as the input volume.

Activation. The activation function is common to all types of ANNs. It is
applied to the output of all the operations performed at the network, and pro-
vides an activation of the operations. Many different types of activation functions
exist, among them the traditional sigmoid, although in the context of CNN the
Rectified Linear Unit (ReLU) has gained a lot of popularity. The function itself
is a non-saturating activation function:

f(x) = max(0, x) (6)

The ReLU function makes the CNN training several times faster than other
approaches, since the calculation of its derivative has a lower computational cost.
And it does so without losing any generalization ability [10]. Throughout this
work, we will use the ReLU function in all convolutional layers.

Max Pooling. The max pooling layer performs a non-linear downsampling by
keeping the maximum value over a M×M×M block of the activation layer. This
layer prevents the following layers from processing non-maximal values, reducing
computational load. Furthermore, by reducing the input space and keeping the
receptive field of the filters, we can achieve translational invariance.

Currently, there is a trend to discard the max-pooling layer [23], favouring
other alternatives such as using smaller filters or increasing the stride of the
convolutional layer. However, in this work we use max-pooling layers after both
1st and 2nd convolutional layers, all with a block size of 2 × 2 × 2.

Dense Layers. At the end of a series of convolutional and max pooling layers,
there is always a fully connected layer, also known as dense layers, in which
all neurons all connected to all outputs from the last max pooling step. The
structure of this part usually mimic a multilayer perceptron (MLP) in which the
input layer is the output of the last max pooling layer, with one or several hidden
layers and an output layer with as many neurons as classes. If we consider the
convolution and max pooling layers a sophisticated feature extraction system,
this can be considered the high-level reasoning part of the CNN. The activation
here is computed by a matrix multiplication and a softmax activation function.

σ(z)j =
ezj

∑K
k=1 ezk

for j = 1, . . . K (7)



A 3D Convolutional Neural Network 329

Dropout. A popular method for reducing overfitting in fully connected layers
is Dropout [19]. It works by “turning off” some neurons at with a probability
1 − p, and using only the reduced network. After this step, the “off” neurons
are turned on again with their last weight matrix. This procedure is repeated in
every training iteration. At testing time, all neurons are active, so their outputs
are weighted by a factor of p, an approximation of using all possible 2n networks.
In this work we have used a dropout probability of 0.5.

2.3 Dataset

Data used in the preparation of this article were obtained from the Parkinson’s
Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For
up-to-date information on the study, visit www.ppmi-info.org. The images in
this database were imaged 4 + 0.5 h after the injection of between 111 and 185
MBq of DaTSCAN. Raw projection data are acquired into a 128 × 128 matrix
stepping each 3 degrees for a total of 120 projection into two 20% symmetric
photopeak windows centered on 159 KeV and 122 KeV with a total scan duration
of approximately 30–45 min [8].

Afterwards, the images were registered to a custom template [17] using
SPM-8 [7], resulting in 91 × 109 × 91 images. A total of N = 301 DaTSCAN
images from this database were used in the preparation of the article, 158 suf-
fering from PD, 32 SWEDD and 111 normal controls.

Data Augmentation. To reduce overfitting and increase the generalization
capabilities of our neural network, we have performed a simple data augmen-
tation procedure, by feeding the neural network with the training set and a
mirrored (over the sagital plane) version of this set.

2.4 Evaluation

We have performed a stratified 10-fold cross-validation evaluation of our pro-
posed neural network [9]. In each fold, a confusion matrix has been estimated,
from which parameters such as accuracy, sensitivity and specificity can be esti-
mated. However, when using more than 2 classes, sensitivity and specificity can-
not be computed. Instead, the accuracy and full confusion matrix are given.

To evaluate the performance of our system, we tested our system under two
different experiments:

– Experiment 1: We tested the performance of the system under the same
conditions, but varying the intensity threshold T , as proposed in Sect. 2.1
(note that due to memory restrictions on the GPU used, the minimum T
used was 0.32).

– Experiment 2: We tested the system including and excluding the SWEDD
subjects from the dataset, to see if there was any difference at all.

http://www.ppmi-info.org/data
http://www.ppmi-info.org
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3 Results and Discussion

3.1 Experiment 1

In this experiment we show how the performance of our system evolves when
varying the threshold T , in a PD vs CTL scheme. Results show that our system
achieves high performance in the detection of PD in the PPMI dataset, obtaining
up to a 0.955 ± 0.044 of accuracy and 0.962 ± 0.051 sensitivity for a threshold
T = 0.34. Due to memory restrictions, we could not test the system for T < 0.32.
However, a global tendency can be seen, in which the performance decreases with
the threshold.

In Fig. 4 we compare the accuracy obtained with the histogram of the mean
image (from which the threshold T and selection area is computed). We can
see that most of the voxels are contained in for a threshold T < 0.3, and, is in
this transition range (between 0.3 and 0.4) where more performance differences
are obtained. Afterwards, the performance decreases slowly, at the same pace
that the selection box size. This relation is easily seen when compared with
the histogram, since the distribution of voxel intensities is concentrated in the
lower intensities (background and internals of the brain) and there is a higher
variability at the striatum.

Fig. 4. Accuracy obtained at each threshold, compared with the histogram of the
image.

3.2 Experiment 2

In this experiment we test the ability of our convolutional model to detect sub-
jects labelledwith SWEDD.SWEDDsubjects display no evidence of dopaminergic
deficit, whilst showing symptoms of Parkinsonism. Since there is no evidence of a
decline in dopamine transporters, their images are extremely similar to controls,
and current attempts have been unable to differenciate between them [6,12,15].
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In this test, we use a selection threshold T = 0.35 for the images, and perform
the same analysis as the previous one, obtaining an accuracy of 0.820 ± 0.068,
and the following confusion matrix:

⎛

⎝
94 27 4
13 1 2
4 4 152

⎞

⎠ (8)

Compared to accuracies obtained excluding SWEDD subjects (0.955 ±
0.044), we can see that the performance of our system degrades. Looking at
the confusion matrix, it is easy to conclude that SWEDD subjects are extremely
difficult to classify, since all but one were misclassified. The inclusion of the
SWEDD class only meant a source of additional noise in the control class, and
by extension, in our classification scheme.

4 Conclusions and Future Work

In this work we have demonstrated the ability of deep learning and convolutional
neural networks in the diagnosis of Parkinson’s Disease (PD). Particularly, we
have applied a three-dimensional approach to convolutional layers that has never
been tried before in DaTSCAN images. The high performance obtained in PD
detection is an indication of our system’s ability to detect patterns in DaTSCAN
images. Furthermore, it demonstrates the utility of using 3D convolutional lay-
ers in the analysis of three-dimensional medical imaging. The CNN architecture
proposed in this work was small, compared to large CNN such as LeNET or
GoogLeNET, among others. That, together with the insignificant differences in
dopamine transporters, may have had an impact on the smaller ability to differ-
entiate SWEDD patients from controls. In the future, we plan to go deeper on
this architecture in order to differentiate these a priori indistinguishable subjects,
and obtain a higher performance.
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Abstract. MEG/EEG brain imaging approaches are commonly based
on linear covariance matrices that contain the prior information needed
to solve the inverse problem. We expect that non-linear covariance matri-
ces (or kernel matrices) provide more information than the widely used
smoothers (Loreta, MSP) or data-based matrices (beamformers). Data-
based covariance matrices have shortcomings such as being prone to be
singular, having limited capability in modeling, complicated relation-
ships in the data, and having a fixed form of representation. The multi-
ple sparse priors (MSP) algorithm provides flexibility but in its original
form it only contains smoothers. In this work, we propose to modify both
MSP and beamformers by introducing a Gaussian kernel matrix with
the objective of enhancing the reconstruction of neural activity. The
proposed approach was tested with two well-known simulation bench-
marks: Haufe’s and SPM. Simulation results showed improvements in
the ROIs recognition with Haufe’s benchmark, and smaller localization
error with SPM benchmark. A real data validation (MEG and EEG) was
performed with the faces-scrambled dataset. The expected active sources
were obtained, but their strength presented slight variations.

Keywords: MEG/EEG brain imaging · Kernel matrix · Beamformers ·
MSP

1 Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) are used
in a wide number of applications, and range from clinical testing to cognitive
Neuroscience. One aim in using EEG and MEG is to reconstruct the sources of
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brain activity by means of non-invasive measurements of the associated bio-
electromagnetic fields. Estimating the source distribution of brain electrical
activity based on MEG/EEG measurements is an ill-posed and mathematically
under-determined inverse problem, where a unique solution can only be obtained
by making additional assumptions [1]. It can be computed by introducing prior
beliefs on the structure of possible source configurations in a Bayesian inference
framework [9].

There are numerous methods for solving the EEG/MEG inverse problem,
each involving different prior assumption sets and cost functions [2]. They range
from the minimum-norm estimation (MNE), in which the assumption is that
all sources are active but with minimum energy. Weighted MNE [14] where
a set of weights are estimated in such a way to produce the source distribu-
tion with the minimum power that fits the measurements in a least-square-error
sense. Low resolution brain electromagnetic tomography (LORETA) and stan-
dardized low resolution brain electromagnetic tomography (sLORETA) [17] that
include assumptions about smoothness on the cortical surface. Beamformers,
which makes a direct estimate of source covariance from the data and is pro-
jected into the source space with the lead field matrix [4]. In order to generalize
these approaches, this fixed prior covariance can be replaced by weighted sum
of a set of possible covariance components. Each component might for example,
describe the sensor-level covariance. The Multiple Sparse Priors algorithm [7,15]
is a good example of this solution. All these approaches require the definition
of a distributed source model and the estimation of spatial covariance matrices.
However, these covariance matrices have shortcomings such as being prone to
be singular, limited capability in modeling non-linear relationships, and they
only evaluate linear relations among channels. Finally, these covariance matrices
have fixed form of representation, and they cannot be altered to model different
feature relationships [6].

To address these issues, we propose to use the kernel matrix in order to elu-
cidate non-linear relationships in the channels and non-stationary behavior in
the data. On each of its entries, the kernel matrix evaluates a Gaussian kernel
function between a pair of channels [16]. The kernel function allows learning
methods to represent and make use of objects similarities. Moreover, the kernel
matrix is guaranteed to be non-singular even if samples are scarce. Kernel meth-
ods involve the use of positive definite matrices as suitable object descriptors,
providing a solid framework for representing many types of data, as vectors in
R

d, strings, trees, graphs, and functional data, among others [8,18]. The kernel
function is a flexible container for expressing knowledge about the problem as
well as to capture the meaningful relations on input space [3].

The proposed approach was compared with the traditional covariance matri-
ces. They were tested as prior information in the Beamformer and MSP
approaches. We used two well-known benchmarks for simulating MEG/EEG
activity: SPM and Haufe’s [10]. In SPM benchmark we simulated MEG activity
with 274 channels and different levels of noise. We then reconstructed the simu-
lated sources and determined the noise effects. The Haufe’s benchmark allowed
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us to simulate EEG activity with synchronous sources. In this case, we ana-
lyzed the regions of interest (ROIs) and evaluated their connectivity (interac-
tion between these ROI’s). Finally, we validated our approach with the faces-
scrambled dataset [12]. We focused on the visual activity paradigm (early poten-
tials) and compared all tested methods over glass brains.

2 Methods

2.1 M/EEG Inverse Problem

Given a set of MEG/EEG signals, the inverse problem involves the estimation
of the location and waveform of the sources of neural activity (represented as
current dipoles) within the brain. The relation between these sources and the
MEG/EEG data can be expressed with the general linear model [5]:

Y = LJ + ε (1)

where Y ∈ R
Nc×Nt are the measured MEG/EEG data with Nc channels and

Nt samples, J ∈ R
Nd×Nt is the amplitude of neural activity that propagates

the energy of Nd current dipoles distributed across the cortical surface (assumed
as fixed and normal to it). The gain matrix L ∈ R

Nc×Nd , commonly known
as the lead-field matrix, describes the current flow from each dipolar source to
each channel. The fixed location of the dipoles guarantees a linear propagation
model. Finally, the measurements are affected by measurement noise ε, com-
monly assumed Gaussian with zero mean and covariance Qε.

Estimating the source distribution of brain electrical activity based on
MEG/EEG measurements is an ill-posed and mathematically under-determined
inverse problem, where a unique solution can only be obtained by making addi-
tional assumptions. The Bayesian framework is the most widely used approach
to solve this problem. It is based on the a priori assumption that J is a zero
mean Gaussian process with covariance Q (see [9] for a review on the field).

The prior probability density function (PDF) of the source activity p(J),
based on prior knowledge, is weighted by the likelihood p(Y |J), allowing us to
estimate the posterior source distribution using Bayes’ theorem:

p(J |Y ) =
p(Y |J)p(J)

p(Y )
(2)

Within this approach, source estimation can be expressed as the expected value
of the posterior distribution of the source activity given the data: ̂J = E[p(J |
Y )]. Typically, MEG/EEG measurement noise is considered to be white Gaussian
p(ε) = N (ε; 0, Qε), with Qε ∈ R

Nc×Nc being the posterior covariance of the
measurement. Making similar assumptions on the distribution of the likelihood
and the prior probabilistic model p(J) = N (J ; 0, Q), with Q ∈ R

Nd×Nd being
the prior covariance of the neural activity. For uninformative priors, this reduces
to:

̂J = QLT (Qε + LQLT )−1Y (3)
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Equation (3) is used in most distributed algorithms based on Gaussian assump-
tions. Since Y is known and the lead field L can be computed based on a physi-
cal model of the head, the problem is focused on finding an estimate of the two
covariance matrices Q and Qε.

2.2 Inversion Approaches

Multiple constraints can be used as source covariance matrix Q. One of them
is the Beamformers algorithm that uses the data as prior information. It makes
a direct estimate of the source covariance based on the assumption that there
are no zero-lag correlated sources. It is computed as a single covariance diagonal
matrix formed directly from the data:

Q = diag(σ); σ(i) =
1
δi

(LT
i (Y Y T )−1Li)−1, ∀i = 1, . . . , Nd (4)

where σ(i) is the i-th diagonal element of Q, Li the i-th column of L, and the
parameters δi are defined as:

δi =
1

LT
i Li

; ∀i = 1, . . . , Nd (5)

The Beamformer approach is single prior-based. Other approaches such as the
MSP consider the prior source covariance as the weighted sum of multiple prior
components:

Q =
∑

j

hjCj (6)

Each Cj ∈ R
Nd×Nd is a prior source covariance matrix that can take any form.

The hyperparameters hj weight these covariance components. These matrices
may have different informative priors, for example, different smoothing functions,
medical knowledge, fMRI priors as well as beamforming priors, and the proposed
kernel matrices.

2.3 Non-linear Kernel

We propose to use the kernel matrix as prior information in the beamformers
and MSP approaches. We introduce the estimation of the Non-Linear Covariance
matrix to highlight the complex relations in the data Y = {yj : ∀j ∈ [1, N ]}.
Each of its entries evaluates a Gaussian kernel function between a pair of channels
to build the non-linear matrix [16].

Although there are many feasible functions, the Gaussian kernel defined as
κ{y, θ} = g{y, σ2} = (2πσ2)−1/2exp(−yT y/(2σ2)) is preferred since it aims find-
ing a Reproducing Kernel Hilbert Space (RKHS) [19] with universal approximat-
ing capability, and with a single bandwidth parameter σ ∈ R

+.
Two important facts must be highlighted. On one hand, given that Y is

fixed and the factor (yi − yj) points towards yi, all directions are also fixed and



338 L. Duque-Muñoz et al.

attracting-nature. On the other hand, the kernel function is dependent on the
free parameter σ (the Gaussian kernel bandwidth). The Information potential
(IP) magnitudes become functions of the Gaussian kernel bandwidth. Actually,
the IP follows a monotonically decreasing behavior over σ (see Fig. 1(a)). Hence,
the importance of an adequate Gaussian kernel bandwidth becomes clear.

In this sense, we estimated the bandwidth of the kernel function as proposed
in [16]. The procedure consists on estimating the bandwidth parameter from the
observed data Y using the Gaussian Parzen estimate. It looks for a RKHS, by
maximizing the overall IP variability with respect to the kernel bandwidth para-
meter. To this end, the variability of the estimated PDF pY (y|σ) is maximized
in terms of the kernel bandwidth parameter in the form:

σ∗ = arg max
︸︷︷︸

σ

var{pY (y|σ)} (7)

where var{pY (y|σ)} = E{(pY (y|σ) − E{pY (y|σ)})2} : ∀y ∈ Y . However, we
introduced a variation in this approach since the maximum point in the IP
function does not reach the highest localization accuracy, as shown in Fig. 1(a)
(Red point, maximum in the IP function). To this end, we look for the σ that
minimizes the localization error (maximizes the accuracy of the reconstruction).
We proposed the L-curve optimization since the value obtained in the corner
reaches the highest accuracy with the non-linear kernel function (Fig. 1(b) black
point, L-curve optimization).

Fig. 1. Optimization of the kernel bandwidth σ, and the accuracy of the reconstruction
with different values of σ. The maximum accuracy was reached with the value obtained
with the L-curve optimizatio (Color figure online)

Figure 2 shows the covariance matrix (Fig. 2(a)) and the kernel matrix
(Fig. 2(b)) computed for the beamforming approach. The kernel matrix, esti-
mated with the Gaussian kernel, elucidates complex relations in the data while
the simple covariance matrix does not.
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Fig. 2. Covariance matrices for beamforming priors. Note the complex relations shown
in the kernel matrix (b) computed with the Gaussian kernel.

The key of this approach is the prior matrix used in the inversion scheme:
beamformers or MSP (the standard covariance matrix or the kernel matrix). The
coherence prior for beamformers proposed by Haufe [10] was also included here
to compare our approach in their own benchmark. Table 1 describes the three
data-based prior matrices compared here.

Table 1. Data-based priors compared in this work

Covariance Direct estimation of source space covariance based on the assumption
that there are no zero-lag correlated sources

Coherence Estimation of surrogate MEG/EEG using a linear inversion P , with
LP = I. Potential interactions among sources are neglected while
maintaining other statistical properties of the data such as their power
spectrum. This rises to quasi-independent sources. Then, using the
lead-field matrix L, the quasi-independent time series are mapped back
to sensor space to obtain surrogate sensor-space data. These surrogates
possess the spatio-spectral correlation structure of the data, but by
construction they do not contain interactions

Kernel Estimation of the Non-Linear Covariance matrix in order to highlight
non stationarities in the data

2.4 Simulation Set-Up

We used the benchmark of Haufe [10] for simulating the active sources. The
simulations were performed with a realistic head model called the New York Head
[13]. The New York Head model presents a detailed segmentation of six tissue
types (scalp, skull, CSF, gray matter, white matter, air cavities) with an MRI
resolution of 0.5 mm3. Based on this segmentation, a finite element model (FEM)
was solved to generate the lead-field matrix. For conducting the simulations,
subsets of 108 electrodes and 2000 cortical locations were selected. The dynamics
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of all background brain sources are modeled by pink noise process, whereas the
interacting sources are generated as band-limited linear auto-regressive (AR)
processes. The pseudo-EEG data obtained is close to real EEG data in terms
of power spectra and spatial correlation structure. We used the eight regions of
interest (ROIs) identical to the octants of the brain defined in this benchmark.
We performed 100 simulation of two active ROIs that could be synchronous or
not, evaluated the capability of the algorithms to determine the active ROIs, and
used the imaginary part of the coherence to evaluate the connectivity between
the ROI’s.

Additionally, the software package SPM12 (http://www.fil.ion.ucl.ac.uk/
spm) was used for simulating single trial MEG datasets using realistic head
models. The trials had Nc = 274 channels and 1 s time windows. They were
simulated projecting one to five sources randomly located in the brain cortex.
A sinusoidal signal of 20 Hz was used for simulating the synchronous neural activ-
ity. A number of 100 simulations were performed adding random white noise to
the data with different signal to noise ratios: SNR = {−20,−5, 0, 5, 20} dB. For
both benchmarks, Haufe and SPM, the active regions were estimated with beam-
formers and MSP for comparison purposes. The beamforming priors used were
the common covariance matrix (Cov), coherence [10] (Coh), and the Non-Linear
kernel matrix (NL). The MSP was computed with the greedy search implemen-
tation (see [15] for details).

3 Results

3.1 Estimation Results with SPM Benchmark

In the SPM benchmark (Fig. 3), for one and two simulated sources the behavior
of the algorithms were the expected, as the noise diminished together with the
localization error. For one active source (Fig. 3(a)), the beamformers (both Cov
and NL) and GS (with NL prior) were the algorithms with the lower localization
error (around 5 mm with SNR = 0). However, the beamformers were affected
when the simulations were performed with more than one source (and the error
increased with correlated sources). With two active sources (Fig. 3(b)), the eval-
uated GS algorithms (both Cov and NL) presented the lower localization error
(around 10 mm with SNR = 0 dB). Comparing the evaluated beamforming pri-
ors, the EBB-NL presented lower localization error (15 mm with SNR = 0 dB).
In summary, the algorithms that included the kernel matrix as prior presented
lower localization error compared with the well-known covariance matrix.

In Fig. 4(a), the temporal correlation criteria was evaluated from one to five
active sources. The temporal correlation diminished as the number of active
sources increased. The algorithms based on Greedy search (with both Cov an NL
priors) remained with lower error than those based on Beamformers. Moreover,
the algorithms that used the kernel prior from three to five sources presented
higher correlation than those with the covariance prior.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Fig. 3. Evaluation of the SPM benchmark with one and two active sources. In both
simulations the error goes down when the SNR decreases. In both simulations the
NL-prior improved the localization of the active sources.

3.2 Estimation Results with Haufe’s Benchmark

Table 2 presents the results obtained when evaluating beamformers and MSP
(and its variants) in the Haufe’s benchmark. The Haufe’s approach evaluated
the beamformers with coherence prior. With that approach, we found the active
sources and summed the power in each ROI. The accuracy obtained with the
Haufe’s approach was 52%. However, the mean of the power in each ROI consid-
erably increased the accuracy with all tested methods (at least 15%). Compared
to the Haufe’s approach, the kernel matrix with beamformers reached 75% of
accuracy, and 85% with GS. Additionally, the connectivity analysis suggests that
the non-linear kernel improves the accuracy with Beamformers and GS.

Table 2. Accuracy of the ROIs selection and connectivity in the Haufe’s benchmark

Method Beamformers [%] MSP [%]

Coh Cov NL GS GS-NL

Sum of power in ROIs 52 58 56 60 62

Mean of power in ROIs 69 73 75 85 85

Connectivity 60 65 68 68 70

In Table 2, we observe that the Non-linear Kernel presented similar accu-
racy results compared with the simple covariance prior. However, the correlation
among the estimated source time series were improved as seen in Fig. 4(b). The
temporal correlation criteria is higher in the strongest source. The improvement
with the Non-linear kernel was observed in the second source, were the temporal
correlation increased in comparison to the other methods.
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Fig. 4. (a) The temporal correlation index was estimated from one to five active
sources. The correlation was higher in the algorithms that used the kernel prior. (b)
The temporal correlation criteria is higher in the strongest source, being the GS-NL
the algorithm with higher correlation in both sources.

Fig. 5. (a) Estimation of the neural activity around P100 with GS and the simple
covariance prior. EEG occipital activity, MEG, and fused information between EEG
and MEG. (b) Estimation of the neural activity in P100 with GS and the non-linear
kernel, EEG with occipital activity, MEG, and fused information between EEG and
MEG. The highlighted activity between both priors is the same; however, the kernel
prior gave priority to the activity in the frontal lobe.

3.3 Real Data Applications

EEG data acquired in a visual attention task [11] were used to observe the
behavior of the covariance prior in MSP (Fig. 5(a)) compared to the kernel prior
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(Fig. 5(b)). Averaged single subject data with the unfamiliar condition were used
to establish the active region reference (Fig. 5). In both cases the visual activity
was present (which is expected due to the characteristics of the experiments).
However, the stronger estimated active sources are different in both cases. With
the kernel prior, additionally to the visual activity, there is a highlighted frontal
activity related to the early potentials. This would be desirable for posterior
connectivity analysis, helping with the definition of the ROIs.

4 Conclusions

In this work, we proposed to use Gaussian kernel matrices as priors in the
beamformer and MSP brain imaging approaches. With these kernel matrices
we were able to model complex relationships in the data, obtaining improve-
ments in source localization and connectivity analysis for two evaluated bench-
marks: Haufe’s and SPM. For real data applications, the kernel prior elucidated
the expected occipital activity in the visual attention task. However, the kernel
prior also highlighted other sources that the traditional covariance matrices did
not show. Further research on introducing the non-stationary behavior of the
MEG/EEG will be needed.
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Abstract. Parkinsonism is the second more common neurological dis-
ease and affects around 1%–2% of people over 65 years, being around
20%–24% of them incorrectly diagnosed. The disorder is associated to
a progressive loss of dopaminergic neurons of the striatum. Thus, its
diagnosis is usually corroborated by analyzing neuroimaging data of
this region. In this work, we propose a novel computer system to auto-
matically distinguish between parkinsonian patients and neurologically
healthy subjects using 123I-FP-CIT SPECT data, a neuroimaging modal-
ity widely used to assist the diagnosis of Parkinsonism. First, the voxels
of the striatum were selected using an intensity threshold. These voxels
were then projected over the axial plane, resulting in a two-dimensional
image with the striatum shape. Subsequently, the size and shape of the
left and right sides of the striatum were characterized by 5 features: area,
eccentricity, orientation and length of the major and minor axes. Finally,
the extracted features were used along with a Support Vector Machine
classifier to separate patients and controls. An accuracy rate of 91.53%
(p < 0.001) was estimated using a k-fold cross-validation scheme and a
database with 189 123I-FP-CIT SPECT neuroimages. This rate outper-
formed the ones achieved by previous approaches when using the same
data.

Keywords: Morphological features · DaTSCAN · 123I-FP-CIT
SPECT · Striatum · Machine learning · Parkinson’s disease · Support
Vector Machine

1 Introduction

Parkinsonism is a clinical syndrome characterized by the presence of hypokinesia,
tremor, rigidity, and postural instability [9]. The most common form of Parkin-
sonism is Parkinson’s disease (PD), a neurological disorder that affects about
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 345–352, 2017.
DOI: 10.1007/978-3-319-59740-9 34



346 F. Segovia et al.

1%–2% people over 65 years and whose prevalence is increasing in developed
nations due to the grow of the older population.

One of the neurological hallmark of Parkinsonism is a substantial decrease in
the dopamine content of the striatum. For that reason, the diagnosis of this disor-
der is usually corroborated by means of neuroimaging data that allow visualizing
that dopamine deficiency. Several neuroimaging modalities are frequently used
for this purpose. For example, 123I-ioflupane or 123I-FP-CIT (also known by the
trademark name DaTSCAN) is a radiopharmaceutical used along with a SPECT
scanner to model the dopamine transporters in the striatum [2,21]. Recent stud-
ies have shown that this neuroimaging modality provides useful information to
separate parkinsonian patients and neurologically healthy subjects [10,16,19].
18F-DOPA PET, 123I-IBZM SPECT and 18F-DMFP PET are other modalities
widely used to assist the diagnosis of Parkinsonism [1,6,7,12,17,18].

Traditionally, experienced clinicians visually examined the neuroimages look-
ing for low signal patterns in the striatum that corroborate the loss of dopamine
content. However this procedure is subjective and prone to error since small dif-
ferences in the neuroimaging data can be overlooked by the human eye. This
can be noted in Fig. 1. It shows the axial slices containing the striatum of a
control subject and two parkinsonian patients. Observe that differences between
the control subject and the patient at advance stage are clearly visible however
differences between the control subject and the patient at early stage are not so
evident.

During the last decade, several computer systems have been proposed to assist
the diagnosis of Parkinsonism. These systems analyze the neuroimaging data by
means of statistical techniques that allow to automatically separate patients and
controls with high accuracy. For example, in [5], the authors used the two-sample t-
test implemented in Statistical Parametric Mapping (SPM) [8] to assess the group
differences between control subjects and PD patients (and other dementias) using
123I-FP-CIT SPECT data. A multivariate approach based on machine learning
was proposed in [10] to the same purpose. And more sophisticated approaches
based on principal component analysis and partial least squares were presented
in [19] and [16] respectively. Finally, in [11] the authors proposed a multivariate
system based on three different significance measures (the well-known Student’s
t-Test, the Mann–Whitney–Wilcoxon U-Test and the Relative Entropy) that was
able to accurately separate parkinsonian patients and controls.

In this work we propose a novel approach to automatically distin-
guish between neurologically healthy subjects and parkinsonian patients using
123I-FP-CIT SPECT data. Specifically we propose to use 10 features (5 per
cerebral hemisphere) characterizing the size and shape of the striatum. Then, a
Support Vector Machine (SVM) classifier [20] is used to separate control subjects
and patients. This approach was evaluated using a dataset with 189 neuroimages
acquired during a recent study carried out in the “Virgen de la Victoria” hospital
(Málaga, Spain). An estimation of the classification accuracy was calculated by
means of a cross-validation scheme. The obtained accuracy rate outperformed
the one achieved by previous approaches.
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Control subject

Parkinsonian patient (early stage)

Parkinsonian patient (advance stage)

Fig. 1. Axial slices containing the striatum in 123I-FP-CIT SPECT data from a control
subject (top), a parkinsonian patient at early stage (middle) and a parkinsonian patient
at advance stage (bottom).

Table 1. Group composition and demographic details of the data used in this work.
μ and σ stand for the average and the standard deviation respectively.

# Sex Age

M F μ σ Range

Controls 94 49 45 69.26 10.16 33–89

Patients 95 54 41 68.29 9.62 30–87

2 Materials and Methods

2.1 Dataset

A dataset consisting on 189 123I-FP-CIT SPECT neuroimages was used in order
to evaluate the proposed methodology (demographic details are given in Table 1).
The data were acquired during a recent study carried out in the “Virgen de la
Victoria” hospital (Málaga, Spain). Subjects on treatment with drugs which have
an effect, known or suspected, by a direct competitive mechanism at the level of
dopaminergic transporters were excluded. The neuroimaging data were acquired
3 hours after the radiopharmaceutical injection (185 MBq of 123I-ioflupane) using
a SPECT gamma camera (Millennium model from General Electric) equipped
with a dual head and general purpose collimator. The neuroimages were recon-
structed by means of filtered back-projection algorithms without attenuation
correction. A Hanning filter of frequency 0.7 was also applied.

After the reconstruction, the neuroimages were preprocessed in order to make
them comparable. This procedure consisted on two steps: spatial registration and
intensity normalization. The former was performed using the template matching
algorithm implemented in the SPM toolbox (version 8). To this end, an ad-
hoc template was computed [14] as follows: First the control neuroimages were
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spatially registered to a randomly selected one. Then, these neuroimages were
averaged and made symmetrical. The intensity normalization [3,4,15] was car-
ried out by dividing the intensity level of each voxel by a Imax value computed
as the average of the 1% of the voxels of highest intensity (per neuroimage).

The data were labeled through visual inspection of the neuroimages by three
experienced clinicians from the Nuclear Medicine service of the hospital. Two
groups were defined:

– Control subjects. Bilateral, symmetrical uptake appeared in caudate and
putamen nuclei.

– Parkinsonian patients. There were areas of significant reduced uptake in
any of the striatal structures.

2.2 Feature Extraction Based on the Striatum Morphology

First, the striatum of each subject was parceled by applying an intensity thresh-
old, Ix, computed as the 75% of the maximum intensity of the neuroimage. The
threshold is therefore specific to each patient. Then, the axial slices of each image
were projected over the axial plane resulting in a two-dimension image per sub-
ject. Finally, each resulting image was divided in two, containing respectively
left and right striatum, i.e. the striatum area belonging to the left and the right
cerebral hemispheres.

Once the 123I-FP-CIT SPECT data corresponding to each subject were
reduced to two binary two-dimensional images, 5 morphological features were
extracted to characterize the size and shape of each part of the striatum. They
are as follows:

– Area. Number of pixels in the left/right striatum. In practice is was com-
puted as the number of pixels with intensity greater than 0 (because of the
thresholding procedure).

– Eccentricity. Ratio of the distance between the foci of a conic section and
its major axis length. It can be seen as a measure of how much an ellipse
deviates from a circle.

– Orientation. Angle (measured in degrees and given in the range [−90, 90])
between the major axis of the ellipse and the x axis.

– Length of the major axis. Length (in pixels) of the major axis of the
ellipse that has the same normalized second central moments as the region.

– Length of the minor axis. Length (in pixels) of the minor axis of the ellipse
that has the same normalized second central moments as the region.

For last 4 metrics we supposed that left and right striatum have elliptical
shape. As shown in Fig. 1, the shape of these regions is not regular however they
can be satisfactorily approximated by an ellipse.

After this procedure, each subject was represented by 10 measures (5 per
cerebral hemisphere) that were used as feature in the subsequent classification
procedure. Figure 2 shows these measures (normalized so that they are in range
[0, 1]) grouped by hemisphere and subject label.
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Fig. 2. Morphological features extracted for left striatum (blue) and right striatum
(black). The features for control subjects are represented by circles whereas the features
for parkinsonian patients are represented by crosses. (Color figure online)

3 Experiments and Results

A SVM classifier was used to separate controls and parkinsonian patients. The
cost parameter, C, was set to the commonly used value of 1. The accuracy and
other classification measures were estimated using a k-fold cross-validation app-
roach (k = 10). Table 2 shows the results obtained by the proposed approach
and by other baseline approaches (for comparison purposes). These baseline
approaches used the intensity of the voxels in the striatum as feature. The first
one used an intensity threshold to select those voxels whereas the second app-
roach used an atlas to this purpose.

Table 2. Accuracy, sensitivity and specificity obtained by the proposed approach and
other baseline approaches.

Accuracy Sensitivity Specificity

Proposed method 91.53% 86.32% 96.81%

Striatum voxels (threshold) 87.30% 84.21% 90.43%

Striatum voxels (atlas) 89.42% 88.42% 90.43%

The significance of the accuracy rate obtained by the proposed method was
estimated using a permutation test [13] and resulted on p < 0.001. In this test
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the classification procedure was repeated 1000 times using different label sets
generated as random permutations of the original one. The p-value was estimated
as the percentage of these classification procedures which accuracy was equal to
or greater than the accuracy obtained with the true labels. Figure 3 shows the
histogram corresponding to the accuracy rates obtained in all the classifications
carried out for the permutation test.
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Fig. 3. Histogram of the accuracy rates achieved by using randomly generated label
sets (1000 repetitions) and the proposed method. Red and blue lines are respectively
the accuracy associated with a p-value of 0.05 and the accuracy obtained when using
the true labels (91.53%). (Color figure online)

4 Conclusion and Future Work

A novel approach to distinguish between parkinsonian patients and control sub-
jects using 123I-FP-CIT data has been demonstrated. The procedure was per-
formed in two steps. First, each neuroimage was summarized as a set of 10 fea-
tures (5 per each cerebral hemisphere), which characterized the size and shape of
the striatum. Then, a SVM classifier was used to separate patients and controls
using the feature sets previously computed. The performance of this approach
was evaluated using a datasets with 189 123I-FP-CIT neuroimages along with
a k-fold cross-validation scheme. An accuracy rate of 91.53% (p < 0.001) was
obtained, outperforming previous approaches based on using the intensity values
of the voxels in the striatum as features.
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As future work, we plan to evaluate other morphological features (as the gra-
dient) and additional classification algorithms. We hypothesize that the advan-
tages of the feature extraction method proposed in this work will be more evi-
dent with classical classifiers which are more affected by the small sample size
problem.
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Abstract. The evaluation of emotional states has relevance in the devel-
opment of systems that can automatically interact with human beings.
The use of brain mapping techniques, e.g., electroencephalogram (EEG),
improves the robustness of the emotion assessment methodologies in
comparison to those schemes that use only audiovisual information.
However, the high amount of data derived from EEG and the com-
plex spatiotemporal relationships among channels impose several signal
processing issues. Recently, functional connectivity (FC) approaches have
emerged as an alternative to estimate brain connectivity patterns from
EEG. Thereby, FC allows depicting the cognitive processes inside the
human brain to support further brain activity discrimination stages. In
this work, we propose an FC-based strategy to classify emotional states
from EEG data. Our approach comprises a variability-based representa-
tion from three different FC measures, i.e., correlation, coherence, and
mutual information, and a supervised kernel-based scheme to quantify
the relevance of each measure. Thus, our proposal codes the inter-subject
brain activity variability regarding FC representations. Obtained results
on a public dataset show that the introduced strategy is competitive in
comparison to state-of-the-art methods classifying arousal and valence
emotional dimensional spaces.

Keywords: Emotion assessment · Functional connectivity · Variabil-
ity · Relevance analysis

1 Introduction

Emotional states highly influence both human interaction and human com-
puter/machine interaction. In fact, analyzing emotions has attracted enormous
interest in the development of systems that can interact automatically with the
user, e.g., brain-computer interfaces (BCI) [5]. Regarding this, emotion repre-
sentation is divided into two broad categories: discrete and dimensional. The
former includes basic emotions such as: anger, joy, surprise, disgust, fear, and
sadness. The latter comprises the analysis of few subtle dimensions that can
define an emotional stimulus from a more physiological point of view [8]. In
particular, the emotions under dimensional category employs the arousal vs.
c© Springer International Publishing AG 2017
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valence space characterization to describe the active/passive and the positive-
ness/negativeness responses, respectively, against a given emotional stimulus.
Thereby, a wider range of emotions can be analyzed and quantified than in the
discrete representation case [6,13].

Concerning the emotion assessment approaches, initial attempts included
audiovisual data. This type of data allows the detection of few basic emotions
(discrete representation), however, the analysis of facial expressions and speech
proves a challenging task due to the inter-subject variability of discriminant
emotion patterns [3]. Namely, visual emotion responses derived from body move-
ments and facial expressions are regulated by the subject, that is why the audio-
visual information lacks sort of robustness in this particular task. On the other
hand, recent approaches use physiological data to support the assessment [13].
Physiological data allows studying different biological responses in the human
body related to the central nervous system, which includes more accurate and
detailed emotion patterns than audiovisual ones [10]. Although capturing physi-
ological data poses an invasive sensing, recent efforts to improve the acquisition
technology have been made. In particular, the electroencephalogram (EEG) pro-
vides a set of time series that allows the analysis of neural activity in different
brain regions that can be easily related to cognitive processes, i.e., emotions [1,6].
Recent studies demonstrated that the EEG data and some cortical and sub-
cortical regions of the brain could be used effectively for the discrimination of
emotion responses [11]. Indeed, the EEG is preferred instead of other brain map-
ping technologies as functional magnetic resonance imaging (fMRI), because of
its non-invasive scheme and improved time resolution. Nonetheless, some issues
associated with the use of EEG include the low space resolution and the complex
spatiotemporal relationships among channels.

Some works have tried to recognize emotions from EEG data by extract-
ing a set of static features under constrained frequency bands, namely: theta,
gamma, alpha, and beta rythms [12]. Besides, more elaborate feature extraction
approaches, i.e., Dual-Tree Complex Wavelet Packet Transform (DT-CWPT),
have been introduced to highlight emotion patterns from EEG recordings [3].
However, their results are still far from being satisfactory [1,13]. Recent tech-
niques employ functional connectivity (FC) representations to support emotion
assessment by the computation of statistical dependencies among EEG time
series [4]. Such dependencies aim to code the relations of neurophysiological
events characterized by generalized synchronization (GS), phase synchroniza-
tion (PS), and information theory (IT) measures [9]. In this sense, authors in [6]
employ a PS measure to detect the reactive band and relevant synchronized
regions of the brain related to different emotions. Moreover, authors in [10] used
a mapping technique to group a region of interest from EEG time series that
gives an improved location of the brain areas related to emotional states. Simi-
larly, authors in [7] exploited the correlation and the coherence measures within
a graph theory scheme for emotion assessment. Though algorithms based on FC
seem to be promising, the variability of the inter-channel dependencies and the
selection of the FC measure still pose an open issue. Besides, the assessment
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success highly depends on the subject at hand that is related to the particular
form in which the brain of each person works.

In this work, we introduce an FC variability (FCV) representation strategy
to classify emotional states from EEG data. Our proposal codes FC variations
from three different measures: correlation, coherence, and mutual information.
Moreover, a supervised kernel-based relevance analysis is used to quantify each
FC measure significance. Thus, the inter-subject dependency regarding the emo-
tion assessment is addressed as a feature relevance analysis task concerning the
employed measure. Our approach is tested using a publicly available database
known as Database for Emotion Assessment using Physiological Data (DEAP).
In particular, a bi-class problem is built for both arousal and valence dimensions.
The obtained results show competitive performances in comparison to state-
of-the-art methods for subject-dependent emotion recognition. The rest of the
paper is organized as follows: In Sect. 2, we present the theoretical background
of FCV representation with relevance analysis. Section 3 describes the experi-
mental set-up for emotion assessment, Sect. 4 discusses the obtained results, and
the concluding remarks are outlined finally in Sect. 5.

2 Materials and Methods

2.1 Functional Connectivity Using a Variability-Based
Representation

Let u,v ∈RL be a pair of EEG records of size L, a FC measure ξ :RL×RL→R

between u and v can be defined in terms of their statistical interdependence.
Following some well-known FC measures are briefly described.

Correlation-(COR). The linear correlation ξCOR (u,v) ∈ [−1, 1] between u and
v in the time domain is computed by the Pearson’s correlation coefficient as:

ξCOR (u,v) =
1

σuσv

l∑

L=1

(ul − ū) (vl − ū), (1)

where σu, σv ∈R+ and ū, v̄ ∈R are the standard deviation and the mean values
of u and v, respectively.

Coherence-(COH). The linear time-invariant relationship between u and v at
frequency range [fmin, fmax] is calculated trough the coherence measure as:

ξCOH (u,v) =
1

fmax − fmin

fmax∑

f = fmin

|ζuv (f)|2
ζuu (f) ζvv (f)

, (2)

where ξCOH (u,v) ∈ [0, 1], ζuv (f) ∈C is the cross-spectrum of u and v, and
ζuu (f), ζvv (f) ∈C are the power spectrum of u and v, respectively.
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Mutual Information-(MI). The MI between u and v allows revealing the uncer-
tainty amount of one time series by observing the other. So, high-order correla-
tions can be computed utilizing probability density estimators as follows:

ξMI (u,v) =
L∑

l=1

p̂(ul, vl) log
(

p̂(ul, vl)
p̂(ul)p̂(vl)

)
, (3)

where p̂(ul, vl)∈ [0, 1] is an estimation of the joint probability density function
and p̂(ul), p̂(vl)∈ [0, 1] are the marginal density function approximations of ul

and vl.
In practice, an emotion assessment framework includes a set of EEG data tri-

als denoted as Ψ ={Xn ∈RC×T :n= 1, 2, . . . , N}, where Xn is the n-th observed
trial with C channels and T time instants. Furthermore, let Γ ={bn} be the
class label set, termed the emotion dimension class, where bn ∈ {−1,+1}. Given
the channel xc ∈RT of an observed EEG trial X, we initially estimate a set of
overlapped segments {zj

c ∈RL:j = 1, 2, . . . , Q} which are split from xc, being zj
c

the c-th channel at the j-th window. To model time-variant dependencies among
EEG channels, we compute the above-described FC measures between channel
segments by building the set {Aj ∈RC×C}, where matrix Aj holds elements:

aj
cc′ = ξm

(
zj
c ,z

j
c′

)
, (4)

with aj
cc′ = aj

c′c, m= {COR,COH,MI}, and c, c′ = 1, 2, . . . , C. Afterwards, both
the mean and the variance of each provided measure along segments are stored
in matrices Δ ∈RC×C and Ω ∈RC×C , holding elements:

Δcc′ =
1
Q

Q∑

j=1

aj
cc′ , (5)

Ωcc′ =
1
Q

Q∑

j=1

(
aj
cc′ − Δcc′

)2

. (6)

Finally, the feature vector y ∈RC(C−1), coding the FC variability (FCV),
is built after vector concatenation of Δ and Ω matrices (Δcc′ = Δc′c and
Ωcc′ = Ωc′c).

2.2 Relevance Analysis of Extracted FCV

Given a provided EEG set, a feature matrix Ym ∈RN×C(C−1) can be obtained
from Eqs. (5) and (6) by extracting FCV patterns based on the m-th measure,
i.e., COR, COH, and MI. So, to highlight the most relevant connectivity measure
regarding the set (subject) at hand, here, we employ a supervised kernel-based
relevance analysis to take advantage of the available joint information, associ-
ating FCV variations to a given emotion dimension value. Namely, the FCV
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similarities among EEG trials yn,yn′ ∈Ym are coded by estimating a Gaussian
kernel matrix Km ∈RN×N on Ym, as follows:

knn′ = exp
(−‖yn − yn′‖/2σ2

)
, (7)

where n, n′ ∈ N and σ ∈R+ is termed the kernel bandwidth. Further, on the
emotion dimension space, we also estimate a kernel matrix L∈RN×N as follows:

lnn′ = δ (bn − bn′) , (8)

where δ (·) is the delta function. It is worth noting that each defined kernel
reflects a different notion of similarity (FCV vs. labels). Therefore, we must still
evaluate how well the kernel-based similarity matrix Km matches with the target
matrix L. To this end, a Centered Kernel Alignment (CKA) functional is used
to appraise such a match as the inner product of both kernels to estimate the
dependence μm ∈[0, 1] between the jointly sampled data as follows [2]:

μm =
〈K̄m, L̄〉F√

〈K̄m, K̄m〉F〈L̄, L̄〉F
, (9)

where 〈·, ·〉F is the matrix-based Frobenius inner product. K̄ stands for the cen-
tered kernel matrix K̄ = ĨKĨ, Ĩ = I−1�1/N , I ∈RN×N is the identity matrix,
and 1∈RN is the all-ones vector. In this sense, μm weights allow ranking the
relevance of an FCV, that is, the higher μm value the better the m-th FCV
representation regarding the emotion labels. So, the highstest weigth value is
employed to select the most relevant FCV (RFCV) for a given EEG set.

3 Experimental Set-Up

Testing Dataset and Preprocessing. The well-known Database for Emotion
Assessment using Physiological Data (DEAP) is used to test the introduced FCV
approach. The DEAP is publicly available and contains physiological record-
ings from 40 emotion elicitation experiments of 32 subjects. Each subject was
requested to watch a one minute portion of a video that induces a particular emo-
tion, then, an auto-tagging system captured the arousal, valence, dominance, and
liking level of each video within the range 1 to 9. The collected data includes
the following signals: EEG, electrooculogram, galvanic skin response, tempera-
ture, among others. The EEG data were acquired using a 32 channel biosemi
configuration at 128 Hz and filtered by an artifact removal stage [8].

FCV Training. The proposed FCV approach is tested as feature extraction tool
for emotion assessment. Thus, each DEAP subject dataset is configured as a
biclass problem for both arousal and valence dimensions. The first class corre-
sponds to arousal/valence levels between 1 and 5, meanwhile, the second one
holds levels between 5 and 9. Furthermore, a window of 9 s with 25% overlap-
ping is employed to compute the inter-channel dependencies based on FCV. The
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fixed window size aims to highlight channel dependencies under alpha, beta,
gamma, and theta rhythms along time. Likewise, the configuration of the fre-
quencies bands for the coherence measure are related to the aforementioned
rythms (fmin = 4 Hz and fmax = 47 Hz). Here, the FC measures are computed
using the HERMES MatLab toolbox [9]. Subsequently, the FCV-COR, FCV-
COH, FCV-MI, and RFCV are computed as in Sects. 2.1 and 2.2, yielding a
feature extraction matrix Y ∈RN×P with N = 40 emotion elicitation videos and
P = 992 features for each considered representation. Finally, the discrimination
between emotion classes is carried out based on a k-nearest neighbor classifier
under a Gaussian similarity criteria. A nested 10-fold cross-validation strategy
is used to test the system performance, where the number of nearest neighbors
of the applied classifier is fixed as the one reaching the best accuracy within the
following testing range {1, 3, 5, 7, 9, 11}.
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Fig. 1. FC measures for the 32 EEG array in different time window (TW). Top row -
COR measure, middle row - COH measure and bottom row - MI measure. Columns
1–3 from left to right corresponds to each measure in different (non-subsequently) TW.
Column 4 is the average and column 5 the variance for all the time windows.

4 Results and Discussion

The FC scheme detailed in Sect. 2.1 allows the visualization of the variability in
the connectivity patterns between EEG channels. Figure 1 shows an example of
some time windows from the three measures over the subject 13 in a experiment
with arousal and valence ratings of 8.09 and 6.15 respectively. It can be seen in
Fig. 1 the variations in the dependences of channels from the EEG array for few
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time windows. As seen, the relationships on different channels from the EEG
array varies in time, and some strong interdependences could be found accord-
ing each FC measure. For this particular subject/experiment, the COR measure
exhibit a strong interdependences between the majority of channels with a small
degree of variability among all the time windows (Figs. 1(a)–(c)). On the other
hand, for the COH (Figs. 1(f)–(h)) and MI measures (Figs. 1(k)–(m)), there is a
higher degree of variability among time windows. The discussed variability for
each measure is consequently summed up in the average and variance figures
(columns 4–5 from Fig. 1). The average FC allows to observe the channels with
strong interdependences as well as the channels with weak interdependences in
the whole experiment. Likewise, the FC variance shows the channels interdepen-
dence variability across the experiment, with a higher degree of variability for
the majority of channels in the COH (Fig. 1(j)) and the MI (Fig. 1(o)) measures.
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Fig. 2. Gaussian kernel transformation applied to the three FC connectivity measures
and the targets matrix for two subjects 13 and 18

On the other hand, in Fig. 2, the FCV-based representation and emotion
label similarities for each considered measure (see Sect. 2.2) can be analyzed. In
this particular case, the FCV corresponds to the subjects 13 and 18 and the
set of 40 emotion elicitation experiments. We can infer by visual inspection that
exist a higher similarity between the FCV-MI approach and the target matrix
for the subject 13 (Figs. 2(a)–(d)), which is also coded by the computation of
the weights μ in the RFCV representation. In the other case, for the subject 18
there is a higher relation in the FCV-COR with the targets representation than
for the FCV-COH and the FCV-MI (Figs. 2(e)–(h)). For both cases the RFCV
allows to code the measure that seems to present the highest correlation with
the targets.
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FCV is used for classification purposes as stated in the experimental setup.
A graphical description of those results can be found in Fig. 3, where the clas-
sification accuracy (CA) for each subject and each dimension are presented.
Figures 3(a), (b), and (c) show CA for the 32 subjects in arousal dimension using
the FCV-COR, FCV-COH and FCV-MI representation respectively. Likewise,
Figs. 3(d), (e), and (f) present the CA for all subjects in the valence dimension.
From the figures it can be noticed the differences in CA among subjects that
evidences the subject-dependency of the FC measures. Also, a summary for each
FCV measure is included in Fig. 3(g) for the arousal dimension and Fig. 3(h) for
the valence dimension. From those figures, small differences in the CA when the
FCV scheme is applied could be noticed and there is no evidence of one of the
FCV schemes to present a superior performance in comparison to the others.
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Fig. 3. Boxplots of classification accuracy (CA) per subject in each FC measure. Top
row - arousal, middle row - valence and the bottom row, average CA for both dimensions

Finally, a summary of the results of CA for all the subjects is presented in
Table 1 for the FCV and RFCV schemes. In this table the results of the proposed
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Table 1. Mean emotion classification results [%] for all considered DEAP subjects.

Reference Approach Arousal Valence

Koelstra et al. [8] Linear features, power
spectral - SVM

62.00 57.50

Soleymani et al. [12] Power spectral - SVM 50.00 62.00

Gupta et al. [7] Power spectral - HJORT -
SVM

60.00 60.00

Padilla-Buritica et al. [10] MSP - ROI signal - SVM 58.6 55.76

Daimi et al. [3] Wavelet packet - SVM 67.00 65.00

This work FCV-COR - KNN 61.93 63.35

This work FCV-COH - KNN 63.45 61.62

This work FCV-MI - KNN 62.48 60.78

This work RFCV - KNN 66.00 65.73

methodology are compared against state-of-art works that have been developed
in a similar framework using EEG data and the same database (DEAP). It can
be seen that for all the works using the DEAP dataset, there is still room for
improvement, since the higher results are around 67.00%. Our RFCV approach
proves to obtain the higher CA for the valence dimension with 65.73% and the
second higher CA for arousal dimension with 66.00%.

5 Conclusions

We introduced a novel FC representation approach for feature extraction to
enhance automatic emotion assessment from EEG data. To this end, the pro-
posed strategy incorporates three well-known FC measures: coherence, correla-
tion, and mutual information, to code the temporal variability of EEG inter-
channel dependencies. Moreover, a supervised kernel-based relevance analysis
based on CKA is used to evaluate the significance of each FC variability regard-
ing the considered measures. Our approach learns both important temporal
inter-channel variations and relevant FC measures to deal with inter-subject
dependency in emotion classification. Validation of the proposed feature extrac-
tion, termed RFCV, is carried out in a public dataset (DEAP). Attained results
demonstrate that RFCV is a reliable methodology for emotion assessment in
comparison to the state-of-art works. As future work authors plan to couple
RFCV with a space state strategy to deal appropriately with the intrinsic EEG
nonstationarity. Besides, information theory measures could be employed to
reveal connectivity variations among EEG channels.
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Abstract. One of the major research fields in medical applications is
Computer-aided dementia diagnosis since it progressively declines the
cognitive function and afflicts millions of people worldwide, becoming a
leading cause of mortality and morbidity of elder people. Pattern recogni-
tion methods, applied to dementia diagnosis, improve either the feature
extraction or the classifier stage. Particularly, deep learning machines
have raised attention to clinical applications since they work in both
stages to enhance the system performance. However, the architecture
of these machines is highly complex, making hard their training pro-
cedures. In this work, we propose a deep supervised feature extraction
approach using General Stochastic Networks through a supervised layer-
wise non-linear mapping learning. To this end, we maximize the centered
kernel alignment function, which accounts for the provided discrimina-
tive information regarding the projection of each layer of the network.
Our proposal improves the classifier performance by highlighting the
class discrimination during the training stage. Besides, we provide a non-
linear relevance measure assessing the contribution of the input feature
set to build each latent space which is related to the clinical knowledge.
Comparison against other automated diagnosis approaches using differ-
ent features and classification machines is presented for multi-class and
bi-class scenarios on the widely-known ADNI database. As a result, our
proposal outperforms the compared approaches, reduces the class bias-
ing, and enhances clinical interpretability.

1 Introduction

Dementia is a chronic and progressive decline in cognitive function that afflicts
almost 35.6 million people worldwide with this figure nearly doubling every 20
years because of population aging, resulting in a leading cause of mortality and
morbidity of older people (approximately 5–7% of the population). Due to easing
the visual inspection of histological changes, structural brain images became a
critical support for the diagnosis of dementia and screening of its causes. Thus,
the computer-aided diagnosis of dementia based on structural magnetic reso-
nance imaging (MRI) allows classifying areas of visible brain atrophy or ischemia.
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 363–373, 2017.
DOI: 10.1007/978-3-319-59740-9 36
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However, the automatic dementia identification model remains a key issue, whose
outcome is influenced by many factors, such as feature extraction and/or selec-
tion, validation approach, quality image acquisition, training subject database,
and clinical diagnosis criteria [1].

In pattern classification, the vast majority of MRI-based approaches for
dementia identification consist of two major stages: feature extraction and clas-
sification. Despite the impact of the tool considered for the latter stage in the
performance, its choice is less critical than the method for image measurements
in the former stage [2]. In turn, the feature extraction stage aims at build infor-
mative and non-redundant sets of real-valued parameters, yielding to linear and
nonlinear analyses. As an approach to the first case of analysis, the linear dis-
criminant analysis (LDA) is used to select the most discriminating features
feeding conventional classification machines [3]. Likewise, dimension reduction
based on the independent component analysis (ICA) has been performed over
high-dimensional voxel-wise features, improving the SVM classifier accuracy [4].
Nonetheless, LDA and ICA eliminate relationships between the dependent fea-
tures, which may hold discriminating information, and constraint the dimension-
ality of the resulting feature set to the number of involved classes, hampering the
complexity of classification machine. In the nonlinear case of analysis, projec-
tion matrices from principal component analysis (PCA) and logistic regressors
have been stacked in a multi-layer architecture [5]. Since the model captures the
input data variability and an elastic-net term regularizes the cost function, the
generative properties of the resulting machine are preferred over the discriminat-
ing ones. Another non-linear approach implements an extreme learning machine
with a high-dimensional hidden layer from region-of-interest features [6]. Despite
allowing to find the most relevant anatomical structures for Alzheimer’s diag-
nosis, demanded high-dimensional mappings increase the system uncertainty.
Recently, deep learning architectures, seen as stacked non-linear mappings, have
raised attention to clinical applications since they can simplify complex data
distributions at each level of abstraction. Such a property allows capturing the
tangled relationship among the variables representing the brain images, making
possible to improve the dementia classification [7]. In the particular case of mild
cognitive impairment, an intermediate neurological disease, non-linear model-
ing capabilities are expected to deal with its widely heterogeneous distribution.
However, propagating input patterns through nonlinear mappings hinders the
contribution of each input feature for the classification stage [8].

A supervised feature extraction approach is discussed within the framework
of deep networks for supporting the dementia diagnosis. Firstly, we make use
of the Center Kernel Alignment (CKA) criterion to compute layer-wise discrim-
inative feature projections, aiming to improve the training of a discriminative
General Stochastic Network (GSN). Secondly, we estimate the relevance of the
input features, making use of the tied weight property of the GSN topology, so
that the deep architecture enhances the data interpretability. Our approach is
evaluated on two scenarios of dementia diagnosis from structural MRIs. To this
end, we use morphological measurements (volume, area, and thickness) com-
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puted from FreeSurfer suite, which has shown suitable reliability under various
acquisition conditions and has been widely tested in the field of neuroimaging.
Attained classification results of several performance measures show that our
proposal, mostly, improves baseline approaches, with the additional benefit of
reducing the class biasing and enhancing the clinical interpretability.

2 Materials and Methods

2.1 General Stochastic Networks for Supervised Learning

General Stochastic Networks (GSN) indirectly estimate data distribution by
solving a supervised function approximation problem using a Markov chain tran-
sition framework. An L-layered GSN Markov chain, illustrated in Fig. 1, propa-
gates an input matrix Xt ∈R

N ×D upwards and downwards to the l-th matrix of
latent states H l

t ∈R
N ×ml during T steps, with l ∈ [1, . . . , L], t ∈ [1, . . . , T ], and

T > L. The latent states build higher-order representations following:
⎧
⎪⎪⎨

⎪⎪⎩

H l
t =

(
φl(bl + H l+1

t−1

(
W l

)� + ςin)
)

+
(
φl(al + H l−1

t−1

(
W l

)
+ ςin)

)
+ ςout

H0
t = Xt

(1)

where bl ∈R
ml and al ∈R

ml−1 are the bias vectors, W l ∈R
ml−1 ×ml encodes

the l-th linear projection, vectors ςout ∈R
N ×ml and ςin ∈R

N ×ml−1 are indepen-
dent noise sources, the function φl(·)∈R implements the saturating, non-linear,
element-wise operations, and ml ∈N stands for the dimension of the l-th latent
state.

For classification tasks, supervised output information is introduced to the
GSN graph, yielding to a discriminative-GSN (dGSN) with the following cost
function: ṽ = ζE{ν (Xt,X0)} + (1 − ζ)E{ν

(
HL

t ,Y
)}, ṽ ∈R

+, being ν(·, ·) the
assumed loss-function, E{·} stands for the expectation operator, and the real-
valued parameter ζ ∈ [0, 1] balances the compromise between the generative
and discriminative terms. Matrix Y ∈ [0, 1]N ×C contains N output vectors
yi ∈ [0, 1]C : i∈ [1, N ], representing C mutually exclusive classes, so that the
last layer is tied to the output dimension (mL =C).

2.2 Kernel-Based Feature Extraction for dGSN

In this sense, a layer-by-layer dGSN learning can enable the dimensionality
reduction by properly transforming from the inputs to a reduced latent vari-
able set so that it encodes the most salient attributes of the available MRI set.
To this purpose, we estimate the initial dGSN parameters in such a way that the
network learning starts with a pre-training procedure implemented by a set of
linear projections at different layers of abstraction. Therefore, we define a matrix
Zl ∈R

N ×ml that holds every l-th linear projection from the input data X along
with the set of hidden layer sizes M={m1, . . . ,mL−1}, assuming Z0 =X.
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Fig. 1. Schematic design of a discriminative GSN Markov chain with back-probable
stochastic units. − Upward step. − Downward step. (Color figure online)

Further, we gather all pair-wise similarities among feature samples into
a kernel matrix Kl

Z ∈R
N ×N with elements computed at layer as kl

Z(ij)=
κl

Z
(
d

(
zl
i,z

l
j

))
, being d : Rml ×R

ml → R
+ a distance operator that, upon the

assumption of linearity between the layer transitions, is the multi-dimensional
Mahalanobis distance defined as d

(
zl
i,z

l
j

)
=

(
zl
i − zl

j

) (
zl
i − zl

j

)�, i, j ∈ [1, N ].
Each zl

i ∈R
ml holds each linear projection that we choose of a saturated class,

that is, zl
i = φ(zl−1

i W l).
Aiming to improve the data interpretability and classification accuracy, we

also incorporate the available supervised knowledge into the pre-training stage.
So, we gather the output similarities into a matrix KY with elements computed
as kY(ij)= κY (yi,yj), in order to encode the discriminative information to get a
suitable W l. Hence, we propose each matrix W l to be learned by maximizing the
similarity between Kl

Z and KY through the real-valued function that evaluates
the alignment between both kernels (Centered Kernel Alignment – CKA) [9]:

ρl
(
Kl

Z ,KY
)

=
〈
∼
IKl

Z
∼
I ,

∼
IKY

∼
I 〉F

‖
∼
IKl

Z
∼
I‖F ‖

∼
IKY

∼
I‖F

, ρl ∈ [0, 1] (2)

where
∼
I = I − N−111� (with

∼
I ∈R

N ×N ) is a centering matrix, I is the iden-
tity matrix, 1∈R

N is an all-ones vector, and notations 〈·, ·〉F and ‖·, ·‖F stand
for the Frobenius inner product and norm, respectively. Thereby, we devise the
optimization problem to compute the set of projection matrices Ŵ l that maxi-
mize the alignment between Kl

Z and KY . Thus, the pre-trained Ŵ l initializes
each l-th network layer. As a result, each CKA maximization score, ρl, provides
an assembly of discriminative linear projections W l that matches the most the
relationships between the projected data Zl and target information Y .
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Since the dGSN training back-propagates the discriminating informa-
tion through the tied weights from the latent spaces to the input data,
we propose to assess the relevance of input features relying on the matrix
Ŵ l ∈R

ml×D. Such a relevance matrix holds D row-vectors ŵl
d ∈R

ml , com-
puted by the reverse mapping of the l-th nested projection into d-th feature
as ŵl

d =w1
dφ(W 2φ(W 3 · · · φ(W l))), ∀d ∈ [1,D]. Based on the fact that each ŵl

d

measures the contribution of the input features to build the latent space l, we
propose to assess the relevance of the d-th feature as the generalized mean of
its corresponding reverse projection vector, that is �ld =

∥
∥ŵl

d

∥
∥
p
, �ld ∈R

+ where
notation ‖ · ‖p stands for the 	p-norm.

3 Experimental Setup and Results

We present a feature extraction methodology using General Stochastic Networks
to classify structural MRI scans by the following three neurological categories of
patient diagnosis: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI),
and Healthy Control (HC). The methodological development of the proposed
approach appraises the following stages: (i) Preprocessing including the seg-
mentation and feature extraction procedures, (ii) Feature learning using kernel
alignment to learn a projection matrix and relevance analysis, and (iii) Training
of the dGSN-based classifier using a cross-validation scheme.

3.1 ADNI Database and Preprocessing

Validation of the developed methodology is carried out using the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) collection1, aimed at measuring the
progression of MCI and early AD by combining several biological markers and
clinical assessment. From the whole ADNI collection, we chose all subjects
with processed structural MRI and diagnosed into one of the three class labels
described above (C = 3), yielding to 694 subjects and N = 1377 images (∼ two
images per subject) distributed as: 379 into HC (48% male, 72.9 ± 6.2 y/o), 726
into MCI (55% male, 71.4 ± 7.4 y/o), and 272 into AD (59% male, 73.2 ± 7.5
y/o).

The preprocessing stage is carried out fully automatic using the FreeSurfer
pipeline tool2 that processes the structural brain MRI scans to calculate morpho-
logical measurements with suitable test-retest reliability across scanner manu-
facturers and field strengths. The main preprocessing pipeline contains: intensity
normalization and bias field correction, tessellation of gray/white matter bound-
aries, parcellation of the brain cortex, and segmentation of white matter from the
rest of the brain. Besides, FreeSurfer computes structure-specific volume, area,
and thickness measurements, where the cortical and subcortical volumes are nor-
malized to each subject’s Total Intracranial Volume [10]. As a result, the feature

1 www.adni-info.org.
2 freesurfer.nmr.mgh.harvard.edu.

http://www.adni-info.org
http://freesurfer.nmr.mgh.harvard.edu/
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sets extracted for each subject are concatenated into a single feature matrix X
with size N = 1377 and D = 311. Namely, 69 features of Cortical Volumes (CV),
38 features of Subcortical Volumes (SV), and 68 features of Thickness Average
(TA), Thickness Std (TS) and Surface Area (SA) set.

3.2 Optimization of Network Parameters

In the optimization stage, each layer is firstly initialized using the Glorot uniform
sampling. Then, the walkback training algorithm jointly optimizes the network
weights and biases during T = 4 steps [11]. At each walkback step, the Stochastic
Gradient Descent (SGD) minimizes the Mean Squared Error as the loss function.
SGD parameters are empirically fixed as 0.05, 0.9, and 0.99 for the learning rate,
the momentum weight, and the multiplicative annealing factor, respectively. All
simulations are executed on a GPU using the computation library Theano3.

With respect to dGSN topology, the hyperbolic tangent tanh and softmax
functions are applied as non-linear mappings at hidden and output layers, respec-
tively. Besides, we use a two equally-sized hidden layers (i.e. m1 =m2 = m) with
the number of hidden units tuned by an exhaustive search for the highest clas-
sification accuracy ac within the framed range of m∈ [5,D] and the trade-off
fixed to the unbiased value ζ = 0.5. According to the results of a 5-fold cross-
validation strategy shown in Fig. 2(a), the performance improves as the layer size
increases, meaning that the enhancement of the system complexity promotes the
class unwrapping. Therefore, we make the optimal value mopt = 300, when the
dGSN model performs ac = 76.3%.

3.3 Relevance Analysis of the dGSN-Based Feature Learning

The initialization procedure using the CKA principle is carried out implementing
each one of the needed kernels, learning the discriminative feature set at each
hidden layer in Sect. 2.2. In particular, we use a Gaussian kernel for the hid-
den layers, κl

Z
(
d

(
zl
ti,z

l
tj

))
= exp

(−d2
(
zl
ti,z

l
tj

)
/2σ2

l

)
with bandwidth σl ∈R

+,
and the Delta function implementing the output kernel, κY (yi,yj) = δ (yi − yj).
Thus, the dGSN learning machine is initialized with the estimated matrices
W 1 ∈R

D ×mopt , W 2 ∈R
mopt ×mopt , and W 3 ∈R

mopt ×C , where mopt is tuned
as above explained.

For the sake of comparison, we also carry out the conventional random ini-
tialization approach testing the ζ parameter within the range {0.1, 0.2, . . . , 0.9}.
Figure 2(b) displays the classification accuracy performed by dGSN in either ini-
tialization case, random and CKA-based. Note that low values of ζ emphasize
the discriminative term of the objective function, while large values favor the
generative term. Therefore, the optimal trade-off (i.e., ζ = 0.3 for random and
0.2 for CKA) allows the discriminative term contributing the most to the objec-
tive function. Nonetheless, the supervised features extracted by CKA obtain an
overall accuracy that outperforms the baseline random initialization.

3 http://deeplearning.net/software/theano/.

http://deeplearning.net/software/theano/
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Fig. 2. Mean and standard deviation of the accuracy performed by dGSN within the
tested layer sizes and trade off values, where the red dot marks the best-reached value.
(Color figure online)

Regarding to the feature relevance analysis, we measure the contribution of
the D input features on building the latent spaces using the CKA-based learning
as defined in Sect. 2.2. Aiming to provide a visual representation of the resulted
relevance, we average this assessed contribution according to the corresponding
anatomical structure as illustrated in Fig. 3. Thus, Fig. 3(a) and (b) hold the
relevance at the first layer, so that the temporal, sensorimotor, and frontal lobes
stand out as the most salient brain areas in terms of building the latent space.
Figure 3(c) and (d) present the relevance change when moving from the first to
the second layer and the second to the third layer, respectively. Note that deeper
the abstraction layer, the more evident the structure contribution.

(a) Right (b) Left (c) Second layer (d) Third layer

Fig. 3. Visual inspection of the obtained relevance for the brain areas. From left to
right: contribution of the right and left hemispheres, relevance difference from the
second to the first layer and third to the second layer.

3.4 Achieved Performance of Dementia Diagnosis

Here, we consider two scenarios of diagnosis, namely, multi-class and bi-class.
Compared approaches, validated in the same scenarios, include regularized
LDA (rLDA) [3], sparse logistic regression (SLR) [12], neural networks (NN-
based) [13], and support vector machines (SVM-based) [14] classifiers. In either
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scenario of comparison, all algorithms are evaluated in terms of their classifica-
tion performance: accuracy (ac), area under the receiver-operating-characteristic
curve (β), and class-wise true positive rate (τ). The area under the curve β is
the weighted average of the area under the ROC curve calculated for each class.

Tables 1 and 2 display the performance measures accomplished by each classi-
fication approach in both diagnosis scenarios, respectively. For the first scenario,
despite achieving lower τ and β values for the HC’s, proposed dGSN-CKA out-
performs the neural network-based and the generalized linear model concern-
ing the remaining measures. For the second scenario, dGSN-CKA enhances the

Table 1. Classification performance on the testing groups for considered algorithms
under evaluation criteria. ∗Results reported in the 2014 CADDementia challenge [1].

ac τHC τMCI τAD β βHC βMCI βAD

rLDA∗ 63.0 96.9 28.7 61.2 78.8 86.3 63.1 87.5

NN-based 70.9 78.4 66.6 68.3 85.3 91.7 78.4 88.3

GSN-CKA 79.4 78.0 81.1 76.6 89.1 89.7 84.4 92.9

Table 2. Classification performance on the pair-wise groups for considered algorithms
under evaluation criteria. (−) Values not provided for the MCI vs. AD problem.

HC vs MCI HC vs AD MCI vs AD Average

ac β ac β ac β ac β

SVM-based – 73.5 – 92.0 – 68.6 – 78.0

SLR 57.3 61.0 71.2 78.0 68.9 65.2 65.8 68.0

GSN-CKA 80.5 82.2 93.2 96.5 83.6 85.7 85.7 88.1

0 0.2 0.4 0.6 0.8 fp

0.2

0.4

0.6

0.8

τp

NN HC

NN MCI

NN AD

dGSN HC

dGSN MCI

dGSN AD

(a) Multi-class

0 0.2 0.4 0.6 0.8 fp

HC vs MCI (β = 82.0 ± 3.4)

HC vs AD (β = 96.6 ± 1.9)

MCI vs AD (β = 86.2 ± 4.1)

(b) Bi-class

Fig. 4. ROC curves achieved by the best setup of NN and dGSN methods for both
considered scenarios of diagnosis.
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classification when compared to the baselines in the three tasks, namely, HC vs.
MCI, HC vs. AD, and MCI vs. AD. Moreover, the most significant result is shown
for MCI vs. AD, where the accuracy raises ∼14.7% point and the area under
the curve ∼17.1% points, in comparison with the other algorithms. Besides,
Fig. 4(a) compares the ROC curves for NN and dGSN classifiers tuned with the
optimum parameter set. As seen, the dGSN performance betters the NN one in
about ∼14.3%. Another aspect derived from the ROC curves is that the MCI
class is the most complex to identify. Besides, the ROC curves in Fig. 4(b) show
that classification tasks involving MCI are the most complex to solve, while HC
subjects are easier to distinguish from Alzheimer’s.

4 Discussion and Concluding Remarks

This work introduces a supervised feature extraction approach using a dGSN as
a deep learning machine for automatic MRI-based dementia diagnosis. Aiming
to improve the data interpretability and classification accuracy, we incorporate
the available supervised knowledge into the dGSN initialization, employing the
CKA principle.

In the parameter setting stage, the network layer size and the trade-off para-
meter prove to be the critical parameters that most influences the dGSN perfor-
mance. Results obtained show that small or excessively large layer sizes lack the
complexity to build a suitable discriminating model or tend to over-fit the data,
so reducing the classifier performance. As regards the trade-off parameter, it is
tuned by an exhaustive search procedure, reaching the best compromise between
the generative and discriminative terms of the cost function.

Regarding the dGSN-based feature learning, the CKA principle is applied
to initialize the network training aiming to introduce the supervised informa-
tion of labels. Thus, the proposed feature extraction fosters the supervised dis-
criminant information during the training stage improving the classifier perfor-
mance. Besides, a relevance analysis is carried out by the downward dGSN map-
pings that back-propagate the projection information through the tied weights
from the latent variables to the input data. As a result, the relevance analysis
provided by dGSN highlights the most discriminating features, enhancing also
the interpretation of the extracted deep feature set according to the clinical
knowledge.

Finally, the trained dGSN-based classifier is evaluated in multi-class and bi-
class scenarios of diagnosis. Obtained results show that the proposed dGSN-CKA
allows modeling complex data relationships between the extracted features set
improving the classification performance, with the additional benefit of reducing
the class biasing. Physiologically, the relevance averaging over the anatomical
structure turns out to be symmetrically distributed relating to the brain hemi-
spheres, as well the structures that commonly are associated with dementia
become more salient as the data is deeper projected. Therefore, the relevance
of supervised deep features extracted provides useful clinical insights about the
studied phenomenon. From both classification scenarios of dementia diagnosis,
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MCI emerges as the class with the largest errors. Hence, discriminating the MCI
remains challenging because of its widely heterogeneous distribution, the con-
version to multiple neurological diseases, and the eventual turn back to HC.

As a future research direction, we will evaluate dGSN properties for predict-
ing conversion from mild cognitive impairment to Alzheimer’s disease, which
is of particular interest in the medical field. We will also benefit from the dis-
criminative properties of the CKA by introducing it in the cost function of the
walkback training.

Acknowledgments. This work was supported by the research project 111974455497
founded by COLCIENCIAS.
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Models on Distributed EEG Source

Reconstruction
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Abstract. In this study, we analyze how the forward model depen-
dence on the study population influences the reconstruction of brain
activity based on electroencephalographic (EEG) recordings. To this,
we compare the source localization accuracy using generic and atlas-
based head models, constructed with the Finite Difference Reciprocity
method (FDRM). Additionally, we analyze the influence of including sev-
eral tissues, as skull, scalp, gray matter, white matter, and cerebrospinal
fluid. Comparison is carried out under a parametric empirical Bayesian
(PEB) framework, that allows contrasting different forward modeling
approaches using real data. Obtained results, based on event-related
potentials (ERPs) of 31 subjects, show that the more realistic and more
dependent on the study population the used head model, the better the
ESI estimation.

Keywords: Forward model · Finite difference reciprocity method ·
EEG/ERP source imaging

1 Introduction

In the last years, multiple techniques for Electroencephalography (EEG) Source
Imaging (ESI) solution have been developed for estimating, in a noninvasive way,
the neural sources of electrical activity measured on the scalp. In this regard,
these techniques require a volumetric conduction model (commonly known as
EEG Forward Model), including information about the physical and geometrical
properties of the head, and describing the electromagnetic field propagation of
the neuronal activity throughout the head tissues to reach the scalp [9]. Hence,
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the accuracy of ESI solutions is bounded on the capabilities of the forward
model to properly describe the structural information provided by the individual
Magnetic Resonance Image (MRI).

Nevertheless, acquiring MRIs for generating personalized head models is
expensive, and in some cases unpractical. Consequently, head models are com-
monly constructed based on the anatomy of an arbitrary subject (generic head
models), or the average of individual MRIs coregistered to a common space (atlas
head models) [10]. As a result, in the absence of individual MRIs, an accurate
representation of the brain geometry and conductivity of a subject inside a target
population, may reduce localization errors in ESI.

Regarding the Forward Model computation, a 3-Tissues template head vol-
ume modeled with boundary element method (BEM) is often used, including
scalp, skull and brain compartments [9]. However, these models do not usually
include cerebrospinal fluid (CSF) and white matter (WM), which clearly affect
the current-flow between sources and electrodes.

Consequently, for suitable EEG source reconstruction with Atlas-based head
models, it is necessary to describe as accurately as possible the head geometry
and conductivity of the target population, including age ranks, sociocultural
levels, among others, and modeling the different conductive compartments in
the human head in a realistic way [11].

In this work, we investigate whether the forward solution dependence on
the study population, influence or not the source reconstruction based on EEG.
In this regard, we create volumetric conductivity head models: (i) based on
a Generic MRI, and (ii) based on a target population Atlas, using the Finite
Difference Reciprocity Method (FDRM). Moreover, the forward models include
from three (scalp, skull, and GM), to five (adding CSF and WM) tissues. Com-
parison is done regarding the achieved ESI precision. Obtained results prove
that using realistic head models, based on the studied population, improves the
performance of the ESI solution.

2 Methods

2.1 Forward Problem Framework

In the EEG source imaging (ESI), the forward problem estimates the electrode
potential field, V , over the scalp that is generated due to current sources in
the brain. Sources are modeled as current dipoles positioned inside the brain
r ∈R

3× 1 with orientation d∈R
3× 1. The scalar-valued potential V (x, y, z)⊂ V

on the surface of a conductive volume x, y, z is defined by the Poisson equation
as follows:

∇ (Σ(x, y, z)∇V (x, y, z)) = Iδ(r − r1) − Iδ(r − r2), (1)

where I ∈R represents the current dipole magnitude, Σ ∈R
3× 3 is the conduc-

tivity tensor, and r1 and r2 are two coordinates positions determining the dipole
direction. Notation δ(·) stands for the delta function.

In case of the isotropic volumes, the conductivity Σ(x, y, z) is scalar-valued.
In this work we only use isotropic conductivities.
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2.2 Forward Solution

For the numerical case, Eq. (1) is solved using FDRM for a 18-stencil represen-
tation as proposed in [3]:

18∑

i=1

aiφi −
(

18∑

i=1

ai

)
φ0 = Iδ(r − r1) − Iδ(r − r2), (2)

where the coefficient set {ai ∈R} holds the conductivity values and ensures the
Dirichlet and Neumann boundary conditions [8], φi ∈R

1× NZ is each discrete
potential, being NZ the non zero voxels where head tissues are present, φ0 is
the potential at the neighborhood origin.

Generally speaking, Eq. (2) results in a linear system that is solved using
BiCG stabilized solver with iLU preconditioning [1]. However, the system imple-
mentation requires a high computational burden. To overcome this drawback,
precalculated reciprocity potentials are employed to speed up the computation of
the inverse solutions. As a result, we calculate a lead field matrix Lm ∈R

Nc × Nd

for a given electrode disposition with Nc channels, and source space with Nd

sources (dipoles) located on the cortical surface with fixed orientation perpen-
dicular to it.

2.3 Source Reconstruction

Given a Lm lead field matrix from a forward model, a distributed solu-
tion Y =LmJm+ Ξ is considered, with the aim of estimating brain activ-
ity. Here, Y ∈R

Nc × Nt is the EEG data measured at Nt time samples, and
Jm ∈R

Nd × Nt is the amplitude of the Nd current dipoles. We assume that the
EEG measured data are affected by zero mean Gaussian noise Ξ ∈R

Nc × Nt ,
with covariance QΞ = exp(λΞ)INc

, being INc
∈R

Nc × Nc an identity matrix, and
exp(λΞ)∈R an hyperparameter modulating the sensor noise variance. Further-
more, by assuming that Jm is a zero mean Gaussian process with prior covari-
ance Q ∈R

Nd × Nd , brain activity estimation can be carried out in the form
Ĵm = QL�

m(QΞ + LmQL�
m)−1Y . We use two different alternatives to supply

the source covariance matrix Q:

Empirical Bayesian Beamformer (EBB): that assumes one global prior for
the source covariance main diagonal (the off-diagonal elements are zero, i.e.,
no correlations assumed). The prior source variance q =[q1, . . . , qd, . . . , qNd]∈
R

Nd × 1,∀qd ∈R
+ is computed for every dipole in the following way:

qd = (l�d Y Y �ld)−1/δd, ∀d = 1, . . . , Nd, (3)

where ld ∈R
Nd × 1 is the d−th column of Lm, and δd = 1/l�d ld is a normal-

ization parameter. At the end, the source covariance matrix is calculated as
Q = exp(λp) diag(q).
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Multiple Sparse Priors (MSP): where the source covariance matrix is con-
structed as a sum of a set of P patches {Qp, p= 1, . . . , P} each one reflecting
one potentially activated region of cortex, weighted by the respective hyperpa-
rameter λp, as follows [2]:

Q =
P∑

p=1

exp(λp)Qp (4)

2.4 Assessment Quality Measure of Source Estimation Solutions

To estimate the hyperparameter set, we use the so termed free energy [12]. In
this regard, for a given EEG recording and a certain forward model m, the free
energy can be expressed as [5]:

F (m) = − Nt

2
Tr(Δ−1C) − Nt

2
ln |Δ| − NcNt

2
ln2π − 1

2
(μ − η)T Ω−1(μ − η)

+
1
2
ln

∣∣ΥΩ−1
∣∣ , (5)

where Δ ∈R
Nc × Nc is the estimated model covariance, computed as Δ = LQL�+

QΞ ; C ∈R
Nc × Nc is the measured data covariance, μ,η ∈R

Np × 1 are the prior
and posteriors means of the hyperparameters {λΞ , λp}. Likewise, Υ ,Ω ∈R

P × P

are the posterior and prior hyperparameter covariances. | · | represent the matrix
determinant operator. Therefore, the Free Energy estimated in Eq. (5) can be
considered as the difference between the model accuracy (the first two terms) and
the model complexity (the last two terms). The Free Energy can be maximized
using standard variational schemes [12].

Moreover, the values corresponding with different forward models m can be
used to compare source reconstructions using Bayesian model selection [4]. In
turn, the individual log Bayes factor between two models is defined as:

log(ψ(m1,m2)) =
p(Y |m1)
p(Y |m2)

= F (m1) − F (m2). (6)

Here, Bayesian model selection is used to validate the influence of patient
dependent forward models on the sources reconstruction task. This is carried
out by calculating the log group Bayes factor which is the sum over subjects of
individual log Bayes factors:

log(Ψ) =
N∑

n=1

log(ψn
(mi,mj)

), (7)

where, the subscripts i,j refer to the models being compared, and N is the
number of subjects. According to [7], a model can be chosen in favor of other
when there is a difference larger than 3 units.
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3 Experiments

We investigate a key aspect of the forward model for distributed solutions to the
EEG inverse problem, namely, the influence of the lead field matrix in source
localization due to forward models that are dependent or not from the study
population. In this regard, we consider two different scenarios: (i) Lead-field
matrix from a Generic template, (ii) Lead-field matrix derived from an MRI Atlas
of the study population. Consequently, we analyze, in the absence of a subject
specific MR image, whether the inclusion of demographic structural information
to create the forward model improves or not the EEG source reconstruction. In
both cases (Generic and Atlas), we construct FDRM head models including five
different tissues, and they are compared within the context of two various types
of source priors, EBB, and MSP. The resulting models are compared based on
ERP data of 31 subjects using Bayesian model selection for group studies. The
testing outline is shown in Fig. 1.

MRI - EEG
population data

1
2

3

10

Probabilistic
Atlas

Volumetric
Segmentation

Forward Model
FDRM

Generic MRI Segmentation

Atlas

Generic
M3T M4T M5T

Tissue Model
Selection

Source
Localization

BMF

MSP

Bayesian Model
Selection

GBF

-120 -100 -80 -60 -40 -20 0
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M3T

M4T

M5T

-50 -40 -30 -20 -10 0

M3T

M4T

M5T

BF - Visual

Fig. 1. Schematic representation of the tested methodology.

3.1 Database

EEG/ERP Data Description: The data are collected from 31 children within
an age range from 5 to 6 years old, and two socio-cultural levels (high medium
and low medium). The sample is randomly selected from preschool, elemen-
tary, and secondary courses at private and public schools in the Manizales city.
For legal purposes, the children’s parents agreed their participation in research
through written permission. According to the historical data supplied by the chil-
dren’s parents, exclusion criteria is established for mental retardation, neurolog-
ical antecedents (history of head trauma, epilepsy, and related) and psychiatric
(psychiatric hospitalizations history, autism, and related).

The experimental protocol consists of a stimulation interface (individually
auditive or visual) designed following the oddball paradigm with 20% target and
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80% non-target stimulus. Simultaneously, Electroencephalogram (EEG) acqui-
sition with stimulus marker signal is carried out. EEG recordings are performed
with a single Easy III EEG amplifier provided by Cadwell, taken symmetrically
from 19 electrodes with standard international system positions 10–20. Here, we
center the analysis of ERPs extracted from EEG using an average process for
target stimulus supported on the marker signal.

Magnetic Resonance Imaging (MRI) Data Description: With the pur-
pose of obtaining a single structural head model for the EEG database, including
the particular demographic dependence, we build a structural atlas from 10 of
the 31 patients. In this study, 1.5T MRIs are recorded by a General Electric
OPTIMA MR 360 scanner with the following parameters: 1 mm × 1 mm pixel
size, TR = 6, TE = 1.8, TI = 450, and sagittal slices of 256× 256 size and 1 mm
spacing. Three 1.5T MRIs are acquired for each subject and further averaged
using the free surfer suite for enhancing the signal-to-noise ratio. Moreover, the
Diffeomorphic Anatomical Registration Exponentiated Lie Algebra (DARTEL)
algorithm generates the customized templates for the considered anatomical
structures. DARTEL nonlinearly transforms individual probabilistic segmenta-
tions, initially provided by SPM, and merges them into a single template. Such a
procedure is repeated a fixed number of iterations increasing the template crisp-
ness. DARTEL is applied using the default parameters: Linear elastic energy
regularization, Levenberg-Marquardt optimization, and six outer iterations to
construct the atlas from the 10 different patients, including the scalp, skull,
cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) tissues.

First row of Fig. 2 shows the 3D surface of the skull, GM, and WM for the
Atlas segmentation. Moreover, second and third rows show the axial, sagittal
and coronal views for segmentations of three and five tissues.

In order to compare, a Generic model is created from a single MRI data of
a healthy male patient [1], where the same five tissues are segmented using free
surfer. In both cases (Atlas and Generic), the 19 EEG electrodes are coregistered
to the scalp surface using field trip.

3.2 Forward and Inverse Problem Solution

From the segmentation with 5 tissues, three different forward models are defined
for both, the Generic, and the Atlas MRI. The first model (M3T) contains three
tissues, scalp, skull and GM. The second model (M4T) also holds CSF, while
the third model (M5T) includes all the five tissues. The conductivities are set
to scalp = 0.33 S/m, skull = 0.02 S/m, CSF = 1.54 S/m, GM = 0.33 S/m, and
WM = 0.14 S/m, as recommended in [6]. Additionally, the volumetric forward
models are calculated using the FDRM technique (see Sect. 2.2) in a 1×1×1 mm
volumetric space for both, the Generic and the Atlas MRI data. In addition,
we use reciprocity potential precalculations for the 10–20 EEG system of the
database, in order to speed up the inverse calculations.

With the aim of reconstructing the source space, we employ two ESI solu-
tions, EBB and MSP. The source reconstruction is carried out to the ERPs
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Fig. 2. Segmented head model: top: 3D surface of the skull, GM and WM. Segmenta-
tions including three and five tissues in the middle, and bottom, respectively.

extracted from each subject in each stimulation condition, i.e., a visual target,
visual non-target, auditory target and auditory non-target. For MSP, the pri-
ors used to form the set of covariance components are those implemented in
the Statistical Parametric Mapping (SPM12) software package. That is, we use
512 covariance components with selected columns of a Greens function cover-
ing the entire cortical surface. In order to perform this optimization scheme, we
use a greedy search (GS) algorithm. Later, in both inverse solutions (EBB and
MSP), the hyperparameters are tuned by maximizing the Free energy through
the Restricted Maximum Likelihood (ReML) algorithm.

3.3 Group Studies for Model Selection

To compare the different models considered in this study, i.e., M3T, M4T and
M5T for Generic and Atlas structural data, and each of the inverse solutions, we
apply Bayesian model selection for group studies. In this regard, we compare the
Free energy values of the inverse solutions over subjects, corresponding with the
ERPs elicited by each stimulation condition. Then, the log group Bayes factor
(Ψ) is computed, as explained in Sect. 2.4.
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3.4 Results

Figure 3 shows an overview of the log group Bayes factor (Ψ) for each of the
stimulus conditions and tested models. Here, the closer to zero the Ψ value, the
better the reconstruction of a particular model. As seen, the difference between
log group Bayes factors of Atlas and Generic models is greater than three, cor-
responding with substantial evidence for the Atlas based head models.

In the one hand, for the generic head models, there are small differences
regarding the number of tissues used to create the lead field matrix. In turn, with
the generic models, Ψ values for M3T, M4T, and M5T remain almost the same
within each stimulation condition. On the other hand, for the atlas-based head
models, M3T obtain the worst performance. This behavior is more noticeable
with MSP as ESI solution. Furthermore, as expected, the performance improves
when CSF tissue is included in the lead field matrix construction (M4T), since
it yields a more realistic model. Nevertheless, the performance remains almost
the same when WM tissue is included (M5T), producing a small improvement
(less than three units in the Ψ value). This result can be explained given the
lack of anisotropic conductivity values for some tissues, as WM and the skull.

Moreover, regarding the ESI solution, for all the tested models and stim-
uli, EBB overcomes MSP. This situation can be explained as ERPs produce
distributed source activity, which can be better explained if source covariance
components are independent, as in EBB, unlike the sparse covariance compo-
nents pursued by MSP.
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Fig. 3. Log GBF for: visual and auditive stimulation, BMF and MSP brainmapping
method.

Figure 4 shows a representative example of the analyzed data. At the top, the
ERP and topographic map calculated for the interval from 227 to 383 ms (black
vertical lines) is shown, where the P300 wave appears. This wave is an ERP
component elicited in the process of decision making. As expected, in the channel
space, most energy components appear in the electrodes covering the parietal
lobe. Likewise, in the source space, most activity in the P300 component also
appears in the parietal lobe. This activity is highly expected in oddball paradigm
experiments because it is related to decision-making processes. Moreover, some
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activity in the parietal lobe and cingulate gyrus, which are related to attention
and working memory processes.

BMF method, 5-tissues model
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Fig. 4. Representative example of analyzed data. Top: sensor space - ERP and topo-
graphic map. Bottom: reconstructed activity for M5T head model and EBB as ESI
solution. Views: outside right (Or), outside left (Ol), top (To), bottom (Bo), inside
right (Ir) and inside left (Il).

4 Discussion and Concluding Remarks

In this work, we study the influence of demographic dependent forward models
(Atlas) against Generic data in the EEG source reconstruction problem. To this
end, we calculate lead field potentials using the FDRM volumetric method for
both, Atlas and Generic data, allowing us to include multiple tissues. Namely,
our first M3T tissue model includes scalp, skull and GM areas, similar to the
standard Boundary Finite Elements Method that approximates surface poten-
tials as a forward solution. Additionally, the second tissue model includes CSF
(M4T), and the last one also includes GM (M5T). We used the MSP and EBB
techniques as source reconstruction methods together with Group Bayes Factor,
as a measure to analyze the quality of the reconstructed activity with different
lead fields.

Analyzing the study population influence, we find strong log group Bayes
Factor evidence (mayor than three units) for lead fields potentials from struc-
tural data that depends on the EEG study population using with both source
estimation techniques (MSP and EBB). Is important to note that our Generic
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models are not in the age range of our demographic dependent Atlas. However,
the results clearly favor the Atlas even in the case of different tissue spaces.

By assuming a 3-layered isotropic conducting approximation of the head
(M3T), the results show that it is a strong simplification of reality. Regarding
this fact, we find that including the CSF tissue improves the log group Bayes
factor (Ψ) when we deal with demographic dependent forward models. Also, the
results show little improvement with the inclusion of the WM area. This result
can be explained because we are not considering the anisotropic behavior of this
tissue, as it is difficult to obtain and has a high patient dependent distribu-
tion [13]. Therefore, we recommend as future work, the inclusion of anisotropic
conductivities for a more realistic analysis.
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Abstract. Reconstruction of source neural activity has an increasing
importance due to its high time resolution, promoting its application
in diagnosis of neurodegenerative and cognitive tasks. To improve the
accuracy of reconstruction, we study the influence of anisotropic blood
vessels in the EEG-based source localization solution, including several
tissues. To this end, we develop a model that reflects physical properties
of the head volume based on collected angiographic data. From obtained
results of real data, we find that omission of the anisotropic blood vessels
within the forward modeling may result in potential discrepancies larger
than 35µV and dipole localization errors greater than 15 mm, especially,
in deep brain areas.

1 Introduction

There are several neuroimaging techniques for monitoring and extracting more
accurate information from the human brain, improving their impact on clinical
applications like the medical treatment, surgery planning, or other customary
brain research tasks [1]. To date, the Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT) has widely shown that their joint action along with
functional analysis techniques (particularly, ElectroEncephaloGraphy – EEG)
allows overcoming the often reported weakness in the single modality analy-
sis. Thus, the combination of multi-modal information (incorporating patient-
oriented models) become a useful tool in diagnosis and brain surgery planning,
being in most cases the only suitable examination tool due to the high risk of
alternative surgical interventions [2].
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Construction of the forward brain models for neural activity estimation from
EEG faces several issues, being two the most challenging: (i) Accurate segmen-
tation of the high amount of tissues inherent to the head volume, (ii) Devel-
opment of anisotropic models to reflect the relevant physical properties of the
human head adequately, influencing the propagation of brain electrical activity.
Towards the former goal, the tissue segmentation is usually carried out based on
the extracted information from a large series of two-dimensional slices of either
MRI or CT, yielding the suitable head volume. Still, this task must be performed
so that every slice must be registered within a single coordinate system to obtain
a coherent three-dimensional volume, producing a gray scale dataset demarcat-
ing each one of the considered tissues [3]. In practice, the areas that are more
likely to be segmented are the scalp (where the EEG electrodes are placed),
skull, cerebro-spinal fluid, gray and white matter. Yet, this list of tissues is not
enough to achieve the realistic and accurate forward models. Therefore, there is
a need for incorporating a higher number of the brain structures.

Regarding the anisotropic behavior of head tissues, few works address the for-
ward model calculation with a large number or tissues or even with anisotropy.
However, the inclusion of anisotropy requires the use of volumetric techniques,
like Finite Difference Method (FDM), rather than the well-known Boundary
Finite Method. Here, we use the FDM reciprocity method (FDRM) to incor-
porate, not only volumetric information of the head tissues but also anisotropy
in the forward solution. Therefore, we analyze the influence of introducing sev-
eral tissues, namely, fat, muscle, eyeballs, and blood vessels. We also build an
anisotropic model for blood vessels based on the contribution of blood-flow-
induced conductivity [4]. Blood vessels are considered for measuring their influ-
ence as an essential head tissue within the EEG source localization problem.

For the purpose of evaluation, we perform testing on four different subjects
who underwent an MRI study of patient-specific tissue model generation. Infor-
mation about anisotropic areas of the white matter is extracted from Diffusion
Weighted Imaging (DWI) data [5]. Besides, a segmentation mask of arteries
obtained from a T2 angiogram is processed to estimate the direction of blood
flow. From the results obtained on real data, we prove that the omission of
the anisotropic blood vessels may result in potential discrepancies larger than
35µV in the forward solution and dipole localization errors greater than 15 mm,
especially, in deep brain areas.

2 Material and Methods

2.1 Data Preprocessing

Construction of the Tissue Model. We carry out the tissue models based
on the information extracted from T1-weighted, IDEAL, and TOF volumes by
using the pipeline outlined in Fig. 1.

Image preprocessing was carried out using 3D Slicer built-in modules. The
preprocessing steps included: MRI bias correction (N4 ITK MRI bias correction),
and Registration (BRAINS) for movement correction. Cortical Segmentation,
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Fig. 1. Automatic segmentation pipeline for patient-specific MRI tissue models. Images
are acquired with our MRI protocol (A). Bias correction and registration step (B).
Freesurfer cortical segmentation (C). Cross-modality multi-atlas label-fusion skull seg-
mentation (D). Residual and ventricular CSF segmentation (E). Skin segmentation
(F). Eyeballs extraction (G). Approximation of the arteries (H). Remaining tissues are
classified as fat (I) and muscle (J).

including brain white matter (WM) gray matter (GM), and cerebro-spinal fluid
(CSF), was performed in the T1-weighted volume using FreeSurfer [6]. The skull
was estimated using a multi-atlas and label fusion-based approach [7]. To this
end, we applied to a CT database the Simultaneous Truth and Performance Level
Estimation (STAPLE) algorithm [8]. The remaining CSF was computed as the
residual of the skull and the FreeSurfer segmentation using a GNU Octave script.
To segment the skin we developed an algorithm to calculate the background noise
variance and thresholds of the anisotropically filtered volume. Then, Gaussian
smoothing was applied to reduce aliasing artifacts in the skin surface. The eye-
balls were segmented by applying a threshold and edge detection algorithm to
the IDEAL in-phase head sequences. We also performed a smooth approxima-
tion of the main arteries by using an expectation-maximization algorithm to the
median filtered TOF images. The remaining tissue was classified in muscle and
fat/cartilage, using the expectation-maximization algorithm on the IDEAL fat
and water images.
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Modeling Anisotropic Blood Vessels. To perform segmentation of the arter-
ies, we apply a mask that is extracted from a T2 angiogram and enables estima-
tion of the blood flow direction. Then, a kernel with six directions is convolved
with the mask to produce a normalized vector map that describes the eigen-
vectors inside all arteries. Further, we adjust the anisotropic blood vessel model
to the anisotropic finite difference reciprocity method (AFDRM) algorithm [9],
setting a local affine transformation A that points out towards the local eigen-
vector of the found gradient of the vessels. As in [4], the anisotropic blood con-
ductivity at the maximum movement is defined as σ̂ = diag(σb, σa, σb), where
a σa = 0.21 S/m, and σb = 0.49 S/m. We fix σ = Aσ̂A� for the local to global
transformation.

DWI Tensor Calculation. Though MRI-T1 data is employed to build the
structural head models, there is no information about anisotropic conductivity
at each voxel. On the other hand, anisotropic conductivity shares a set of common
eigenvectors with DWI diffusion tensors. Therefore, symmetrical diffusion tensors,
D ∈ R

3×3, have eigenvalues that hold the voxel molecular mobility along the
local directions, (x, y, z), where the ratio in each voxel between the largest eigen-
value and the average of the two other eigenvalues of the diffusion tensor is a fixed
value [5]. Further, each DWI is corrected for eddy currents using FSL, and the
Diffusion Tensor Images (DTI) are reconstructed applying the Diffusion-Toolkit
[10]. Finally, we perform registration of DTI to the anatomical T1 image space by
employing the FLIRT tool, using the preprocessed DWI b0 image.

2.2 Forward Problem Framework

As regards the EEG source reconstruction, the forward problem estimates an
electrode potential field, V , at a specific point, (x, y, z), on the scalp, which is
generated due to dipole sources inside the brain. Sources are modeled as current
dipoles placed at position r ∈ R

3 with orientation d ∈ R
3. The scalar-valued

potential V (x, y, z) ⊂ V on the surface of a conductive volume x, y, z is defined
by the Poisson equation as below:

∇ (Σ(x, y, z)∇V (x, y, z)) = Iδ(r − r1) − Iδ(r − r2) (1)

where I ∈ R is the current dipole magnitude, Σ ∈ R
3×3 is the conductivity

tensor, and r1 and r2 are the two concrete coordinates determining the dipole
direction, respectively. Notation δ(·) stands for the delta function.

In the case of isotropic volumes, the conductivity Σ(x, y, z) is scalar-valued,
while the conductivity becomes a tensor in anisotropic volumes as below:

Σ
(j)
h = T (j)�Σ(j)

s T (j) (2)

where Σj
h is the conductivity head matrix defined upon the uniform Cartesian

coordinate system at the element j; T ∈ R
3×3 is a rotation transfer matrix

defined by the orthogonal unit eigenvectors from the local to the global coordinate
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system; Σ
(j)
s = diag(σ(j)

rad, σ
(j)
tan, σ

(j)
tan) is a diagonal matrix holding the local con-

ductivity values in the tangential, σ
(j)
tan, and radial directions, σ

(j)
rad, respectively.

Additionally, we use the volume constrain introduced by [11].

2.3 Implemented EEG Forward Solution

We solve Eq. (1) numerically through the anisotropic finite difference method-
ology that is based on a 18-neighborhood representation as follows:

18∑

i=1

aiφi −
(

18∑

i=1

ai

)
φ0 = Iδ(r − r1) − Iδ(r − r2) (3)

where the ai ∈ R coefficients hold the conductivity values and ensure the Dirich-
let and Neumann boundary conditions, φi ∈ R

1×NZ are the discrete potentials,
being NZ the non-zero voxels, and φ0 is the potential placed at the neighborhood
center. Consequently, Eq. (3) results in a linear system Aφ = I with unknown
terms φ, that is solved using incomplete LU preconditioning and the BiCG-
Stabilized solver as discussed in detail in [9]. However, due to the demanded
high computational burden, precalculated reciprocity potentials are employed
to speed up the computation of the inverse solution.

2.4 EEG Dipole Source Estimation

Within the inverse problem framework, we estimate the pairwise dipole parame-
ters (r̂, d̂) by calculating the best electrode potentials, vm, that we minimize as
follows:

(r̂, d̂) = min
r,d

{
‖ve − vm(r,d)‖22

‖ve‖22
+ c(r)

}
(4)

where ve ∈ R
Nd×1 are the vector of electrode potentials of the analytical ref-

erence model, vm ∈ R
Nd×1 are the electrode potential vector estimated by

the numerical test models, Nd the number of considered dipoles, and the term
c(r) ∈ R

+ is a penalization parameter that is set to zero for dipole positions
inside the gray matter, otherwise it is very large. Notation ‖ · ‖2 stands for the
Euclidean norm.

The procedure includes both the reference and test models to estimate the
dipole error. Therefore, we initially compute the electrode potentials ve and
then the dipole parameters, (r̂, d̂). Namely, we introduce the following dipole
localization error (DLE):

εL = ‖r̂ − r‖2 (5)

3 Experimental Setup

3.1 DWI and Structural MRI Database

We validate the influence of anisotropic blood vessels modeling on EEG source
localization, using data acquired from four healthy volunteers (three males and
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one female, mean age 35.00 ± 6.68 y, range: 28 y–44 y). Written informed con-
sent was obtained from all subjects participating in this study. Images of the
head were acquired on a General Electric Signa HDxt 3.0T MR scanner using
the body coil for excitation and an 8-channel quadrature brain coil for recep-
tion. Imaging was performed using an isotropic 3DT1w SPGR sequence with
TR = 8.7 ms, TE = 3.2 ms, TI = 400 ms, NEX = 1, acquisition FOV = 260 mm,
matrix = 320× 160, resolution = 1× 1 × 1 mm, flip angle = 12; an IDEAL T2
sequence with TR = 3000 ms, TE = 81.9 ms, NEX = 6, FOV = 260 mm, acquisi-
tion matrix = 320× 160, flip angle = 90, a Time of Flight (TOF) sequence con-
sisting of 8 volumes with 6 slices overlap and TR = 20 ms, TE = 2.1 ms, NEX = 1,
acquisition FOV = 224 mm, matrix = 224× 224, resolution = 1× 1 × 1 mm, flip
angle = 15, and a DWI sequence with TR = 9200 ms, TE = 83.8 ms, TI = 0 ms,
NEX = 1, acquisition FOV = 240 mm, matrix = 100× 100, flip angle = 90, direc-
tions = 45, thickness = 2 mm.

All tested data (T1, IDEAL, and DWI ) are aligned with a voxel similarity-
based affine registration procedure in order to correct subject orientation and
geometrical distortions. The registered DWI data were re-sampled to 1×1×1mm
using the FSL toolbox. We used the AFDRM numerical algorithm to get the
forward calculations in a normalized model with 1×1×1mm voxel partition, and
the registered DWI data were used to approximate the anisotropic conductivity
tensors in the white matter. Figure 2 shows the image segmentation for 9-tissues
(left) and 5-tissues (right) distribution.

Scalp

Fat

Muscle

Skull

CSF

Brain GM

Brain WM

Eye

Blood Vessels

Tissues9 5 Tissues

Fig. 2. Tissue segmentation.

In all described simulations, we test all considered models and patient data
sets using the 10–20 EEG standard system with 23 electrodes and 22 lead pairs
in a reciprocity approach with at least 3 million non-zero potentials using the
AFDRM algorithm described in [9]. We carry out a separate test with two differ-
ent relative residuals limit (10−6 and 10−13) for the iLU preconditioning BiCG-
Stabilized solver, finding that the differences are not relevant to forward calcula-
tions for 1× 1 × 1 mm resolutions. Regarding this, the algorithm takes about 1 min
for a single lead pair calculation using 10−6 relative residual limit in an Intel Xeon
3.4 GHz processor with 64 Gb RAM.
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In order to estimate the Dipole localization errors, we compare the four dif-
ferent patients, choosing the most complex head model as the reference that
contains 9-tissues (anisotropic skull, white matter and blood vessels) against a
simple 5-tissues model (only scalp, skull, CSF, grey and white brain, includ-
ing also anisotropic skull and white matters). Results show a DLE larger than
30 mm in the deeper zones of the brain, and also a DLE larger than 20 mm
in intercortical areas of the grey matter. Figure 3 shows the DLE for a single
patient in 3 different planes.

0mm

5

10

15

20

25mm Axial Coronal Sagittal

Fig. 3. Dipole localization errors for a 9-tissues segmentation against a simplify 5-
tissues head model.

3.2 Influence of the Anisotropic Blood Vessels Modeling

We analyze the influence of anisotropic blood vessels in the four head models
patients, chosen as reference the 9-tissues anisotropic blood vessel model against
an 8-tissues simplified model neglecting the blood vessels.

Figure 4 shows the four patients (P1 trough P4 rows) in three different views
(frontal, posterior and bottom columns). We analyze the forward potential dif-
ference norm (‖Vreference − Vsimplify‖) showing that neglecting the anisotropic
blood vessels induce differences larger than 30µV. Additionally, we compared
a reference head model with anisotropic blood vessels, against the same model
neglecting the vessel segmentation obtaining DLE larger than 67 mm in zones
near to the Willis polygon (deep brain areas), with a mean error of 4 mm for the
GM area.

3.3 Computational Considerations

For the above-described simulations, we test all considered models and patient
data sets using the 10–20 EEG standard system with 23 electrodes and 22 lead-
ers in a reciprocity approach with at least 3 million non-zero potentials using the
AFDRM algorithm described in the Sect. 2.3. We carry out a separate test with
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Fig. 4. Potential differences in the forward modeling.

two different relative residuals limit (10−6 and 10−13) for the iLU precondition-
ing BiCG-Stabilized solver, finding that the differences are not relevant in the
forward calculations for 1× 1 × 1 mm resolutions. Regarding this, the algorithm
takes about 4 min for a single leadpair calculation using 10−6 relative residual
limit in an Intel Xeon 3.4 GHz processor with 64 Gb RAM.

4 Discussion and Concluding Remarks

Forward modeling impacts directly in the EEG source localization, for this rea-
son, the realistic head modeling with anisotropic capacity is needed for more
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accurate detection of activity sources. The AFDRM technique allows a faster cal-
culation, supporting anisotropic conductivities [9]. The results show that neglect-
ing some relevant tissues of the human head, like eyes, muscle, fat and anisotropic
vessels directly influence the dipole estimations with errors larger than 30 mm.
On the other hand, considering an anisotropic blood vessel modeling is necessary
for a deep brain activity analysis.

Tissue segmentation in the forward realistic head models has a direct influ-
ence in the EEG dipole localization. Anisotropic blood vessel modeling shows
that the inclusion of multiple tissues (fat, eyes, muscle, etc.) may affect the dipole
estimation, especially in deep brain areas. For instance, not including anisotropic
blood vessels yields DLE errors larger than 15 mm. Also, we find out that tem-
poral and inferior behavior is affected concerning the potential accuracy and it
could be a significant drawback for source localization in focal temporal epilepsy.

As a future research, we plan to analyze the EEG source localization errors
using state of the art inverse solutions such as multiple sparse priors approach
considering blood vessels and conductivity models for multiple-tissue segmenta-
tion of this work.

Acknowledgments. This work is carried out under grants: Prog. Nal. de Formacion
de Investigadores GENERACION DEL BICENTENARIO, Conv 528.
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Abstract. Automated detection of white matter hyperintensities
(WHM) may have a broad clinical use, because WHM appear in sev-
eral brain diseases. Deep learning architectures have been recently very
successful for the segmentation of brain lesions, such as ictus or tumour
lesions. We propose a Convolutional Neural Network composed of four
parallel data paths whose input is a mixture of 2D/3D windows extracted
from multimodal magnetic resonance imaging of the brain. The architec-
ture is lighter than others proposed in the literature for lesion detection
so its training is faster. We carry out computational experiments on a
dataset of multimodal imaging from 18 subjects, achieving competitive
results with state of the art approaches.

1 Introduction

White matter hyperintensities (WMH) can be caused by a variety of factors
including ischemia, micro-hemorrhages, gliosis, damage to small blood vessel
walls. Many patients showing WMH are idiopathic, however WMH have a strong
relationship with age, arterial hypertension, demographic parameters such as
gender, and some disease, such as diabetes, and biomarkers such as cholesterol
[15]. It has been found associated with progressive cognitive impairment [5].
WMH are small size lesions compared with tumours and stroke lesions, lacking
their structure of necrotic and inflamed tissues. They are mostly periventricular
lesions,which primarily appear at the top of the horns of the lateral ventricles pro-
gressing around the ventricles. They may also appear as subcortical lesions [9,25].
Several magnetic resonance image (MRI) modalities may be used used for WMH
detection and segmentation. They appear as hypointense in T1-weighted and as
hyperintense in T2-weighted images [23]. The best modality is the fluid attenu-
ated inversion recovery (FLAIR) imaging, where the lesions appear as hyperin-
tense and with greater contrast, allowing to differentiate between periventricu-
lar and subcortical lesions. Recent studies [17,21] also consider diffusion tensor
imaging (DTI), specifically the scalar coefficients such as fractional anisotropy
(FA), radial diffusivity (RD), and mean diffusivity (MD), which give the infor-
mation about privileged directions of water diffusion, so they are sensitive to
microstructural changes in white matter.
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 394–403, 2017.
DOI: 10.1007/978-3-319-59740-9 39



Brain White Matter Lesion Segmentation with 2D/3D CNN 395

In the last years, the interest in brain lesion image segmentation has
increased, for example, public challenges have been carried out BRATS http://
braintumorsegmentation.org/ and ISLES http://www.isles-challenge.org/ to
advance the field. Most research on small lesion detection has been carried out
for multiple sclerosis (MS) patients. Early approaches consisted in semiauto-
matic labellings in structural images [16] and FLAIR [11]. Early multimodal
approaches applied voxelwise fuzzy expert systems [1] and Markov random fields
(MRF) [20]. Machine learning supervised approaches have been also applied,
such as Random Forest [8] and MRF regularized versions [22]. Unsupervised
approaches have made advantage of the brain symmetry for big lesion detection
[6]. Recently, Deep Learning approaches report great success in the segmenta-
tion of brain tumours, specifically Convolutional Neural Networks (CNN) [18,26]
which is the approach that we are following in our own proposal.

Processing 3D medical images by the CNNs can be done in 3 ways: (a) Con-
sidering each 2D slice of the 3D volume in some direction (sagittal, coronal or
axial) as an independent input image that is feed to the CNN [18,26]. (b) Con-
sidering 3D windows of the volumetric image as input. (c) Considering hybrid
2D/3D inputs, i.e. feeding 2D slices and 3D windows of the volumetric image.
This decision carries some implications in the CNN design, because a 3D input
forces that hidden layers resulting of the filters have 3D structure [2,24]. This
additional structural complexity has been found cumbersome to deal with large
datasets, because the number of operations scalate cubically instead of quadrat-
ically. So the intended advantage of preserving 3D spatial relation information,
is countered by convergence issues and computational time, so that the 3D win-
dows are small, loosing information of long distance spatial relations. Finally, the
use of hybrid 2D and 3D input information [4,7] allows a good balance between
the preservation of 3D spatial relations and the long distance relations that can
be analysed in 2D data. In our architecture, we have used an hybrid 2D/3D NN
where we use a small 3D cube and three different 2D windows, one for each of the
3 dimensional axis. The paper contents is as follows: first we present the dataset
used for the experiments. Secondly, we discuss our architecture and the others
used for comparison. Then we present our experimental results and, finally, some
conclusions and future work.

2 Materials

The experimental evaluation of the proposed CNN architecture has been carried
out in a set of 18 subjects MRI images corresponding to a previous study [19]
where WHM was performed manually, thus providing the ground truth segmen-
tation for the present work as 3D lesion masks. Each subject image includes a
3D T1-weighted, FLAIR image, and diffusion weighted images from which DTI
images, and subsequent FA coefficients, were computed using FSL software. T1-
weighted volumes have been registered to 1 mm MNI template. The FLAIR and
FA images have been corregisted to the MNI space by affine registration to nor-
malized T1-weighted images. The lesion masks are also corregistered to MNI
space. All the image intensities are normalized to the [0,1] interval.

http://braintumorsegmentation.org/
http://braintumorsegmentation.org/
http://www.isles-challenge.org/
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3 CNN Architectures

Throughout the last years, Convolutional Neural Networks (CNNs) [13] have
achieved excellent performance in many computer vision tasks. Several advances
have solved convergence issues, and the advent of easy to exploit powerful Graph-
ics Processing Units (GPUs) has speed up the training times by several orders
of magnitude [3]. A CNN is a shared-weight neural network: all the neurons in
a hidden layer share the same weights and bias. In fact, each layer implements
a linear convolution filter whose kernel is learnt by gradient descent. There-
fore, the output of the successive layers is a series of filtered/subsampled images
which are interpreted as progressively higher level abstract features. Most CNN
are applied to 2D signals, i.e. images, however in the medical image domain
they are increasingly applied to 3D signals, i.e. volumetric imaging informa-
tion. Specifically, two recent instances of CNNs have been succesfully applied
to brain lesion segmentation [10,12] achieving remarkable succes in the BraTs
competition. Another recent segmentation example using a 2D/3D input data
is [7], where authors trained two separate CNNs for each input dimensionality,
performing a combination of their outputs by averaging.

3.1 Our Proposal: MPCNN

Our proposal is a Mixed Parallel CNN (MPCNN), which takes four inputs: three
orthogonal big 2D windows on 3D image slices (one per spatial dimension) cen-
tered at the same voxel of the brain, and a 3D window, a cube whose sides are
smaller than that of the 2D windows. Therefore, 2D data carry farther away spa-
tial relations, while the 3D window carries 3D spatial relations. The MPCNN
architecture consists of four parallel CNN, three dedicated to process the 2D
window, and the fourth processing the 3D window. Furthermore, we use multi-
modal MRI data, specifically T1, FLAIR and FA volumes, so that each voxel
is in fact a three dimensional vector, much like an RGB image. In this sense,
independent CNN filters at each layer are learnt for each image modality. The
output is a couple of binary units that provide an estimation of the probability
that the central pixel of the 2D and 3D windows is a WMH lesion voxel.

Figure 1 shows a diagram of the MPCNN architecture. Each parallel subnet-
work is a CNN, composed of a sequence of convolutional layers and max-pooling
layers which reduce the reduce the dimensionality of the feature space after each
convolution. In the version of the network tested in this paper the dimension
of each of the input 2D windows is 35× 35, whereas the dimension of the input
3D cube is 11× 11× 11. The activation function used to compute the output of
each neuron of the CNN is the Rectified Linear Unit (ReLU) [13,14] due to both
its efficient computation and the fact that it solves the vanishing gradient prob-
lem. The architectures of the three 2D CNNs are identical, they are composed
of three convolutions with kernels of size 3× 3. The number of convolutions
increases along the layers, increasing the number of features accordingly.

Moreover, a dimensionality reduction max-pooling layer with pool size of
2× 2 is applied to the output of the second and third layers. The dimensions of
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Fig. 1. The structure of the proposed for WMH lesion detection

the output of each layer are shown in Fig. 1. Thus, each 2D subnetwork’s output
layer has 6× 6× 55 = 1980 neurons. The 3D CNN is composed only of two
3D convolutions (with kernel size of 3× 3× 3), and one 3D max-pooling (with
pool size of 2× 2× 2) after the second convolution. Finally, all the subnetworks
are merged (this results in 1980× 3 + 1485 = 7425 nodes) and fully connected to
the next layer, composed of 128 neurons. Finally, these 128 outputs are used to
compute the final output of the network via the Softmax function. Hence, the
two outputs will always be bounded between 0 and 1, and they will sum 1. This
facilitates a probabilistic interpretation of the network output as a probability
of lesion at the central voxel.

3.2 DeepMedic

The other architecture tested for comparison is the DeepMedic [12], whose archi-
tecture has two main components; a 3D CNN and a fully connected 3D Con-
ditional Random Field (CRF), which performs a postprocessing of the CNN
output removing false positives. The CNN consists of four layers with 5× 5× 5
kernels for feature extraction, and the classification layer is implemented as a
convolutional layer with kernel of size 1× 1× 1, allowing efficient dense-inference.
The 3D CNN network has two pathways; one processes local information and
the other processes larger contextual information, hence carrying out multi-scale
processing of the data. Moreover, BN (Batch Normalization) is also applied to
all the hidden layers, so that all Feature Maps obtained after each layer are nor-
malized, preserving the signal, and avoiding sourious weight convergence. After
that, there are two hidden layers for combining the multi-scale parallel path-
ways. The full network is trained patch-by-patch and the size of the batches is
selected automatically according to the neighborhood of the voxel in the input.
The batches are built by extracting segments from the training images with
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50% probability of being centered on a foreground or background voxel, which
corrrects the class-imbalance. The DeepMedic network training implementation
downloaded from github was originally prepared for the ISLES and BraTS chal-
lenges, reporting state-of-the-art results on both performance on brain tumor
and stroke lesion. However, since in our problem we only have 2 outputs not 5 as
in the segmentation problems, in order to work with this network the last layer
output has been reduced from 5 to 2 outputs.

4 Results

The MPCNN architecture has been implemented in Python using Keras with
Tensorflow as backend. The DeepMedic implementation has been dowloaded
from github (https://github.com/Kamnitsask/deepmedic). The training and val-
idation scripts have been executed in a desktop computer with RAM of 16 GB,
and GPU NVIDIA GTX 1070 which has been used to speed up training. For

Table 1. Results of the networks using leave one out validation. Each row is the TPR
(True Positive Rate) on the test image, DM DeepMedic, MPCNN Mixed Parallel CNN.
cte/lin/log = constant/linear/log increase of imbalance ratio. Bold highgligh maximum
per row.

#image DM MPCNN cte MPCNN lin MPCNN log

Th= 0.35 0.45 0.5 0.2 0.15 0.2 0.15

#1 0.642 0.583 0.515 0.483 0.640 0.687 0.659 0.709

#2 0.591 0.761 0.703 0.679 0.589 0.625 0.614 0.652

#3 0.572 0.830 0.785 0.760 0.617 0.666 0.637 0.684

#4 0.659 0.649 0.592 0.564 0.608 0.650 0.587 0.640

#5 0.715 0.673 0.628 0.599 0.621 0.684 0.662 0.722

#6 0.600 0.829 0.803 0.791 0.562 0.608 0.583 0.626

#7 0.616 0.504 0.595 0.572 0.628 0.669 0.574 0.620

#8 0.310 0.504 0.437 0.405 0.280 0.323 0.268 0.309

#9 0.331 0.577 0.533 0.512 0.537 0.583 0.466 0.514

#10 0.564 0.711 0.656 0.630 0.561 0.607 0.561 0.598

#11 0.641 0.611 0.569 0.548 0.643 0.677 0.581 0.631

#12 0.657 0.715 0.671 0.646 0.568 0.614 0.582 0.626

#13 0.617 0.705 0.649 0.620 0.504 0.559 0.615 0.661

#14 0.564 0.591 0.516 0.479 0.476 0.530 0.544 0.595

#15 0.716 0.796 0.762 0.746 0.726 0.756 0.716 0.755

#16 0.781 0.730 0.670 0.642 0.724 0.768 0.753 0.787

#17 0.638 0.717 0.665 0.639 0.570 0.612 0.511 0.554

#18 0.432 0.596 0.531 0.501 0.127 0.153 0.385 0.454

Mean 0.591 0.671 0.627 0.601 0.554 0.598 0.572 0.619

https://github.com/Kamnitsask/deepmedic
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Fig. 2. Brain image subsampling to obtain the training dataset

Fig. 3. Schedule of learning parameters: learning rate (red) ratio of imbalance in the
training set. (Color figure online)

validation, we apply leave one out over the 18 available subject datasets. To
carry out the training in a limited reasonable time, we have subsampled the
brain images as shown in Fig. 2 to obtain the training dataset. The brain image
is decomposed in regular non-overlapping windows and a random voxel is picked
from this window as the center for the 2D/3D windows that conform the inputs.
This process ensures a rather regular sampling interval and that the whole brain
volume is sampled. Testing is carried out evaluating all the brain voxels in the
test datasets. The problem is naturally imbalanced, i.e. there are many more
healthy than lesion voxels, therefore we need to respect this imbalance in the
training dataset. We have tried an strategy that starts training with balanced
datasets (i.e. 1:1 imbalance ratio) and ends up with an imbalanced training
dataset, varying the composition of the training dataset at each epoch. Figure 3
shows the evolution of the training imbalance, we have a constant imbalance
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Fig. 4. Data and results of subject #18. 1-Sample sagittal slides of T1, FA and FLAIR
volumes. 2-WMH ground truth lesion manually labeled overlaid on FLAIR slices 3,
4, 5, 6-prediction (green) and ground truth lesion (red), 3 for DeepMedic, 4 MPCNN
standard training, 5 and 6 MPCNN training with increasing imbalance ratios, linear
and logarithmic. (Color figure online)

30:1, a linear increase from 10:1 up to 50:1, and a logarithmic increase in the
same range. We report True Positive Ratio (TPR) values, measuring how well
the lesion is detected.

Accuracy results for each test images are presented in Table 1. The second
row corresponds to the decision threshold applied to the network output unit
to decide if the voxel is a lesion voxel. We have found empirically that reducing
the threshold for normal tissue class decision (thus increasing the threshold for
lesion) we obtain some improvement. This asimetry in the decision threshold
may be related to the imbalance of the dataset, but we do not know for sure.
Remaining rows correspond to the test result of each image, the last row cor-
responds to the average over all tests. We have found the best average results
with the constant imbalance and a decision threshold 0.35. In all experiment
instances our proposal is competitive or outperforms the DeepMedic results.
Looking at the result per each image, there is a wide variability in results, in
some cases reaching very low values. Our proposed MPCNN is faster to train
than DeepMedic (a ratio 7:1). If we consider the maximum TPR achieved, we
conclude that the architectures need to be improved, and that the success in
tumour segmentation does not ensure success in WMH lesion detection.

Figure 4 presents visual results of the experiment. From left to right, the first
column shows images of the three modalities as an ilustration of the dataset.
The second column shows the lesion detected manually in three slices of brain
#18 overlaid on the FLAIR image. Next columns illustrate the detection by
DeepMedic (3), and the three imbalance strategies for MPCNN (4, 5, 6). It can be
appreciated that all of them leave some lesion clusters undetected, and overesti-
mate others. DeepMedic seems to create spurious lesion detection clusters, while
our proposal MPCNN false alarms are more of the kind of cluster extensions, or
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conections between clusters. So, some qualitative differences of the response of
the architectures can be appreciated which deserver further analysis and exper-
imentation. One artifact that is common in all detections: all approaches find
spurious detections along the boundaries of the ventricles.

5 Conclusions and Future Work

We have proposed and tested a new 2D/3D CNN architecture for the detection
of WMH lesions, which are smaller than other brain lesions (tumours and stroke
lesions), lacking the necrotic and inflammation structures. We compare results
with two other architectures published in the literature achieving competitive
results. Qualitative assessment of the results, shows some advantage of our app-
roach, which is closer to the manual segmentation in the sense that follows more
closely the delineated voxel clusters, and creates less spurious detection clusters.
The combination of 2D and 3D input windows allows to process the long distance
spatial relations, while reducing the computational burden.

Ongoing work improves the validation process computing a more complete
cross-validation procedure, and more datasets will be included in the experiment.
Our proposal may be also subject to changes in kernel parameters and other
features of the CNN. Notice that no postprocessing to remove false alarms is
done, contrary to DeepMedic, so additional work in postprocessing MPCNN
results may provide enhanced results. In order to go ahead in this research area,
we made the code available in github so that everyone can contribute to it.
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Abstract. Behavioral states in rodents and other mammalian species
alternate between wakefulness (WK), rapid eye movement (REM) and
non-REM (NREM) sleep at time scale of hours (i.e., circadian and ultra-
dian periodicties) and from several tens of minutes to seconds (i.e., brief
awakenings during sleep). Quantified and statistical analysis of bout
durations and transition probability analysis of sleep-wake dynamics
constitute a powerful method for evaluating endogenous sleep control
mechanisms and sleep disturbances. Here we studied the circadian influ-
ence over sleep-wake activity in mouse model by analyzing as a func-
tion of lightdark (LD) cycle, the Kaplan-Meier (KM) survival curves
and the transition probability (TP) of Markov chains. Survival curves of
WK showed a bimodal statistical distribution. Circadian rhythm mod-
ulated specifically WK bouts increasing its duration during activedark
period. In contrast, NREM and REM KM curves did not change sig-
nificantly along LD cycle. Circadian modulation of TP was found only
for state-maintenance-probability in WK and for pwk→nrem transitions
which increased and decreased respectively during activedark period. In
conclusion, Markov modelling of sleep stages adequately evaluate the
circadian and ultradian modulation of sleep-wake dynamics during dark
and light phases.

Keywords: Markov chains · Survival curves · Transition matrices ·
Sleep-wake cycle · Circadian rhythmicity · Ultradian rhythms · Mouse
model

1 Introduction

The sleep-wake cycle (swc) is a dynamic phenomenon, resulting from the
complex alternating activity of sleep-wake neural networks of basal forebrain,

c© Springer International Publishing AG 2017
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hypothalamus and brainstem. Appropriate control of this brain activity permits
behavioral state transitions between wk, rem and nrem sleep [1,2]. Cycling
between sleep and wk is regulated at time scales of seconds to several tens of
minutes by the intrinsic activity of sleep-wake neuronal networks [3] and of hours
under control of circadian and ultradian rhythms [4,5]. Main circadian oscillator
regulating the brain arousal system is located in the suprachiasmatic nucleus [6].

Although presence of circadian and ultradian rhythms along the swc is a
clear indication of the existence of time-dependent variations in sleep architec-
ture, transitions between sleep-wake states occur at unpredictable moments and
in unpredictable directions, so that statistical tools are a useful way for study-
ing sleep dynamics. It is therefore important to understand the bout-to-bout
dynamics at short- and long-term in the context of ultradian and circadian mod-
ulation. Markov chains represent a class of stochastic processes of great interest
for a wide spectrum of practical applications. In particular, discrete time Markov
chains permit to model the transition probabilities between discrete states [7],
allowing to model the dynamics of swc in mammals. Markov chains have also
been used for studying physiology of human sleep [9], and some clinical appli-
cations of these methods have also been reported [2,10]. For example, Markov
chains have been used for studying the sleep of patients with narcolepsy, where
a deficit of orexin produces a sleep with normal amounts of sleep and wake,
but very brief states with increased transitions between them [2], while in the
knockout-orexin mouse model there is no evidence of disordered circadian con-
trol [8]. Given the stochastic nature of state transitions along the swc under
normal and pathological conditions, swc are well suited to be modeled by dis-
crete time Markov chains. Markov analysis provides accurate information of the
probability of staying in one state (i.e., state stability), closely related to state
duration), and of the transition probabilities from and to that state (i.e., rates),
that cannot be obtained by other existing methods.

Bout duration of sleep stages can be studied by survival curve analysis. Lo
et al. [3] introduced the use of bout duration survival analysis for characterizing
the distribution of brief awakenings during sleep. This technique measures the
probability that a given bout will survive long enough to reach a given duration,
and the resulting survival curves can be statistically analyzed to evaluate the
sleep structure and underlying mechanisms, e.g. in rats [11] or humans [12].

The current study was designed to investigate using this methodology the
effect of dark/light circadian modulation over short- and long-term sleep-wake
patterns.

2 Materials and Methods

2.1 Animals

Male wild-type mouse (C57Bl/6) of three-month age were used in this study
(N = 10). All experimental procedures were approved by Institutional Animal
Care and Use Committee of Ramón y Cajal Hospital (Madrid, Spain).
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2.2 Surgery and EEG/EMG Recordings

Animals were implanted under anesthesia with an electrode of nickel-chromium
(140 microns) in prefrontal cortex (1.5 mm rostral, 1.5 mm lateral and 1 mm ven-
tral to bregma), a second electrode in the CA1 region of hippocampus (−2.4 mm
rostral, 1.5 mm lateral, 1.5 mm ventral), two stainless steel screws in the pre-
frontal region, for ground and indifferent references, and a silver plate in the mus-
cles of the neck for emg recording. Nine days after surgery, mice were transferred
to a circular cage and the implanted cap fixed to a rotating anti-gravitational
connector allowing free movements; after period of habituation of 72 h in the
sound attenuated chamber with a 12 h light/dark cycle, a constant temperature
(22–24 ◦C), and ad libitum access to food and water, 24 h of uninterrupted
recording were acquired. eeg of the cortex, hippocampus and emg signals were
filtered from 0.5 Hz to 500 Hz, amplified (x5000-10,000) (Cyberamp 380, Axon
Instruments) and digitized at 1 kHz (Axon CNS Digidata 1440).

2.3 Sleep-Wake Staging

Sleep scoring was accomplished using an offline automated sleep scoring system,
based on custom scripts (matlab 2008, Mathworks, usa). For automated stag-
ing, z-score of rms of band filtered eeg/emg signals was calculated from cortex;
δcx (1–4 Hz), σcx (10–15 Hz), βcx (15–25 Hz); hippocampus, θhc (7–10 Hz), γ1

hc

(25–55 Hz); γ2
hc (55–125 Hz); and emg (55–90 Hz). θhc/δcx and βcx/γ1

hc indexes
were calculated. Initially, epochs with low βcx/γ1

hc, high θhc/δcx and high emg
are assigned to wk, epochs with low θhc/δcx, high βcx/γ1

hc and low emg to nrem,
and epochs with high θhc/δcx and low emg to rem, using a fixed threshold, and
non-assigned epochs were classified in a first pass of matlab K-means algo-
rithm. Then, thresholds were recalculated and a second pass of the algorithm
determined the definitive staging.

Automated scoring was finely tuned through validation with a semiauto-
mated visual staging of the wake-sleep epochs performed by two expert scorers.
This analysis classified every 5 s epochs in wk, nrem and rem states. For help-
ing in the analysis, quantified indexes of eeg/emg recordings were used by the
scorers as an aid in ambiguous scoring epochs.

In order to evaluate staging, spectral analysis of staged epochs was performed.
nrem epochs shown a predominance of low frequency (1–4 Hz). In cortex and
hippocampus, rem epochs had a predominance of hippocampal theta (7–10 Hz)
activity and a desynchronization between cortex and hippocampus that is evi-
denced by the distinctive behavior of the spectral curves between the regions
of the brain previously described. After staging, the corresponding polysomno-
grams are constructed for each mouse recording, and mean durations and total
amount of each state for 12 h of dark and light periods were calculated. For the
visual analysis of the signals we used the software spike 2 (v 6.18, ced, uk).
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2.4 Data Analysis

After staging, analysis of recordings was performed using two complementary
approaches: (1) for each state, bout durations (measured to the nearest 5-sec
epoch) were evaluated using survival curves. (2) state-to-state transition proba-
bilities were quantified using a Markov analysis.

Survival Curves: Bout durations (min) of each recording were processed by
Kaplan-Meier survival curve analysis using 5-sec (i.e. single epoch) time bins:
S(ti) = S(ti−1) ∗((ri−di)/ri) where S(ti) is the proportion of the original number
of bouts surviving at the end of time bin ti, S(ti−1) is the proportion of the
original number of bouts remaining one time bin before ti, ri is the number
of bouts remaining at the start of time bin ti, and di is the number of bouts
that terminate during time bin ti. Initially, the analysis was performed without
reference to time-dependent factors (i.e., in each animal, all data were pooled;
24-h pooled). To evaluate circadian modulation, light and dark epochs were then
examined separately.

Markov Chains: A discrete time Markov chain is a sequence of random vari-
ables characterized by the Markov property, by which the state S at any time
t + 1 depends on the state at time t but not on previous history. State transi-
tion probabilities describe the probability of going from stage i to stage j in a
discrete time step (n) of 5 s: Pij = Pr(Xn = j|Xo = i). The transition probabili-
ties of Markov chains between the 3 wk-sleep states (wk, nrem andrem) were
arranged in a matrix with the form

⎡
⎣

Pwk→wk Pwk→rem Pwk→nrem

Prem→wk Prem→rem Prem→nrem

Pnrem→wk Pnrem→rem Pnrem→nrem

⎤
⎦ .

where each element of position (i, j) represents the transition probability Pi→j :
e.g., probability of transition from nrem state to rem state is denoted as
Pnrem→rem. State maintenance probabilities, (pii) that describe the probability
of remaining in one state, are denoted as Pwk, Pnrem, Prem. Markov chains have
been already validated as a model for sleep dynamics in mouse and rat [11], so
we did not perform specific tests to validate prior Markov analysis assumptions.
Markov analysis was performed using the markovchain package (R environment,
ver. 0.6.5.1) [7].

2.5 Statistical Analysis

Data were presented as mean value or percentage of total value±se. Differences
between the groups were evaluated using the Student’s t-test, Mann-Whitney
test, and Bonfferoni test (Anova), depending on the compliance with the nor-
mality hypothesis of the data using Sigmaplot (San Rafael, Hearne Scientific
Software, 2006) and R statistical software [13].
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3 Results

The complex dynamics of transitions between all behavioral states in adult
mouse (wk and nrem and rem sleep) along a dark/light cycle is illustrated in
Fig. 1. Inspection of hypnograms shows a clear influence of circadian rhythm over

Fig. 1. Circadian modulation of the wake-sleep cycle in mouse C57Bl/6. (A) The
hypnogram (i) to determine the wk, nrem and rem states was generated automati-
cally through the RED thresholds, based on the frequency pattern of the EEG activity
of the cortex and hippocampus. Longer episodes of wakefulness were observed in the
cycle of darkness and shorter in light, the duration of the periods is of 12 h. (B) to
determine the veracity of the swords the power spectrum of the signal was realized in
all the wk, nrem and rem.
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Fig. 2. (A) Percentage of epoch wk, nrem and rem indicating that wk > nrem > rem
(p < 0.05), (B) Total duration of wakefulness and NREM increased and decreased
respectively during darkness compared to phase light. (C) The cumulative wake shown
by the Kaplan-Meyer survival curves showed a biexponential distribution with a
significant increase in dark-phase wakefulness (*Anova, p < 0.05).
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swc: during dark (active) period, long lasting wks alternate with nrem-rem
sleep cycles that contain brief and frequent awakenings, while in light (resting)
phase the brief awakenings dominate over long wks (Fig. 1Ai).

In (Fig. 2A) shows the percentage of total sleep times in 24 h of recording, it
is observed that nrem > wk > rem (p < 0.05) Quantitative analysis of state
durations showed that mean duration of wk epochs increased significantly in
dark in comparison with light phase, while nrem and rem show no differences
(p < 0.05) (Fig. 2B). Accordingly, the survival curve of wk exhibited a biexpo-
nential distribution, while rem and nrem survival curves were monoexponential
(Fig. 2C). However, only the cumulative distribution corresponding to the longer
wk durations during dark period of circadian rhythm. Thus, data clearly indi-
cate that two types of wakes can be segregated by its bout duration, and that
only wake are under of circadian control (Fig. 3).

Fig. 3. Markov chain diagram, which explains the dynamics of wake-sleep through the
cycle of darkness/light. Circular cycles indicate the probability of state maintenance
and the arrows show transitions between states; In black and gray the periods of
darkness and light respectively are represented. wk and nrem states were more stable
than rem, whereas prem→nrem andpnrem→rem state transitions were the most likely.
Circadian modulation increased the stability of wk mainly by reducing the transitions
from wk to nrem during the dark active period (p < 0.05).
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Transition probabilities matrix derived from Markov analysis revealed high
probabilities for staying in one state and much lower probabilities of transition
between different states. The order of state maintenance probabilities, which cor-
related with the corresponding values of bout-duration, was Pwk > Pnrem > Prem

with statistically significant differences between all states (p < 0.001). The
sequence of transition probabilities (i.e., the rate) was as followed: prem→nrem �
pnrem→rem � prem→wk ≈ pwk→nrem � pnrem→wk, revealing that there are
important differences in the transitions probability depending on the involved
states and its direction. Transitions from rem to nrem were the most fre-
quent and statistically different each other and with the rest of state transitions
(p < 0.001), while transitions of pnrem→rem, were more frequent than the transi-
tions of prem→wk, pwk→nrem, and pnrem→wk, (p < 0.05). Regarding to circadian
modulation, only the stability of wk state varied significantly with circadian
rhythm (p < 0.01), increasing and decreasing respectively in dark and light
phase, and only the probability of state transitions from wk to nrem decreased
significantly in the dark phase in comparison with light period (p < 0.05), while
pwk→nrem, was higher than pnrem→wk during the light period (p < 0.01).

4 Discussion

The regulation of swc in mammals is still a research topic [15]. Classical 2-
process model of sleep states that an homeostatic process (process S) interacts
with a circadian pacemaker (process C) to regulate the swc [4,14]. Main master
clock of C is the suprachiasmatic nucleus, a small group of neurons located
at the hypothalamus, influencing on orexin-containing wake-promoting neurons
in lateral hypothalamus, that are the main responsibles of regulating sleep and
arousal. S process increases sleep pressure after long wake periods. Evidence now
suggests that adenosine, a small inhibitory aminoacide, is the main candidate to
be the physiological signal of S. Brain levels of adenosine increase with prolonged
wakefulness, initially in the basal forebrain and then throughout the cortex, and
decrease during sleep. Delta power of eeg in nrem sleep represents the principal
marker of S during sleep; theta activity in waking is a marker of the rising limb
of S. Core body temperature and melatonin rhythms are markers of C [14].
After this classical 2-process model proposed by Borberly [4,14], the advances
in neurophysiology have led to a proliferation of models of swc trying to extend
it to a more physiological setting, e.g. the PR model [5]. Although classical
models of swc have been usually based on differential equations, discrete-time
Markov chains have also demonstrated to be an adequate tool for modelling the
cyclical dynamics of sleep and wk [2,7–10]. Markov analysis provides accurate
information of the probability of staying in one state (i.e., the state stability,
closely related to state duration), and of the transition probabilities from and to
that state (i.e., rates).

Normal sleep is characterized by the periodic alternance of nrem and rem
sleep (i.e., nrem-rem sleep cycle). In monophasic sleep, as in humans, after
a first nrem-rem period, two to seven ultradian cycle follow until waking up.
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In polyphasic species, such as rodents, sleep is distributed across 24 h in hun-
dreds of short bouts, including variable proportions of the two states, while
apparently mostly beginning with nrem. In addition to the regular sleep-wake
pattern, humans and animals often exhibit brief awakenings from sleep [3]; brief
awakenings are commonly observed across species and appear to occur ran-
domly throughout the sleeping period, with a not fully understood dynamics.
Because they exhibit robust scale-invariant features across different mammalian
species [3], may reflect intrinsic aspects of the endogenous sleep control mecha-
nism [citar 3].

We present a detailed analysis of wk bout durations in the mouse model.
Brief-wk represented the majority of all wk bouts., but they were only slightly
affected by circadian and ultradian rythms, as was previously reported in rat [11].
In contrast, the long wk bouts were strongly modulated by circadian influences.
The concept that short and long wk bouts differ in terms of their underly-
ing mechanism and functional significance is not new [3,11,16–18] and differing
statistical approaches have converged to this concept. Detailed studies, using
survival curves, conclude that the two type of wk are present in rats [11,17].
Simasko et al. showed that sleep was more fragmented than previously recog-
nized by using a cut-off interval of 5-min to separate brief and long wk. We
have used in mice 150 s as the temporal window, a value comparable having in
account species-dependent differences, even although our methodology for sleep
staging is different (they used a commercial software, with visual confirmation).
We are not aware of any previous work reporting, in mice, an objective criteria to
differentiate between brief and long wk. Circadian modulation was not explored
in [3], because they only used rodent data from light period.

The analysis of the tp markov matrix reflects some interesting results. First,
all of the states had different state maintenance probabilities (p < 0.01), although
only wk shown significant circadian modulation. Second, during dark period,
increased wake stability and pwk→nrem transitions, and during light period,
increased wake/nrem transitions. In summary, circadian modulation mainly
affects to sleep-wake cyclicity rather to nrem-rem sleep cycle.

Moreover, our data suggest three levels of probability importance: first, state
maintenance probabilities. Second, transition probabilities going to nrem sleep
(pwkb/→nrem, prem→nrem and of pwkl→nrem). The rest of transitions have less
probabilistic relevance. These values indicate that quantitative probabilistic rel-
evance of nrem sleep parallels its functional relevance. nrem produces slow
oscillations generated intracortically, which, far from being epiphenomena, pro-
duce synaptic plasticity in cortical neurons and resonant activity in the corti-
cothalamic loops, particularly during sleep spindles, with the consequence that
the inputs of environment are inhibited and the cerebral cortex is deprived of
signals (22). Circadian modulation of TP matrix also reveals the existence of
two subsets of probabilities: one group that is modulated by the light (pwkl and
pwkl→nrem probabilities, that increase in darkness) and another one (the rest)
that is not modulated by light (nrem-rem-brief wk).
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The question of the regulation of rem sleep, the intrasleep awakening dynam-
ics, and the role of awakenings in the resetting of sleep regulation are still matters
of debate [19]. Bennington et al. have proposed that the need for rem increases
exclusively during nrem, thus suggesting a somehow subservient function of rem
[20]. Work related to wakening paradigms also support this view, so that awaken-
ings reset the nrem/rem ultradian process [21]. Other authors have postulated
long-term and short-term homeostatic regulation of rem independent of nrem
sleep with an accumulation in the absence of rem during both wk and nrem
sleep [22]. Our data seem to support the first of the hipothesis, in the sense that
we did not found modifications of probabilities for going to rem sleep along the
circadian cycle (at least in the conditions of this experiment, where no depriva-
tion or any experimental manipulation of sleep was performed), suggesting that
every modification in rem amounts along the recordings are related to nrem
changes. We also found that wkb-related probabilities were not modulated by
circadian influences, so that wkb might be considered as an intrinsic part of the
classic cycle nrem-rem, that maybe should be reclassified as nrem-rem-wkb
cycle.

The analysis of the tp markov matrix provides some interesting insights
about the properties of the swc. First, all behavioral states show a distinct
intrinsic stability, quantified by their state maintenance probabilities, but they
can be grouped into highly stable states (wkl and nrem), and very instable
states (wkb and rem). The most frequent transitions took place from the insta-
ble states to the stable nrem i.e., while the probability of transitions between
the most stable states (i.e., between wkl and nrem) or of rem to wkl and
wkb are significantly less frequent; the rest of transitions, from wkl and wkb
to rem or from nrem to wkb were rare or inexistent. Second, that only the
stability of long wk state and its transitions to nrem are modulated by circa-
dian rhythms: longer lasting wkl bouts are generated more during active-dark
than inactive-light phases due to the reduction of transitions from wkl to nrem;
during the resting light phase, the probability of transitions from wkl to nrem
is significantly higher than those in the opposite direction, i.e., from nrem to
wkl. It indicates that circadian modulation affects to wkl-nrem cyclicity but
not to nrem-rem-wkb sleep cycle.

The transitions values to input from the other states in nrem sleep indicate
that quantitative probabilistic relevance of nrem sleep parallels its functional
relevance. nrem produces slow oscillations generated intracortically, which, far
from being epiphenomena, produce synaptic plasticity in cortical neurons and
resonant activity in the corticothalamic loops, particularly during sleep spin-
dles, with the consequence that the inputs of environment are inhibited and the
cerebral cortex is deprived of peripheral signals [23]. The input transitions to
rem also deserves a short commentary. Bennington et al. have proposed that
the need for rem increases exclusively during nrem, thus suggesting a some-
how subservient function of rem [20]. Other authors have postulated long-term
and short-term homeostatic regulation of rem independent of nrem sleep with
an accumulation in the absence of rem during both wk and nrem sleep [22].
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Our data seem to support the first of the hypothesis, in the sense that we did
not found significant modifications of probabilities along the circadian cycle for
going from and to rem sleep (at least in the conditions of this experiment, where
no deprivation or any experimental manipulation of sleep was performed), sug-
gesting that every modification in rem amounts along the recordings are related
to nrem changes. We also found that wkb-related probabilitiy transitions were
not modulated by circadian influences, so that they might also be considered an
intrinsic part of the classic cycle nrem-rem, that maybe should be reclassified
as nrem-rem-wkb cycle.

5 Conclusions

In the mouse model, the application of quantified analysis of state bout durations
in combination with transition probability analysis of sleep stages with discrete-
time Markov chains constitute a powerful method for evaluating the probabilistic
and statistical parameters of wk, nrem and rem sleep mechanisms, and for
extension of sleep disorders. We found a bimodal distribution for duration of
wk bouts (brief and long wk) with a temporal breakpoint of 150 s, having a
differential circadian modulation. Of all state transitions, only those between
long wk and nrem stages are controlled by circadian rhythms, favoring the
hypothesis of the participation of brief wk into nrem-rem intrinsic sleep cycle.
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4. Borbély, A.A.: A two process model of sleep regulation. Hum. Neurobiol. (1982)
5. Phillips, A., Robinson, P.: A quantitative model of sleep-wake dynamics based on

the physiology of the brainstem ascending arousal system. J. Biol. Rhythms 22,
167–179 (2007)

6. Aston-Jones, G., Chen, S., Zhu, Y., Oshinsky, M.L.: A neural circuit for circadian
regulation of arousal. Nat. Neurosci. 4, 732–738 (2001)

7. Spedicato, G.: Markovchain: an R package to easily handle discrete Markov chains.
R package version 0.2 2 (2015)

8. Mochizuki, T., Crocker, A., McCormack, S., Yanagisawa, M., Sakurai, T., Scam-
mell, T.E.: Behavioral state instability in orexin knock-out mice. J. Neurosci. 24,
6291–6300 (2004)

9. Kemp, B., Kamphuisen, H.: Simulation of human hypnograms using a Markov
chain model. Sleep 9, 405–414 (1986)



Circadian Modulation of Sleep-Wake Dynamics 415

10. Kim, J., Lee, J.S., Robinson, P., Jeong, D.U.: Markov analysis of sleep dynamics.
Phys. Rev. Lett. 102, 178104 (2009)

11. Stephenson, R., Famina, S., Caron, A.M., Lim, J.: Statistical properties of sleep-
wake behavior in the rat and their relation to circadian and ultradian phases. Sleep
36, 1377 (2013)

12. Klerman, E.B., Wang, W., Duffy, J.F., Dijk, D.J., Czeisler, C.A., Kronauer, R.E.:
Survival analysis indicates that age-related decline in sleep continuity occurs exclu-
sively during NREM sleep. Neurobiol. Aging 34, 309–318 (2013)

13. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008). ISBN
3-900051-07-0
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{fmgrisalesl,cgcastellanosd,jmartinezv}@unal.edu.co
2 Universidad Autnoma de Manizales, Manizales, Colombia

3 Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

Abstract. The study of the psychiatric disorder denominated Attention-
deficit hyperactivity disorder (ADHD) demands the assessment of spe-
cific behavior, measured and evaluated through biomarkers like the neu-
roimaging that is applied due to the assumed association between with
changes in the structure and function of the ADHD brain. Because of
the provided time resolution, Electroencephalographic (EEG) signals and
derived versions have recently gained increased attention for studying
event-related potentials (ERPs). Moreover, relate to the ADHD diagno-
sis, techniques of EEG/ERP source imaging (ESI) are effective to locate
brain areas related to attention task and analyze spatiotemporal patterns
of the P300 wave. Therefore, with the aim to accurately determine the
spatial location and temporal patterns involved in attention task, there
is a need for implementing an adequate ERP marker able to incorporate
the spatial and temporal prior information to the ESI solution. In this
paper, the influence of the source reconstruction is evaluated on visual
and auditory evoked potentials through an ESI solution, namely, Dynamic
Sparse Coding that is based on physiological motivated spatio-temporal
constraints over the source representation. As a result, the DSC-based
approach improves the characterization of the spatio-temporal dynamics
of the attentional evoked potentials processes, including reduced ampli-
tudes in the P300 components of the ERPs in the ADHD group.

Keywords: ADHD Biomarker · EEG/ERP source imaging · Dynamic
Sparse Coding · P300

1 Introduction

Attention-deficit hyperactivity disorder (ADHD) is a psychiatric disorder char-
acterized by symptoms like inappropriate levels of inattention or lack of focus,
hyperactivity, and impulsivity [1]. ADHD is considered a childhood disorder
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that can persist into adolescence, even in adulthood with symptomatic differ-
ences across the age groups, carrying a high financial cost, familiar and interper-
sonal relationship difficulties, and adverse academic and vocational outcomes.
So, ADHD has become a public health concern, and understanding the biologic
nature of the disorder is a scientific and clinical increasing focus.

By the type of information provided for their implementation, biomarkers
for ADHD can be classified based on the following principles: clinical, biochem-
ical, genetic, proteomic or neuroimaging. This last marker is employed because
ADHD has been related to differences in the structure and function of the brain,
as well as changes in its neurotransmission [2]. Consequently, functional imag-
ing methods and neurophysiological techniques have been used to provide the
ADHD biological foundation, by characterizing spatial and temporal brain acti-
vation patterns related to this disorder. Between neuroimaging techniques, the
functional magnetic resonance imaging (fMRI) has been used in several studies
because of its high spatial resolution [3]. Nevertheless, such method is expensive
and do not offer a good temporal resolution. On the other hand, the Electroen-
cephalography (EEG) and its derivations, as the event-related potentials (ERPs),
which provide high temporal resolution, and low implementation cost compared
to other options, have become in potential techniques for application in ADHD
diagnosis [4]. Specifically, ERPs reflect the phasic activity of cortical neurons
to an internal or external stimulus and provide excellent temporal resolution to
pinpoint when demanding attentional processes occur. By instance, for attention
studies using oddball paradigms, the ERPs are used to analyze the P300, which
is a positive wave that appears around of 300 ms after stimuli presentation. As
the P300 wave only appears when the subject is engaged in the task of detecting
a specific stimulation, its analysis has been widely used to diagnose ADHD [5]. In
turn, children with ADHD have difficulties attending task-related events, which
has been consistently associated with reductions in the P300 wave amplitude.

Furthermore, some works have focused on finding the brain areas related to
attention tasks, to locate an accurate ADHD marker by analyzing spatiotemporal
patterns of the P300 wave. In this regard, EEG/ERP source imaging (ESI) meth-
ods have been employed to examine the location and distribution of the current
sources involved in oddball paradigms, and to elucidate differences between the
activation patterns in control and ADHD subjects [6]. However, reconstruction
of electrophysiological activity in the cortex based on scalp measurements is not
straightforward because of a well known ill-posed inverse problem. This means
that due to the large number of unknown parameters (possible active sources
over the brain cortex), compared to the low number of EEG/ERP electrodes,
the spatial location of the neural sources of the scalp-recorded activity cannot
be conclusively determined, i.e., the inverse problem has no unique solution [7].
Consequently, for accurately determining the spatial location and temporal pat-
terns involved in attention tasks, that could be used as an ADHD marker, a
proper inclusion of spatial and temporal prior information must be included to
solve the ill-posed inverse ESI solution [8].
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In this paper, we reconstruct the brain activity recorded during oddball
experiments, elucidating the generators of visual and auditory evoked potentials,
to gain insights about the relation between the spatial and temporal character-
istics of the P300 related neural activity and the ADHD disorder. For the ESI
solution, we use a Dynamic Sparse Coding (DSC) method previously proposed
in [9], that is based on physiologically motivated spatio-temporal constraints
over the source representation, and it is suited to reconstruct the nonstationary
brain activity, as the case of ERPs. Subsequently, we search significant differ-
ences between ADHD and control groups using statistical analysis. As a result,
we obtain a better characterization of the spatio-temporal dynamics involved in
the attentional evoked potentials processes, including reduced amplitudes in the
P300 components of the ERPs in the ADHD group.

2 Methods

2.1 Visual and Auditory Evoked Potentials

Database Description: The real EEG data used in this study were selected from
30 children aging within ranges from 5 to 16 years, belonging to two socio-cultural
levels (high medium and low medium). The sample was randomly selected from
preschool, elementary, and secondary courses at private and public schools in
the city of Manizales. Also, written permission was requested from the child’s
parents for participation in the research.

The following exclusion criteria were used: mental retardation, neurological
antecedents (history of head trauma, epilepsy, and related) and psychiatric (psy-
chiatric hospitalizations history, autism, and related) of importance according to
the historical data supplied by the children’s parents. Besides, the Neuropsycho-
logical Assessment of Children (NAC) was applied to each child in two sessions
of about an hour and a half. Sections of NAC were randomly altered to moni-
tor the effects of fatigue and order in the application of the subtests. Also, the
Wechsler Intelligence Scale for Children was applied, to calculate the validity of
the NAC. Finally, experts rated the results in different cognitive and academic
abilities and then a systematized database was created, including the results of
children in the various tests. As a result, twenty children in the ADHD group
and ten children in the control group were grouped for further analysis.

Experimental Paradigm of Cognitive Evoked Potentials: After the neuropsycho-
logical test, we proceeded to take EEG data from all participants using an odd-
ball paradigm, consisting of two stages, the first with visual stimuli and the
second with auditory stimuli. In each condition, the stimulus lasts 130 ms, while
the waiting time between two consecutive stimuli is 1 s. Within each stage, the
subjects had to pay attention to a pre-defined (target) stimulus and count their
occurrence, ignoring the presentation of other stimuli (non-targets). The non-
target stimulus was presented by 80% of the trials, while the target occurred
for the 20% remaining, resulting in approximately 160 non-target stimuli and 40
target stimuli.
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EEG recordings were taken symmetrically using 19 electrodes with standard
international system positions 10–20. Data were sub-sampled at 250 Hz and seg-
mented in 1 s epochs. The resulting epochs were averaged separately for each
subject, stimulation condition targets, and non-targets.

2.2 Source Space Reconstruction

With the purpose of locating the visual and auditory evoked potentials-related
brain activity, we consider the Dynamic Sparse Coding (DSC). The principal
idea behind this method is to estimate the cortical source activity, encouraging
spatial sparsity and temporal homogeneity. For this, we assume the following
linear model that represents the electromagnetic field magnitude measured by
the scalp [10]: Y = LJ + Ξ,, where Y ∈ R

C × T is the EEG data measured by
C ∈ N sensors at T ∈ N time samples, L ∈ R

C × D is the lead field matrix that
represents the relationship between D distributed sources inside the brain and
the sensor EEG activity, J ∈ R

D × T is the cortical source activity, and Ξ ∈
R

C × T is the observation noise measured with spatial covariance QΞ ∈ R
C × C .

Under this model, the maximum a-posteriori (MAP) estimate of J can be
determined by minimizing a particular cost function [11]. In the case of DSC,
the current density is expressed as a linear combination of locally smooth, but
confined spatial basis function: J = ΦH,, where Φs ∈ R

D × S holds S spa-
tial basis functions, and H ∈ R

S × T is a matrix of weighting coefficients to
be estimated. In order to enforce sparsity and temporal homogeneity, two reg-
ularization penalties are introduced so that the cost function of DSC takes the
form:

̂H = argmin
H

{||Y − LΦH||2F + λs||H||1 + λt

∑

t∈T−1

||ht+1 − ht||1}, (1)

where λs ∈ R
+ and λt ∈ R

+ are the spatial and temporal regularization
parameters, respectively, and vector ht ∈ R

C × 1 holds the t-th column of H.
Notation || · ||p stands for the Lp-norm. Finally, the estimation of the neural
activity is accomplished by the following linear mapping: J = Φ̂H.

The DSC method considered in this work is applied to the ERPs obtained
from each subject and experimental condition, namely visual target, visual non-
target, auditory target and auditory non-target stimuli, as follows:

Head Model Implementation: With the aim of modeling the source space, we
employ a tessellated surface in the gray-white matter interface with D = 8196
vertices (i.e., the number of available source locations), having the source orien-
tations fixed orthogonally to the surface. Also, the lead fields are computed using
a standardized volume conductor model (specifically, we employ the boundary
element method) with a mean distance between neighboring vertices adjusted
to 5 mm. The employed spatial basis Φ.
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Statistical Analysis: Once the source activity is estimated, the dipole-wise source
power is calculated and averaged in the time range from 227 to 383 ms, which cor-
responds to the ERP P300 component [12]. Afterward, we compare the response
to target stimuli between groups (ADHD vs. Control). In this regard, the power
difference is evaluated between two cases: visual target ADHD group vs. visual
target control group, and auditory target ADHD group vs auditory target con-
trol group. The comparison is carried out using a two-sided pairwise Student-t
test. Significant differences in power are assumed for brain areas achieving t-
scores with absolute values greater than 2.0639, corresponding to alpha levels
p < 0.05, uncorrected.

3 Results

Figure 1 shows the sensor-space data, as well as the results of the source recon-
struction using DSC for the visual (Fig. 1(a) to (d)) and auditory (Fig. 1(e) to
(h)) evoked potentials elicited by the target stimuli for representative subjects.
Likewise, Fig. 2 shows the corresponding results for the non target stimuli. Pan-
els ((a) and (e)) show the trial-wise stimulus-locked EEG time series, with red
vertical lines at 227 ms and 383 ms. In panels ((b) and (f)) the average scalp
topography from 227 ms to 383 ms is shown. Panels ((c) and (g)) depict the
time series of the reconstructed activity, and panels ((d) and (h)) show the
corresponding source reconstruction in the same time range. The time ranges
from 227 ms to 383 ms is chosen since it corresponds to the P300 component of
ERP. For both visual and auditory stimulation, DSC localizes components of the
P300 in the prefrontal cortex coinciding with studies suggesting that deficits or
dysregulation in subregions of the prefrontal cortex may carry to the spectrum
of ADHD symptoms [13]. Namely, the dorsolateral prefrontal cortex regulates
attention, and its impairment may lead to symptoms of inattention and distrac-
tion. Furthermore, the right inferior prefrontal cortex regulates behavior, and its
impairment may carry to symptoms of impulsivity and hyperactivity. Moreover,
the ventromedial prefrontal cortex regulates emotions responses. Particularly, in
the case of visual stimulation, active areas appear in the occipital cortex neigh-
borhood, being consistent with the stimulation produced. In the case of auditory
stimulation, there are active areas near to the superior parietal lobule, which is
associated with working and visuospatial memory. This finding coincides with
types of ADHD and its association with spatial working memory deficits [14].
Besides, there are minimum actives areas in the temporal lobe associated with
the stimulus.

In all cases, the reconstructed time series draws a clear representation of the
dynamics found in the original ERP responses, and the cortical reconstruction
shows actives areas proximate to the active zones in the scalp map. Generally, we
observe that target stimuli lead to more local regions of estimated brain activity,
while non-target stimuli the activity seems to be more dispersed.

Statistical Analysis: Figure 3 shows the results of the dipole-wise Student-t test
for differences in power between groups (ADHD vs. Control) for visual and
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Visual stimuli, target (Subject 8).

   0  200  400  600  800 1000
−17

  0

 17

Time (ms)

A
m

p.
 (
µ 

V
)

(a) Sensor space.

µ V

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Scalp map.

   0  200  400  600  800 1000
−4

 0

 4

Time (ms)

A
m

p.
 (

A
)

(c) Source space. (d) Cortical reconstruction.

Auditory stimuli, target (Subject 3).

   0  200  400  600  800 1000
−7

 0

11

Time (ms)

A
m

p.
 (
µ 

V
)

(e) Sensor space.

µ V

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) Scalp map.

   0  200  400  600  800 1000
−3

 0

 2

Time (ms)

A
m

p.
 (

A
)

(g) Source space. (h) Cortical reconstruction.

Fig. 1. Sensor-space EEG data and DSC source reconstruction of visual and auditory
evoked potentials elicited by target stimuli for representative subjects.

auditory target stimuli, respectively. Here, dark blue color denotes higher ampli-
tudes in the P300 for the ADHD group, while dark red color denotes higher
activity in the control group. In both cases, significant differences (red areas of
higher intensity) are found nearby to the ventral and dorsal attention networks.
This finding is consistent with studies that have found reduced activity in these
attention networks in children with ADHD [15]. Particularly, with the visual
stimuli, there are active areas near to the posterior cingulate gyrus associated
with topographic and topokinetic memory. Moreover, this area is related to the
high-demand visual processing. The posterior inferior temporal gyrus (associated
with the visual fixation and sustained attention to color and shape) also presents
significant differences between the control and ADHD groups under the visual
stimulation. For the auditory stimuli, we found actives areas in the gyrus rectus
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Visual stimuli, non-target (Subject 22).
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Auditory stimuli, non-target (Subject 23).
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Fig. 2. Sensor-space EEG data and DSC source reconstruction of visual and auditory
evoked potentials elicited by non-target stimuli for representative subjects.

involved in auditory non-speech processing, the temporal pole that response
to auditory stimulation, and the middle temporal gyrus related to processing
complex sounds. Also, it is noted that in both conditions of stimulation, the sig-
nificant differences are given only for positive values. This situation means that
the amplitude of the activity related to P300 has a greater amplitude in control
subjects than in ADHD subjects. In both stimuli, these differences are seen in
the network of frontoparietal attention. The results are consistent with recent
studies that show reductions in the amplitude of P300 in areas surrounding this
region in children with ADHD.
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Fig. 3. Examples of t-score maps computed for differences in dipole-wise power for
ERPs analysis with visual and auditory stimuli between groups (ADHD vs. Control).
Views: Outside right (Or), Outside left (Ol), Top (To), Bottom (Bo), Inside right (Ir)
and Inside left (Il). (Color figure online)

4 Discussion and Concluding Remarks

In this work, we have analyzed differences in the neural generators of the P300
component during an oddball task in control and ADHD children. The source
estimation is carried out through a regularized method for neural activity recon-
struction named Dynamic Sparse Coding (DSC). This method explicitly includes
both (space and time) constraints on the solution of the EEG inverse problem to
reach a suitable trade-off between the corresponding space and time resolutions.
As a result, DSC improves the estimation of the active sources with powerful
non-stationary brain activity like ERPs, and it describes in a suitable way the
space-time structure of the visual and auditory stimuli responses.

The active areas under the oddball paradigm are highly related to the used
stimuli. For instance, more active areas are found in the neighborhood of the
occipital cortex in visual stimuli, and the temporal lobe in the auditory stim-
uli. Furthermore, we found actives areas near to zones specialized for regulating
attention, behavior, and emotions, and near to zones with functions related to
memory. All these functions are related to the oddball paradigm, and therefore
with the ERPs. Finally, the results show significant differences near to the ven-
tral and dorsal attention networks. These differences show, for both types of
simulation, greater amplitudes in the control group than in the ADHD group.
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As the future work, we plan to find the networks related to each of the com-
ponents P3a and P3b of the P300 differentiated on the state-of-the-art literature.
Also, we would like to investigate whether, in addition to the reduced amplitudes
in the P300 component, the connections related to the attention processes are
also affected.
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jmartinezv@unal.edu.co
2 SISTEMIC, Facultad de Ingenieŕıa, Universidad de Antioquia, Medelĺın, Colombia

3 Medical Image and Signal Processing Group, Ghent University, IBBT, Ghent,
Belgium

4 Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
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Abstract. Electroencephalographic (EEG) data provide a direct, non-
invasive measurement of neural brain activity. Nevertheless, the common
assumption of EEG stationarity (i.e., time-invariant process) neglects
information about the underlying neural networks connectivity. We
present an approach for finding networks of brain regions, which are
connected by effective associations varying over time (effective connec-
tivity). Aiming to improve the performed connectivity analysis, brain
source activity is initially reconstructed from EEG recordings, apply-
ing an inverse EEG solution with enhanced spatial resolution. Further,
a time-variant effective connectivity measure is used to investigate the
information flow over some predefined regions of interest. For testing pur-
poses, validation is carried out simulated and real EEG data, promoting
non-stationary dynamics. The obtained results of performance prove that
inherent interpretability provided by the time-variant processes can be
useful to describe the underlying neural networks flow.

1 Introduction

To date, the importance of measuring connectivity between spatially separate,
but functionally related brain regions has become of a big interest in the study
of human neural functions. Though most of the related work is designed for
functional magnetic resonance imaging, Electroencephalography (EEG), which
non-invasively monitors the electrical brain activity, is increasingly used because
of the provided high temporal resolution at a low cost. Moreover, EEG data
analysis allows exploring the dynamics and adaptability of different cognitive
processes, yielding reliable connectivity estimates between the brain regions [1].

Generally speaking, EEG source connectivity analysis comprises two stages:
(i) EEG signals are mapped into a source space, employing a given inversion
solution method, (ii) modeling of spatio-temporal dynamics of activation pat-
terns is performed using the predefined Regions of Interest (ROI) set [7]. In the
c© Springer International Publishing AG 2017
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first stage, the accuracy of brain mapping profoundly limits the interpretability
of the connectivity measurements [4]. Also, the resulted connectivity measure
tends to show fake connections among regions, if the mapped brain regions are
not the true brain activity generators. Another aspect to consider is the static
nature of most inversion solution methods that may lead to inaccurate temporal
patterns of the mapped activity generators, resulting in the estimation of false
connections. In the second stage, the functional or effective connections between
brain regions, which mainly differ in the inclusion (effective) or not (functional)
of the information flow direction, can be investigated by applying measurements
of connectivity or information flow to the regions of interest [5]. Specifically,
Effective connectivity is defined as the influence that one neural system exerts
over another, either directly or indirectly. In contrast to functional connectiv-
ity, that is, the temporal correlations between remote neurophysiology events,
the effective connectivity describes the direction of interactions between brain
regions. Consequently, several measures have been proposed, commonly includ-
ing space, time, and frequency domains [3]. Although most of the connectivity
approaches assume that connectivity patterns remain constant at the time, there
is growing evidence that brain dynamics are non-stationary [9]. As a result, there
is a clear need to quantify dynamic changes in the network structure through
the time [6].

With the aim to improve identification of nonstationary brain networks, this
work comprises two processing stages: Initially, brain activity is represented as
a set of small spatial basis functions or patches, enforcing a compact and sparse
support through the well-known approach (termed Multiple Sparse Priors). Fur-
ther, some regions of interest are selected based on the recovered sources with
the highest energy. Then, to accurately encode the temporal dynamics of under-
lying neural networks, a time variant effective connectivity measure is employed,
quantifying the information flow changes over the selected regions through time.
Obtained results on simulated and real EEG databases show that the proposed
approach enables identifying with increased accuracy the brain activity informa-
tion flow when non-stationary data is analyzed.

2 Methods

2.1 Brain Source Estimation

For estimating the brain activity, we consider the following distributed solution:

Y = LJ + Ξ, (1)

where Y ∈ R
C ×T is the EEG data measured by C sensors at T time sam-

ples, J ∈ R
D ×T is the amplitude of the D current dipoles in each three-

dimensional dimension distributed through cortical surface, and L ∈ R
C ×D,

commonly named lead field matrix, is the gain matrix representing the relation-
ship between sources and EEG data. Besides, EEG measurements are assumed
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to be affected by zero mean Gaussian noise Ξ ∈ R
C ×T , having a matrix covari-

ance QΞ =λΞIC , where IC ∈ R
C ×C is an identity matrix, and λΞ ∈ R

+ is
the noise variance. Under these constraints, the brain source activity can be
estimated as:

̂J = QL�(QΞ + LQL�)−1Y , (2)

where Q ∈ R
D ×D stands for the source covariance, constructed as a weighted

sum of P available spatial solutions (or patches) {Qp, p= 1, . . . , P}, each regard-
ing one potentially activated cortex region weighted by its respective hyperpa-
rameter λp ∈ R

+, as follows (termed Multiple Sparse Priors – MSP) [2]:

Q =
∑

p∈P

exp(λp)Qp.

In practice, optimization of noise variance and source covariance hyperpara-
meters {λΞ , λp} is done using standard variational schemes as detailed in [8].

3 Time-Varying Effective Connectivity

In order to estimate the causal relation among all current dipoles, a time-variant
connectivity measure, namely, full frequency adaptive directed transfer function
(ffADTF), can be calculated from the coefficients of a Time-variant Autoregres-
sive (TVAR) model, as proposed in [5]:

ρij(t) =

∑f2
f=f1

|Hij(f, t)|2
∑D

d=1

∑f2
f ′=f1

|Hid(f ′, t)|2
,

where Hij(f, t) is the time-variant transfer matrix of the system, that describes
the information flow from source j to source i, ∀i, j = 1, . . .,D, at frequency f
and time t. As Hij(f, t) may increase when there is no power in the spectrum
of dipole j at that frequency and time, each term should be weighted by the
autospectrum of the sending source. Thus, the modified effective connectivity
measure, or spectrum-weighted adaptive directed transfer function (swADTF), is
computed as follows:

�ij(t) =

∑f2
f=f1

|Hij(f, t)|2 ∑D
d=1 |Hjd(f, t)|2

∑D
d′=1

∑f2
f ′=f1

|Hid′(f ′, t)|2 ∑D
d′′=1 |Hd′d′′(f ′, t)|2

.

As a result, the swADTF value allows analyzing the causal relation among
all signals at a predefined frequency band over time.

4 Experimental Set-Up

4.1 Validation on Simulated Activity

Simulated Data Description. The simulation is designed to test whether the
swADTF measure can describe the directional flow that occurs during the onset
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of an evoked activity. Thus, two active dipoles are simulated that promote a
similar behavior to an evoked-response potential, generating the corresponding
non-stationary time series by real Morlet wavelets of 1.5 s length, sampled at
200 Hz. The random central frequency of the Morlet wavelet is sampled from
a Gaussian distribution with a mean of 9 Hz and standard deviation of 2 Hz.
The stimulus started at t = 0 and the activity propagates from simulated active
dipole #1 to dipole #2 at t = 0.1 s. Besides, the background noise of the dipole
signals is set to have a 1/f spectral behavior. Therefore, each EEG is calculated
by multiplying the simulated brain activity by the lead field matrix (see Eq. (1)).

For the source space modeling, we employ a tessellated surface of the gray-
white matter interface with 8196 vertices (suitable source placements), having
orientations fixed orthogonally to the surface. Also, the lead fields are computed
using a volume conductor (calculated by boundary element method) with a mean
distance between neighboring vertices adjusted to 5 mm. Thus, a synthetic EEG
is generated under 128-channels configuration.

Three experimental setups, holding 100 simulations each, are performed to
test the sensibility to the noise of the proposed connectivity based approach.
To this end, a measurement noise is added to get signal-to-noise-ratio (SNR)
levels of 0, 5, 20 dB. Location of active dipoles is randomly selected for each
simulation. Figure 1 shows a schematic representation of the proposed testing
for the simulated EEG data.

Fig. 1. Simulation set-up. Left panel: source level activity that spreads from the blue
to the green location (time series of the simulated activity is shown with the same
colors). The entire source activity is depicted. Right panel: generated sensor level (EEG)
activity. (Color figure online)

Source Level Effective Connectivity Analysis. Neural activity reconstruction is
obtained by the MSP approach, using a greedy search optimization method.
Then, to avoid the computation of D×D connectivity values, the regions of
interest (ROIs) are determined. To this end, a region with approximated ratio of
20 mm in the cortical surface around the dipoles with the highest energy is drawn.
Consequently, the closest active dipoles are defined as the same ROI, avoiding
spurious connectivity. Afterward, the averaged time series of each ROI and the
connectivity measure for all the regions are extracted. Calculation the involved
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connectivity measure is performed under the following parameters: order of
the time variant auto-regression model is set at p = 15, update coefficient of
the Kalman filter is fixed as 0.001, and the smoother parameter is empirically
adjusted to 100. Also, the connectivity is computed within the frequency interval,
ranging from 0 to 30 Hz.

Due to the swADTF value is a time-variant measure, the averaged value over
time is estimated to compare among several connectivity values directly. Besides,
we describe the directional flow of the brain activity by the first two ROIs that
have the highest averaged swADTF value, and that are assumed as the source
and sink regions, respectively. For the subsequent analysis, the remaining ROIs
are discarded. For the sake of comparison, the source and sink regions are also
selected based on the energy of the reconstructed activity over each ROI (first
two regions with the highest energy).

Results of Assessed Performance. As the assessment measure, the minimum
Euclidean distance is computed between all dipoles of the selected ROIs and
the simulated source and sink dipoles. Also, we employ as performance measure
the percentage of times when the real connectivity direction is correct. Table 1
shows the error distances estimated for SNR = 0, 5, and 20 dB. As seen, the
mean localization error of the connectivity-based approach is consistently lower
that reduces when the SNR value increases. In the same way, the proposed
method reproduces the connectivity direction in up to 88% of the times, unlike
the energy-based approach that only obtain an accuracy of 50%.

Table 1. Connectivity direction error and mean localization error for different signal
to noise ratios, simulated with both the proposed connectivity based approach (con)
and the energy measure (en).

SNR Acc (con)[%] Acc (en)[%] Loc. error (con) mm Loc. error (en) mm

0 64 46 24.66 30.18

5 83 49 9.83 30.86

20 88 54 10.48 26.4

Figure 2(a) presents the localization error for each of the two simulated
sources assessed by both tested algorithms: connectivity (con), and energy based
(en) for a fixed SNR = 5. As can be seen, the variation among simulations is sig-
nificantly higher with the energy-based algorithm. This result is expected due
to the different accuracy in connectivity direction provided by each algorithm.
Note that the solution is robust to both kinds of simulated noise conditions,
namely, neural background activity and sensor level activity, as shown by the
error box-plot in Fig. 2(a), fixing SNR = 20.
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Fig. 2. Error box-plot showing the euclidean distance between the first active source
and its estimation (d1), and the second active source and its estimation (d2), for both
the connectivity measure (con) and the energy based measure (en), in 100 experiments
with SNR 5 and 20 dB respectively.

Fig. 3. Connectivity map obtained over the EEG brain image of the faces condition
from the faces-scrambled paradigm. Note how the connectivity does not follow the
higher energy sources and instead focused the temporal lobe, suggesting expectation
of recognizing the face. (Color figure online)
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4.2 Validation on Faces-Scrambled Paradigm Identification

Database Description. This EEG data collection was acquired from a subject
who participated in a multimodal study of face perception1. The data were
recorded while making symmetry judgments of faces and scrambled faces. Either
type of faces was presented for 600 ms, every 3600 ms while data were acquired on
a 128-channel Active-Two system, sampled at 2048 Hz. After artifact rejection,
the epochs were baseline-corrected from −200 ms to 0 ms, averaged over each
condition and down-sampled to 200 Hz. For modeling of the source space, the
same tessellated surface with 8196 vertices, and the same model, calculated by
boundary element method, was applied to build the lead fields.

Results for Faces Conditions. As observed in Fig. 3 that displays the source
reconstruction for faces condition of the faces-scrambled paradigm, the proposed
methodology managed to avoid the high energy dipoles in the fusiform gyrus and
focused in the frontal cortex (red lines outline the connectivity assessed). Due
to the attitude of expectancy for recognizing each face, this behavior can be
anticipated since the face condition study suggests that there is a controlled
response besides the perceptual one.

5 Discussion and Concluding Remarks

In this work, we propose a methodology for measuring the nonstationary neural
activity flow in the case of evoked response potentials. To this end, brain activity
extracts from EEG recordings by solving the Multiple-Sparse-Priors inverse solu-
tion, and then, a time variant effective connectivity is used for analysis in more
detail the information flow over some predefined regions of interest. However,
based on the results obtained from simulated and real EEG data, the following
aspects should be considered for implementation of the proposed methodology:

– Due to the fact that the connectivity exhibits a high sensibility to the source
reconstruction, the MSP-based source reconstruction is incorporated with
the purpose of avoiding loss of quality of the performed accuracy. In fact, the
higher the demanded localization quality of spatial-temporal patterns – the
larger the needed accuracy provided by the source reconstruction solution.

– For the sake of validation, the proposed approach is contrasted with an energy
based strategy, yielding a connectivity direction that is enhanced up to 88%
of the times. Also, the source localization is improved, reaching a localization
error of approximately 10 mm for the values SNR = 5 and 20. Regarding the
noise rejection, the proposed approach shows a stable behavior.

– The considered nonstationarity of the underlying networks in the EEG record-
ings is clearly affecting the performance achieved by the proposed and com-
parison approaches. Thus, Table 1 shows that the energy-based methodol-
ogy (that does not take connectivity into account) fails in detecting the real

1 freely available at http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/.

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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connectivity flow accurately. Consequently, even the brain activity sources
have been rightly identified by the mapping algorithm, the temporal dynamic
analysis must be incorporated to improve the activity flow detection.

– Since the location accuracy is improved, a better interpretability of results
may be supplied. Thus, in the case of tested faces-scrambled database, the
connectivity avoids the hippocampus and points out to the frontal lobe, sug-
gesting that there is a controlled response due to the attitude of expectancy
for recognizing each face.

As a concluding remark, the performed validation on real and simulated data
prove that the proposed approach enables identification of the information flow
over regions of interest drawn over the brain cortex. To this end, we discuss a
more detailed analysis of the temporal patterns, extracted from EEG recordings,
in a predefined frequency band. Consequently, even all experiments are carried
out for the case of evoked response potentials, the methodology can be readily
extrapolated to other types of brain dynamics, such as epileptic activity. Also,
the inclusion of a brain mapping method that encourages a set of temporal
constraints will be considered as future work, attempting to improve the accuracy
of the connectivity analysis.

Acknowledgments. This work was supported by the research project 11974454838
founded by COLCIENCIAS.
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Abstract. Brain-computer Interfaces aims to assess brain activity pat-
terns by analyzing multichannel time series extracted from electrical
recordings, as a result of neuron interactions, e.g., Electroencephalogra-
phy (EEG) that is a record of the neuronal electrical activity measured in
the cerebral cortex having a high temporal resolution. Generally, BCI sys-
tems are based on the cognitive neuroscience paradigm termed as Motor
Imagery (brain activity patterns of the imagination of a motor action,
e.g., the imagination of hand movements). Nevertheless, the designing
an MI-based BCI system requires an appropriate EEG data analysis
to reach the needed performance for real-world BCI applications. Par-
ticularly, the selection of the active segment or the segment with the
informative signals related to a determinate MI task is determinant for
the possible performance. Hence, to select the window signal stimulus-
related, detecting temporal changes in data are necessary to understand
how a cognitive process unfolds in response to a stimulus. For this pur-
pose, a non-stationary degree estimation based on the first Statistical
moments (mean and covariance) is assessed. The results show that the
changes in the non-stationary measure are directly related to executed
stimulus during the EEG MI recording. The findings could be used to
select the active analysis window and consequently, improving the MI
classification tasks.

Keywords: EEG · Motor Imagery · Non-stationarity measure · BCI

1 Introduction

The EEG signal is a record of the neuronal electrical activity along of scalp mea-
suring the currents that flow during synaptic neurons excitations in the cerebral
cortex. Due to high temporal resolution present on the EEG recordings, they
have been useful for studying the brain dynamics and used in several applications

c© Springer International Publishing AG 2017
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such as testing afferent pathways (evoked potentials), investigate epilepsy and
locating the seizure origin, game controlling, Brain Computer Interfaces (BCI)
applications, among others [1,2]. The main BCI assumption is that the neural
activity generated by the brain is independent of its normal output pathways of
peripheral nerve techniques. Thus, the electrical activity of brain function might
provide a new non-muscular channel for sending messages and commands to the
external world. Usually, BCI systems are based on the cognitive neuroscience
paradigm termed as Motor Imagery (MI), that is, the brain activity patterns of
the imagination of a motor action, e.g., imagination of the hand movements [3,4].

To date, EEG-based BCI has received increased attention and enlarge the
number of applications and uses, mainly due to the development of both portable
EEG acquisition systems and dry electrodes which not need conductive gel for
the preparation of EEG recording. However, the designing an MI-based BCI
system requires an appropriate EEG data analysis to reach the required perfor-
mance for real-world BCI applications [5]. Particularly, the selection of the active
segment or the segment with the informative signals related to a determinate
MI task is determinant for the possible performance as is shown in [6]. It allows
selecting just the interesting brain activity stimulus-related without information
that would be unrelated to brain responses decreasing the classification perfor-
mance. Thus, to select the window signal stimulus-related, detecting temporal
changes in data are necessary to understand how a cognitive process unfolds in
response to a stimulus.

We aim to detect EEG dynamic changes due to stimulus-related activity in
MI recordings, a non-stationary degree estimation based on the first Statistical
moments (mean and covariance) is assessed. The obtained results experimentally
show that the changes in the non-stationary measure are directly related to
executed stimulus during the EEG MI recording. Besides, the findings could
be used to select the active analysis window and consequently, improving the
MI classification tasks. The paper is organized as follow: Sect. 2 describes the
theoretical background of the proposed approach. Section 3 provides an overview
of the experiments and results from tested methods. Lastly, Sect. 4, outlines the
work discussion, conclusions and future work.

2 Non-stationary Degree Estimation

Let a time series X = {x(t)∈R
D; t = 1, . . . , T}, with mean μ̄ ∈ R

D and covari-
ance Σ̄ ∈ R

D × D computed as:

μ̄ = ET {x(t)} , (1)

Σ̄ = ET

{
x(t)x(t)�

}
, (2)

being ET {x(t)} = 1
|T |

∫
T x(t)dt the averaging operator and T ⊂ R the analy-

sis interval.
By extracting M overlapped segments from the time series using a win-

dow W ⊂ T (|W | = L and L � |T |), we obtain a set of segments
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X = {Xm ∈ R
L × D : m = 1, . . . , M} with Xm = {x(t) : t ∈ [(m − 1)λ + 1,

(m− 1)λ+L]} where λ ∈ R
+ is the window overlap. Besides, the corresponding

means and covariance values of the segments build the sets U = {μm ∈ R
D :

m = 1, . . . ,M} and S = {Σm ∈ R
D × D : m = 1, . . . ,M}.

Then, the time series is said to be second order stationary if its first two
moments remain constant over the time, that is, for all t, τ ∈ R the following
conditions hold

ET {x(t)} = EW {x(t + τ)} , (3)

ET

{
x(t)x(t)�

}
= EW

{
x(t + τ)x(t + τ)�}

, (4)

Since above conditions are strongly restrictive, we propose to account for the
temporal changes in the time series X by comparing each segment Xm and the
whole series X using the Kullback-Leibler divergence (DKL). Such a divergence
is a measure of dissimilarity between probability distributions P and Q defined
as DKL(P‖Q) =

∑
i P (i) log

(
P (i)
Q(i)

)
. In this work, we consider the analytical

expression of DKL for two Gaussian distributions, since such a distribution is
the maximum-entropy one consistent with the moments specified in (1) and (2),
besides it holds the least restrictive distributional assumptions [7]. It is worth
noting that measuring DKL using the moments of two Gaussian distributions
implies that means and covariances encode the non-stationarity, not that data are
normally distributed [8]. The divergence between Xm and X is then defined as:

ξm = DKL

{N (μm,Σm),N (μ̄, Σ̄)
}

, (5)

yielding to the following analytically simplified non-stationarity measure [9],

ξm = Tr

{{μmμ�
m + 2ΣmΣ̄Σm} − μ̄μ̄� − 2Σ̄

}
,

where Tr{·} stands for the trace operator. Thus, widely varying values of ξm
indicate less stationary time series along the time domain.

3 Experiments and Results

3.1 EEG Database

The experimental test was developed using the well-known EEG Motor Imagery
(MI) database Dataset IIIa provided by Laboratory of Brain-Computer Inter-
faces (BCI-Lab) from Graz University of Technology1. The database consists of
EEG signals recorded from three subjects while were sitting in a comfortable
chair in front of a computer screen. From each subject, the recordings were mea-
sured at 60 electrode positions, using the left mastoid for reference and the right
mastoid as ground. The EEG signals were sampled at 250 Hz, and lastly, filtered
between 1 and 50 Hz with a Notch filter on. For this data set, the cue-based
BCI paradigm consisted of four different MI task, namely the imagination of
1 http://bbci.de/competition/iii.

http://bbci.de/competition/iii


438 L.F. Velasquez-Martinez et al.

movement of the left hand (class 1 - C1), right hand (class 2 - C2), both feet
(class 3 - C3), and tongue (class 4 - C4). Particularly, the experiment included
several runs, at least 6, with 30 trials each-each. As is shown in Fig. 1, after
a trial begun, in the first 2 s was presented a blank screen. Then, an acoustic
stimulus was performed at 2 s, indicating the beginning of the trial and a cross
+ was displayed between 2–3 s. In addition, at 3 s the cue was shown as an arrow
to the left, right, up or down for 1 s indicating to imagine a left hand, right hand,
tongue or foot movement, respectively, until the cross disappeared at 7 s. Each
of the 4 cues was displayed 10 times within each run in a randomized order.

Fig. 1. Left: EEG electrode positions. Right: trial timing of the motor imagery data-
base (Cue MI: left hand, right hand, feet, and tongue.)

3.2 Parameters Setting

For the database, a set of EEG signals Ψ = {X(r) : r = 1, . . . , R} with
X(r) ∈ R

C×T was acquired for each subject going under evaluation, being
R = 30 trials, C = 60 channels, and T = 1750 time samples. For illustrative
purposes, in this work, all the analysis are presented for the third subject (S3).
According to [10,11] the signals are filtered between 8–30 Hz using a Butterworth
filter (order 5) to take out for the concrete information related to MI activities,
particularly, both the μ (8–13 Hz) and β (13-30 Hz) bands (rhythms) are widely-
known for contributing the most to the motor activity classification, because
these rhythms are associated with those cortical areas directly connected to the
brain’s normal motor output channels.

The non-stationary measure ξrm is computed by each EEG trial (Xr). How-
ever, the analysis is developed in two ways: (i) ξrm is performed considering
the trial as a multivariate signal Xr ∈ R

60×1750 where the estimation of means
and covariances will be μ̄ ∈ R

60 and Σ̄ ∈ R
60×60 and consequently μ ∈ R

60 and
Σ ∈ R

60×60. (ii) We considerate a univariate signal Xr ∈ R
1750 for the ξrm eval-

uation, by mean of selecting an interesting channel, as a result, the empirical
computation of both means and covariances will be μ̄, Σ̄, μ,Σ ∈ R. Furthermore,
the signal is windowed with 90% of overlap, obtaining M = 283 overlapped seg-
ments. Based on the same band of interest and the Nyquist theorem, the segment
length value L = 60 needed during calculation was adjusted as L ≥ 2fm, being
fm = 30 Hz the biggest considered frequency. Finally, we obtain for each trial
a ξr = {ξrm : m = 1, . . . , 283} containing the estimated non-stationary measures
for each window. Computation of the non-stationary index ξrm is showed in
details in Algorithm 1.
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Algorithm 1. – ξr computation
Inputs: A EEG trial Xr

Outputs: ξr = {ξrm : m = 1, . . . , 283}
Computing both empirical μ̄ and Σ̄ over trial

Choosing multivariate or univariate analysis
Extracting the set X of overlapped M segments

for <m = 1 : 283>
Computing both empirical μm and Σm over each Xm

ξrm = Tr

{{μmμ�
m + 2ΣmΣ̄Σm} − μ̄μ̄� − 2Σ̄

}

end

Fig. 2. Multivariate analysis by class. (a) ξm computed using raw data, (b) ξm com-
puted using filtered signals (8–30Hz), (−C1, −C2, −C3 and −C4). (c) Estimated
p − values by class.
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Fig. 3. Non-stationary measure ξrm by channels and classes. Rows: Representing the
classes Cl1, Cl2, Cl3, and Cl4, consecutively. (Color figure online)Columns: Left: ξrm
estimated over MI paradigm related channels, −C3, −Cz, −C4. Rigth: Non-stationary
measure ξ computed over MI paradigm non-related channels −Ch1,−Ch46, −Ch60.
(Color figure online)
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Additionally, with the purpose of assessing the distribution differences
between non-stationary measures ξrm a two-sample t-test is carry out (F{·}),
where the obtained p − values will be ρ = F (ξn, ξm) ∈ [0, 1] being ξm = {ξrm :
r = 1, . . . , 30}, and P = {ρnm : n,m = 1, . . . , 283}.

3.3 Obtained Results

Figure 2 shows the achieved results for the multivariate analysis. Figures 2a and b
present the mean and standard deviation values of the ξm computed for both, raw
data in Fig. 2a and filtered signals in Fig. 2b. Moreover, the obtained p − values
for the filtered data in P by class from the assessed two-sample t-test are showed
in Fig. 2c.

The univariate analysis results are shown in Fig. 3. The Non-stationary mea-
sure assessing are presented by channels and classes. Each row represents one
class from C1, C2, C3, and C4, consecutively. The columns show the obtained
results between the non-stationary measure estimated in both, MI paradigm
related channels ChC3, ChCz, and ChC4 (left : Figs. 3a, c, e, g) and MI para-
digm non-related channels Ch1, Ch46, and Ch60 (right : Figs. 3b, d, f, h). For all
non-stationary measure figures the doted red lines indicate the time markers for
the stimulus, accordingly, at t = 2 s a beep and a cross are executed, at t = 3 s
the cue is shown by 1 s and at t = 4 s a cross is shown newly until the trial is
over.

4 Discussion and Concluding Remarks

According to the considered window, w for the non-stationary measure ξrm esti-
mation, the length L = 60 was chosen taking into account the maximum fre-
quency of analysis. However, the overlap directly influences on the smoothness
non-stationary wave related to the time resolution changes of this measure.

On the other hand, from the multivariate analysis in Fig. 2, we could see
that the measure computed using the raw data Fig. 2a, in general, has high
values of non-stationary for all time comparatively with the measure estimated
using the filtered data in Fig. 2b. However, there are some high values shown
in Fig. 2a for all classes between t = 3 s and t = 4 s (time where the cue is
presented) that are removed after the filtering process as is shown in Fig. 2b. This
information, that is more non-stationary could be related to brain process due
to they are not linked to MI tasks, e.g. θ (4–8 Hz) band may occur in emotional
or cognitive states [12] or γ (26–44 Hz) band that modulates perception and
consciousness [13]. Particularly, movement or preparation for movement typically
leads to decreasing activity of μ and β rhythms on the brain side contralateral
to the movement.

In addition, from the obtained p − values for the filtered data (see Fig. 2c),
the results show three different dynamics for all the analyzed classes. The first
80 windows (t ≈ 0–2 s) have a similar dynamic. Nevertheless, these p − values
are similar with the obtained p − values for the last windows (windows 210–283
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corresponding approximately to t ≈ 5, 12–7 s). Undoubtedly, for all the classes
the dynamics present in these windows are different to the dynamics present
in the windows 125–175 related to t ≈ 3–4, 28 s due to the lowest assessed
p−values. Indeed, the dyna mic is similar in this window interval and should be
associated with MI tasks. Furthermore, there is a particular dynamic presented
from windows 80–100 (t ≈ 2, 3–2,5 s) that has a similar dynamic over all the
windows, it should be linked with the visual stimuli present during all trial
executions from t ≈ 2–7 s (cross, cue, cross).

In case of the univariate analysis showed in Fig. 3, there is no significant dif-
ference between the analysis related channels and those unrelated to the stimulus
was presented. Nonetheless, for all the classes the non-stationary measure have
a similar behavior. In fact, for all channels, during the first t = 2 s where a
blank screen is presented, we assessed high non-stationary values for this time
interval. That could be explained by activity shown in the EEG signal while the
subject is seeing the blank screen, although we have filtered the signals in the
band 7–30 Hz, there are some brain process related to other activities as stress
and anxiety that could be performed on 23–30 Hz frequency band. Subsequently,
at t = 2 s become a diminution of the ξ computed values just after the beep and
the cross are executed, whereby, the subject started to be focused on the com-
ing task. At t = 3 s the cue is presented and the non-stationary values continue
being smaller until at some time point after t = 4 s, where the cue is replaced by
a cross, the estimated non-stationary values started to increase; indicating that
this last dynamic change could be related with a weary-trial-subject.

Generally, the considered non-stationary measure detecting the different
dynamics from the non-stationary point of view. However, the EEG signals could
have temporal changes that do not find out in the first two Statistical moments,
in that way, it could be appropriate using measures that take into account higher
order Statistical moments that could improve the non-stationary estimation also
add information in the analysis by channels, where no significant differences were
finding.

In this work, we have tested and discussed a non-stationarity measure based
on the two first Statistical moments to detect EEG dynamic changes due to
stimulus-related activity in MI tasks. Due to the imagination and execution of
tracking movements are associated with neural rhythm power changes in the μ
and β bands, we filtered the signal between 7–30 Hz enhancing the non-stationary
estimation. The analysis was assessed in two ways, as multivariate and univari-
ate processes. The obtained results show that the changes in the non-stationary
measure are directly related to executed stimulus during the EEG recording, as
well as, at some time point after the cue is taken out the subject appears to lose
the attention on the cue-experiment and consequently the non-stationary mea-
sure increase. The achieved results could be helpful to select the active window
time where the subject is developing a determined MI task, and we can use this
information to improve the MI classification task.

As future work, it could be interesting to test others non-stationary measures
that include higher Statistical moments to describe the time series behavior,
tuning the overlap parameter with the purpose of taking into account the each
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trial dynamics. Also, for the MI classification task, we could use the results
discussed in this work on the selection of active time segment in the covariance
estimation of Common Spatial Patterns (CSP) technique.
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Abstract. Sleep stage classification is a highly addressed issue in
polysomnography; It is considered a tedious and time-consuming task if
done manually by the specialist; therefore, from the engineering point of
view, several methods have been proposed to perform an automatic sleep
stage classification. In this paper an unsupervised approach to automatic
sleep stage clustering of EEG signals is proposed which uses spectral
features related to signal power, coherences, asymmetries, and Wavelet
coefficients; the set of features is classified using a clustering algorithm
that optimizes a cost function of minimum sum of squares. Accuracy
and kappa coefficients are comparable to those of the current literature
as well as individual stage classification results. Methods and results are
discussed in the light of the current literature, as well as the utility of the
groups of features to differentiate the states of sleep. Finally, clustering
techniques are recommended for implementation in support systems for
sleep stage scoring.

1 Introduction

Polysomnography (PSG) is the main diagnostic tool for sleep disorders [23].
Among the signals recorded throughout this process is the electroencephalogra-
phy (EEG) signals. The EEG has been widely used to assess cognitive functions
and to differentiate sleep stages within the clinical practice. Sleep architecture is
usually divided into stages regarding to the patterns proposed by Rechtschaffen
and Kales (R & K) [25], or a modification of those patterns published by the
American Academy of Sleep Medicine (AASM) [3]. Such patterns mainly corre-
spond to 5 stages: first, is the lightest stage of sleep, the transition phase, where
the person feel drifting off. Second stage of sleep is still considered light sleep
and occurs when the brain activity starts to slow down. Stage 3 sleep is the start
of deep sleep, also known as slow wave sleep. Of the five stages of sleep, the four
is the one when is experienced a deepest sleep of the night. The brain only shows
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 444–455, 2017.
DOI: 10.1007/978-3-319-59740-9 44
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delta-wave activity. The stage 5 is when there is dream. It is also referred to as
active sleep or REM sleep.

Indeed, the classification of such stages throughout the PSG recordings is one
of the most investigated problems in the field [2] due to the time and expertise
required to achieve the task. Besides, this task is performed under certain crite-
ria that may be considered ambiguous; and even, interrater reliability of visual
inspection of sleep stages is between 76.8% and 80.6% [6]. This implies a great
difficulty in the visual assessment of the stages in their association with diseases
and sleep disorders, and in understanding their functions. For over 40 years,
automatic classification of sleep stages from the quantitative characteristics of
the EEG signals has been available [26], with results of around 84% of accuracy
when compared to the clinicians [20]. Some studies also have greater results (of
up to 97% of accuracy) but only when automatic detection of SWS (Slow-Wave
Sleep) [28], or combining S1 and REM stages in a single stage [1]. Nevertheless,
a new study that used a complex-valued neural network achieve a 94% and 95%
of accuracy when R&k and AASM rules were used respectively [24].

The difficulty with these methods is that they do not always provide the
same results in the clinical practice [26], largely due to the lack of agreement
among evaluators in qualifying sleep stage transitions, which is not always taken
into account when designing automatic systems. In addition, most studies in the
area have included supervised algorithms, which by their nature do not have a
good generalization ability [8]. Authors such as [12] have studied the feasibility
of clustering methods based on centroids; in those studies, EEG spectral char-
acteristics were used and they reported classification efficiencies of about 80%.
The proposed methodology combines EEG signals in different sleep stages; this
for different sets of features corresponding to the absolute powers of the different
EEG rhythms, relative powers and ratios among rhythms, coherences and inter-
hemispheric asymmetries, and coefficients of the Wavelet Transform (WT). The
clustering algorithm is the J-means+; which uses a criterion jump over regions
that improves the cluster with respect to a cost function. This article aims to
evaluate the performance of different set of features in clustering sleep stages.

2 Materials and Methods

2.1 Notation

Given a set of EEG recording channels X = {x1, . . . ,x8}, each cannel xi, can be
divided in n signal segments called epochs, xi = {x1

i , . . . ,x
n
i }, each one of 30 s;

ξj
i =

(
ξj
i1

, ξj
i2

, . . . , ξj
iq

)
corresponds to the set q-dimensional of features obtained

of the i-th channel of the j-th epoch.
It is defined Z as a collection of subintervals Z = {zD, zT , zA, zB , zGa

, zGb
},

that correspond to the signals in different frequency bands, where 0 < zD ≤ 4 Hz
corresponds to the Delta rhythm, 4 < zT ≤ 8 Hz to Theta rhythm, 8 < zA ≤ 13
Hz to Alfa rhythm, 13 < zB ≤ 30 Hz to Beta rhythm [3], 30 < zGa

≤ 45 to low
Gamma rhythm and 45 < zGb

≤ 58 to high Gamma rhythm [5].
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2.2 Methodology

The methodology consists of 4 stages (1); the first one is the data recording,
the second one the feature extraction, the third one the process of unsuper-
vised classification and the last one the validation process and results evaluation
(Fig. 1).

Fig. 1. Methodology used for the unsupervised analysis of EEG signals

2.3 Data Collection

20 polysomnographic recordings during an 8-hour period were taken on 20 young
adults (13 women and 7 men) with a mean age of 21.9 ± 1.99 with no sleep disor-
ders. They were students from the Autonoma University of Manizales (UAM�).
These recordings were taken in the laboratory of Neurophysiology Oscar Moscoso
Arisa UAM�. Acquisition parameters correspond to a sampling frequency of
250 Hz, an analog band pass filter of 0.15 to 100 Hz and a digital Notch filter of
60 Hz. Of the total polysomnography recordings, 8 mono-polar channels of EEG
signals were selected for the clustering stage. The entire sample was collected
with the Polysomnograph Easy 3 Easy Cadwell� and EEG 3� software. For each
participant, a 3-hour sleep period was selected in order to ensure at least one
complete sleep cycle. EEG data were exported in European Data Format (.edf)
and loaded with EEGLAB [7] library. The sleep stage annotation for validation
of results was performed by an expert using the parameters of [25]. Stability
criteria were used for the transition among stages. A transition to a new stage
is performed if and only if three consecutive epochs belong to the new one.

Features

Absolute powers {ζ1, . . . , ζ704} Absolute powers correspond to the mean power of
each of the rhythms described above in the Notation section; These are calculated
by using a spectrogram.

Yi(t, f) =
∫ ∞

−∞
xi(τ)g(τ − t)e−j2πftdτ, (1)
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where xi(τ) is the i-th EEG channel and g(τ − t) is Hamming window of the
same size of the epochs with a sliding of 20% and therefore an overlapping of
80%. Afterwards power spectral density is obtained,

P
(z)
i (t, fz) = |Yi(t, fz)|2 , (2)

where fz belongs to an interval
(
zL
k , zH

k

]
of frequency of each rhythm Z with k

in {D,T,A,B,Ga, Gb}.
Besides, it was considered low amplitude, mixed frequency rhythms (4–7 Hz),

vertex waves (0–2 Hz) of central channels, slow waves (SWS) (0.5–2 Hz) of frontal
channels, and sawtooth waves (2–6 Hz) with frequency ranges proposed in the
AASM manual [3], for the absolute power features.

For the distribution P
(z)
i (t, fz), the following features were calculated: mean

power P
(z)
μ (t) = μ

(
P

(z)
i (t, fz)

)
, the power of the median frequency of each

rhythm P
(z)
Me(t) = P

(z)
i (t, fMe), the power of the frequency with greater variance

P
(z)
MaxV ar(t) = P

(z)
i (t, fMaxV ar), and the power of the frequency with greater

Shannon entropy P
(z)
MaxEnt(t) = P

(z)
i (t, fMaxEnt).

Relative powers and ratio among EEG rhythms {ζ705, . . . , ζ824}: Relative powers
(PR) were calculated as the ratio between the mean power of each Delta,Theta,
Alfa, Beta and Gamma rhythm regarding the sum of the total EEG rhythm as,

PR = Pzk
/PT = (1/PT )

zH
k∑

i=zL
k

P
(
fzi

k

)
, (3)

where Pzk
is the power of the frequency band of interest and PT is the total

power of all rhythms Z. Besides, among this group of features there are also
power ratios among pairs of rhythms as,

Pzk/zm
= Pzk

/Pzm
=

zH
k∑

i=zL
k

P
(
fzi

k

)/ zH
m∑

j=zL
m

P
(
fzj

m

)
, m �= k, (4)

where Pzk
is the power of the frequency band of interest and Pzm

is the power
of a second frequency band of interest; both belong to the rhythms Z .

Asymmetries {ζ825, . . . , ζ844} In the EEG, asymmetry has been used as a mea-
sure of the hemispheric difference of emotional processing [14]. In this study, 4
logarithmic asymmetries were calculated for each rhythm Delta {ζ825, . . . , ζ828},
Theta {ζ829, . . . , ζ832}, Alfa {ζ833, . . . , ζ836}, Beta {ζ837, . . . , ζ840} andGamma
{ζ841, . . . , ζ844}, which correspond to the channel pairs of frontal (F3-A2, F4-
A1), central (C3-A2, C4-A1), parietal (P3-A2, P4-A1) and occipital channels
(O1-A2, O2-A1). Asymmetries were calculated by using laterality coefficient,
that is an indirect measure understood as CL = ln(PL) − ln(PR), where P
corresponds to the absolute power of a frequency range.
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Coherences {ζ845, . . . , ζ864} Interhemispheric coherences are calculated for pairs
of the aforementioned channels and for each of the EEG rhythms. This is under-
stood as the estimate of the smoothed power and cross power spectral density as:

γ2
xy =

∣∣S2
xy(fz)

∣∣2
S2

xx(fz)S2
yy(fz)

(5)

Where S2
xy(fz) is the cross power spectral density, that is the trans-

form of the cross correlation of signals to the frequency space S2
xy(fz) =∫ T

−T
Rxy(τ)e−j2πfztdτ with Rτ = limT→∞

∫ T

0
x(t)y(t + τ)dτ and fz belongs to

interval aforementioned. The coherence feature corresponds to the mean of Eq. 5.

Wavelet Transform (WT) {ζ865, . . . , ζ960} La WT corresponds to the represen-
tation of the signal from WT (f(a, b)) =

∫ infty

−∞ f(t)ψa,b(t)dt , where ψa,b(t) are
the named Wavelet scalar functions subjected to a parameter “a”, and moved
given a parameter “b” of a function ψ(t) , as shown below:

ψa,b(t) =
1√|a|ψ

(
t − b

a

)
(6)

These parameters for discrete Wavelets functions are usually given by a = aj
0

and b = kb0a
j
0 with complete j and k, a > 1 and b > 0. Therefore the bases of

the Discrete Wavelet Transform (DWT), are defined as follows:

ψj,k(t) =
1√
aj

ψ

(
t

aj
0

− kb0

)
(7)

In the practice, values as a0 = 2 and b0 = 1 are taken. Solution behaves as a
Multiresolution analysis [21]; in

such case DWT can be observed as the implementation of scalar functions
(associated with a low pass filter h(n)) and Wavelet functions (associated with
a high pass filter g(n)) related in a way as g[n] = (−1)nh(1−n),

∑
g[n] = 0 and∑

h[n] =
√

2. For this, the original signal is passed through a high pass filter
to the half of the specified frequency, that in signal processing, it is generally
used the sampling frequency (Fs), followed by a low pass filter to the maximum
allowed by the signal (Fs/2). Subsequently, half of the samples can be eliminated
since the signal maximum frequency is (Fs/2); then, the signal is subsampled by
a factor of 2 (which may be well performed by removing a point via the signal).
This process can be as iterative as required, depending on the level to which you
want to perform the decomposition. For this study the decomposition procedure
was up to an 8-th level [21].

The filter g[.] is the original Wavelet that behaves as a high-pass filter, and
the low pass filter h[.] is its mirror version. The subsampled signal filter g[.]
corresponds to detail signals (Di). Similarly, the filter output h is known as the
approximation Ai , where i corresponds to the level at which the decomposition
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is found. The Wavelet function used in this study corresponds to Daubechies
function to the order 20; which has been previously used in the analysis of EEG
signals [21]. This decomposition features were selected because the frequency
ranges containing information of important EEG for classifying sleep stages, are
in the lowest levels of decomposition feature of maxima and minimum of the
details D6, D7 and D8, and A8 approximation.

Clustering Algorithm. The set of features of the EEG recordings X of all
patients with N observations and q features, are grouped into M clusters.

The algorithm corresponds to a new form of heuristic search for a neighbors
of a partial solution that leads to a local optimum. This method is a proposal to
solve the problem of Minimum Sum-of-Squares Clustering (MSSC), improving
the final partition to classical methods such as k-means or h-means partition;
when having a relatively high set of clusters; this method is called J-means [13].

Additionally, after completing the searching phase of the local optimum,
partition is improved, including the k-means algorithm. Thus, the clustering
algorithm used in this study corresponds to a two-step algorithm, the first one
is the local optimum search from J-means and, after such search, the k-means
algorithm is applied. The algorithm is called J-means + [13]. The problem with
the MSSC can be expressed as follows.

min
PM∈ΩM

M∑
i=1

∑
xl∈Ci

‖xl − x̄i‖2 (8)

where xl corresponds to a sub-cluster q-dimensional of the complete cluster of
data, belonging to the i-th cluster Ci, M is the amount of clusters, PM is the
found partition of the ΩM possible partitions, ‖.‖ is the Euclidean norm and x̄i

is the cluster centroid Ci, calculated as, x̄i = (1/|Ci|)
∑

l:xl∈Ci
xl.

With the above definitions, we can express the J-means algorithm in the
following steps [13].

Step 1. Initialization M centroids of the initial cluster of features are selected
at random, and an intial partition is performed by using the Eq. 8 criteria, this
provides the following partition PM = {Ci}(i = 1, . . . ,M), with its respective
centroids and the calculation of the objective function fopt.

Step 2. Occupied and unoccupied elements Unoccupied points that are outside a
q-dimensional sphere of radius ε about the centroid of each cluster are selected.

Step 3. Jump to the neighbors The best partition P ′
M and its corresponding

target function f ′
opt in the jump of neighbors regarding the current solution PM

are found. To achieve this step it is necessary: (a) Explore the neighborhoods.
(b) For each j(j = 1, . . . , N) repeat the following steps: - Relocation: Add a
new cluster with centroid x̄M+1 of an occupied element xj and find the index i
associated to the best suppression of one of the current centroids; indicate with
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the change in the value of the target function by using the Eq. 9. -Preserve the
best combination: maintain the pair of indices i and j, where vij is minimum.
(c) Replace the centroid x̄i for x̄j and update the allocation when obtaining a
new partition P ′

M and the target function as follows, f ′
opt = fopt + vij .

vij =
ni

ni + 1
‖x̄i − xj‖2 − nl

nl − 1
‖x̄l − xj‖2 , xj ∈ Cl (9)

Step 4. Ending or movement If f ′
opt > fopt, stops, since a local minimum was

found in the previous iteration, on the contrary, replace the current solution PM

for P ′
M and fopt for f ′

opt and go back to Step 2.
Once finishing the stage of J-means algorithm, k-means algorithm is devel-

oped as an initialization by using centroids from the previous partition. The
k-means algorithm can be implemented as described in [17].

Clusters Comparison. To evaluate the performance of a set of cluster, it is
required a cluster comparison of epochs that experts classify in sleep stages.
Five “expected centroids” (EC) as the mean of each of the features of the clus-
ters formed by the expert’s evaluation. The Euclidean distance of each of the
centroids formed by the clustering was calculated (calculated centroids CC);
finally, CC is considered as belonging to the sleep stage for which the distance
is minimum.

Evaluation and Validation. For this study, evaluation measures that require
data labels were used. With this information and with the epochs clustering
results, a confusion matrix (C) is created in order to measure the performance
of the proposed methodology. Performance was evaluated by using measures such
as, sensitivity (Se), precision (P ) and efficiency (Accuracy (Acc)); this is also
done to compare the obtained results with other research studies.

Kappa of Cohen (k) coefficient was also calculated [4] on the confusion matrix
in order to compare the results between the clustering epochs and the expert’s
classification.

3 Results and Discussion

Table 1 shows the results of the sleep stage clustering of EEG signals with respect
to the manual scoring. These results represent the mean and standard deviation
of the accuracy and Cohen Kappa coefficient for the 19 participants. Results
were calculated for five groups of features; the best results were obtained with
relative powers and power ratios among EEG rhythms.

Efficiency results of this study are comparable with those found in previous
studies using supervised learning methods for automatic classification of sleep
stages; for example in [19] results of up to 81% of agreement when compared to
experts scoring were obtained, by using sets of four features and supervised clas-
sification methods. The results with the features of relative powers and power
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Table 1. Comparison of the automatic classification of sleep stages to the manual
scoring. (SD: standard deviation).

Set of features Asimmetries Coherences Relative
powers

Absolute
powers

Wavelet
coefficients

Accuracy (SD) 0,55 (0,08) 0,57 (0,11) 0,73 (0,09) 0,64 (0,09) 0,58 (0,09)

Kappa (SD) 0,39 (0,1) 0,43 (0,12) 0,64 (0,11) 0,51 (0,11) 0,43 (0,1)

ratios among EEG rhythms (Acc: 0.73 Kappa: 0.64) are comparable to those
results with a similar set of features in a study of artificial neural networks by
[27]. In such study, a 74% of accuracy for the classification of four groups of
stages (Awake, Steps 1 and 2, Stages 3 and 4 and REM sleep) was reported.
In this study, the fact that the relative powers and power ratios showed better
results than the absolute powers for classifying stages suggests that the rela-
tionships among EEG rhythms are more useful to discriminate sleep stages. The
asymmetry and coherences features, including the coherence among channels
exhibited the lowest results in the classification of sleep stages.

Some authors have still reported differences in the gamma coherences values
[5] when compared among the different sleep stages. The results of the maximum
and minimum coefficients of WT for the latter approximation (A8) and the last
three details (D8, D7 and D6) are lower than those reported in studies that
include these features. In [10], for example, results were about 90% of efficiency,
using the mean, standard deviation, the power and kurtosis of these coefficients.
A WT with a resolution of 4 levels was performed in that study. In [22], an
efficiency of 77.6% was found using the mean square value of the coefficients of
the discrete WT of 8 levels as features. Nevertheless, these studies used super-
vised learning techniques for the classification. For further research studies, the
implementation of other WT features may improve the outcomes.

Table 2 shows the values of Sensibility (Se) and Precision (P ) of the classifi-
cation system for each sleep stage. The calculation of the results was performed
for 5 epochs that represent the waking (W ), somnolence (N1), light sleep (N2),
deep sleep (N3), and REM sleep. Another epoch that represents the artifacts was
also used. The rows represent the mean and standard deviation of the results
obtained for the 19 participants, where the comparison between the final parti-
tion and the manual scoring regarding the mean of each cluster was performed.
This was done for the five set of features.

The results for the five stages are similar to those reported in the literature.
The stages with lower sensitivity and precision were for the W , as well as for
N1 and N2 stages; Also, other studies have reported that N1, N2 stages show
lower performance for automatic classification [10,30]. By contrast, the N3 and
REM stages exhibited the best performance clustering, for all sets of features.
This contrasts with current studies that reported low scores for REM in relation
to the other stages [15].
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Table 2. Sensitivity and precision results of unsupervised clustering for sleep stages.
(mean (SD), Arts: Epochs with artifact.)

Stages Asymmetries Coherences Relative power

Se P Se P Se P
W 0,31 (0,33) 0,31 (0,34) 0,53 (0,32) 0,4 (0,26) 0,57 (0,4) 0,51 (0,39)
N1 0,26 (0,31) 0,15 (0,18) 0,22 (0,33) 0,16 (0,24) 0,45 (0,44) 0,27 (0,28)
N2 0,39 (0,32) 0,4 (0,31) 0,29 (0,33) 0,3 (0,29) 0,58 (0,35) 0,59 (0,34)
N3 0,66 (0,3) 0,54 (0,23) 0,69 (0,28) 0,52 (0,23) 0,83 (0,15) 0,87 (0,1)

REM 0,68 (0,25) 0,53 (0,24) 0,68 (0,21) 0,61 (0,24) 0,92 (0,09) 0,79 (0,21)
Arts 0,22 (0,3) 0,28 (0,41) 0,43 (0,4) 0,4 (0,38) 0,05 (0,22) 0,02 (0,07)

Absolute powers Wavelet Transform
Se P Se P

W 0,27 (0,35) 0,29 (0,37) 0,30 (0,39) 0,18 (0,25)
N1 0,28 (0,35) 0,20 (0,26) 0,23 (0,3) 0,15 (0,22)
N2 0,47 (0,35) 0,43 (0,31) 0,43 (0,26) 0,46 (0,28)
N3 0,80 (0,17) 0,75 (0,19) 0,76 (0,2) 0,64 (0,19)

REM 0,72 (0,34) 0,52 (0,29) 0,54 (0,43) 0,47 (0,31)
Arts 0,36 (0,37) 0,51 (0,46) 0,23 (0,31) 0,37 (0,43)

Since the interest in this study is the clustering of the sleep stages, artifacts
were considered as a single cluster. However, some artifact detection methods
could be used to explore in depth this issue, as the ones proposed in [9].

Other approaches such as fractal and multifractal measures are used to clas-
sify sleep stages in a supervised schema. For example [30] reported total kappa
coefficients between 0.77 and 0.84. However, such approaches were not consid-
ered in this study due to the main interest in spectral features that provide a
similar performance and low computational cost.

A well-known problem in sleep staging is the transition among stages which
have been proposed as a possible source of staging discrepancies; a recent
methodology to improve automatic classification is the so called classification
smoothing [20]. This method consists in the implementation of certain rules that
consider the temporal contextual information to enhance continuity between
stages; for example a contiguos block of REM→S1→REM epochs would be
changed to REM→REM→REM.

Another promising alternative for sleep stage classification that could be ben-
eficiated by the use of clustering techniques is the combination of multiple clas-
sifiers that “vote for a class membership” to improve the classification, method
that has been recently applied by [16] with supervised algorithms. Automatic
sleep stages classification is still a current problem in up-to-date literature; for
instance, there are studies that have reported accuracies ranging from 57% to
69% [29] to accuracies higher than 90% [1,15,18,24,28]. Nevertheless, all the
latter approaches used supervised learning to deal with the mentioned problem.

Clustering techniques have been previously proposed as a good alternative
to classify [13] or improve [12] automatic classification. Even from late eighties
[11], clustering analysis in using features from EEG signals have shown to have
some relevant utility in sleep stage classification and could even help to better
understand the dynamics of sleep stages.

Finally, the proposed methodology have some advantages for being unsuper-
vised; mainly in terms of training and labelling by the specialist. This results
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in generalization capacity and in time saving. However, the performance of the
algorithms is less than those observed in the literature regarding supervised
approaches. These algorithms are useful to provide specialists with support
regarding the sleep scoring problem.

4 Conclusion

The proposed methodology is a favorable alternative when designing systems of
automatic classification of sleep stages to provide support to specialists. One of
the advantages is that it requires no training and is not limited to particular
databases; besides, the computational cost of clustering algorithm is relatively
low, similar to k-means algorithm. The most significant results were identified
with relative powers and power-ratios among rhythms; on the contrary, the asym-
metry features and interhemispheric coherence exhibited a low classification per-
formance compared to the expert’s perspective. A new method is proposed to
evaluate the clusters obtained with expert’s labels in order to compare the results
with previous studies. This procedure can be extended to other clustering algo-
rithms and other data clusters with labels. For further research studies, it would
be important to assess the usefulness of nonlinear features for clustering sleep
stages that lead to evaluate the signal complexity and dynamics. The relevance
of the features regarding the representation of the data is to be studied.
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Abstract. In this work, an efficient non-supervised algorithm for clus-
tering of ECG signals is presented. The method is assessed over a set
of records from MIT/BIH arrhythmia database with different types of
heartbeats, including normal (N) heartbeats, as well as the arrhythmia
heartbeats recommended by the AAMI, usually found in Holter record-
ings: ventricular extra systoles (VE), left and right branch bundles blocks
(LBBB and RBBB) and atrial premature beats (APB). The results are
assessed by means the sensitivity and specificity measures, taking advan-
tage of the database labels. Also, unsupervised performance measures
are used. Finally, the performance of the algorithm is in average 95%,
improving results reported by previous works of the literature.

1 Introduction

For outpatient electrocardiographic test there exist Holter recordings which are
recorded for long time and allow assessing the heart condition without alter-
ing the patient daily activities. Thus, they are useful to detect transitory and
irregular pathologies that are hard to diagnose in short-time ECG (12 leads).
The problem of this kind of test is the wide amount of heartbeats which compli-
cates its visual inspection. For this reason, computer analysis systems have been
developed and are commonly used as a diagnostic support. In general, these sys-
tems work off-line taking into account some factors that add variability, such as:
signal length, artifacts, EMG noise and different dynamic behavior and morphol-
ogy (different patient and/or pathology). Then, it is necessary to analyze each
heartbeat, in detail, to detect a specific heartbeat. Therefore, unsupervised clas-
sification is preferred in this approach, being clustering the most frequently used
technique for unsupervised analysis of ECG signals. In addition, given the wide
amount of heartbeats and the highly transitory nature of pathologies, process-
ing time and unbalanced classes are other important issues to be taken into
consideration.

In this work, a full methodology for segment unsupervised grouping is pre-
sented that improves the computational cost and sensitivity to unbalanced

c© Springer International Publishing AG 2017
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classes in comparison with traditional analysis scheme [1,2,5]. Proposed method
includes proper stages for characterization, feature selection, initial parameters
estimation and partitional clustering. All these stages are developed in a sequen-
tial scheme, where similar clusters are grouped into new clusters per couple of
segments taking into account exclusion and merger criteria based on dissimilar-
ities. Signals are characterized using techniques recommended by scientific lit-
erature, including: heart rate variability (RR period), Hermite coefficients and
wavelet detail and approximation coefficients (db2). Feature selection stage is
carried out through the Q-alpha algorithm, which employs spectral informa-
tion and cluster coherence analysis to determine the relevance features and the
estimate number of clusters. For unsupervised grouping, the estimation of the
number groups employing spectral techniques is first performed. Next, to avoid
the problem of convergence into a local minimum distant from optimal value,
JH-means criterion, which is based on minimum sum of squares and dynamic
assignment of centers, is applied to determine the initial partition. Finally, clus-
tering stage is done by using a general iterative model for center-based clustering
with soft membership functions; in particular, density-based clustering with non-
parametric estimation is considered.

2 Materials and Methods

2.1 Clustering

Clustering is the assignment of a set of observations into subsets so that observa-
tions in the same cluster are considered similar with regard to employed features.
Because of expensive computational cost that is inherent to clustering analysis
when having a large data set, methods based on heuristic searches are commonly
used, which basically follow the next steps [3].

Cluster Initialization. Since the need of computational stability and a proper
initial partition, a convenient number of subsets over the studied recording data
might be fixed, providing an stable initial partition of grouping stage. In par-
ticular, a trivial form of subset number, k, is achieved if adjusting this amount
equal to the number of unity eigenvalues of next normalized affinity matrix [6]:

A∗ = D−1/2AD−1/2, A = YY�,

where D = diag(A1n) is the grade of matrix A, and 1d is a d–dimensional unity
vector and Y is a linear weighted projection of the data matrix X.

Matrix Y = ˜XV, where V corresponds to the principal components of ˜X
and ˜X = XW, represents the weighted data matrix. A detailed analysis of the
weighting matrix W is discussed in [4].

Once a group number is fixed, initial centers are fixed by using JH–means
algorithm, which avoids clustering solution falls into a local minima, is based on
iteratively searching of optimal local space solution, as discussed in [7].



458 J.L. Rodŕıguez-Sotelo et al.

Grouping. To make sure that individual class distributions are of Gaussian
class the well known expectation maximization procedure is used, when the
next expression is minimized:

E = −
n

∑

i=1

log

⎛

⎝

k
∑

j=1

p(xi | qj)p(qj)

⎞

⎠ (1)

where p(qj) is the prior probability for a cluster with centroid qj , and p(xi | qj)
is the conditional probability between data and different centroids, which is
estimated by Parzen’s window approach, as described in [8]. In this case, opti-
mization task is achieved by a general iterative model for clustering that allows
an actualization of centroids by introducing a soft membership function as well
as fixed weights. This method is well-described in [7].

Performance Measures. As a cluster validity measure the clustering index
γ = E1/E2 is proposed that expresses the relation between the expected value
of the objective function (1), assessed if considering an ideal partition E1, and
the value E2 estimated for the final partition. Since E2 ≥ E1 one might infer
that index is regarded to a proper clustering if its value lies some close to 1. It
must be quoted that the measure proposed above is no sensitive to the number
of clusters.

On the other hand, as another cluster validity measure to be considered,
clustering quality is assessed that is based on spectral graph partitioning [9],
when a good clustering desires both tight connections within partitions and
loose connections between partitions. Thus, the cluster coherence is calcules as
follows:

εM =
1
k

k
∑

l=1

M�
l AMl

M�
l DMl

where M is the matrix formed by the membership values of all elements to each
cluster: Mij = m(qj/xi), Ml, denotes a membership submatrix associated with
the cluster l.

The matrix M is binary, then, when smooth clustering is implemented,
the following conversion must be performed, mij = 〈max arg m(qj/xi)〉, j =
1, . . . , kr, where 〈·〉 is 1 if its argument is true and 0 otherwise. Due to nor-
malization with respect to the affinity matrix, the maximum value of ε

M
is

1, therefore, it indicates a good clustering if its value is near 1. Furthermore,
because of the nature of the function, a large set of groups is penalized.

Nonetheless, this work takes advantage of the fact that studied database is
labeled and supervised measures are accomplished. Thus, performance outcomes
can be contrasted with another similar works.

The sensibility and specificity quantify the proportion of beatings from OC
and the MC that are correctly classified, respectively. Both indexes measure
the partition quality with respect to ideal case, when the quantity of clusters
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equates to the number of classes, but each cluster holding just one class beatings.
Nonetheless, there is no ideal partition, i.e., one should expect more clusters than
classes. Besides, some clusters may contain majority and minority beatings from
another classes. Therefore, the partition might be penalized when holding a
relatively large number of groups, as discussed in [4].

2.2 Segment Analysis

In this work, a segment-based approach is introduced to decrease the computa-
tional cost. The general idea of this approach is to divide input recordings into
segments to be independently processed and clustered, and at the end formed
clusters for each segment are merged according to union and exclusion criteria.
Then, the first step is fixing a proper number of segments. This parameter is
estimated for each recording and chosen as one that its validity measures provide
equivalent or better performance than the analysis of full length processing of
input recordings. The proper selection of number of localized clustering segments
is constrained by following restrictions: twice of number of features must exceed
the amount of heartbeats per segment, and the minimum of computational cost
should be reached. All segments are to have the same length.

After grouping all data points belonging to each segment as described in
Sect. 2.1, the second step is segment merger. To this end, some criteria based
on estimation of the proximities between each cluster and the remaining clus-
ters are considered. Merger process is carried out in a sequential scheme where
segment are merged per couples as follows. Clusters corresponding to the two
first contiguos segments are merged, resultant partition from such merger is then
joined with the clusters of immediately next segment and so on. Lastly, clusters
are merged or conserved as independent ones according to a dissimilarity mea-
sure among heartbeats related to the set of centroids. In this connection, DTW
algorithm, denoted as dtw(·, ·), is used, as detailed in [1].

The segment analysis procedure is explained in Algorithm1. The number of
groups kl is estimated for each segment as described in Sect. 2.1.

With segment clustering algorithm proposed here, incorrect clustering of
minority classes is avoid as well as computational load is decreased.

2.3 Proposed Method

Figure 1 depicts a methodology for Holter arrhythmia analysis that appraises
the next stages: (a) Preprocessing, (b) Feature estimation, (c) Analysis of rele-
vance, and (d) Clustering. Recordings are preprocessed and segmented based on
calculation of QRS complex.

Heartbeat features, which are calculated using variability, prematurity, mor-
phology and representation measurements of the heart rate variability, are
extracted by weighted linear projection. Lastly, projected data is grouped by soft
clustering algorithm. Because of restrictions for reducing computational load, the
methodology is complemented by framing along the time axis the input data
into Ns successive divisions of Holter recordings, where each frame is separately
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Algorithm 1. Segment clustering

Given the input data set X ∈ R
n×p, the number of segments Ns and a constraint

parameter ε

1. Divide the set of data into Ns segments: X = {X1, . . . ,XNs}, where Xl is a nl × p
sub-matrix and nl = round(n/Ns)

2. Cluster data points of each segment in kl groups, i.e., form partitions Pl =
{Cl

1, ...,C
l
kl} and compute their respective centroids Ql = {ql

1, . . . ,q
l
kl}

For l = 2 until Ns do

3. Compare centroids: ϑ = dtw
(
b(ql

a),b(ql−1
b )
)
,

where b(q) denotes the pattern vector corresponding to
centroid q and a = 1, . . . , kl; b = 1, . . . , kl−1

if ϑ < ε

4. Cluster Cl
a is merged with Cl−1

b : Cl
a ← Cl

a

⋃
Cl−1

b

otherwise

Cluster Cl
a is considered to be an independent cluster

for the next segment analysis

End If

End For

Fig. 1. Block diagram of proposed unsupervised methodology for Holter monitoring of
cardiac arrhythmias.

processed. Therefore, according to the assumed criterium of homogeneity between
two given consecutive frame divisions, resulting clusters can be either merged or
split.
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3 Results

The results of clustering are accomplished by framing each recording into Ns = 6
divisions and the resulting clusters are merged as described in Sect. 2.1. The
number of segments is achieved experimentally, improving the trade–off among
the number of segments, computational cost and quality of partition. Thus,
the segment analysis enhances the performance if comparing to the whole data
clustering. In fact, it reduces the probability that a minority class heartbeat
might be clustered wrongly. Furthermore, in most cases, the sum of processing
times over all segments turns to be considerably shorter than the time of analysis
of whole recording data for one iteration. Therefore, the introduced framing
approach significantly reduces the computational cost.

The Fig. 2 shows a comparison of the system performance using the sensibility
measure described in Sect. 2.1. This test was carried out by varying the number
of segments (Ns) from 1 to 10 and using as input data the complete feature set
and the processed data with the relevance analysis methods discussed above. It
can also see that sensibility increases as Ns increases.

Fig. 2. Comparison between proposed method and the reference methods using error
bars, which measure processing time and performance

Figure 3 depicts the behavior of computational cost of the proposed method
by varying Ns from 1 to 10. When Ns = 1, the methods spend more time to
carry out the process, but when Ns increases, the processing time decreases.

Defining the unit time (TU) as the time necessary to process the whole record
in one iteration (Ns = 1) using only the initial vector of features, resultant per-
formance can be expressed as multiples or fractions of TU . Figure 4 shows some
error bars where it is noted that computational cost improve as Ns increase.
This test was carried out using all the relevance analysis methods and the initial
data set, however, in Fig. 4 are shown the most relevant results making a com-
parison between Q-α and reference methods, i.e., by analyzing all variables, the
relevant ones and PCA. When Ns = 1, WPCA and PCA methods spend more
time to carry out the process regarding the reference methods, but when Ns
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Fig. 3. Comparison between proposed method and the reference methods using error
bars, which measures processing time and performance

increases, the processing time decreases. It can also see that error bar calculated
as 1 − Se/100, decreases as Ns increases.

In Fig. 4 can be seen that after some number of segments, the computational
cost increases again. This is because the initialization and feature selection rou-
tines that are performed for each segment, increase processing time.

Fig. 4. Comparison between proposed method and the reference methods using error
bars, which measure processing time and performance

4 Conclusions

The proposed methodology includes the segment analysis that compensates
the high computational cost employed in Holter analysis, being possible its
implementation for real time applications. Besides, the assumed grouping an
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initialization stage, which includes estimation of number of groups and center
initialization, is based on spectral techniques and soft partitional clustering and
generates a proper final partition.

The methodology provides an useful tool to analyze cardiac arrhythmias
with suitable quality since it is based on non-supervised training, that is, there
is no need for labelling of recordings, which mostly is not feasible for Holter
monitoring.

Testing of considered methodology by using introduced cluster validity mea-
sures shows a comparable performance in comparison to another referenced
works, based on either supervised or unsupervised training and carried out for
the MIT/BIH database.

As future work, additional spectral clustering stages should be explored with
the possibility of unifying the stages of feature selection and clustering, in order
to improve further the accuracy and the computational load for the system.
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7. Rodŕıguez-Sotelo, J.L., Peluffo, D., Frau, D.C., Ordónez, D.P., Domı́nguez, G.C.:
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Abstract. The retina is the first stage of visual neural information cod-
ing on the visual system, and several challenges remain on its functioning.
Overcoming these challenges would suppose both a step further in the
general understanding of the biological neural systems and a potential
way to enhance millions of people’s lives that suffer from visual degener-
ation or impairment. In this work, a data-driven deep learning approach
is applied to learn the behavior of mice’s retinal ganglion cells in response
to light, as a step towards the development of a system able to mimic a
real retina in terms of neural coding of visual stimuli.

Keywords: Retina modeling · Neural coding · Deep learning · Convo-
lutional neural networks

1 Introduction

Neurosensory systems still remain as a big challenge to scientists, although great
achievements have been done until now. Combined efforts from several scientific
and engineering disciplines contributed to the knowledge and technology that
allows us to prevent, treat and hopefully overcome some of the human diseases
and limitations by building the knowledge corpus, diagnostic systems, rehabili-
tation treatments and prosthesis for the disabled among others. In this work, a
deep learning data-driven approach is proposed to tackle one of this early neu-
rosensory pathways challenges: the modeling of a mammal’s retina in response
to light patterns. In this first approach retinal neural recordings from homoge-
neous color flash patterns are taken, processed and fed into a supervised machine
learning system -a 3D Convolutional Neural Network (CNN)- able to process
spatio-temporal visual stimulus and reproduce the retinal behavior to this kind
of patterns, with the aim of being able to mimic more complex responses in the
future and to compare results with similar researches on the field.

In the past, several retinal ganglion cell’s models have been proposed. Some
of them are used as general models of early neurosensory pathaways, like Linear-
Nonlinear [1], Generalized Linear Models [2] or Integrate and Fire [3], and their
c© Springer International Publishing AG 2017
J.M. Ferrández Vicente et al. (Eds.): IWINAC 2017, Part I, LNCS 10337, pp. 464–472, 2017.
DOI: 10.1007/978-3-319-59740-9 46
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application provided different results as its shown on [4]. Recent works have
proposed hybrid systems as fine tuning physiological models with Genetic Algo-
rithms [4] and the use of Deep Learning techniques [4–6].

In the last few years, the field of machine learning witnessed the raise of
new deep artificial neural networks architectures -CNNs, LSTMs, GRUs, hybrid
architectures, GANs- with a series of features like dropout [7] for regularization
purposes, parameter sharing that decreased the computational cost per layer
and the wide use of alternatives to the sigmoid and hyperbolic tangent activation
functions -ReLU, LeakyRELU, PRelu, ELU- that helped to handle the vanishing
gradient problem and performed better in some situations [8]. In addition, the
high computational charge that this machine learning systems entails has been
notably tackled by the use of GPUs.

Recently, Convolutional Neural Networks have been proved to be a great
tool for visual recognition problems, outperforming other traditional machine
learning techniques [9] like SVMs, with the significant advantage of being able
to perform end-to-end learning, this is, the absence of a necessity for hand-
craft features. This, and the structural analogy between CNNs and the visual
LGN-V1-V2-V4-IT pathaway [10], following the way of Fukushima’s Neocogni-
tron [11], makes CNNs to be a likely suitable solution for the bio-inspired vision
encoding task.

This kind of CNN, data-driven methodology has been recently used for mod-
eling tiger salamander retina ganglion cells [4], and it is also the methodology on
which our modeling is driven. In [4], convolutional neural networks were proved
to be able to model more accurately retinal responses to both natural and arti-
ficial stimuli than the previous techniques and generalize better across stimuli
types when modeling a tiger salamander’s retina. In our approach, a deep con-
volutional neural network is trained to mimic the spike trains obtained after
stimulating real mice retina with simple color patterns.

The rest of this paper is organized as follows. Section 2 presents the methods
for retinal response recording and the proposed modeling approach. Section 3
shows and discusses the results obtained with our experimental setup and the
3D-CNN model architecture implemented. Finally, Sect. 4 summarizes the main
contributions of our research and the remaining challenges.

2 Proposed Methodology

2.1 Materials and Methods: Retinal Recordings and Pre-processing

Retinas were extracted from wild-type mice bred within a local mice colony
following the same preparation setup as in [12]. Extracellular recordings were
obtained from the retinal ganglion cell layer in the isolated mouse retina using
an array of 100 electrodes with 400µm inter–electrode distances [13].

The data obtained from each channel was digitized with 16-bit resolution and
30 kHz sampling rate and stored together with the visual stimulus provided to
the retina. The recorded spike events were characterized using Nev2lkit, a free
open source software for spike sorting [14].
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The retina was then stimulated with several repetitions of a 500 ms color
flash followed by darkness for 1500 ms, as it is shown in Fig. 1.

Fig. 1. Temporal representation of the stimulus, consisting in homogeneous color flases
presented periodically. (Color figure online)

The detected spike trains for every one of the 26 retinal ganglion cells that
provided useful information attending standard deviation significance and noise
levels, together with the corresponding stimulus were considered valid data to
develop our retina model. The model’s training input will consist on batches of
40 frames taken from the stimuli, each frame of 50× 50 pixels representing one
hundred of second of video, this is, 400 ms of temporal stimuli, (Fig. 1), and the
output will be a spiking probability function for each of the 26 neurons recorded
that provided insightful data. This function comes from the convolution of spike
trains with a Gaussian function which transforms this discrete spike events into
a virtually continuous objective to fit, so it transforms a classification problem
-discrete classes corresponding to number of spikes in a bin- into a regression
one -analog firing function-.

2.2 Proposed Modeling Approach

In this work, a data-driven approach is proposed for the model, in contrast with
the usual physiological models of retina. Our goal is to build a system that is
able to learn by itself the necessary computations to produce a response similar
to the recorded behavior of a biological retina.

The architecture of the proposed model (Fig. 2) consists on a series of 3-
dimensional convolutions of volumes of data coming from the stimulus video
frames followed by a fully connected -dense- layer that will provide the desired
output. Each convolutional layer is followed by an nonlinear activation function
(ReLU, PReLU) and a Maxpooling layer in some cases to reduce the dimen-
sionality of the output volume of the convolution layers and promote feature
spatio-temporal invariance. An empirical, trial-and-error process was carried out
to adjust the size and several parameters of the different layers. The selected val-
ues frequently represent a trade off between several tendencies. For example, it
should be noted that applying pooling to the temporal axis would mean more
robustness to pattern shifts on this dimension and less computational charge
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on the consequent layers, but certain temporary dependence was desirable to
model the behavior of the retina, so an excess of temporal pooling would under-
mine temporal resolution and therefore, model prediction ability of the temporal
dynamics.

After these stages, the resultant tensor is flattened and it inputs a fully con-
nected layer, called also a dense layer, followed with another nonlinear activation
function that will output the firing probability prediction for each neuron every
hundredth of second.

The actual spikes were then generated by simulating a Poisson process with a
millisecond resolution for each firing probability estimate. The number and size
of the filters was varied to achieve the best results. As expected, the temporal
dimension of the kernels was the most relevant set of parameters, given that
in this experiment, the spatial dimensions of the network’s didn’t provide more
information than flash’s color (RGB values of the pixels). The network showed
robustness to a wide range of values on the search space for the number and
dimensions of the filters, probably indicating that this network exceeded the
computational power to map the input with the desired output. While this could
be seen as a waste of resources in usual applications, its to be noticed that here
we were developing a prototype that should be able to fit high spatio-temporal
complex patterns in the near future.

For the weight initialization, a Lecun uniform function was used, which takes
samples from an uniform distribution parametrized in relation to the number of
inputs to that layer [15]. Both L1 and L2, and eventually activity regularizers
were also included among the parameters for every layer. The network building
and training was performed using the widely adopted deep learning frameworks
Tensorflow [16] and Keras [17].

Fig. 2. Illustration of one of the 3D CNN’s architectures tested, with 6, 8 and 12 filters
respectively in the convolutional layers and 3× 3× 4 kernels. (Color figure online)



468 A. Lozano et al.

3 Results

3.1 Training

Training was performed over 90% of 360000 data samples (obtained from 360 s
of stimulus-response recording of sliding volumes of frames) and the correspon-
dent probability of spikes for the 26 neurons, with a standard 70–30% split for
training/validation, while the remaining 10% of the recorded data was used as
held-out data for testing. Different dropout percentages were used in the layers of
the network to prevent overfitting and several optimizers like ADAM, Stochastic
Gradient Descend and RMSprop were tested. The loss functions that achieved
better performance were Poisson and Mean Squared Logarithmic Error (MSLE),
which lead to slightly different characteristic shaping of the objective function.

Figure 3 shows the evolution of Poisson loss objective function for training
and validation sets as training was performed. In addition, other indicators as
Mean Absolute Error (MAE) and Mean Squared Error (MSE) were used for
monitoring. Finally, early stopping was used, this is, the training stopped when
the validation set error started to have a positive tendency, this is, when the
model starts to overfit.

Fig. 3. Several indicators were monitored during training. In the image: minimizing
Poisson cost function (left) and MAE (right).

3.2 Results and Discussion

To measure the goodness of the fitting, several metrics were used. Among them:
Poisson loss between model predictions and unseen data (related with the log-
likelihood of two variables under Poisson distribution assumption), Pearson’s
correlation coefficient between spiking probability functions and Pearson’s coef-
ficient between PSTH (Peri-Stimulus Time Histogram) generated from 29 trials
of the same stimulus (6 color flashes) for every of the 26 neurons on the network’s
output (Fig. 4).
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Fig. 4. Correlation coefficient between neuron’s firing rate and model’s prediction for
the 26 neurons that were simulated. (Color figure online)

The results were encouraging, showing high correlations. As an example,
Fig. 5 illustrates a PSTH from both model and biological neuron responses mea-
sured within 20 ms bins, with an 84% correlation coefficient and a qualitatively
coherent behavior.

As Fig. 6 shows, the model responds with a different characteristic firing
probability waveform to each of the stimuli, with a rising of the fire rate with
a slightly different delay for each neuron when the light is showed and with a
depression or rising of the spiking probability when the light faded out or after
some hundredths of second of darkness. In brief, ON and ON/OFF behaviors

Fig. 5. Peri-stimulus Time Histogram (PSTH) of both real (blue) and model (black)
neuron 17. (Color figure online)
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Fig. 6. Dynamic firing probability function of a real neuron (blue) versus model neuron
(black). The model is able to fit different types of neurons at once, with different base
firing rate and characteristic shapes. On the figure, neurons 17 -left- and 4 -right-.
(Color figure online)

were observed both in the real retinal recordings and the model predictions, and
the CNN was able to model at the same time a variety of neuronal behaviors
to the same stimulus, with different qualitative responses and different fire rate
baselines. This kind of adaptation can be observed in Fig. 6, where a comparison
between a biological neuron’s firing probability function and the CNN model’s
prediction is shown, for two neurons with significant different behavior.

It is also noticeable that the CNN was very sensitive to the gaussian smooth-
ing of the actual spike train, changing the way of fitting depending on the stan-
dard deviation used on the gaussian, predicting poorly a mean fire rate when
the standard deviation was too low and therefore, unable to compensate the
neuron’s variability on the response.

Figure 7 illustrates raster plots for both biological and model ganglion cell’s
responses to 29 repeated trials of the same light pattern (neuron 17 in this

Fig. 7. Comparison between recordings and model generated raster plots for neuron
17.
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case). Its noticeable that the CNN’s neuron is predicting a qualitatively similar
response than the real ganglion cell, with a concentrated firing activity after the
light flashes and similar temporal dynamics.

4 Conclusions and Future Work

In this paper, a data-driven methodology for modeling retinal ganglion cell
responses to color light flash patterns has been discussed and applied to the
case of mice retina with positive results, showing high correlation with the spik-
ing probabilities obtained from biological spike train responses. In addition, the
Peri-Stimulus Time Histogram built from Poisson-simulated spike trains showed
a similar behavior in both, the model and the real retina. On the way to achiev-
ing these good results, several structural and parametric decisions were taken
for the model, resulting in a CNN model that showed high sensitivity to the
activity and parametric regularizers on the dense layers on one side, and to the
variance of the gaussian with which the spike trains were filtered on the other.
These facts revealed that the retinal spiking variability handling will play an
important role in future developments.

Among our proposals for future works, are the use of recurrent layers that
take into account the spiking history of each neuron, the change in the spike
generation to more advanced and flexible models like inhomogeneous Gamma
and inverse Gaussian proposed in [18], the exploration of the inner activations
and learned filters as done in [4,9], that may help in the understanding of retinal
computations and, finally, the use of highly-complex and realistic visual stimulus
that allows us to build a powerful and more generalizing retinal model.
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5. Crespo-Cano, R., Mart́ınez-Álvarez, A., Dı́az-Tahoces, A., Cuenca-Asensi, S.,
Ferrández, J.M., Fernández, E.: On the automatic tuning of a retina model by
using a multi-objective optimization genetic algorithm. In: Ferrández Vicente,
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