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Chapter 5
Verification Challenges for Autonomous 
Systems

Signe A. Redfield and Mae L. Seto

5.1  Introduction

Autonomy and artificial intelligence are quite different. Autonomy is the ability of 
a physically instantiated robot (autonomous system) to make decisions and reason 
about its actions based on its in-situ sensor measurements. The objective is to adapt 
to changes in itself or other systems it interacts with, the environment it operates in, 
or its tasking (mission). Artificial intelligence, in the broad sense, refers to abstract 
capabilities associated with problem-solving and does not necessarily require a ref-
erence to the physical world. An autonomous robot might use artificial intelligence 
tools to solve its problems but it is grounded in the physical environment it shares 
with other objects. An artificial intelligence itself might use an autonomous robot to 
implement a solution it devises or to gather data to solve a problem but it does not 
have to ground itself in the physical world for this. This chapter addresses chal-
lenges in transitioning autonomous robots, enabled with autonomy which may have 
artificial intelligence, from the laboratory to real-world environments.

Robotics has been a recognized interdisciplinary area of study since the mid- 
1900s. In the 1970s the first wave of industrial robots went from the research com-
munity to the factory floors (Engelberger 1974). These robots were automated. To 
overcome safety issues due to their sensory and processing limitations, they were 
segregated from their human co-workers in physical safety cages. Even with rela-
tively predictable controllers governing their actions, it was not possible to verify 
their safety sufficiently to operate near humans. Today, robot systems are more 
capable (Miller et al. 2011), complex (Ferri et al. 2016), and thus less  comprehensible 
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to non-specialists. Research and development has pushed the boundaries on what 
autonomy can confer on robots in all environments. However, it has not similarly 
pushed boundaries for how to certify and assure these robots’ functions.

Research addresses user needs at the design stage as motivation for an autono-
mous robot to address a problem. Aspects peripheral to the problem become a lower 
priority. However, with increase interest in long duration autonomy (Dunbabin and 
Marques 2012), complex missions, and driverless cars, one of these peripheral 
aspects have risen in importance. This is the requirement to verify the safety and 
bounds on the operational capabilities of autonomous systems.

This chapter introduces autonomy for autonomous systems, verification in gen-
eral then verification implications for autonomy. Next, verification challenges appli-
cable to most robot operating environments (land, sea, air, and space) are outlined 
with the simple ground robot as an illustrative example.

5.2  Autonomy

Autonomy adds complexity to autonomous systems which adds expense and uncer-
tainty about the system performance, its safety, and when it should be used. Despite 
this, there are robot situations where autonomy provides a viable solution. These 
include situations that involve:

• uncertainty about the environment: for example, in rooms, doors may be opened 
or closed, they can contain people acting within it

• uncertainty about the robot state within the environment: inaccurate or incom-
plete sensor data on its self-position so that even with a complete map of the 
environment, the robot cannot navigate to a desired location, and

• communications latency: the robot does not have a human to interpret sensor 
data or make decisions in new or ambiguous situations.

Autonomy refers to a category of control mechanisms and behaviors (in the con-
text of the behavior-based robot control paradigm) that provides robustness against 
this uncertainty and enables the robot to operate with little or no human intervention 
to interpret sensor data or make decisions.

The following terms are used to discuss elements of autonomous systems.

Definitions
System—immobot,1 robot, group of immobots or group of robots, centralized or 

decentralized. The hardware, software, perception, actuation, communications, 
and decision-making that are abstracted as a unit and act in the world. For exam-
ple: the robot that turns the doorknob is a system, but the doorknob is part of the 
environment rather than the system. A team of robots with a single stationary 

1 Immobot—a robot that is not capable of moving from one location to another within its environ-
ment but is capable of modifying its environment in some way, e.g. a smart house.
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computer acting as a centralized controller includes both the robots and the com-
puter in the system. A smart house is a system but the people inside of it are part 
of its environment. The user interface may or may not be part of the system but 
the human using it is not. The terms autonomous system, system, autonomous 
robot, and robot are used interchangeably here.

Autonomous system—a system that makes decisions based on local environmental 
information and has an intractably complex interaction with its world 
(environment).

Behavior
1. (robotics)—the algorithms, software modules and/or actions of a robot in each 

context (designed and observed)
2. (verification)—the actions of a system in an environment

These definitions are unusually specific; a more typical definition of autonomous 
simply means the system makes decisions about its actions based on local environ-
mental data (IEEE Standard Ontologies for Robotics and Automation 2015a, b). 
Since the focus is systems with no verification tools, the more specific definition for 
autonomous will be used.

Simple systems can fall into the ‘autonomous’ category while at the same time, 
complex ones may not. For example, robotic arms in a factory have their physical 
structure and/or environment constrained so the verification problem is tractable. 
Similarly, their instantiated behaviors are not subject to any constraints so their 
system architects build the autonomy as they see fit. However, the purpose of this 
chapter is to identify verification challenges for difficult cases where formal 
methods- based design tools are, for whatever reasons, not feasible. While there is 
complexity and cost to autonomy its benefits on-board autonomous systems are 
notable.

5.2.1  Benefits of Autonomy

One reason to deploy a mobile autonomous system for a task is the difficult environ-
ment (space, underwater, under-ice, etc.). In dynamic environments, autonomous 
systems operate with limited human interaction to control complex, real-time, and 
critical processes over long durations. In addition to enabling operations in adverse 
environments, autonomy also has the potential for increased capability at reduced 
operational cost. The number of human operators required, a major cost, is reduced. 
As well, the reliance on the communications link between the robot(s) and its opera-
tors is also reduced. An autonomous system is faster than an operator (especially 
given latencies due to distance or environment) and can function even when com-
munications with its operator is poor. Communication has a cost (energy, at the very 
least) and is imperfect as channels can be directionally-dependent, lossy, range 
dependent, and introduce delays. Autonomy can mitigate some of this compromised 
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communications. However, another cost of on-board autonomy is in the complexity, 
reliability, and cost of the verification design and implementation.

Verification addresses whether the autonomy was designed and implemented 
correctly whereas validation is concerned with whether the autonomy (e.g. a robot 
behavior) meets its requirements to begin with. Verification is the focus in this chap-
ter. Current verification and validation, or V&V, techniques struggle with existing 
autonomous systems. For example, in the past, the implementation of embedded 
systems was conservative and dynamic memory allocation was only permitted at 
start time. Now, the requirement is to verify and validate autonomous systems that 
exhibit large sets of interacting behaviors and not all of them deterministic.

Autonomy facilitates the autonomous system adapting to a larger set of situa-
tions—not all of which are known at design time. This is a key point as one of the 
purposes of autonomy is to provide contingencies for situations that cannot be spec-
ified precisely a priori. Unfortunately, current verification processes require a com-
plete specification of what the system is expected to do in all situations.

Analytic V&V techniques, and model checking, in particular, can provide solu-
tions to design autonomous system control agents in a more efficient and reliable 
manner. This can mean earlier error detection and a more thorough search of the 
space spanned by all performance possibilities (performance space). However, the 
most suitable V&V approach depends on the autonomy tools used. In addition to 
purely reactive tools, these can include:

• planners
• executives
• fault detection isolation and recovery (FDIR) systems
• mission-based measurements
• navigation

 – terrain analysis and modeling
 – localization
 – path-planning.

It is expected that autonomy approaches require both verification techniques spe-
cific to the approach and those that apply across autonomous systems.

5.3  Verification

Verification tools build an assurance case, a body of evidence that, connected using 
provably correct assertions, enables one to say, within defined assumptions, that the 
system has certain properties. These properties define what is desired and can 
involve either safety or security. For autonomous systems, there are three categories 
of safety: self; objects and people it expects to interact with, and objects and people 
it is not intended to interact with.
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Definitions
Verification and validation process: Firstly, validate the match between the purpose 

for which the system is designed and the system requirements (and presumably 
generate a model of the system or design a potential solution). Secondly, verify 
that the model/design meets the requirements (works correctly). Third, validate 
the system to be sure it accomplishes the purpose for which it was designed (does 
what the user needs).

Verification: The process of gaining confidence in the correctness of a design or 
ensuring that a system has certain properties. The fact that it may require exhaus-
tive proof is a problem associated with verification of autonomous systems.

Validation: This refers to step three in the process above. This is the process of test-
ing to ensure that the design decisions made in the initial validation process, to 
match purpose to requirements, are correct in terms of the system end-use.

Verification is particularly important as systems transition from the research 
laboratory because it is a critical element of the certification and accreditation pro-
cess which gives credibility with potential users. Within research laboratories, veri-
fication is important because it enables other researchers to use a given algorithm as 
a component of their systems without concern about unexplored failure modes. For 
example, if the objective is to test a robotic path-planner around obstacles, the user 
wants the robot’s obstacle avoidance algorithm to be solid and well-understood. 
Verification confirms the circumstances under which the obstacle avoidance algo-
rithm fails as well as provides a methodology to assess the merit of the user’s path- 
planner with the integrated obstacle avoidance algorithm. Given that, what are the 
verification implications of autonomy?

5.3.1  Verification Implications of Autonomy

As one of the verification objectives is to understand what the autonomous system 
is supposed to do, verification tools assume a system specification exists. However, 
defining the operational goals of an autonomous system is quite difficult making its 
verification difficult. Existing research addresses these issues, but there are more 
unexplored research challenges than there are underway research efforts. Section 
5.4 identifies autonomous systems verification challenges and notes those with on- 
going research efforts. Specific problems that verification tools like sequence and 
scenario-based testing could address are described next along with their 
limitations.

Traditional flight software on unmanned aerial and space systems have two com-
ponents: the on-board software and a sequence. The on-board software is low-level 
methods or procedures for commanding aspects of the spacecraft hardware, while 
the sequence is a time-ordered list of commands where each command maps to a 
software method. Each command is tested independently. Traditional V&V flight 
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software on unmanned aerial and space systems achieve verification confidence 
from testing each sequence before up-linking and executing.

For these cases, potentially unanticipated command interactions and subtle prob-
lems are detectable by sequence testing. Sequences have singular execution paths 
(or at most, a few), which facilitates detailed testing and interaction analysis to 
focus on just those paths. This is a powerful approach but is only flexible when there 
are a small number of execution paths and those paths are known in advance. On the 
other hand, the autonomy of autonomous systems may be parallelized, distributed, 
and non-deterministic with interactions between commands. Consequently, V&V 
sequence testing does not work as well with these systems.

Autonomous systems are commanded by high-level goals or autonomic responses 
rather than explicitly scripted sequences. If the system is controlled by high-level 
goals, these goals are interpreted and further broken down into lower-level com-
mands. The autonomy planner determines the lower-level actions for the robot to 
take to achieve its high-level goals. If problems arise during execution the autonomy 
could take corrective actions and find alternate ways to achieve the goals. In this 
way, there are many possible execution paths. Thus, it is impossible to identify the 
few that are actually needed and to exhaustively test those. Additionally, the exact 
command sequence cannot be predicted in advance without complete environmen-
tal knowledge, as the decisions are based on both on-board events and local environ-
mental conditions. Autonomy’s value is in its ability to close control loops on-board 
the robot instead of through human operators. However, strength also makes it chal-
lenging to adequately define the behavior specification. Consequently, this means 
sequence validation approaches do not work as autonomy driven processes are not 
necessarily sequential or deterministic. As well, the autonomy could be imple-
mented as multiple parallel threads that interact.

In an autonomous system, even a simple one, sequence testing provides some 
confidence for each of the commands, but it does not address interactions between 
commands the way it has for scripted flight software sequences. These interactions 
can be subtle and their results, unexpected. They can also depend on the exact 
sequencing and timing of prior commands, subtleties of the robot state, the environ-
ment it interacts with, etc.

As autonomous systems close control loops and arbitrate resources on-board 
with specialized reasoning, the range of possible situations becomes exponentially 
large and is largely inaccessible to the operator. This renders traditional scenario- 
based testing inefficient and in many cases, is impossible to perform exhaustively. 
There are also scenarios that cannot predictably occur or deterministically repro-
duced in regular testing. They include race conditions, omissions, and deadlock. 
Omissions in the specification are problems like defining how long an agent should 
wait for a reply to a service request (within the publish-subscribe architecture 
assumed here) before timing out or pursuing another action. Deadlock occurs when 
two elements enter an infinite loop in the task allocation process and the process 
fails to yield a decision. This can happen as a result of a race condition or an unfore-
seen interaction between software components.
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A race condition is a behavior in electronics, software, or other system element 
where the output is sensitive to the sequence, timing, or order of other uncontrolla-
ble events. It creates a bug when events do not happen in the order intended. Race 
conditions can occur in electronics, especially logic circuits, and in multi-threaded 
or distributed software. An autonomous system can have all of these and is thus 
prone to race conditions.

Testing for race conditions is not straightforward since certain timing conditions 
must be satisfied for them to occur and these conditions may not manifest during 
regular testing. Because of this, regular testing alone cannot assure that race condi-
tions do not exist. To determine whether race conditions exist, formal methods (not 
discussed here) must be used to model the interaction between agents/threads/
subsystems.

In the detailed analysis of verification challenges with autonomous systems, it is 
instructive to have an illustrative example system.

5.3.2  Example System

The simple robot example, shown in cartoon form in Fig. 5.1, serves to illustrate 
subtleties that drive the variety of tools and research gaps that exemplify these 
problems.

This toy system consists of a triangular robot with three wheels and a downward- 
looking range sensor on a forward telescopic pole to detect cliffs (stairs). The two 
rear wheels drive the robot. As the robot moves, it controls how far the downward- 
looking sensor is extended in front by extending or retracting the telescopic pole. 
Since the robot is physically instantiated it has a non-zero stopping distance. 
Extending the sensor pole further out allows the robot to detect cliffs earlier. This 
means it could travel at a higher forward speed. The robot uses dead-reckoning 
against an internal map to navigate to a waypoint and the downward-looking sensor 

Fig. 5.1 Example robot 
system—triangular robot 
(blue) with three wheels 
(dark gray) and a 
downward looking sensor 
(green) in a flat 
environment (white) with 
cliffs (light gray)
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to avoid hazards on the way. It operates in a flat world with cliffs but no walls and 
its only task is to travel from one waypoint to another.

Though this is a simple robot, it provides context to demonstrate some of the 
challenges associated with autonomous system verification which is discussed next.

5.4  Challenges

The following four categories of research challenges in autonomous systems verifi-
cation are identified as follows:

• models: development of models that represent the system,
• abstraction: how to determine the adequate level of abstraction and detail to 

which requirements are generated,
• testing: development of test scenarios, metrics and performance evaluation 

mechanisms; and the extension of simulations, test environments and tools to 
enable generalization from tests to conclusions about system performance, and

• tools: new tools or techniques that must be developed to enable autonomous 
systems verification.

The rest of this chapter introduces these challenges in more detail.

5.4.1  Models

With models, there are four identified challenges associated with how to model the 
autonomous system and the environment it operates in.

Challenge 1: How is an adequate model of the system created?

There are several types of models relevant to the verification problem. They 
include logical models that represent the desired or computed behavior, probabilis-
tic models of the behavior, and mathematical and statistical models of the system. 
These models must be at a fidelity that captures interactions with the environment 
and predicts system performance. Software tools such as PRISM can verify behav-
iors that can be modeled probabilistically (Chaki and Giampapa 2013), but deriving 
these models and ensuring they represent the behavior is difficult, especially when 
the verification needs to generalize across environments. Estimations of the condi-
tional probabilities in the model are difficult to arrive at when realistic environmen-
tal interactions are considered.

Challenge 2: Common models and frameworks need to describe autonomous sys-
tems broadly enough so they can be used to standardize evaluation 
efforts and interfaces to the system.

Beyond models that support verification for systems, models and frameworks 
(Challenge 1) that support evaluations across solutions are also needed. Such com-
mon models and frameworks are being developed from different perspectives. They 
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range from the development of ontologies and shared concepts describing autono-
mous systems (Paull et al. 2012) to architectural designs to mathematical models of 
robot behavior based on dynamical systems. External analysis tools that use vari-
ables as independent elements to characterize the system are generally inadequate. 
Dynamical systems approaches (Smithers 1995) attempt to produce more generaliz-
able models using ordinary differential equations (ODEs) that include a nonlineari-
ties due to time dependencies. However, these approaches, while able to describe 
some long term emergent behaviors, are not applicable to behaviors that are not 
modeled by ODEs. Developing models based on tools that measure differences 
across solutions and how to define a model type that supports evaluations and gen-
eralizes across solutions are unsolved problems.

In the toy problem, if the robot’s high-level goals are broken down based on a 
framework like the OODA loop (observe, orient, decide, act), actions for the robot 
can be specified. Imposing this structure on the autonomous system ensures consis-
tency between evaluation efforts and output standardization. However, a controller 
may or may not map well into that framework. A deliberative system might explic-
itly follow each step, while a reactive controller will not explicitly instantiate the 
‘decide’ or ‘observe’ steps. In the reactive approach, the functions provided by the 
“decide” and “orient” steps are implicit in the “observe” and “act” steps and cannot 
be separated. This introduces problems when the framework is used to standardize 
evaluation efforts, since inaccuracies in the representation can lead to errors in the 
analysis. If the robot is not deciding, but is instead simply observing and acting, 
then verification tools designed to analyze the decision-making stage may not ade-
quately capture the relationship between the sensors, actuators, and environment.

Challenge 3:  How should models of black box autonomous systems be developed 
and debugged? How is a mathematical and/or logical model suit-
able for formal analysis produced from empirical observations?

Challenge 4: How should one identify and model components that are not cap-
tured yet (and what are their properties)?

When there is insufficient knowledge about a system to represent its autonomous 
behaviors with either logical, probabilistic or mathematical models, it is treated as a 
black box. Consequently, determining the level of abstraction is almost impossible. 
In that case, would observing the system’s behavior yield sufficient insight into the 
level of abstraction to model the sensor data? For the example robot, is it sufficient 
to model the sensor output as a binary (floor/cliff) detection? Or, should the sensor 
output be modeled as a discrete or continuous-valued function describing the dis-
tance between the sensor and the closest object? Should noise, manifested as sensor 
variations or the frequency which transitions between the binary states occur, be 
included? Do the motor controllers need to be modeled or is it sufficient to generate 
a larger model of system actions as a function of sensor input? What principles are 
used to design a simulation or model, at the level of abstraction needed, to evaluate 
the feature or property of interest?
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5.4.2  Abstraction

5.4.2.1  Fidelity

These challenges focus on the simulation fidelity rather than only the system model 
addressed in Challenge 1.

Challenge 5:  What determines the level of simulator fidelity to extract the infor-
mation of interest?

Insight into the fidelity a simulator requires for meaningful results makes it pos-
sible to identify scenarios where the system fails. Searches for scenarios where the 
system fails can be automated by developing adaptive learning techniques to focus 
simulations in performance space regions where failure is suspected (Schultz et al. 
1993). However, these techniques are only partially effective. Along with develop-
ment and tuning of learning algorithms, appropriate performance metrics to drive 
the learning process are needed. These learning techniques and performance met-
rics could also be used to identify which of several potential levels of fidelity cap-
ture the most failure modes.

Challenge 6:  How is the level of abstraction determined for the robot model, its 
behaviors, and the simulation that tests the model? How many envi-
ronmental characteristics need to be specified? What are the aspects 
of the environment, the robot, and the autonomy algorithms that 
cannot be abstracted away without undermining the verification?

The level of fidelity to model aspects of the environment as well as which aspects 
should be modeled is unclear.

The model of the autonomous behavior is given. But what is the fidelity of the 
model for the robot hardware that realizes the behavior? Can friction in the motors 
be abstracted away? What about other interacting behaviors in the system?

If a path-planning behavior is to be tested, the robot relies on an awareness of its 
position relative to the desired path or destination. What level of abstraction is ade-
quate to capture that information? When that is known then the level of abstraction 
for the environment could be addressed.

For the example system, is it sufficient to define an environment “that contains 
cliffs”? Reaching the given destination implies the robot did not run out of power 
prematurely. Not falling off cliffs is easier if the cliffs are stair-like, rather than pen-
insular, since the robot has only one sensor and thus one measurement of cliff loca-
tion at any time. The orientation of the robot to cliffs it might encounter or whether 
the road surface approaching a cliff impacts the robot’s maneuverability is unknown. 
How could one verify the robot will be safe (i.e. not fall off a cliff) given its existing 
behaviors or determine the environment state space boundaries where the robot can 
be verified safe? Are there other aspects of the environment that affect the robot’s 
performance that should be included in the environmental model or the robot’s 
behavior model?

The task can be constrained so the robot only operates in an environment with 
stairs—not peninsular cliffs. Modeling the environment as stairs that are 
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 perpendicular or parallel to the robot’s travel direction is insufficient. However, 
including all possible orientations does not scale up to handle more complex envi-
ronments. One cannot abstract away stair orientation if the objective is to character-
ize and model the robot’s behavior near stairs. However, the sensor uses sound to 
detect its range to the floor so it is fine to abstract away the stair’s color. The width 
of the stairs may affect the robot’s ability to reach its destination before it runs out 
of power. Can the width of the tested stairs be bound?

Since the sensor is centered in front of the robot, some autonomous behaviors are 
likely to have a fault mode where the robot is approaching stairs at an acute angle. 
How would other locations in the robot state space, which may be fault modes, be 
identified? These fault modes are functions of the robot’s physical configuration. 
For example, the separation of the rear wheels affects the angle when the robot falls 
off the cliff before it senses it.

5.4.2.2  Requirements Generation

Challenge 7: Where is the transition from specifying system requirements to 
designing the system and how are principled requirements devel-
oped so they do not devolve into designing the solution?

There are efforts towards requirements generation for autonomous systems 
(Vassev and Hinchey 2013), but they apply to space missions and highlight a prob-
lem with defining requirements for autonomous systems: defining the requirements 
often results in designing the system.

This is particularly noticeable in systems engineering requirements generation. 
Within the DoD Systems Engineering Fundamentals text (Defense Acquisition 
University Press 2001), IEEE Standard P1220 is quoted as defining a set of 15 tasks 
in the requirements generation process. Of these 15 tasks, one represents the desired 
capabilities of the system (the functional requirements which define and constrain 
the autonomy), one consists largely of elements that an autonomy designer would 
expect to be part of the design process (the modes of operation), three are currently 
unsolved research problems due to the inability to adequately define, in a testable 
and achievable way, what the robot ought to be doing (the measures of effectiveness 
and suitability, the utilization environments, and the performance requirements), 
and the rest define the context the autonomy is expected to operate. While they 
impose requirements on the autonomy, these additional constraints are not auton-
omy requirements themselves. In exploring the functional requirements generation 
process one finds the functional analysis stage encompasses the autonomy design 
process.

With the example system, the high-level requirement might be “the robot shall 
successfully reach its destination in an environment that contains cliffs”. But even 
simply specifying the lower level requirements becomes rapidly difficult.

If a behavior is specified for the robot when it detects a cliff, it defines the system 
autonomy, not a functional or safety requirement. Sub-requirements of “the robot 
shall not fall off cliffs”, “the robot shall reach its destination” and even “the robot 
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shall not take longer than X to reach its destination” could be specified, and have the 
autonomy balance the competing requirements. However, defining requirements 
below this level, again, quickly falls into designing the autonomy.

Different structures and models have been proposed to describe autonomous sys-
tems but none are widely accepted. There is no common taxonomy of goals that 
describes robot behavior and the goals of these systems. Typically, there are two ways 
these develop in a field as it matures: either they develop organically over a long 
period as different ideas are proposed, tested, and refined or rejected or, an organizing 
body selects or generates a standard to support and accelerate its acceptance.

Standards are being defined to support descriptions of both the hardware (IEEE 
Standard Ontologies for Robotics and Automation 2015a, b) and the tasks the sys-
tems are expected to accomplish, but this field is quite broad and there is little con-
sensus on what tasks should be included or how they should be described to support 
their eventual implementation and use.

Challenge 8: How is it ensured that the implicit and the explicit goals of the sys-
tem are captured? How is a model of the system goals from a human 
understanding of the task goals, the system, and the environment 
created?

To verify the system, implicit goals must also be captured in addition to the 
explicitly defined task goals. If the explicit goal is for the robot to gather informa-
tion about a region, the implicit goal is to ensure the information returns to the 
operator. If the robot gathers the information but does not return it to the user, then 
as far as the user is concerned, the information has not been gathered.

Challenge 9: How are performance, safety, and security considerations 
integrated?

In the certification and accreditation communities, performance, safety and secu-
rity considerations are separated. The safety ones are addressed by the certification 
authority and the performance and security ones by the accreditation authority. One 
of the major reasons autonomy is implemented on a system is to provide an extra 
layer of assurance for safety and security as the robot attempts to meets its perfor-
mance requirements.

For the toy robot, safety includes “not falling off a cliff”. If its task is “get from 
point A to point B”, system safety is an implicit performance requirement, since 
falling off a cliff prevents the robot from reaching point B.  If cliff locations are 
completely known, autonomy is not needed as the solution is to automate the opti-
mal paths between a variety of A’s and B’s to avoid cliffs. Autonomy is needed if the 
cliff locations relative to the robot’s actual path are not completely known and the 
desire is to react safely if it detects one. Safety is one of the reasons autonomy is in 
a system, and being able to avoid cliffs increases overall performance. In this case, 
safety is part of performance. If other aspects of safety are considered then, safety 
would include potential damage to the environment as a side effect of falling off the 
cliff (environmental safety) and potentially injured bystanders if the robot drives 
into or over a bystander’s foot (bystander safety). The safety of the operator is not a 
consideration for this robot since the operator’s interaction with the robot is  minimal. 

S.A. Redfield and M.L. Seto



115

While these aspects do not directly affect the system performance, they do interact 
with its algorithms—an obstacle avoidance algorithm protects both bystanders and 
the robot itself while significantly affecting its ability to accomplish its task. 
Avoiding cliffs promotes safety for the robot and for the environment while improv-
ing its performance.

5.4.3  Test

Challenge 10: At what point is there enough evidence to determine that an auton-
omous system or behavior has been verified?

Even outside the robotics research community, the actual measures used to deter-
mine when enough evidence has accumulated to verify a system are often ad hoc or 
arbitrary. Since the original metrics lack firm principles or foundations, it is impos-
sible to find a principled mechanism to support extending them to include autono-
mous systems. Just as there are no principled methods to determine what evidence 
is appropriate, there is no easy way to determine when sufficient evidence has been 
accumulated.

Challenge 11: How does one ensure it is possible, in the physical world, to test 
simulated situations that result in boundary cases?

This is a problem when a fault mode is triggered by a specific sequence of previ-
ous actions. There are trivial examples where the toy robot falls off a cliff if initial-
ized in an untenable location, but setting up a physical environment where the robot 
will be induced to perform the same sequence of actions that lead to that failure is 
non-trivial. Without being able to repeatedly trigger the same failure in the physical 
world, there is no confidence that an applied remedy would be effective.

5.4.3.1  Scenarios

Challenge 12: How would tests be designed so that passing them indicates a 
more general capability?

NIST (National Institute of Standards and Technology) developed a suite of robot 
test arenas in their work with first responders and competition developers in urban 
search and rescue tasks (Jacoff et al. 2010). In this approach to capability evaluation, 
systems are tested on their ability to repeatedly accomplish a task within a given 
arena. Performance is based not only on simple binary accomplishment metrics but 
on reliability and robustness. This is an extreme version of the most common method 
developers use to engender confidence in their systems: ad-hoc execution of select 
design reference missions. Instead of developing an entire scenario, the NIST 
approach allows developers to test their systems on one capability at a time.

It is more common for developers to test their systems against the entire mission 
it was designed to address. The mission is intuitively representative of a use case for 
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which the system was designed. In the best case, it would be a particularly challeng-
ing instance of the use case. The implication is that since the system can handle the 
demonstrated case it will also be able to handle other, similar cases the system will 
be subjected to operationally.

As an example with the toy robot, if the robot can avoid straight line precipices 
that are perpendicular, and at 45° (purple and teal lines in Fig. 5.2) to, its direction 
of travel (black line in Fig. 5.2) then it is valid to generalize and assume all orienta-
tions between perpendicular and 45° are likewise acceptable, as are orientations 
between perpendicular and −45° (all shaded regions in Fig. 5.2). However, it does 
not imply whether it will succeed against other cliff orientations (areas that cut 
through the white region in Fig. 5.2), other than to recognize that there is a point 
where it will lose stability before it detects the cliff.

While test cases demonstrate possibilities the challenge that autonomous robot-
ics now faces is to produce test schemes that provide results which can be meaning-
fully generalized not only for specific capabilities but for system performance. 
Efforts have been made to address this challenge using automation to simply exe-
cute and analyze many scenarios (Barltrop et al. 2008; Smith et al. 1999; Pecheur 
2000), but in each case these efforts required insight into the system under test, and 
the automation was still based on scripted scenarios that engineers deemed likely 
and not unanticipated ones.

Challenge 13: How are challenging design reference missions selected so that 
performing well against them indicates a more general capability 
for the system rather than for specific system components?

Even after generalizing from specific scenarios to regions of capability within 
the robot state space, methods are still needed to identify specific scenarios that 
provide the most general information.

In the toy example the environment was implicitly limited to only straight-line 
cliffs and perfect sensor or actuator performance between ±45°. There was no men-
tion of unexpected obstacles or materials and conditions that cause errant sensor 
readings—all of which are sources of undesirable behaviors in autonomous  systems. 

Fig. 5.2 Generalization of 
environments: if the robot 
can avoid cliffs that are 
straight and appear 
perpendicular (gray), at 
+45° (purple) or at −45° 
(teal), it is not imply it can 
avoid cliffs that cut 
through the white region
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For the toy example, a simpler scenario with cliffs oriented only perpendicular to 
the robot travel direction and no obstacles provides less information about the 
behavior robustness than a scenario with approaches to cliffs over a range of orien-
tations and moving objects in the environment.

Challenge 14: How can test scenarios be produced to yield the data required to 
generate mathematical/logical models or to find the boundary 
conditions and fault locations in the robot state space?

This challenge addresses two points: (1) the development of test protocols and 
methodologies whose goals are not to evaluate the system but to generate a model 
of the system from external observations of system properties (flip side of Challenges 
3 and 4), and (2) identify test scenarios in the robot state space that exist at perfor-
mance boundaries. For example, the edge of the curb running along a sidewalk is a 
performance boundary for a robot that operates on sidewalks. In a simulation, this 
might be represented as a distance-from-sidewalk-edge parameter or as a position- 
on- the-map environmental feature, but in either case, it is a performance boundary.

Instead of test scenarios that characterize how well the system works, the pur-
pose of these scenarios is to highlight both areas where the system fails to perform 
as expected and areas where there is a transition from one performance regime to 
another. As well, what techniques are needed to determine the parts of the perfor-
mance space that should be characterized in a model of the black box autonomous 
system?

5.4.3.2  Metrics and Performance Evaluation

To evaluate the autonomous system using abstracted models, metrics, and measures 
that are proxies for the system, goals need to be defined. In some cases, these may 
be represented in the requirements, but the problem of defining metrics associated 
with implicit and less tangible goals is still difficult. Most work in this area focused 
on developing tools to measure the degree of autonomy in a system, rather than the 
effectiveness of the autonomous system as it attempts to accomplish its tasks.

Challenge 15: Once an adequate model is created how is it determined whether 
all resulting emergent behaviors were captured and what are 
appropriate performance measurement tools for this?

Most formal attempts to provide standards for autonomy have centered on the defi-
nition of “levels of autonomy”, an effort to distinguish systems by their degree of 
independence from a human operator and level of capability. Examples include Draper 
Labs’ 3D Intelligence Space (Cleary et al. 2001), the US Army’s Mission Performance 
Potential (MPP) scale (Durst et al. 2014), the Autonomous Control Levels (ACL) put 
forth by Air Force Research Labs (Sholes 2007), and the National Institute of Standards 
and Technology’s (NIST) Autonomous Levels for Unmanned Systems (ALFUS) 
(McWilliams et al. 2007; Huang et al. 2004, 2005), shown in Fig. 5.3.

Not only are different approaches largely incompatible with each other, even 
experts disagree on the taxonomy to categorize a system within a given approach. 
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The overall effort to define levels of autonomy has devolved into a philosophical 
argument, and a 2012 Defense Science Board report recommended that the effort be 
abandoned in favor of the definition of system frameworks (Murphy and Shields 
2012). The levels of autonomy used to certify autonomous systems are the excep-
tion because they only attempt to define specific characteristics relevant to their 
domain of interest.

To illustrate the difficulty in applying a subjective measure of autonomy to a 
robot, consider the toy example against the two of the axes of evaluation common 
to most levels of autonomy (Fig. 5.3)—situational awareness/environmental com-
plexity and decision making/human independence. One might argue that the situa-
tional awareness of the robot is limited because it is only able to sense its own 
location and any cliffs in its immediate vicinity. However, it can also be argued that, 
for the intended environment (only has cliffs), this is all it needs, and the situational 
awareness is therefore, high. Likewise, since the only stipulated ability is to navi-
gate to a destination and avoid cliffs, in the space spanned by all possible behaviors 
for all robots this is limited in its independence capability. On the other hand, way-
point following allows the robot to operate independent of a human operator in the 
traversal of those waypoints, so it could also be considered highly independent.

IEEE Standard 1872–2015 (IEEE Standard Ontologies for Robotics and 
Automation 2015a, b) attempts to introduce clarity by defining autonomy as a role 
taken on by a process within the robot. Instead of attempting to define the system 
autonomy it allows the designer to make some aspects autonomous (e.g. avoiding 
cliffs) and others automatic (e.g. following a fixed sequence of waypoints).

Challenge 16: Measurement and evaluation are generally poorly understood—
operators can describe tasks for the robot but lack tools to quanti-
tatively evaluate them. How should autonomous behaviors be 

Fig. 5.3 The ALFUS framework for autonomy levels (Huang et al. 2005)
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measured so they consistently and accurately describe the capabil-
ity embodied by a robot?

Efforts to create metrics generally result in tools with solid theoretical foundations 
that are not easily implemented or, focus on subjective evaluations from experts like 
system users (Steinberg 2006; Durst et al. 2014), and consequently, not easily com-
parable across experts. Standardized questions and forms use scales and techniques 
in an attempt to normalize subjective results (Billman and Steinberg 2007). However, 
the problem is the inability of evaluators to agree on the relative importance of sub-
sidiary details within a task (e.g. whether the smoothness or the directness of the 
robot’s path is more important) rather than the adequacy of the evaluation tools.

Challenge 17: How is a metric defined for comparing solutions?

Even if a metric is defined to evaluate whether a robot accomplishes its task, how 
are the different solutions compared? Start with the toy problem task: reach way-
point B by a given time. Two robots have the downward-looking sensor that identi-
fies cliffs. Robot A has a sensor that tells it range and bearing to the waypoint and 
Robot B has a map and the ability to localize itself within it. Robot A uses simple 
heuristics that cause it to head straight towards the waypoint when there are no cliffs 
and to back up and turn a fixed amount when there is a cliff. Robot B has a more 
sophisticated behavior to characterize the cliff. Robot A has a motor controller that 
imposes smoother motion, while robot B’s controller can stop abruptly and turn 
about an axis internal to itself. Would the metric to compare the solutions be based 
on how fast the robots reach the waypoint, or is it a function of the smoothness of 
the path? Is it a combination? If it is a combination, how are the metrics weighted? 
Is it measured with the same start and destination point every time or, is it sufficient 
to measure multiple random samples or, is the metric a function of path properties 
and independent of the specific path? Is the metric a simple binary of reached/failed 
to reach the waypoint? What if the user does not appreciate what the important 
aspects are? For example, the relative importance of path duration and efficiency or 
the reliability with which it reaches the destination.

Challenge 18: How is the “optimal” defined against which the verification is per-
formed? How is the solution shown to be in fact, optimal? How is 
the performance of the system measured?

To verify a system one needs to know its properties and what it is supposed to do. 
The “optimal” solution for verification of autonomous systems can be a computably 
optimal solution to the problem (though the robot’s limitations, environment, or 
practical considerations may drive it to a less optimal solution) or the desired behav-
ior itself. The difference between the optimal solution and the robot’s actual behav-
ior can be a measure of system performance and used to compare against different 
solutions. Where a computable optimal solution exists, it is possible to determine 
whether the robot’s performance was optimal, but in other cases, performance is 
more difficult to quantify. The problem is twofold. It is necessary to define what the 
behavior ought to be, and evaluate that against what the behavior actually is. Optimal 
can be defined in the context of the specific behavior (the best this robot is capable 
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of) or the task goals (what is the best that a system could do). General purpose met-
rics that compare behaviors using either is an active research area.

5.4.3.3  Intersection of Scenarios and Metrics

Challenge 19: How is the performance from finite samples of the performance 
space generalized across several variables and parameters?

This is similar to Challenge 12 (how to select tests that indicate a general capa-
bility), but the focus of this challenge is how to generalize performance given finite 
test results. For the toy robot, it is straightforward to generalize from the ±45 degree 
tests because the properties of the environment (cliff orientations), robot (nose sen-
sor and wheel locations), and behavior (robot will not move outside the white tri-
angle in Fig. 5.2 when it reacts to a cliff) are known. What is lacking are general 
principles, best practices, or theoretical structures that help determine how a given 
performance test result generalizes its performance throughout the robot state space. 
For example, if the width of the toy robot’s wheelbase is changed, the limits on safe 
orientations to the cliffs changes. However, within this task and robot configuration, 
the general premise that the physical configuration is related to this aspect of perfor-
mance holds. How are equivalent premises that hold for other tasks and scenarios 
determined?

Challenge 20: Autonomy frameworks are unable to determine whether all the 
resulting emergent behaviors have been captured or to supply per-
formance measurement tools.

Even if it is possible to generalize performance samples to a range within a per-
formance regime, the specificity of the samples limits their broader applicability, 
and thus does not address verification methods for entire systems. As a test scenario 
is designed to demonstrate one system behavior or feature, others may be simplified 
or ignored, which limits the broader applicability of the result. The test scenario 
only captures potential emergent behaviors related to the behavior or feature being 
tested, not emergent behaviors that occur when multiple behaviors or features inter-
act. Autonomy frameworks define how interactions between the behaviors and 
functions of the robot are structured, but they do not define how to generate sce-
narios to measure the reliability of those interactions. Since the interactions between 
the robot and its environment is intractably complex this is a critical component of 
any test method since the performance space cannot be exhaustively searched.

5.4.4  Tools

Challenge 21: What new tools or techniques need to be developed?

If there are solutions to these challenges, an adequate system model and a rea-
sonable abstraction of the environment for the simulation tools, there are still diffi-
culties. In addition to correct-by-construction tools (Kress-Gazit et al. 1989), other 
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tools are required to: support analysis of black box systems and behaviors; catego-
rize tasks and goals and connect them to platforms, environments, and capabilities; 
develop performance metrics; support the development and analysis of modelling 
and simulation approaches, and connect the different approaches to verification into 
coherence assurance cases. This is an incomplete list—as progress is made on the 
rest of these challenges, other gaps will be identified.

Challenge 22: In general, how is the fitness of a physical robot structure for a 
given task or environment verified (e.g., a robot that cannot sense 
color or operates in the dark with an infrared sensor is unfit to sort 
objects based on color)?

The NIST test arenas (Jacoff et al. 2010) shown in Fig. 5.4 use specific low-level 
capabilities (or skills) that can be combined to characterize a desired higher-level 
capability. The capabilities are determined against performance in a test. For exam-
ple, the robot must manipulate objects with a required robustness in test X and reli-
ably maneuver through environment Y.

Fig. 5.4 NIST test arenas for urban search and rescue robots (from NIST’s Robotics Test Facility 
website)
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Individual robots are tested against the full suite of test arenas and ranked per their 
performance in various categories (e.g., manipulation or maneuverability). As robots are 
generally specialized for a given task, once that task has been decomposed into the skills 
(or arenas) required, the suitability of a given robot for that task can be evaluated.

Although this approach is effective within this task domain, it has two major 
limitations: the process to define the arenas/skills was lengthy and expensive and the 
process to decompose tasks into amalgamations of skills is human-centric and does 
not generalize well from one task to another. Equivalent tests for the low-level skills 
could be developed so that any robot might be able to express. However, determin-
ing a complete set of basic capabilities was established and that each was adequately 
tested is more difficult.

Challenge 23: Descriptive frameworks are either too specific and constrain the 
developer to specific tools when designing the autonomous ele-
ments of the system or, too broad and difficult to apply to specific 
cases. Tools are needed to analyze systems at both the specific and 
the broad levels.

A variety of descriptive frameworks have been advanced to describe autonomous 
systems in a way that facilitates evaluation. However, when the framework follows 
too closely to a particular implementation, the solution is limited to only systems 
with that same implementation.

An example of this phenomenon is the application of formal methods to auton-
omy by simplifying system states and inputs to create a deterministic system. While 
this provides a verifiable solution, the simplifications limit the system, and the 
requirement for determinism precludes the use of more innovative techniques such 
as fuzzy logic, neural nets, and genetic algorithms. Broader models are more widely 
applicable, such as the classic OODA (observe, orient, decide, act) loop (Gehr 
2009), but the lack of specificity makes them difficult to meaningfully apply. 
Attempts to find a middle ground between these two approaches include the Systems 
Capabilities Technical Reference Model (SC-TRM) (Castillo-Effen and Visnevski 
2009), Framework for the Design and Evaluation of Autonomous Systems (Murphy 
and Shields 2012), and the 4D Realtime Control System (RCS) Reference Model 
Architecture (Albus et al. 2000). Each of these frameworks has its supporters and 
detractors, but no critical advantage has yet pushed one to widespread adoption. 
Once such a model is found, verification techniques can be developed for classes of 
components or capabilities rather than for the entire system at once, making the 
problem more tractable.

Challenge 24: How is a structured process that allows feedback between the 
physical/ground truth layer and the formal methods verification 
tools developed?

This is a specific tool among many that could be developed for Challenge 21. 
Formal methods verification tools can provide useful information about guarantees 
and properties of a given behavior. However, to verify the behavior as instantiated 
in a physical system, tools are required to enable test results in the physical system 
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to feed back into the formal verification tools. Then, this enables the formal verifica-
tion tool results to feed back into the physical system.

Challenge 25: How to disambiguate between cases where the specification was 
incorrect (task description abstraction failed to capture a required 
system action) from those where the environmental model was 
incorrect (environmental abstraction failed to capture some criti-
cal system-environment interaction)? How to identify not just indi-
vidual situations but classes of situations where the robot fails to 
be safe or to achieve safe operation (e.g. a front wheel often falls 
off the cliff but the back wheels never do). How should unantici-
pated unknowns be accommodated?

Challenge 26: If an algorithm, or patch to an existing algorithm, was replaced 
can it be proven that no new failure modes were introduced with-
out re-doing the entire verification process?

If the problem to characterize the performance space of the original system was 
solved, is it possible to characterize the performance space of the new system with-
out running every algorithm and system-level verification test again?

Does making an autonomous system modular reduce the verification burden 
when an autonomy algorithm component is changed, added or removed?

In the simulation tool the toy robot model sometimes falls off peninsular cliffs. 
If the robot is not intended to succeed against them, is this happening because the 
verification failed to realize that peninsular cliffs were not part of the task or because 
the simulation environment includes physically unrealizable cliffs?

It is important to evaluate the system at different levels of fidelity using analytic, 
simulation, and physical instantiation. The analytic tools provide confidence the 
robot will operate well in certain scenarios and poorly in others. The simulation 
tools, if abstracted to an appropriate level, can run sufficiently quickly to verify the 
analytic results in the good and poor areas and identify commonalities between 
failure modes for the boundary regions. The physical testing tools provide a means 
to explore the impact of the environment and robot physical structure on its perfor-
mance in those boundary cases.

The two key challenges identified in testing methodology stem from the intrac-
table complexity problem of operating a complex system within a generally 
unbounded environment. Firstly, how can all possible scenarios be meaningfully 
sampled to create a representative subset? Secondly, how can these subsets be gen-
eralized to provide confidence in cases that were not directly tested?

These challenges focus on aspects of the problem that are the most difficult to 
address. Autonomous systems are used in dynamic environments which are inher-
ently unpredictable. Bounds or classes of situations can be defined within which the 
system is expected to operate a priori. The problem identified here is to define 
classes of situations within which the system demonstrates specific predictable 
properties. What tools could be developed to examine a large set of test or simula-
tion data and then extract the common feature that is predictive of success or failure, 
safety or danger? Can tools be created to identify aspects of the environment which 
were thought irrelevant but are actually important?
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5.5  Summary

Within this chapter some pressing verification challenges facing autonomous robot-
ics were identified as important as robots make the transition from the research 
laboratory to real-world applications (Table 5.1). By identifying these challenges 
the lack of insight into certain aspects of autonomous systems are highlighted.

Table 5.1 Summary of autonomous system verification challenges discussed

Challenges

1 How is an adequate model of the system created?
2 Common models and frameworks need to describe autonomous systems broadly enough so 

they can be used to standardize evaluation efforts and interfaces to the system
3 How should models of black box autonomous systems be developed and debugged? How is 

a mathematical and/or logical model suitable for formal analysis produced from empirical 
observations?

4 How should one identify and model components that are not captured yet (and what are 
their properties)?

5 What determines the level of simulator Fidelity to extract the information of interest?
6 How is the level of abstraction determined for the robot model, its behaviors, and the 

simulation that tests the model? How many environmental characteristics need to be 
specified? What are the aspects of the environment, the robot, and the autonomy algorithms 
that cannot be abstracted away without undermining the verification?

7 Where is the transition from specifying system requirements to designing the system and 
how are principled requirements developed so they do not devolve into designing the 
solution?

8 How is it ensured that the implicit and the explicit goals of the system are captured? How is 
a model of the system goals from a human understanding of the task goals, the system, and 
the environment created?

9 How are performance, safety, and security considerations integrated?
10 At what point is there enough evidence to determine that an autonomous system or 

behavior has been verified?
11 How does one ensure it is possible, in the physical world, to test simulated situations that 

result in boundary cases?
12 How would tests be designed so that passing them indicates a more general capability?
13 How are challenging design reference missions selected so that performing well against 

them indicates a more general capability for the system rather than for specific system 
components?

14 How can test scenarios be produced to yield the data required to generate mathematical/
logical models or to find the boundary locations and fault locations in the robot state space?

15 Once an adequate model is created how is it determined whether all resulting emergent 
behaviors were captured and what are appropriate performance measurement tools for this?

16 Measurement and evaluation are generally poorly understood—Operators can describe the 
tasks for the robot but lack tools to quantitatively evaluate them. How should autonomous 
behaviors be measured so they consistently and accurately describe the capability 
embodied by a robot?

(continued)
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While there are areas where progress is being made, and a few more with promis-
ing directions for future research, there are many problems that are not addressed. 
As verification of autonomous systems becomes a more pressing need for industry 
and a more mainstream research topic, we are optimistic that these challenges will 
be addressed and new tools and principled approaches will become available to sup-
port the safe transition of advanced autonomy and artificial intelligence into com-
mercial autonomous systems.

Acknowledgements The authors would like to thank Andrew Bouchard and Richard Tatum at the 
Naval Surface Warfare Center in Panama City, Florida, for their help with early version of this 
paper, and the Verification of Autonomous Systems Working Group, whose efforts help define the 
terminology and identify these challenges. Thanks, are also due to the United States Naval 
Research Laboratory and the Office of Naval Research for supporting this research.

Table 5.1 (continued)

Challenges

17 How is a metric defined for comparing solutions?
18 How is the “optimal” defined against which the verification is performed?? How is the 

solution shown to be in fact, optimal? How is the performance of the system measured?
19 How is the performance from finite samples of the performance space generalized across 

several variables and parameters?
20 Autonomy frameworks are unable to determine whether all the resulting emergent 

behaviors have been captured or to supply performance measurement tools
21 What new tools or techniques need to be developed?
22 In general, how do we Verify the fitness of a given physical robot structure for a given task 

or environment (obviously, a robot that cannot sense color or is operating in the dark with 
an infrared sensor is unfit to sort objects on the basis of color)?

23 Descriptive frameworks are either too specific and constrain the developer to specific tools 
when designing the autonomous elements of the system or, too broad and difficult to apply 
to specific cases. Tools are needed to analyze systems at both the specific and the broad 
levels

24 How is a structured process that allows feedback between the physical/ground truth layer 
and the formal methods verification tools developed?

25 How to disambiguate between cases where the specification was incorrect (task description 
abstraction failed to capture some required system action) and those where the 
environmental model was incorrect (environmental abstraction failed to capture some 
critical system-environment interaction)? How to identify not just individual situations but 
classes of situations where the vehicle fails to be safe or to achieve safe operation (e.g. a 
front wheel often falls off the cliff but the back wheels never do). How should 
unanticipated unknowns be accommodated?

26 If an algorithm, or patch to an existing algorithm, was replaced can it be proven that no 
new failure modes were introduced without re-doing the entire verification process
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