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Preface

This book derives from two Association for the Advancement of Artificial
Intelligence (AAAI) symposia; the first symposium on “Foundations of Autonomy
and Its (Cyber) Threats—From Individuals to Interdependence” was held at Stanford
University from March 23 to 25, 2015, and the second symposium on “Al and the
Mitigation of Human Error—Anomalies, Team Metrics and Thermodynamics™ was
held again at Stanford University from March 21 to 23, 2016. This book, titled
Autonomy and Artificial Intelligence: A Threat or Savior?, combines and extends
the themes of both symposia. Our goal for this book is to deal with the current state
of the art in autonomy and artificial intelligence by examining the gaps in the exist-
ing research that must be addressed to better integrate autonomous and human sys-
tems. The research we present in this book will help to advance the next generation
of systems that are already planned ranging from autonomous platforms and
machines to teams of autonomous systems to provide better support to human oper-
ators, decision-makers, and the society.

This book explores how artificial intelligence (Al), by leading to an increase in
the autonomy of machines and robots, is offering opportunities for an expanded but
uncertain impact on society by humans, machines, and robots. To help readers better
understand the relationships between Al, autonomy, humans, and machines that will
help society reduce human errors in the use of advanced technologies (e.g., air-
planes, trains, cars), this edited volume presents a wide selection of the underlying
theories, computational models, experimental methods, and field applications.
While other books deal with these topics individually, this book is unique in that it
unifies the fields of autonomy and Al and frames them in the broader context of
effective integration for human-autonomous machine and robotic systems.

The introduction in this volume begins by describing the current state of the art
for research in Al, autonomy, and cyber-threats presented at Stanford University in
the spring of 2015 (copies of the technical articles are available from AAAI at http://
www.aaai.org/Symposia/Spring/sss15symposia.php#ss03; a link to the agenda for
the symposium in 2015 along with contact information for the invited speakers and
regular participants is at https://sites.google.com/site/foundationsofautonomy-
aaais2015/) and for research in Al, autonomy, and error mitigation presented at the


http://www.aaai.org/Symposia/Spring/sss15symposia.php#ss03
http://www.aaai.org/Symposia/Spring/sss15symposia.php#ss03
https://sites.google.com/site/foundationsofautonomyaaais2015
https://sites.google.com/site/foundationsofautonomyaaais2015
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same university in the spring of 2016 (copies of the technical articles are available
from AAAI at http://www.aaai.org/Symposia/Spring/sss16symposia.php#ss0O1; a
link to the agenda and contact information for the invited speakers and regular par-
ticipants is at https://sites.google.com/site/aiandthemitigationofhumanerror/).

After introducing the themes in this book and the contributions from world-class
researchers and scientists, individual chapters follow where they elaborate on key
research topics at the heart of effective human-machine-robot-systems integration.
These topics include computational support for intelligence analyses; the challenge
of verifying today’s and future autonomous systems; comparisons between today’s
machines and autism; implications of human-information interaction on artificial
intelligence and errors; systems that reason; the autonomy of machines, robots, and
buildings; and hybrid teams, where hybrid reflects arbitrary combinations of
humans, machines, and robots.

The contributions to this volume are written by leading scientists across the field
of autonomous systems research, ranging from industry and academia to govern-
ment. Given the broad diversity of the research in this book, we strove to thoroughly
examine the challenges and trends of systems that implement and exhibit Al; social
implications of present and future systems made autonomous with AI; systems with
Al seeking to develop trusted relationships among humans, machines, and robots;
and effective human systems integration that must result for trust in these new sys-
tems and their applications to increase and to be sustained.

A brief summary of the AAAI symposia in the spring of 2015 and the spring of
2016 is presented below.

Spring 2015: Foundations of Autonomy and Its (Cyber)
Threats—From Individuals to Interdependence

Spring 2015: Organizing Committee

Ranjeev Mittu (ranjeev.mittu @nrl.navy.mil), Naval Research Laboratory

Gavin Taylor (taylor@usna.edu), US Naval Academy

Donald Sofge (don.sofge @nrl.navy.mil), Naval Research Laboratory, Navy Center
for Applied Research in Artificial Intelligence

William F. Lawless (wlawless@paine.edu), Paine College, Departments of Math
and Psychology

Spring 2015: Program Committee

e David Atkinson (datkinson@ihmc.us), Senior Research Scientist, Florida
Institute for Human and Machine Cognition


http://www.aaai.org/Symposia/Spring/sss16symposia.php#ss01
https://sites.google.com/site/aiandthemitigationofhumanerror/
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Lashon B. Booker (booker@mitre.org), Ph.D., Senior Principal Scientist, The
MITRE Corporation

Jeffery Bradshaw (jbradshaw@ihmc.us), Senior Research Scientist, Florida
Institute for Human and Machine Cognition

Michael Floyd (michael.floyd @knexusresearch.com), Knexus Research

Sharon Graves (sharon.s.graves@nasa.gov), NASA Deputy Project Manager,
Safe Autonomous Systems Operations, Aeronautics Research Directorate
Vladimir Gontar (galita@bgu.ac.il), Department of Industrial Engineering and
Management, Ben-Gurion University of the Negev

L. Magafas (Imagafas @otenet.gr), Director of Electronics and Signal Processing
Lab., Eastern Macedonia and Thrace Institute of Technology, Kavala, GR
Bolivar Rocha (bolivar.rocha@ gmail.com), Brazil

Satyandra K. Gupta (skgupta@umd.edu), Director, University of Maryland
Robotics Center, Department of Mechanical Engineering and Institute for
Systems Research

Laurent Chaudron (laurent.chaudron@polytechnique.org), Director, ONERA
Provence Research Center, French Air Force Academy

Charles Howell (howell@mitre.org), Chief Engineer for Intelligence Programs
and Integration, National Security Engineering Center, The MITRE Corporation
Jennifer Burke (jennifer.l.burke2@boeing.com), Manager, Human-System
Integrated Technologies, Boeing Research and Technology

Tsuyoshi Murata (murata@cs.titech.ac.jp), Dept. of Computer Science, Graduate
School of Information Science and Engineering, Tokyo Institute of Technology
Julie Marble (julie.marble@navy.mil), Office of Naval Research, Program
Officer for Hybrid Human-Computer Systems

Doug Riecken (dougriecken@gmail.com), Columbia University Center for
Computational Learning Systems

Catherine Tessier (Catherine.Tessier@onera.fr), Senior Researcher, Dept. of
Systems Control and Flight Dynamics, French Aerospace Lab, ONERA,
Toulouse, France

Simon Parsons (s.d.parsons@liverpool.ac.uk), Liverpool, Visiting Professor,
Dept. of Computer Science, University of Liverpool; Dept. Graduate Deputy
Chair and Co-Dir., Agents Lab, Brooklyn College

Ciara Sibley (ciara.sibley@nrl.navy.mil), Engineering Research Psychologist,
Naval Research Laboratory, Washington, DC

Spring 2015: Invited Keynote Speakers

Gautam Trivedi (gautam.trivedi@nrl.navy.mil) and Brandon Enochs (brandon.
enochs @nrl.navy.mil), Naval Research Laboratory, “Detecting, Analyzing and
Locating Unauthorized Wireless Intrusions into Networks”

Chris Berka (chris@b-alert.com), Advanced Brain Monitoring, “On the Road to
Autonomy: Evaluating and Optimizing Hybrid Team Dynamics”
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e Kiristin E. Schaefer (kristin.e.schaefer2.ctr@mail.mil), US Army Research Lab
(ARL), “Perspectives of Trust: Research at the US Army Research Laboratory”

e DavidR. Martinez (DMartinez @LL.mit.edu), Lincoln Laboratory, Massachusetts
Institute of Technology, “Cyber Anomaly Detection with Machine Learning”

e Vladimir Gontar (vgontar@ucsd.edu), BioCircuits Institute, University of
California San Diego (UCSD), Ben-Gurion University of the Negev, “Artificial
Brain Systems Based on Neural Networks Discrete Chaotic Biochemical
Reactions Dynamics and Its Application to Conscious and Creative Robots”

Spring 2015: Regular Speakers

e Christopher A. Miller (cmiller @sift.net), Smart Information Flow Technologies,
“Delegation, Intent, Cooperation and Their Failures”

e Ciara Sibley' (ciara.sibley@nrl.navy.mil), Joseph Coyne! (joseph.coyne@nrl.
navy.mil), and Jeffery Morrison® (jeffrey.morrison@nrl.navy.mil), 'Naval
Research Laboratory, *Office of Naval Research, “Research Considerations for
Managing Future Unmanned Systems”

e Gavin Taylor (taylor@usna.edu), Kawika Barabin, and Kent Sayre, Computer
Science Department, US Naval Academy, Annapolis, MD 21402-5002, “An
Application of Reinforcement Learning to Supervised Autonomy”

e David J. Atkinson (datkinson@ihmc.us), Florida Institute for Human and
Machine Cognition, Ocala, FL, “Emerging Cyber-Security Issues of Autonomy
and the Psychopathology of Intelligent Machines”

e Olivier Bartheye' (olivier.barteye @intradef.gouv.fr) and Laurent Chaudron?
(laurent.chaudron @polytechnique.org), CREC St-Cyr' and ONERA?, “Risk
Management Systems Must Provide Automatic Decisions for Crisis Computable
Algebras”

e William F. Lawless (wlawless @paine.edu), Paine College, Augusta, GA, and Ira
S. Moskowitz, Ranjeev Mittu, and Donald A. Sofge ({ira.moskowitz; ranjeev.
mittu; donald.sofge}@nrl.navy.mil), Naval Research Laboratory, Washington,
DC, “A Thermodynamics of Teams: Towards a Robust Computational Model of
Autonomous Teams”

* Ranjeev Mittu' (ranjeev.mittu@nrl.navy.mil) and Julie Marble? (julie.marble @
navy.mil), 'Naval Research Laboratory, Information Technology Division,
Washington, DC; ? Office of Naval Research, VA 22203-1995 (changing to Johns
Hopkins Applied Physics Lab, MD), “The Human Factor in Cybersecurity:
Robust and Intelligent Defense”

* Myriam Abramson (myriam.abramson@nrl.navy.mil), Naval Research
Laboratory, Washington, DC, “Cognitive Fingerprints”

e Ira S. Moskowitz! (ira.moskowitz@nrl.navy.mil), William F. Lawless?, (wlaw-
less @paine.edu), Paul Hyden'! (paul.hyden @nrl.navy.mil), Ranjeev Mittu' (ran-
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jeev.mittu@nrl.navy.mil), and Stephen Russell' (stephen.m.russell8.civ@mail.
mil), 'Information Management and Decision Architectures Branch, Naval
Research Laboratory, Washington, DC; 2Departments of Mathematics and
Psychology, Paine College, Augusta, GA, “A Network Science Approach to
Entropy and Training”

* Boris Galitsky (bgalitsky @hotmail.com), Knowledge Trail Inc., San Jose, CA,
“Team Formation by Children with Autism”

e Olivier Bartheye' (olivier.barteye @intradef.gouv.fr) and Laurent Chaudron?
(laurent.chaudron @polytechnique.org), CREC St-Cyr! and ONERA?, “Algebraic
Models of the Self-Orientation Concept for Autonomous Systems”’

Spring 2016: Al and the Mitigation of Human Error—
Anomalies, Team Metrics and Thermodynamics

Spring 2016: Organizing Committee

Ranjeev Mittu (ranjeev.mittu@nrl.navy.mil), Naval Research Laboratory

Gavin Taylor (taylor@usna.edu), US Naval Academy

Donald Sofge (don.sofge @nrl.navy.mil), Naval Research Laboratory

William F. Lawless (wlawless@paine.edu), Paine College, Departments of Math
and Psychology

Spring 2016: Program Committee (duplicates the spring 2015
symposium)

Spring 2016: Invited Keynote Speakers

e Julie Adams (julie.a.adams@vanderbilt.edu), Vanderbilt University, Associate
Professor of Computer Science and Computer Engineering, Electrical
Engineering and Computer Science Department, “Al and the Mitigation of
Error”

e Stephen Russell (stephen.m.russell8.civ@mail.mil), Chief, Battlefield
Information Processing Branch, US Army Research Lab, MD, “Human
Information Interaction, Artificial Intelligence, and Errors”

e James Llinas (llinas @buffalo.edu), SUNY at Buffalo, “An Argumentation-Based
System Support Toolkit for Intelligence Analyses”

e Martin Voshell (mvoshell@cra.com), Charles River Analytics, “Multi-Level
Human-Autonomy Teams for Distributed Mission Management”
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Spring 2016: Regular Speakers

e Ira S. Moskowitz (ira.moskowitz@nrl.navy.mil), NRL; “Human-Caused
Bifurcations in a Hybrid Team—A Position Paper”

e Paul Hyden (paulhyden@nrl.navy.mil), NRL, “Fortification Through
Topological Dominance: Using Hop Distance and Randomized Topology
Strategies to Enhance Network Security”

e Olivier Bartheye (olivier.barteye @intradef.gouv.fr), CREC St-Cyr, , and Laurent
Chaudron (laurent.chaudron@polytechnique.org), ONERA, “Epistemological
Qualification of Valid Action Plans for UGVs or UAVs in Urban Areas”

e William F. Lawless, (wlawless@paine.edu), Paine College, “Al and the
Mitigation of Error: A Thermodynamics of Teams”

Questions for Speakers and Attendees at AAAI-2015
and AAAI-2016 and for Readers of This Book

Our spring AAAI-2015 and AAAI-2016 symposia offered speakers opportunities
with Al to address the intractable, fundamental questions about cybersecurity,
machines and robots, autonomy and its management, the malleability of preferences
and beliefs in social settings, or the application of autonomy for hybrids at the indi-
vidual, group, and system levels.

A list of unanswered fundamental questions included:

* Why have we yet to determine from a theoretical perspective the principles
underlying individual, team, and system behaviors?

e Can autonomous systems be controlled to solve the problems faced by teams
while maintaining defenses against threats and minimizing mistakes in competi-
tive environments (e.g., cyber attacks, human error, system failure)?

e Do individuals seek to self-organize into autonomous groups like teams in order
to better defend against attacks (e.g., cyber, merger, resources) or for other rea-
sons (e.g., least entropy production (LEP) and maximum entropy production
(MEP))?

e What does an autonomous organization need to predict its path forward and gov-
ern itself? What are the Al tools available to help an organization be more adept
and creative?

e What signifies adaptation? For Al, does adaptation at an earlier time prevent or
moderate adaptive responses to newer environmental changes?

¢ Is the stability state of hybrid teams the single state that generates the MEP rate?

e If social order requires MEP, and if the bistable perspectives present in debate
(courtrooms, politics, science) lead to stable decisions, is the chosen decision an
LEP or MEP state?
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* Considering the evolution of social systems (e.g., in general, Cuba, North Korea,
and Palestine have not evolved), are the systems that adjust to MEP the most
efficient?

In addition, new threats may emerge due to the nature of the technology of auton-
omy itself (as well as the breakdown in traditional verification and validation (V&V)
and test and evaluation (T&E) due to the expanded development and application of
AI). This nature of advanced technology leads to other key Al questions for consid-
eration now and in the future:

Fault Modes
* Are there new types of fault modes that can be exploited by outsiders?
Detection

* How can we detect that an intelligent, autonomous system has been or is being
subverted?

Isolation

e What is a “fail-safe”” or “fail-operational” mode for an autonomous system, and
can it be implemented?
» Implication of cascading faults (Al, system, cyber)

Resilience and Repair

* What are the underlying causes of the symptoms of faults (e.g., nature of the
algorithms, patterns of data, etc.)?

Consequences of Cyber Vulnerabilities

¢ Inducement of fault modes

e Deception (including false flags)

¢ Subversion

e The human/social element (reliance, trust, and performance)

We invited speakers and attendants at our two symposia to address the following
more specific Al topics (as we invite readers of this book to consider):

e Computational models of autonomy (with real or virtual individuals, teams, or
systems) and performance (e.g., metrics, MEP) with or without interdependence,
uncertainty, and stability

e Computational models that address autonomy and trust (e.g., the trust by autono-
mous machines of human behavior or the trust by humans of autonomous
machine behavior)

e Computational models that address threats to autonomy and trust (cyber attacks,
competitive threats, deception) and the fundamental barriers to system surviv-
ability (e.g., decisions, mistakes, etc.)
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* Computational models for the effective or efficient management of complex sys-
tems (e.g., the results of decision-making, operational performance, metrics of
effectiveness, efficiency)

* Models of multi-agent systems (e.g., multi-UAVs, multi-UxVs, model verifica-
tion and validation) that address autonomy (e.g., its performance, effectiveness,
and efficiency).

For future research projects and symposia (e.g., our symposium in 2017 on
“Computational Context: Why It’s Important, What It Means, and Can It Be
Computed?”; see http://www.aaai.org/Symposia/Spring/sss17symposia.php#ss03),
we invite readers to consider other questions or topics from individual (e.g., cogni-
tive science, economics), machine learning (ANNs; GAs), or interdependent (e.g.,
team, firm, system) perspectives.

After the AAAI-spring symposia in 2015 and 2016 were completed, the sympo-
sia presentations and technical reports and the book took on separate lives. The
following individuals were responsible for the proposal submitted to Springer after
the symposia, for the divergence between the topics considered by the two, and for
editing this book that has resulted:

Augusta, GA, USA W.F. Lawless
Washington, DC, USA Ranjeev Mittu
Adelphi, MD, USA Donald Sofge

Washington, DC, USA Stephen Russell


http://www.aaai.org/Symposia/Spring/sss17symposia.php#ss03
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Chapter 1
Introduction

W.F. Lawless, Ranjeev Mittu, Stephen Russell, and Donald Sofge

Two Association for the Advancement of Artificial Intelligence (AAAI) symposia,
organized and held at Stanford in 2015 and 2016, are reviewed separately. After the
second of these two symposia was completed, the conference organizers solicited
book chapters from those who participated, as well as more widely, but framed by
these two symposia. In this introduction, we review briefly the two symposia and
then individually introduce the contributing chapters that follow.

1.1 Background of the 2015 Symposium

Our symposium at Stanford in 2015, titled the “Foundations of autonomy and its
(Cyber) threats: From individuals to interdependence”, was organized by Ranjeev
Mittu, Branch Head, Information Management and Decision Architectures Branch,
Information Technology Division, US Naval Research Laboratory; Gavin Taylor,
Computer Science, US Naval Academy; Donald Sofge, Computer Scientist,
Distributed Autonomous Systems Group, Navy Center for Applied Research in
Artificial Intelligence, US Naval Research Laboratory; and W.F. Lawless, Paine
College, Departments of Mathematics and Psychology.

W.F. Lawless (P<))
Paine College, 1235 15th Street, Augusta, GA 30901, USA
e-mail: w.lawless @icloud.com

R. Mittu * D. Sofge
US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA
e-mail: ranjeev.mittu @nrl.navy.mil; don.sofge @nrl.navy.mil

S. Russell
US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA
e-mail: stephen.m.russell8.civ@mail.mil

© Springer International Publishing AG 2017 1
W.E. Lawless et al. (eds.), Autonomy and Artificial Intelligence:
A Threat or Savior?, DOI 10.1007/978-3-319-59719-5_1
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The 2015 symposium on the foundations of autonomy addressed the increasing
use of artificial intelligence (AI) to manage and reduce the cyber threats to complex
systems composed of individual machines and robots; and, in a new shift, teams,
including hybrid teams composed arbitrarily of humans, machines, and robots.
Already, Al has been useful in modeling the cyber defenses of individuals, organiza-
tions, and institutions, as well as the management of social systems. However, foun-
dational problems remain for the continuing development of Al with autonomy for
individual agents and teams, especially with objective measures able to optimize
their function, performance and composition.

Al approaches often attempt to address autonomy by modeling aspects of human
decision-making or behavior. Behavioral theory is either based on modeling the
individual, such as through cognitive architectures or, more rarely, through group
dynamics and interdependence theory. Approaches focusing on the individual
assume that individuals are more stable than the social interactions in which they
engage. Interdependence theory assumes the opposite, that a state of mutual depen-
dence among participants in an interaction affects the individual and group beliefs
and behaviors of participants whether these behaviors are perceived or not. The lat-
ter is conceptually more complex, but both approaches must satisfy the demand for
manageable outcomes as autonomous agents, teams or systems grow in importance
and number. Prediction in social systems is presently considered a human skill that
can be enhanced (Tetlock and Gardner 2015). But the skill of prediction in social
affairs has been found to be wanting, whether in political polling, economics, or
government policies (reviewed in Lawless 2016).

Despite its theoretical complexity, including the inherent uncertainty and nonlin-
earity wrought by social interdependence, we argue that complex autonomous sys-
tems must consider multi-agent interactions in order to develop manageable,
effective and efficient individual agents and hybrid teams. Important examples
include cases of supervised autonomy, where a human oversees several interdepen-
dent autonomous systems; where an autonomous agent is working with a team of
humans, such as the cyber defense of a network; or where the agent is intended to
replace effective, but traditionally worker-intensive team tasks, such as warehous-
ing and shipping. Autonomous agents that seek to fill these roles, but do not con-
sider the interplay between the participating entities, will likely disappoint.

This symposium offered opportunities with Al to address these and other funda-
mental issues about autonomy and cyber threats, including applications to hybrids
at the individual, group, and system levels.

1.2 Background of the 2016 Symposium

Our symposium at Stanford in 2015, titled “Al and the mitigation of human error:
Anomalies, team metrics and thermodynamics”, was organized by the same four
individuals as for the 2015 symposium.

Al has the potential to mitigate human error by reducing car accidents, airplane
accidents, and other mistakes made mindfully or inadvertently by individual humans
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or by teams. One worry about this bright future is that jobs may be lost. Another is
from the perceived and actual loss of human control. For example, despite the loss
of all aboard several commercial airliners in recent years, commercial airline pilots
reject being replaced by Al (e.g., Markoff 2015).

An even greater, existential threat posed by Al is to the existence of humanity,
raised by physicist Stephen Hawkings, entrepreneur Elon Musk and computer bil-
lionaire Bill Gates. While recognizing what these leaders have said, Etzioni (2016),
CEO of the Allen Institute for Artificial Intelligence and Professor of Computer
Science at the University of Washington, provides his disagreement along with sup-
porting comments made by others.

Across a wide range of occupations and industries, human error and human per-
formance is a primary cause of accidents (Hollnagel 2009, p. 137). In general avia-
tion, the FAA attributed accidents primarily to skill-based errors and poor decisions
(e.g., Wiegmann et al. 2005, Fig. 3, p. 7; Table 1, p. 11).

Exacerbating the sources of human error, safety is one area an organization often
skimps to save money. The diminution of safety coupled with human error led to the
explosion in 2010 that destroyed the Deepwater Horizon in the Gulf of Mexico
(USDC 2012, p. 21). Human error emerges as a top safety risk in the management of
civilian air traffic control (Moon et al. 2011). Human error was the cause attributed
to the recent sinking of Taiwan's Ocean Researcher V in the fall of 2014 (Showstack
2014). Human behavior is a leading cause of cyber breaches (Howarth 2014).

Humans cause accidents by lacking situational awareness, by a convergence to
incomplete beliefs, or by emotional decision-making (for example, the Iranian
Airbus flight erroneously downed by the USS Vincennes in 1988; in Fisher 2013).
Other factors contributing to human error include poor problem diagnoses; poor
planning, communication and execution; and poor organizational functioning.

In this symposium, the participants explored the humans’ roles in the cause of
accidents and the use of Al in mitigating human error; in reducing problems with
teams, like suicide (for example, the German copilot, Libutz, who killed 150 aboard
his Germanwings commercial aircraft; in Levs et al. 2015); and in reducing mis-
takes by military commanders (for example, the 2001 sinking of the Japanese tour
boat by the USS Greeneville; in NTSB 2001).

This symposium provided a rigorous view of Al and its possible application to
mitigate human error, to find anomalies in human operations, and to discover, when,
for example, teams have gone awry, whether and how Al should intercede in the
affairs of humans.

1.3 Contributed Chapters

Chapter 2, ‘Reexamining Computational Support for Intelligence Analysis: A
Functional Design for a Future Capability’, explores the technological bases for
exploiting argumentation-based methods coupled with information fusion tech-
niques for improved intelligence analysis. It was written by James Llinas and Galina
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Rogova at the Center for Multisource Information Fusion (CMIF), State University
of New York at Buffalo, NY; and Kevin Barry, Rachel Hingst, Peter Gerken and
Alicia Ruvinsky at the Lockheed Advanced Technology Laboratories (ATL) in
Cherry Hill, NJ. Llinas and colleagues reviewed various Analysis Tool Suites
(ATSs) framed by several examples of modern intelligence analyses. These tool-
suites address entities in different environments of interest. But these tools do not
support computational inter-entity associations for attribute/relation fusion. Most
tools, if not all, are single-sourced for entity streams, with tools automating link
analyses between bounded entity-pairs and “data fusion” with limited rigor. Most
tools assume correct results for pre-processed extractions from entities. But while
these tools serve to identify and visualize intuitive associations among entities, they
seldom address uncertainty. Their primary function is to discover relational links
among entities (like single-hop or limited-hop associations), achieved with limits on
uncertainty and inter-entity associability, leaving the complex relations to be deci-
phered by human analysts. These deficiencies result in considerable cognitive over-
load on human analysts who need to mentally and largely manually assemble the
desired situational interpretations in a narrative form. With the goal of providing a
much more automated approach to complex hypothesis integration, the chapter
reviews extensively the works in the domain of computational support for argumen-
tation and, as one important element of an integrated functional design, nominates
a unique, belief- and story-based hybrid argumentation subsystem design as one
part of a combined approach. To deal with the largely textual data foundation of
these intelligence analysis tasks, the chapter describes how a previously, author-
developed, ‘hard plus soft’ information fusion system (that combines sensor/hard
and textual/soft information) could be integrated into this overall design. The func-
tional design described in the chapter combines these two unique capabilities into a
scheme that arguably would overcome many of the deficiencies cited in the chapter
to provide considerable improvement in efficiency and effectiveness for intelligence
analyses.

One theme of this book is to use Al to minimize the errors made by humans. An
extension could be the recovery from human errors, considered in Chap. 3. In this
chapter, ‘Task Allocation Using Parallelized Clustering and Auctioning Algorithms
for Heterogeneous Robotic Swarms Operating on a Cloud Network’, was addressed
by Jonathan Lwowski, Patrick Benavidez, John J. Prevost and Mo Jamshidi at the
Autonomous Control Engineering (ACE) Laboratory, University of Texas, San
Antonio, TX. The authors present a new, centralized approach to the control of
robot swarms devised to control a swarm of heterogeneous unmanned vehicles
across land, in the water and in the air. The vehicles controlled by the authors’
research team consisted of autonomous surface vehicles and micro-aerial vehicles
equipped with cameras and Global Positioning Systems (GPS). This equipment
allowed the swarm to operate outdoors. By manipulations with the control program,
the swarm was able to demonstrate that the individual robots could be controlled to
complete a group task cooperatively and efficiently. The authors first demonstrated
how air-based robots could construct a digital map of the local environment with
key features (e.g., the locations of targets, such as the survivors of a shipwreck).
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The map was uploaded into the cloud on a remote network where clustering
algorithms were performed on the map to calculate optimal clusters of designated
targets geographically. Afterwards, while still in the cloud, an auctioning algorithm
based on factors like relative position on the map and robot capacities led to the
assignment of the clusters to surface-based robots (viz., where survivors might be
located and matched to recovery vehicles). Next, simulated surface robots traveled
to their assigned clusters to complete the tasks allocated to them. Finally, the
authors presented the results of their simulations for the cooperative swarm of
robots with both software and hardware, demonstrating the effectiveness of their
proposed algorithm to control a swarm of robots that might one day be used for the
recovery of humans from a shipwreck.

Chapter 4, ‘Human Information Interaction, Artificial Intelligence, and Errors’,
was written by Stephen Russell, Chief, Battlefield Information Processing Branch,
US Army Research Laboratory, Adelphi, MD; Ira S. Moskowitz, Mathematician,
Information Management and Decision Architectures Branch, Information
Technology Division, US Naval Research Laboratory, Washington, DC; and
Adrienne Raglin, Electrical Engineer, also in the Battlefield Information Processing
Branch, US Army Research Laboratory, Adelphi, MD. In a time of pervasive and
increasingly transparent computing devices, for humans, the importance of interac-
tion with information itself will become more significant than the devices that pro-
vide information services and functionality today. From the perspective of the
authors, Artificial Intelligence (Al) is a proxy for humans’ information interactions,
not only providing assistance in the interactions themselves, but also providing
guidance and automation in the applications of that information. Given this perspec-
tive, new opportunities for Al technologies will arise. But because of mismatches in
human intent and goals and proxy-Al functionality, variability in information inter-
action will create opportunities for error. The trend towards Al-augmented human
information interaction (HII) will cause an increased emphasis on cognitive-oriented
information science research plus many new ways of thinking about errors, the way
we humans manage errors and how we address the consequences of errors. With this
focus on errors, the authors review the intersection of HII and Al in this chapter.

In Chap. 5, Signe A. Redfield, Engineer, Evaluations of Autonomous Systems,
U.S. Naval Research Laboratory; and Mae Seto, Defense Research and Development
Canada (DRDC), Atlantic Research, Dalhousie University, write about ‘Verification
Challenges for Autonomous Systems’. The authors have associated autonomy with
robots coupled to sensory systems to move in physical reality and disassociated
from the artificial intelligence (Al) they have associated with abstract problem solv-
ing; in their view, robots may use Al as a tool to navigate the physical environment,
while Al may use a robot to implement a solution to a problem that Al has solved.
The authors have identified a number of open research challenges in the area of veri-
fication of autonomous systems. They outline the existing tools available to identify
associated gaps, to identify the challenges for the additional tools that do not cur-
rently exist but are needed, and to suggest new directions in which progress may
probably be made. In their review, they note that existing research programs attempt
to address these problems, but there are many more unexplored research challenges
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than there are research programs underway to explore them, highlighting that this
field of research is not yet mature. In this chapter, the authors attempt to enumerate
the unexplored regions facing both autonomous robots and Al but also how to
exploit the advantages already advanced by both systems.

Chapter 6, ‘Conceptualizing Overtrust in Robots: Why Do People Trust a Robot
That Previously Failed?’, was written by Paul Robinette, Robotics Research
Scientist, Massachusetts Institutes of Technology; Ayanna Howard, Electrical and
Computer Engineering, Georgia Tech Research Institute (GTRI); and Alan
R. Wagner, Director, Robot Ethics and Aerial Vehicles Laboratory (REAL),
Aerospace Engineering, Penn State University. Most of the research by these
authors had found that people tended to trust robots despite the errors made by
robots; these findings have led the authors to develop a new research area on the
repair of trust, especially under the conditions for which trust might be resuscitated.
This chapter directly addresses how autonomous agents can help humans reduce or
mitigate errors to increase trust in robotics, a problem when the robots are unreli-
able. The authors begin by presenting their research to suggest that humans tend to
overly trust and forgive robots as guides during emergency situations, the focus of
much of their research. Their experiments have shown that, at best, human partici-
pants in simulated emergencies focus on guidance provided by robots regardless of
a robot’s prior performance or other guidance information, and, at worst, partici-
pants come to believe that the robot is more capable than other sources of informa-
tion. Even when a robot-guide harms trust, a properly timed statement can convince
a human participant to once again be assisted by a robot guide. Based on this evi-
dence, they have conceptualized the overtrust of robots by using their previous
framework of situational trust. They define two mechanisms where humans engage
in overtrusting robots: misjudging the abilities or intentions of the robot and mis-
judging the risk they face in a scenario. The authors discuss their prior work in light
of this reconceptualization in their attempt to explain their previous results, to
encourage future work, and to help the public, robot designers and policy leaders to
be guided appropriately by robots.

Chapter 7, ‘Research Considerations and Tools for Evaluating Human-
Automation Interaction with Future Unmanned Systems’, was written by Ciara
Sibley and Joseph Coyne, Engineering Research Psychologists in the Warfighter
Human System Integration Laboratory Section, Information Management and
Decision Architectures Branch, Information Technology Division, Naval Research
Laboratory, Washington, DC; and by Sarah Sherwood, PhD candidate, Embry-
Riddle Aeronautical University, Daytona Beach, FL. From their research perspec-
tive, the authors consider the approaches, methods and tools used to evaluate the
interactions of humans and automation in present and future unmanned systems,
specifically for unmanned aerial vehicles (UAVs). The authors discuss the levels of
automation required to meet the objectives set by the Department of Defense to
increase autonomy in robot-machine systems to allow a single human operator to
supervise multiple UAVs, an inversion of what occurs today. This new paradigm, for
which a lot of research across DoD is directed, requires significant improvements in
automation reliability and capability based on a more fundamental understanding of
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how human performance is and will be impacted when interacting with present-day
and planned future systems. Research into interacting with automated systems has
often focused on trust, reliability and automation levels. However, if the goal of
automating systems is to minimize the need for the human oversight of robot-
machine interactions with future systems, unfortunately, the majority of current
research addressing greater autonomy for UAVs falls short of achieving DoD’s
objective for less human management. The authors discuss these limits and other
challenges to assessing human interaction with automation by using traditional
measures like speed and accuracy, but they also include in their review other mea-
sures of operator state such as workload and fatigue, situation awareness probes,
and eye tracking. The authors close by discussing their new supervisory control
testbed, which is integrated with multiple psychological sensors, and designed to
assess human automation interaction across a broad range of mission contexts while
also meeting DoD objectives.

In recent years, fueled by multi-media images of robots causing a threat to the
human race, research on the autonomy of robots has raised significant concerns in
society. These concerns are addressed in Chap. 8 ‘Robots Autonomy: Some
Technical Issues’ by Catherine Tessier, Senior Aeronautical Research Engineer and
Subject Matter Expert (in Advanced Autonomy Robot Systems), ONERA (Le
Centre Francais de Recherche Aérospatiale; i.e., The French Aerospace Laboratory),
Toulouse, France. From her perspective, society has become overly concerned about
a future dominated by robots that would exhibit human-like features or intentions.
Moreover, as Tessier points out, the concerns expressed by society hide the present
“technical reality” of advancing far beyond the robots of today. In her chapter, she
defines all of the terms in her review while discussing the present technical reality
of robot autonomy along with common examples that make her chapter accessible
to technical scientists and the lay public alike while at the same time delving into
the challenge of assigning responsibility for the day when the control of machines
is to be shared between robots and human operators (or another machine, robot or
human). To allay the public’s concern about the complexity of future robot systems,
she also addresses the current real issue of ethics and morality for robots, namely,
how robots should be designed to behave in specific situations where decisions
involve conflicting moral values. At the end of her chapter, she addresses these
issues directly with her review of the limits of human responsibility and by raising
the question of whether and under what circumstances robots should be able to take
control from humans. The key point of her chapter is that it focuses on objective,
technically grounded considerations for robot autonomy and authority sharing
between humans and robots.

Chapter 9, ‘How Children with Autism and Machines Learn to Interact’, was
written by Boris A. Galitsky, Founder and Chief Scientist, Knowledge-Trail, Inc.,
San Jose, CA; and Anna Parnis, Department of Biology, Technion-Israel Institute
of Technology, Haifa, Israel. These two authors explore how children with autism
(CwA) interact with each other, teachers and others in society, and what kinds of
difficulties they experience in the course of these interactions. They take a team
approach. In their view, autistic reasoning is a means to explore team formation
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and human reasoning in general because it is simple in comparison to the more
sophisticated reasoning of controls and software systems usually considered by Al
on the one hand; but on the other hand, their model allows them to explore human
behavior in real-world environments that they believe may be generalizable to
humans, machines and robots. From their perspective, they have discovered that
reasoning about the mental world, impaired in various degrees in autistic patients,
is the key limiting parameter for forming teams and cooperating among team mem-
bers once teams have been formed. While teams of humans, robots and software
agents have manifold other limitations when they attempt to form teams, including
resources, conflicting desires, uncertainty and environmental constraints, based on
their research, CwA have only a single limitation, expressed as reduced reasoning
about their mental world. The authors correlate the complexity of the expressions
for mental states that all children are capable of achieving with their ability to form
teams. In the process, they describe a method to rehabilitate reasoning for CwA
children, and they address its implications for the behavior of all children in a
social world that entails interactions and cooperation in the formation of teams.

Chapter 10, ‘Semantic Vector Spaces for Broadening Consideration of
Consequences’, was written by Douglas Summers Stay, Artificial Intelligence
Researcher, Army Research Laboratory, Adelphi, MD. The author reviews three
approaches for reasoning systems. He first proposes that reasoning systems com-
bined with human intent on simple models of the world are unable to consider the
potential negative side effects of their actions sufficiently well-enough to modify
plans to avoid these adverse effects (e.g., reducing the potential for human error).
After many years of research and effort dedicated to encoding the enormous and
subtle body of social facts with the aim of converting common sense into a knowl-
edge base, this approach has proved too difficult. As a second alternative, some
scientists have encoded concepts and the relations between them in geometric struc-
tures, namely, distributed semantic vector spaces derived from large text corpora, to
construct representations that capture subtle differences in the meaning of common-
sense concepts while at the same time being able to perform analogical and associa-
tional reasoning that, unfortunately, limit knowledge bases. Encumbered by source
materials, the second alternative is unreliable, poorly understood, and biased in the
view it affords of the world. As a third alternative to both of the first two approaches,
the author combines these two approaches to retain the best properties of each to
lead to a richer understanding of the world and human intentions.

Chapter 11, ‘On the Road to Autonomy: Evaluating and Optimizing Hybrid
Team Dynamics’, was written by Chris Berka, CEO and Co-Founder, Advanced
Brain Monitoring (ABM); and Maja Stikic, Computer Scientist, ABM, both located
in Carlsbad, CA. The authors explored the potential of traditional psychometric
approaches for the study of teams (viz., engagement, workload, stress) supple-
mented with neuroscience methods for the measurement of teams in order to deter-
mine the dynamics of teams in real time (e.g., with electroencephalographic, or
EEG, measurements). Their method adopted techniques that were designed to be
inconspicuous to participants and observers so that the authors would be able to
quantify the actual cognitive and emotional states of a team moment by moment.
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The neuroscience approach allowed the authors to construct a new platform for the
teams that they then used as a tool to study teams. With this new platform, the
authors reviewed a number of the studies that they had conducted to provide a wide
range of conditions and measurements for teams with this emerging technology
(e.g., monitoring team neurodynamics; the emergence of team leadership; neural
responses associated with storytelling narratives; neural processes associated with
tutoring; and the training of surgical skills). The authors also discussed the implica-
tions of using this new technology in the study of teams and they closed their chap-
ter with a review of the potential research that they are considering for the future.

Chapter 12, ‘Cyber-security and Optimization in Smart “Autonomous”
Buildings’, was written by Michael Mylrea, Manager, Cybersecurity and Energy
Technology, Pacific Northwest National Laboratory; also, a PhD candidate in the
Executive Cybersecurity Doctoral Program at George Washington University; co-
authored with Sri Nikhil Gupta Gourisetti, Research Engineer, Electricity
Infrastructure, Pacific Northwest National Laboratory; a PhD candidate in
Engineering Sciences and Systems Doctoral Program at the University of Arkansas
at Little Rock. The authors note that significant resources have been invested in
making buildings “smart” or more autonomous by digitizing, networking and auto-
mating key systems and operations. Smart autonomous buildings create new energy
efficiency, economic and environmental opportunities. But as buildings become
increasingly networked to the Internet, they can also become more vulnerable to
various cyber threats. Automated, autonomous and Internet-connected buildings
systems, equipment, controls, and sensors can significantly increase cyber and
physical vulnerabilities that threaten the confidentiality, integrity, and availability of
critical systems in organizations. Securing smart autonomous buildings presents a
national security and economic challenge to the nation. Ignoring this challenge
threatens business continuity and the availability of critical infrastructures that are
enabled by smart buildings. In this chapter, the authors address these challenges and
explore new opportunities in securing smart buildings that, on the path to autonomy,
are enhanced by machine learning, cognitive sensing, artificial intelligence (AI) and
smart-energy technologies. First they identify cyber-threats and challenges to smart
autonomous buildings. Second they make recommendations on how Al enabled
solutions can help smart buildings and facilities better protect, detect and respond to
cyber-physical threats and vulnerabilities. Third they provide various case studies
that examine how combining Al with innovative smart-energy technologies can
increase both cybersecurity and energy efficiency savings in buildings. The authors
conclude with their ideas for the future to continue to develop more resilience tech-
nology to counter threats to autonomous buildings and facilities.

The last of the contributed chapters, Chap. 13, ‘Evaluations: Autonomy and
Artificial Intelligence: A Threat or Savior?’, was written by W.F. Lawless,
Departments of Mathematics and Psychology, Paine College, Augusta, GA; and
Donald A. Sofge, Computer Scientist, Distributed Autonomous Systems Group,
Navy Center for Applied Research in Artificial Intelligence, Naval Research
Laboratory, Washington, DC. In this chapter, the authors first review and evaluate
their own research presented at AAAI-2015 (computational autonomy) and AAAI-
2016 (reducing human errors). Then they evaluate each of the other contributed
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chapters on their own terms that more or less mesh with these two parts of this book.
The authors begin by discussing the remarkable recent successes with Artificial
Intelligence (Al); e.g., machine learning. Yet, they note, these successes have been
followed by extraordinary claims that autonomous robots in society may one day
threaten human existence. They temper these claims by discussing how often many
predictions about the future have missed the mark, including the 2016 Presidential
election. Then the authors approach the field of Al with a theoretical perspective,
beginning with how little is accepted about human-human interactions, an impedi-
ment to the advance of autonomous robot teams. At the heart of the failure by human
experts to predict important social outcomes, like elections, is the phenomenon of
interdependence (mutual information), the social aspect of the interaction that
makes humans human, and the means by which human aggregation occurs in the
social, political and cultural world (e.g., teams, political parties, juries). Little is
accepted about what interdependence means and how to model it. But the authors
believe that without a theoretical understanding and computational mastery of inter-
dependence, while Al systems may be able to beat humans in games, Al systems
will never be as innovative nor as capable of solving difficult problems as are
humans, nor will humans have the confidence that AI may be able to help humans
successfully reduce human errors. With the phenomenon of interdependence mod-
eled mathematically, the authors evaluate the two themes and the chapters in this
book to provide readers a path forward for further research with Al In the first part
of their chapter, the authors discuss the use of Al in the development of autonomy
for individual machines, robots and humans in states of social interdependence, fol-
lowed by its evaluation and then evaluations of the chapters with similar themes; in
the second part, the authors discuss the use of AI and machines in reducing, prevent-
ing or mitigating human error in society, also followed by its evaluation and an
evaluation of the remaining chapters.
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Chapter 2

Reexamining Computational Support

for Intelligence Analysis: A Functional Design
for a Future Capability

James Llinas, Galina Rogova, Kevin Barry, Rachel Hingst, Peter Gerken,
and Alicia Ruvinsky

2.1 Motivation

Analysis Tool Suites (ATS’s) such as Analyst’s Notebook! Analyst’s Workspace
(Andrews and North 2012), Sentinel Visualizer,> and Palantir Government,® Entity
Workspace (Bier et al. 2006), and Jigsaw (Stasko et al. 2013), among others are
examples of modern intelligence analysis frameworks. A major point for sensibly
all these tool-suites is that they start by focusing on the entity level within the envi-
ronments of interest. None overtly discuss computational support to inter-entity
association and attribute/relation fusion. That is, most if not all are single-source-
based as regards entity streams, with the tools doing varying degrees of automated
link analysis among bounded entity-pairs toward realization of “data fusion” albeit
with rather limited rigor. Further, most also assume that any preprocessing that pro-
vides entity extraction yields correct results. This framework of tool products pro-
vides the basis for identifying and visualizing relational connections between
entities, but these connections are largely if not exclusively performed in the mind
of the analyst. In most cases, nothing is done in the way of computational support
to dealing with entity or relational uncertainties. The primary function of most of
these ATS’s is relational link discovery to discern inter-entity relations of bounded
extent (in graph science terminology, usually single-hop or limited-hop relations),
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achieved with quite limited analytical formality regarding issues of uncertainty,
inter-data and/or inter-entity associability, and of relational complexities. Thus,
deeper and broader analysis of entity and relational connectedness is left for the
human analyst. This is especially true in regard to the assembly of typical final
desired analysis products in the form of stories or narratives; said otherwise, there is
very limited technical support for synthesis or fusion of hypotheses into the larger
context of situational understanding. By and large, these tools try to support the
Sensemaking (SM) or schema-development loop of SM (Pirolli and Card 2005;
Klein et al. 2006), but either have no algorithmic or technological-process support
or provide quite-limited automated support to these higher goals; these assessments
are summarized in the review paper of Llinas (2014a, b).

Thus we perceive a need first for a processing/reasoning paradigm that can pro-
vide the framework for a more holistic, systemic based approach to intelligence
analysis. As sensibly all critiques about intelligence analysis as well as the analysis
requirements stated in field manuals describe that the main product that an analyst
is driving toward is a narrative type description of some world condition/situation,
we set this goal for our research presented in this chapter as well. So, primarily we
are seeking to study ways that discrete, single-theme hypotheses can be synthesized
or fused into a more holistic and semantic construct in the form of a story or narra-
tive. Our approach incorporates methods of associating and fusing so-called hard
(sensor) and soft (textual, semantic) information, as many intelligence analysis
environments have such disparate data streams as input. (We note that virtually all
the work in the areas we studied here only involve soft or textual type inputs.) We
believe that the functional design produced here provides a basis for a next step
involving research prototype development, and because of this we have also studied
ways to test and evaluate such a prototype.

2.2 Goals and Requirements

In this research program, we sought to explore a number of possible computationally-
aided enhancements in the ways that technologies can better support and improve
the rigor and efficiency of intelligence analysis through the integration of new
computationally-based methods and algorithms but also by exploring and nominat-
ing new ways in which improved human-machine symbiosis can be realized. Also,
we were trying to strike the best balance between technologies and methods that are
of the basic research variety while having plausibility in terms of potential for mid-
term type operational deployment. Another main goal was toward providing support
that can yield the type of “story” or narrative type product that many intelligence
analysis environments require. These are those environments that allow for more
contemplative methods, accommodating the formulation and evaluation of optional
interpretations that have to be weighed and evaluated or argued for. This goal
imputes a requirement for capabilities that support what we are calling “hypothesis
synthesis” or “hypothesis fusion” as mentioned previously, where competing
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hypotheses that evolve either: (a) directly from evidence or (b) developed from evi-
dence or assumptions by disparate individual tools are traded off and synthesized
into a defendable, integrated hypothesis at the narrative or situational level. In
today’s analysis environments, these synthesizing operations constitute and demand
a high cognitive workload. A major goal is to develop a design whose overall ratio-
nale is traceable to and consistent with joint service and Intelligence Community
future directions in methodological development balancing effectiveness, efficiency,
and rigor; as a result, we have made efforts to garner real-world viewpoints on these
directions.

2.3 Future Directions in Intelligence Analysis

2.3.1 Reviews of Open Literature and Operational
Environments

The research described here was in fact partially inspired by our prior exploration of
the nature of modern-day computational support for intelligence analysis in the
open literature as summarized in Llinas (2014a, b). That work extensively examined
much of the literature on such techniques with a focus on technology strategies and
interfacing strategies in regard to methods to achieve some level of symbiosis. It
should be noted that this survey also collected works from the field of criminal
analysis and the related area of Artificial Intelligence and the Law. Our research
team at the Center for Multisource Information Fusion has also addressed these top-
ics under a large Army Research Office grant for Unified Research on Network-
based Hard and Soft Information Fusion, see e.g., Llinas et al. (2010) and Date et al.
(2013a, b) for the Counterinsurgency domain. In both of these surveys, what we
primarily saw was a strategy for analytical tool suite design that resulted in collages
of disparate tools of various descriptions. Each of these tools can be argued to be
individually helpful, producing what we called “situational fragments”, i.e. hypoth-
eses, each of which are hypotheses about a particular slice of a situational condition.
These problems, and the employment of modern technologies that allow evermore
data and information to be available, are extraordinarily complex and it is natural to
see “divide and conquer” solution, tool, and visualization strategies being applied.
But the latent challenge for sensibly all human analysts involved in these situations
is to connect the dots, evolve the most plausible story/narrative, or the most plausi-
ble argument in the face of inherent complexity and “big data” quantities and variet-
ies of information. For that type of capability, we saw nothing at all in this survey,
leading to our conclusion that there is a significant need for development of both a
paradigm and associated technological support for hypothesis synthesis or fusion,
aiding human analysts to assemble a more holistic picture (a narrative or story)
much more efficiently.
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In the Fall of 2015, a team visit to the Air Force National Air and Space Intelligence
Center (NASIC) was carried out in order to assess our evolving perspectives regarding
future analysis requirements. Because of our future-oriented perspective, our visit
focused on the Advanced Analytics Cell (AAC) team, that similarly is studying such
future requirements. In summary, this visit revealed that there was considerable com-
monality in the respective lines of thought across the activities of the AAC and our
approach. It also broadly provided a level of confidence that the approach described
here was sound and that it resonated with current advanced thinking at least in the Air
Force as regards methods and needs of modern intelligence analysis.

2.3.2 Analytical Rigor in Intelligence Analysis/Argument Mapping

Another touchstone for the project as regards vetting our thinking and approach
involved discussions with staff from the Army Intelligence Center at Ft. Huachuca,
NM. Messrs Robert Sensenig and William Hedges (of Chenega Corp., advisors to
the Army on intelligence matters) were our key points of contact. Two main topics
were discussed: rigor in analysis, and the use of argument-based techniques of anal-
ysis. The Army is quite keen on the entire issue of improving rigor in analysis; this
viewpoint certainly is consistent with our own thoughts regarding improvements in
the intellectual aspects of analysis. Mr. Sensenig provided the charts of Figs. 2.1 and
2.2 below that depict the mapping/cross-correlation of analysis functions and levels

Low Rigor

Moderate Rigor

High Rigor

Hypothesis Exploration

“l have one hypothesis I like.”

- No consideration of alternatives.

- Argues how data that does not fit
or is new can fit favorite hypoth.

“l am confident of the best
I: and have seriously

“I feel comfortable that one
accounts for majority data.”

* Unbalanced focus on ML COA.

» Acknowledges other COA possible.

« Considers risks of alternative COAs.

considered other possibilities.”

* Interactive debate from multiple
perspectives on alternatives.

« Actively considers and tracks
data that does not fit ML or MD.

Information Search

“l found something reasonably

Compreh and beli

- Did not go beyond routine sources

- Did not select multiple sources.

* Relied on second and third-hand
sources, no direct comms with
primary sources.

bl ”

“l am seeing repeating patterns, and
they all seem to agree or there seems
to be two primary possibilities.”

« Actively seeks info that is not easily
retrieved or collected.

« Multiple data types and proximal
sources considered for key findings

+ Read beyond specific tasking

“l am not learning anything new. |

reached theoretical saturation.”

« Support from others to broaden
sampled space.

« Multiple data types and proximal

sources considered for all inferences

* More knowledgeable about

area than most document authors.

hiect

Information Validation

“I found one that sounds good”
* Copies report with little

“I verified my key arguments and
predictions are based on the most
trustworthy source | have”

* No tracking of process, no
knowledge of data pedigree

ts from

re-interpr corr *A pts to verify arg
+ Does not display healthy multiple independent sources
skepticism. « Aware of how analysis could be wrong

Ahaclk

“I feel confident that | validated, by
reasonable means, the facts used
to support key arguments.”

- Systematic, semi-formal processes
employed to verify information

« Clear distinction between facts,

based on experience or fi
« Aware of corrupted data sources

p inferences
« Fully investigated “sourcing”

Fig. 2.1 Mapping of analysis functions vs levels of rigor (Part 1) (Courtesy of Mr. Robert

Sensenig, Chenega Corp.)
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Low Rigor

Moderate Rigor

High Rigor

Inference Resilience

“My story/expl: g
'seems reasonable to me,
independent of available supporting
evidence.”

“I feel that the evidence is reasonably
solid for my primary explanation.”

« Considers whether being wrong about
some inferences would influence or
negate the best explanation.

« Beware false precision!!

“I feel comfortable that the key
Inferences are resilient to inaccurate
Information.”

« Uses strategy to systematically
consider strength of evidence if
individual interpretations debunked.
« Actively looked for reasons why a
source might misinterpret or
manipulate data/information.

SME Collaboration

“I trust my supervisor to cover
specialist content area or to be the
SME.”

“l have talked to SMEs, as time

1l 1, within my p I network.”
« Attempts to consult some of the right
people.

“ Leading expert in the key content
area.” (Beware Group Think!!)

- Capital expended to gain access to
leading experts in multiple fields
related to the analysis.

Information Synthesis

“I compiled the relevant info.”

* Numerical values or graphs
disconnected from key arguments.

“I provided insight that goes beyond the
source reporting & key documents.

« Validation of events in context.

+ Understanding depicted as an
integrated view including tradeoff
dimensions. (Frameworks, models).

“q idered diverse interpretations
trying to identify new concepts

« Sensemaking metrics are high.

« Collaborative cross checks

applied to data synthesis processes
« Collaborative use of diagrams to
show relationships between
evidence and hypothesis.

Fig. 2.2 Mapping of analysis functions vs levels of rigor (Part 2) (Courtesy of Mr. Robert

Sensenig, Chenega Corp.)

of rigor, notionally showing an analyst’s mind-set across these functions and levels,
as well as thumbnails of analysis activities across the matrices. These charts are
among the resources we used to direct our efforts.

Mr. Hedges recounted his experience in learning of argument-based methods of
analysis and also shared segments of the Army’s training activities in the teaching
of argument mapping for intelligence analysts. Figure 2.3 shows an excerpt of one
of the training segments directed to teaching of argument mapping.

Overall, we believe it is quite clear that the thinking and approaches of this
research program are very consistent with modern thoughts in both the Air Force

and Army in regard to:

e The use of improved intellectual strategies and methods
e The need for an movements to improve analytical rigor
e The employment of argumentation-based methods and technologies as one

framework to achieve these goals

2.4 Approaches to Computational Support

2.4.1 Paradigms and Methods

In today’s open-world environment, historical paradigms and methods that rely on
deep analysis of an adversary’s Tactics, Techniques, and Procedures (TTP’s) as a
basis for paradigms that can be broadly labeled as of a template-matching type are
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U.S. ARMY INTELLIGENCE CENTER AND FORT HUACHUCA
Fort Huachuca, Arizona 85613-7002

LP Narrative & Teaching Plan: Argument Mapping
24 April 2013
PFN:XXXXXXXX

Enabling Learning SLIDE 2: Objective

ACTION: Create an Argument Map to make analytic
assumptions, intelligence gaps, or arguments
more transparent.

CONDITIONS: Given all class handouts to date, appropriate
references, an operational framework scenario,
and in-class discussion.

STANDARDS: Create an argument map that incorporates critical
and creative thinking and basic and diagnostic
structured analytic techniques in order to provide
clearer ACH understanding and validate the ACH.

Fig. 2.3 Sample of curriculum at Army Intelligence School Training in argument mapping
(Courtesy of Mr. William Hedges of Chenega Corp.)

considered unworkable. Modern-day adversaries and problem conditions demand
more flexibility and accommodation of imperfections in analysis techniques. These
environments, that we call “weak knowledge” problems, require a more flexible
approach and one that allows for unknown states of affairs and degrees of ignorance
while carrying out the best analysis possible. Such methods are usually labeled as
defeasible and abductive* and are directed to the most rational hypotheses that can
be defended in some way as “best”. In our exploration of alternatives, we narrowed
our choices based on two factors: one was the commentaries on intelligence analy-
sis and associated assertions about methodological requirements that balance evi-
dence, arguments, and stories (i.e., nominated hypotheticals), and the other was a
body of work we discovered that was centered in Europe that focused on methods
of this type, with a deep basis on argumentation-based principles. One clear exam-
ple of these remarks is shown in the writings of Schum (2005) who suggests that:

*We like Stanford’s definition here (http://plato.stanford.edu/entries/reasoning-defeasible/):
“Reasoning is defeasible when the corresponding argument is rationally compelling but not deduc-
tively valid. The truth of the premises of a good defeasible argument provides support for the
conclusion, even though it is possible for the premises to be true and the conclusion false. In other
words, the relationship of support between premises and conclusion is a tentative one, potentially
defeated by additional information.”
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e “Careful construction of arguments in defense of the credibility and relevance
of evidence goes hand-in-hand with the construction of defensible and per-
suasive narratives.”

* “In constructing a narrative account of a situation of interest we must be able to
anchor our story appropriately on the evidence we have that is relevant to the
conclusion we have reached. Careful argument construction provides the neces-
sary anchors.”

These remarks, and the results of our surveys, suggest an exploration of meth-
ods that jointly exploit the union of evidence, arguments, and stories, in a syner-
gistic dynamic that leads to “best” narratives that holistically convey the most
rational explanation of the evidences and sub-stories. These source materials were
the foundation of the evolution of our thinking to explore a paradigm of this
nature.

2.4.2 Argumentation Methods

As we contend above, one main technological/theoretical theme that we pursue
here is the examination of argumentation-based concepts, methods, and
computationally-supported tools as one candidate paradigm supportive of intelli-
gence analysis. Argumentation-based methods have a long history in the law and
in the teaching of critical thinking, and in the last decade or so have found their
way into supporting criminal and intelligence analysis. These extended applica-
tions have largely been a result of research and development in the construction of
computational tools for “diagramming” or “mapping” arguments that enable and
streamline the examination of the veracity of pro and contra arguments in various
situations.’ Before reviewing the state of the art in computational methods for
argumentation based reasoning, we briefly review the different paradigms for
argumentation itself; that is, there are different flavors or variations of methods
that have the core notion of an argument as their foundation. This summary review
is shown in Table 2.1 below.

The majority of argumentation-based methods utilize a deterministic formal
logic and theorem proof approaches, and the notion of argument acceptance and
attack, see, e.g., Simari and Rahwan (2009). There has been multiple argumentation
schemes developed with each of them having advantages and drawbacks as methods
useful for supporting decisions based on a highly uncertain environment. Most of
them represent abstract argumentation, which determines an argument’s acceptability

5By the way, we see the (necessary) balancing of Pro and Contra arguments as another good fea-
ture of these argumentation methods; to some degree this is a built-in preventative to the human
foible of confirmation bias.
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Table 2.1 Types of Argumentation-based Paradigms

J. Llinas et al.

Argumentation types Methods Prototypes?
Abstract argumentation Involving formal logic, theorem CISpaces,
proof, and based on the notion of Carneades

argument acceptance and attack

Araucaria and
various others

Story-based argumentation

Abduction-based reasoning about

Bex’s research on

hypothetical stories explaining the design;
evidence AVERS
Hybrid methods Combination of logic and
probability or belief
Assumption based probability/ Conjunction of uncertain ABEL

belief based argumentation. (A
probabilistic extension of abstract
argumentation.)

assumptions to define arguments
and disjunction of arguments
Assigning probabilities/beliefs to
assumptions

Belief-story based argumentation

Observations are explained by
hypothetical stories

This was the goal
or the research

described in this
chapter

Uncertain arguments based on
evidence are combined to support
alternative stories and select the
most credible one (abductions)

See later discussion on Prototypes for citations

on the basis of its ability to counterattack all arguments attacking it. A more promis-
ing approach introduced in e.g. Bex (2013) is an abstract story-based argumenta-
tion, in which hypothetical “causal stories are hypothesized to explain the evidence,
after which these stories can be supported and attacked using evidential arguments.”
A combination of logic and belief theories for argumentation under uncertainty has
been considered for assumption based argumentation, see e.g. Haenni (2001), but
these models require a known and complete knowledge base, which does not exist
in the context, which we are addressing here. We seek abductive reasoning methods
that combine certain desirable capabilities:

e Allowance for open-world reasoning

e Allowance for assigning and combining beliefs in arguments and reliability of
the source (i.e., a basis for assigning and combining/propagating uncertainty)

e Integration of human intelligence that enables hypothetical stories to be com-
bined with hypotheses resulting from evidence-based arguments

e Method of evaluating and selecting the most credible stories

Abductive reasoning is often labeled as “backward reasoning” in that it explores/
nominates plausible conclusions or assertions that can “explain” or rationalize the
evidence available; the notion is that a rearward look is taken from the conclusion
toward the available evidence. Abductive reasoning is also often described as rea-
soning to the best explanation. Our approach is also hybrid in bringing together the
abductive reasoning over both the uncertain arguments and human-nominated stor-
ylines and rationalizing both lines with the also-uncertain evidence. To deal with
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these uncertainties, we propose to incorporate the Transferable Belief Model (TBM)
see, e.g. Smets (1994). Briefly the TBM is a two-level model, in which quantified
beliefs in hypotheses about an object or state of the environment are represented and
combined at the credal level® while decisions are made based on so-called pignistic
probabilities obtained from the combined belief by the pignistic’ transformation at
the pignistic level. So taken together, our approach can be summarized as involving
the explicit incorporation of uncertainty into hybrid story-based argumentation,
depicted in Fig. 2.4.

The basic ideas of the story-based approach are presented in Fig. 2.5 that shows
that:

e Arguments are derived from evidential foundations

e Stories are analyst-nominated (with computational support, e.g., prior case
libraries) hypotheticals

» Together these lead to the assembly of sub-stories and, again with computational
support (see Sect. 2.7 on our ideas), to the development of an integrated Narrative/
Story

In the following, we provide our view of the state of the art in each of several
functional areas necessary toward realization of a desired level of automated capa-
bility for a future semi-automated, computationally supported analysis prototype
that realizes the hybrid capability described. We note, from the literature, a set of
particular argumentation-related functional categories: Argument Detection-
Construction-Invention-Mining-Accrual and, importantly (as it dominates the liter-
ature) Visualization that will serve as the basis for our review.

2.4.3 Computational Support to Argumentation: The State
of the Art

It is realized that the input to any modern intelligence analysis system could be in a
wide variety of formats and types in terms of media and modalities. As regards the
role of these varying inputs toward supporting argument formation, however, it is
considered that textual inputs provide the most likely format for somewhat-direct
input-to-argument formulation. Most other input types would more likely represent
evidential data (such as sensor data) and require a more complex structuring process
to frame the data into argument forms. (Later it will be seen that we address sensor

Credal will be seen to mean belief but in regard to conducting analysis this term is taken to mean
a (human’s) conviction of the truth of some statement or the reality of some being or phenomenon
especially when based on examination of evidence.

Pignistic is a term coined by Smets and is drawn from the Latin pignus for “bet”, and can be taken
to imply or relate to a probability that a rational person would assign to an option when required to
make a decision.
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Evidence-based Argument Two alternative Stories
(Upward reasoning from Evidence) Abductively developed

-
HYPOTHETICAL
STORY 1 FRAGMENT FRAGMENT

/\' CONNECTED EVIDENCEA ||  CONNECTED EVIDENCEB |
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Evidence-based
Arguments
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Fig. 2.5 Overview of Bex’s scheme for joint argument-story exploitation

data as an input stream of interest in proposing our design but we note that sensibly
all current systems do not include such “hard” data as input.).

Our review of current prototype argument systems shows that the front-ends of
these prototypes do not currently provide any automated support to the identifica-
tion of either the basic linguistic form of an argument (based on lexical content and
other factors) or types of argument structures based on argument taxonomies (usu-
ally called “schemes” in the argument literature) from textual report, prose-type
input, whether structured or not. Thus, a significant human cognitive operation is
needed in these prototypes for the formulation of the very basic constructs (argu-
ments) upon which next analysis steps, some computationally-aided, depend. Moen
et al. (2007) in discussing the Araucaria prototype® designed for argument visualiza-
tion, say that “The manual structuring of an argumentative text into a graph visual-
ization as is done in the Araucaria research is a very costly job.”

However, we will see that approaches to computational support for extracting
parts of or entire argument schemes from text has been addressed but has not, for
whatever reasons, been integrated into modern prototype systems. As noted above,
this functional activity comes under different names, such as argument detection,
argument construction, and argument mining—we simply use the term detection
here but draw on works having these other labels to describe what is happening in

8 An argument mapping tool developed at the University of Dundee; see http://www.arg-tech.org/
index.php/projects/.
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the research community. We will review some sample works in this area and also
provide a broader summary view of the state of the art in the next section.’

2.4.3.1 Argument Detection
Moen et al. (2007) Automatic Detection of Arguments in Legal Texts

This paper describes the results of experiments on the detection of arguments in
texts with a focus on legal texts. As will be seen in related works on detection, the
detection operation is seen as a classification problem based on defined features of
a postulated argument scheme. A classifier is developed in the paper and trained on
a set of annotated arguments. Different feature sets are evaluated involving lexical,
syntactic, semantic, and discourse properties of the texts, and each of their contribu-
tions to classifier accuracy is examined.

Strategies for detecting argument constructs clearly require some defining pro-
cess for the nature of argument forms or schemes in a linguistic sense; said other-
wise, an ontology of argument forms is required. Moen et al state that “The most
prominent indicators of rhetorical structure are lexical cues (Allen 1995), most typi-
cally expressed by conjunctions and by certain kinds of adverbial groups.” Humans
can do this well but one important factor exploited by humans to do so is the context
of the textual phrases, and this is very hard to do automatically. The approach in
Moens et al. (2007) is admitted to be a bounded first step toward automating this
process, and they take an approach built on isolated sentences. They represent sen-
tences as a vector of features and use annotated training data to train a classifier. (It
will be seen that this problem is broadly treated as a classification problem in the
literature.) We will not review the details of the features and methods but they use a
multinomial Bayes classifier and a Maximum Entropy based classifier in this work.
It is interesting to see that even simple feature sets yield reasonable (~70+% accu-
racy) results. The paper also reviews related works and remarks that this type of
research on detection is very limited in the legal domain at least (as of the date of
this publication, 2007).

Mochales-Palau and Moens (2007)

In a later work, these authors develop an approach to detect sentences that contain
argument structures (i.e., apart from not discerning the existence of Walton-type
schema; in Walton et al., 2008). A maximum-entropy-based classification is used to
determine if input sentences are argumentative or not, and more specifically if they
contain a premise, a conclusion or a non-argumentative sentence. These same

°For the Reader: our reviews in the next section are running commentaries about selected papers
from the literature that address each reviewed topic; in various places any emphasis provided is our
own. Some excerptions from the original papers are included without quotation.
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authors also study and develop a context-free grammar for argument detection in
Mochales and Moens (2008), but this was a very limited study across a ten docu-
ment training set.

Feng and Hirst (2011), Classifying Arguments by Scheme

This work is oriented to a subtle issue in argumentation, the issue of enthymemes;
as part of an approach to argument detection, in reasonably-frequent cases, there are
implicit premises that are never present in the prose text, and these are called
enthymemes. To address this issue however, the authors argue that by first identify-
ing the particular argumentation scheme that an argument is using will help to
bridge the gap between stated and unstated propositions in the argument, because
each argumentation scheme is a relatively fixed “template” for arguing. The idea
here is that the argument scheme classification system is a stage following argument
detection and proposition classification; that is, a two-stage system involving two
different classification systems.

This paper (and some others) relies on the notion of argument schemes or sche-
mata; such schemes are structures or templates for forms of arguments Walton’s set
of 65 argumentation schemes is one of the most-cited scheme-sets in the argumenta-
tion literature. According to Feng and Hirst (2011), the five schemes defined in
Table 2.2 copied below are the most commonly used ones, and they are the focus of
the scheme classification system that is described in this paper. The functional

Table 2.2 Five top argument schemata from Walton et al. (2008)

Argument from example

Premise: In this particular case, the individual a has property F and also property G

Conclusion: Therefore, generally, if x has property F, then it also has property G
Argument from cause to effect

Major premise: Generally, if A occurs, then B will (might) occur

Minor premise: In this case, A occurs (might occur)

Conclusion: Therefore, in this case, B will (might) occur

Practical reasoning

Major premise: 1 have a goal G

Minor premise: Carrying out action A is a means to realize G

Conclusion: Therefore, I ought (practically speaking) to carry out this action A

Argument from consequences

Premise: It A is (is not) brought about, good (bad) consequences will (will not) plausibly occur
Conclusion: Therefore, A should (should not) be brought about

Argument from verbal classification

Individual premise: a has a particular property F

Classification premise: For all x, if x has property F, then x can be classified as having property
G

Conclusion: Therefore, a has property G
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Fig. 2.6 Functional flow )
TEXT Detecting
of argument scheme .
. argumentative text
detection

v

ARGUMENTATIVE
SEGMENT

Premise /
conclusion
classifier

- =
PREMISE #1 |
PREMISE #2 |

CONCLUSION

Scheme classifier

v

ARGUMENTATION
SCHEME

I

I

I

— — = J
Argument

template fitter

v
CONSTRUCTED
ENTHYMEME

approach is shown in Fig. 2.6, where it can be seen that argument detection from
text precedes the argument scheme classification step.

The classifier approach is essentially entropy based. Performance is quite vari-
able, since the various argument schemata vary significantly in the specificity of cue
phrases; this is an issue to be dealt with in classifying argument schemata. Note that
a training data set for either argument detection or scheme detection requires that
the textual corpus be labeled with the “true” argument constructs. This study used
the Araucaria data set available at the Araucaria research project website, http://
www.arg-tech.org/index.php/projects/.

2.4.3.2 Argument Mining
Moens (2013), State of the Art in Argument Mining
Argumentation mining is defined by Moens as the (automated/automatic) detection

of the argumentative discourse structure in text or speech and the recognition or
functional classification of the components of the argumentation. It is clear from
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this definition that various functional capabilities are required in mining to include
detection of lexical units, identification of sentences containing arguments, and the
fit of an argument sample to a predefined argument schema. This type of functional-
ity falls into the domain of Information Retrieval systems, to provide the end user
with instructive visualizations and summaries of an argumentative structure. Moens
dates argument mining as having started in 2007. The notion of argument “zoning”
is mentioned as an area of some study, where a document or corpus is examined to
localize sections possibly containing argument-based content. Moens reviews some
works that perform these types of functions as typical of the current state of the art;
typical Precision/Recall/F measures are in the high 60 to low/mid 70% range, which
is just fair performance.'

This paper also describes some capability goals for argument mining systems.
While discussing the use of machine learning methods, the goal of detecting or
recognizing a “full argumentation tree” is mentioned. Cited papers use either a set
of piecewise classifiers or a single set-wise or tree-wise classifier, but these are cited
only as methodological examples, i.e., these works do not apply such methods to the
argument mining problem. Another important argumentation mining issue stated by
Moens is the correct identification of the relationships between text segments (e.g.,
the relationship of being a premise for a certain conclusion) and defining appropri-
ate features that indicate this relationship. Moens suggests that textual entailment in
natural language processing, which focuses on detecting directional relations
between text fragments may be useful.

2.4.3.3 Argument Invention
Walton and Gordon (2012), the Carneades Model of Argument Invention

This paper seems a bit off-topic for our purposes but one aspect that may be of inter-
est is that the mechanics involved in argument invention may hint at how stories (in
a knowledge base) and arguments achieve some symbiosis. Argument invention is a
method used by ancient Greek philosophers and rhetoricians that can be used to
help an arguer find arguments that could be used to prove a claim he needs to defend.
The Carneades Argumentation System (named after the Greek skeptical philoso-
pher Carneades) is said by Walton and Gordon to be the first argument mapping tool
with an integrated inference engine for constructing arguments from knowledge-
bases, designed to support argument invention. It can be said that the notion of
invention revolves around the notion of how arguments are evaluated or defended;
the idea is to provide automated support to improve the acceptability of an argu-
ment. This tool is intended for rhetorical-type applications but conceptually could
have applicability in analysis frameworks.

!"The F measure is the harmonic mean of precision and recall, and can be viewed as a compromise
between recall and precision. It is high only when both recall and precision are high.
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We offer an aside regarding argument evaluation, drawn from Walton and Gordon
(2012), as follows: one approach to argument evaluation revolves around the idea of
“critical questions” to evaluate an argument. Walton and Gordon (2012, p. 1) sug-
gest: “Critical questions were first introduced by Arthur Hastings (1963) as part of
his analysis of presumptive argumentation schemes. The critical questions attached
to an argumentation scheme enumerate ways of challenging arguments created
using the scheme. The current method of evaluating an argument that fits a scheme,
like that for an argument from expert opinion, is by a shifting of the burden of proof
from one side to the other in a dialog. When the respondent asks one of the critical
questions matching the scheme, the burden of proof shifts back to the proponent’s
side, defeating or undercutting the argument until the critical question has been
answered successfully. At least this has been the general approach of argumentation
theory.” Thus, the presence of critical questions could serve as a mechanism to
assure that pro and contra sides of an argument receive attention.

The Carneades design approach provides a number of “assistants” for helping
users with various argumentation tasks, including a “find arguments” assistant for
inventing arguments from argumentation schemes and facts in a knowledge base, an
“instantiate scheme” assistant for constructing or reconstructing arguments by using
argumentation schemes, and a “find positions” assistant for helping users to find
minimal, consistent sets of statements which would make a goal statement accept-
able. The schemes representing knowledge of the domain in the knowledge base
must be programmed manually by an expert. A distinctive contribution of the
Carneades system is the integration of an inference engine in an argument mapping
tool. Although the paper does not emphasize application in the legal domain, it
seems clear that this system is oriented to either legal applications or in rhetorical
applications as mentioned previously.

2.4.3.4 Argument Visualization (a.k.a. Mapping, Diagramming)

Argument visualization is often claimed to be a powerful method to analyze and
evaluate arguments by providing a capability to perceive dependencies among argu-
ment components of evidential components, premises, and conclusions, focusing on
the logical, evidential or inferential relationships among propositions. Argument
visualization and theoretical modeling play important roles to cope with working
memory limitations for problem solving, providing some relief to the cognitive
workload that these analyses impute. Since the task of constructing such visualiza-
tions (also described in the literature as argument mapping or diagramming) is labo-
rious, researchers have turned to the development of software tools that support the
construction and visualization of arguments in various representation formats that
have included graphs and matrices among other forms. To say that there have been
a number of prototype systems developed that support argument diagramming is
rather an understatement—a website provided by Carnegie-Mellon University
(http://www.phil.cmu.edu/projects/argument_mapping/) shows, just on the first
page, the following subset of tools shown in Table 2.3; the complete table goes on
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Table 2.3 Sampling of computer-supported argument diagramming tools (see http://www.phil.
cmu.edu/projects/argument_mapping/)

Tool Description Representation Audience
Athena Argument mapper Simplified Toulmin Education
from Blekinge
Institute of
Technology and
CERTEC, Sweden
ArgMAP Argument mapper Simplified Toulmin Research
ArguMed Argument mapper DEFLog (Toulmin Research
based on DEFLog extension)
Argutect Argument mapping- | Thought tree (tree of | Productivity, education
like “thought- questions and
processor” from answers, can be used
Knosis, Pittsburgh as simplified
Toulmin)
Araucaria Argument mapper Simplified Toulmin Education
from University of
Dundee, UK
Belvedere Collaborative Inquiry/evidence Education
concept mapper and | maps and matrices
evidence matrix (links between claims
originally developed | and supporting data)
by D. Suthers at
LRDC, Pittsburgh,
now at LILT,
University of Hawai’i
at Manoa
Causality Lab Allows students to Causal diagram and Education
solve social science data charts
problems by building
hypotheses,
collecting data and
making causal
inferences
Carneades (.pdf) Toulmin based Toulmin Law
mathematical model
for legal
argumentation
ClaimMaker/ Concept mapping of | Concept map with Research
ClaimFinder/ knowledge claims semiformal ontology
ClaimMapper from S. Buckingham | for argumentation

Shum's Scholarly
Ontologies Project,
KMI, Open
University, UK

(continued)
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Table 2.3 (continued)

J. Llinas et al.

Tool

Description

Representation

Audience

Compendium

IBIS mapping tool

originally developed
by Verizon Research
Labs and associated

Dialogue map
(concept map with
ontology: nodes can
represent issues,

[ll-structured problems

with CogNexus ideas, pro, con, and
Institute and KMI, notes)
Open University
Convince Me Creates diagrammatic | Evidence map Education
representations of
hypothesis and
evidence
Debatabase Debatabase is the Communal, Education

world’s most useful
resource for student
debaters. Inside you
will find arguments
for and against
hundreds of debating
topics, written by
expert debaters,
judges and coaches

simplified Toulmin

for 2—1/2 pages. Note also the range of representational forms, in part dependent on
the argument-model used in the application.

The effectiveness of such diagramming or mapping tools is reviewed in (van den
Braack et al. 2006). Among the tools that were experimentally tested for their effec-
tiveness were Belvedere, Convince Me, Questmap, and Reason!Able, which are a
sampling of tools from Table 2.3.!"" While there are many issues regarding such
evaluations discussed by van den Braack including criticisms about statistical test-
ing methodology, the paper concludes that (p. 7) “most results indicated that the
tools have a positive effect on argumentation skills and make the users better rea-
soners. However, most experiments did not yield (statistically) significant effects.”
Another study (Twardy 2004) showed that (manual) argument mapping generally
helped in understanding arguments and also enhanced critical thinking; the study
also showed that the benefits were greater with computer-based argument
mapping.

In Mani and Klein (2005), they review structured argumentation as an analysis
framework for “open-ended” (i.e., in operational cases where absolute truth is
unknown) intelligence analysis. The paper is a short, opinion-type paper and asserts
that structured arguments are a means not just of representing and reusing reasoning
(one useful benefit), but also a means of communicating and sharing the argument,
as analysis is often collaborative. They suggest that one way of assessing the quality
of the associated reasoning is to determine how easy the argument is to follow and

11 See the website listed at Table 2.3 for further details on these systems.
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Fig. 2.7 Sampling of argument visualization prototypes

understand. If arguments are constructed in agreeable ways (e.g., based on argu-
ment models/schema) and correspondingly visualized, presumably they can be
more easily communicated and discussed with others.

To allow an appreciation for what such visualizations look like, we show some
examples in Fig. 2.7; these are drawn from Gordon’s presentation in (1996); we use
his format as it typically provides a screenshot with some remarks on associated
features. Araucaria is very frequently cited as an exemplar of relatively recent pro-
totypes for argument visualization (see for example Suthers et al. 1995; Reed and
Rowe 2004). The most recent prototype we are aware of is CISpaces, developed
under joint US-UK efforts and led by Norman at the University of Dundee. It can be
seen that Araucaria, while having many attractive features, still imputes a high cog-
nitive load onto human analysts is working with streaming text and manually devel-
oping the diagrammatic argument constructs. CISpaces incorporates various
additional features such as chat for collaborative analysis but still imputes similarly
high cognitive workloads for argument mapping; see additional comments below.
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2.5 Current-Day Computational Support to Argumentation

One other remark that we will offer here is that the greater proportion of research
along the lines of computational support schemes for analysis has been carried out
in Europe or at least outside of the USA. Among the leading centers of such research
are:

e ARG-Tech, at the University of Dundee in Scotland (http://www.arg.dundee.
ac.uk/)

e Centre for Research in Reasoning, Argumentation and Rhetoric, University of
Windsor, Canada (http://www1.uwindsor.ca/crrar/)

 Intelligent Systems Group, University of Utrecht, Holland (http://www.cs.uu.nl/
groups/IS/)

e Intelligent Systems Group, University College London (http://is.cs.ucl.ac.uk/
introduction/)

To the extent that there is belief that computationally-supported argumentation
methods can be helpful to intelligence analysis, this situation should be of concern
to the US academic and industrial research communities.

2.5.1 AVERS and CISpaces as Leading Relevant Prototypes

The research program described in this paper was largely initiated by an early
review of a dissertation in Holland having to do with “Sensemaking software for
crime analysis” (van den Braack et al. 2007) by Susan van den Braack. That dis-
sertation provided the spark of thinking, as was first explored in that work, for a
hybrid, story and argumentation based approach to intelligence analysis since intel-
ligence and criminal analysis requirements have quite similar requirements. This
dissertation described AVERS as a prototype developed within the dissertation
effort that was designed to explore alternative “scenarios” (stories in effect) based
on evidentially-supported arguments. A prototype was developed in the university
framework but unfortunately the code for that prototype was not subsequently
maintained (we had contacted Dr. van den Braak to explore this). Nevertheless, as
described in van den Braack (2010), it is clear that the thinking related to the design
and realization of AVERS was very synergistic to our line of research. Formalisms
for combining stories and arguments in this hybrid environment were put forward in
Bex et al. (2007a, b).

During our program, largely because of our close relations to researchers at the
Army Research Laboratory, we learned that, under the “International Technology
Alliance (ITA)” program (a US-UK cooperative research program) that a team at
the University of Aberdeen (at ARG-Tech as noted above) was carrying out the
development of a prototype called “CISpaces”, with goals also similar to ours.

CISpaces was conceptualized as an initial set of tools for collaborative analysis
of arguments and debate, providing a uniform way of constructing and exchanging
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Fig. 2.8 CISpaces functional architecture

arguments based upon argumentation schemes. The top-level functional design is
shown in Fig. 2.8 below (Toniolo et al. 2014) and comprises three main services in
a service-based architecture:

* the evidential reasoning service, supporting collaboration between users in draw-
ing inferences and forming opinions structured by argumentation schemes;

e the crowd-sourcing service, enabling users to post requests for aggregated opin-
ions from samples of a population;

¢ the provenance reasoning service, facilitating the storage and retrieval of prove-
nance data including provenance of information and analysis.

The core components of CISpaces, as it is highly oriented to a collaborative,
multi-analysts environment, are the WorkBox, the ChatBox and the ReqBox. As
described by Toniolo, the WorkBox permits users to elaborate information by add-
ing new claims or by manually importing information and conclusions from differ-
ent locations; e.g., social networks, blogs. Different forms of argumentation-based
dialogue are supported through the ChatBox: collaborative debate, information
retrieval through crowd-sourcing, and reasoning about provenance. The list of active
debates is intended to be maintained in the ReqBox.

While the development of a real software prototype of this type should be
applauded for its forward-thinking approach and for moving the bar of computa-
tional support to argumentation to a new level, our thoughts on prototype design
addressed other, additional issues:

 Inclusion of both Hard/sensor data as well as Soft/textual/linguistic data as input

— This is a major change as sensibly all existing argumentation support proto-
types are strictly text-input-based
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* Major reduction in analyst cognitive workload

— We see this as involving an aggressive inclusion of front-end, automated pro-
cessing to aid in argument detection and construction, a major cognitive
workload factor of all current prototypes, to include CISpaces.

— Another aspect is in automated support to final analysis product development,
seen as a narrative or story descriptive of a situational estimate of interest
(none of the computational systems described here address this at all)

* Major concern for managing information quality along various lines, including
automated support for relevance-checking and tracking and assessing prove-
nance of input sources.

Because of our concern for these information quality factors, we established a
research thrust along these lines. A later section also addresses our ideas, largely
from our Lockheed teammates, on computational support to narrative
development.

2.6 Computational Support for Narrative Development

As described earlier, for a broad range of intelligence analysis requirements, the
desired final output of analysis is a situational picture of some type. In most cases
these situations are best communicated as a story or narrative description. However,
none of the system concepts and prototypes reviewed here addresses the issue of
providing computational support to narrative development. In this next section, we
describe our team’s approach and some actual prototyping (done by Lockheed in
conjunction with Virginia Tech in a separate effort).

2.6.1 Using Topic Modeling to Assess Story Relevance
and Narrative Formation

As was remarked in particular for Sect. 2.4.3, here too we note that some elements
of this section were extracted closely from the conference paper that reported the
original work on Topic Modeling carried out in part by Lockheed ATL!% see
Schlacter et al. (2015) for the original paper.

Storytelling as a data-mining concept was introduced by Kumar et al. (2008).
Storytelling (or “connecting the dots”) aims to relate seemingly disjoint objects by
uncovering hidden or latent connections and finding a coherent intermediate chain
of objects. This problem has been studied in a variety of contexts, such as entity
networks (Hossain et al. 2012a, b, c), social networks (Faloutsos et al. 2004),

2Lockeed’s Advanced Technology Laboratories; see http://www.lockheedmartin.com/us/atl.html.
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cellular networks (Hossain et al. 2012a), and document collections (Hossain et al.
2012b; Shahaf and Guestrin 2010; Shahaf et al. 2012, 2013). The unsupervised
learning technique for storytelling called Story Chaining links related documents in
a corpus to build a story or narrative arc. The story chaining approach uses a real-
time, flexible storytelling approach that can be used for streaming (online) data as
well as for offline data. Because it is fully unsupervised, this approach does not
carry the costs of competing approaches such as the need for configuration with
domain knowledge or labeling of training data. As such, Story Chaining is ideal for
new and frequently evolving domains. Figure 2.9 presents an example of a story
chain generated from a corpus of news stories published in Brazil in 2013. The story
chains generated from this approach can potentially tell a story about what is hap-
pening over time and across news articles by focusing on how the same people,
organizations, and locations occur between documents. For this reason, story chains
may be considered to be a narrative structure.

Because story chaining is an unsupervised, automated process that generates
many results, there is a need to identify the story chains that contain the clearest
narratives. One technique uses context overlap as a measure to produce stories that
stick to one context by extracting context sentences from a document using a Naive
Bayes classifier. Others, for assessing quality, also use dispersion plots and disper-
sion coefficient to evaluate the overlap of contents of the documents in a chain and
thereby quality. Shahaf et al. (2013), as referenced above, define concepts of chain
coherence, coverage, and connectivity that offer more insights into the storytelling
process. Our approach differs in that it learns a topic model over the corpus and tries
to associate certain types of topic change across a story chain as an indicator of how
clear of a narrative structure is contained within a story chain.

Topic models are probabilistic models for uncovering the underlying semantic
structure of a document collection based on a hierarchical Bayesian analysis of the
original texts (Blei et al. 2003). They have been applied to a wide range of text to
discover patterns of word use, or topics, across a corpus and to connect documents
that share similar structure. In this way, topic models provide a way to create a
structure from unstructured text in an unsupervised manner. We leverage them in
our work primarily for this reason.

In our research, we have investigated the use of a topic model based analytics to
evaluate the clarity of the story chain narrative structure. This work proposes two
different kinds of measures of assessment, representativeness and quality.

Firstly, we considered a measure of representativeness that captures how well a
story chain represents the corpus from which it was generated. For example, the
story chain in Fig. 2.9 was generated from a corpus of thousands of documents
published in Brazil in 2013 and it tells a clear story about the Pope visiting Brazil.
The stories in the chain take place over a period of 11 days and fit well with the
dominant theme of the corpus during that time period which focuses on social issues
and protests. Our measure of representativeness is assessed by comparing the simi-
larity of topics found over time in a story chain against those expressed in the corpus
during the same time period. This measure assumes the corpus contains dominant
topics that are desirable to understand. Our hypothesis for investigating
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representativeness was the idea that story chains with similar topic expressions to
the corpus will convey narratives that are central to the corpus.

Secondly, we considered a measure of quality in which higher quality story
chains exhibit a characteristic of focusing on a small number of stable topics, rather
than many interleaved or shifting topics. To evaluate this form of quality, we decom-
posed the measure into two contributing measures, topic persistence and topic
consistency.

Topic persistence was designed to capture volatility in topic focus within a story
chain. In other words, how often does the topic of a chain shift across each link in
the story chain? For example, consider a story chain that has 11 articles such that
there are 10 transitions in the story chain connecting one article to the next article in
the chain. Topic Persistence (TP) will indicate how well topics persist between
links. If most of those ten transitions represent a change in the main topic of the
article, then that story chain would have a lower TP score than a chain in which most
of those ten transitions represented no change in the main topic. In this way, if a
story chain has a high TP score, then most of the links in the chain represent con-
nections between two articles that are discussing the same main topic, and hence,
the narrative structure is exhibiting more stable structure for a, hypothetically, better
quality chain.

Topic consistency (TC) is a relative assessment of the stability of the main topic
of the story chain. More specifically, TC assesses how regularly the main topic of
the story chain appears as a main topic of an article within the story chain. For
example, if a story chain is made up of ten articles and has a main topic of political
unrest, TC will indicate how stable that main topic of political unrest is by looking
at each of the ten contributing articles and seeing if political unrest appears as the
primary topic within those ten articles. If only three of those ten articles are focused
on political unrest for a TC = 3/10 or 30%, that means that most of the articles in the
chain are focused on (1) different topics, and (2) a variety of different topics such
that consensus did not exceed three. Compare this to a scenario in which the story
chain had seven articles focusing on political unrest where TC =7/10 or 70%. In this
case, the topic is much more consistent throughout the chain (not necessarily con-
secutively) and hence, the narrative structure more centered on political unrest and,
hypothetically, of better quality.

Our results indicate that using topic model based analytics to predict the quality
of a narrative structure is a promising avenue of research. We found correlations
between all of our analytics and the human scoring of our story chains, with particu-
larly strong correlation to the relevance metric.

The need to build situational awareness from increasingly large sets of textual
data requires automatic methods to construct narrative structures from text without
regard to domain factors such as actors, event types, etc. The metrics presented in
this paper provide a means to assess these narrative structures so that only the most
useful narrative structures are transformed into narratives. In this work, we define
three metrics of relevance, topic persistence and topic consistency to assess narra-
tive structure. We specify and implement these measures with respect to a narrative
structure of story chains generated by an unsupervised narrative generation
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technique presented in Hossain et al. (2012b). This data is processed to provide
analytical evidence for the usefulness of these metrics for identifying high quality
story chains.

2.7 Developing a Functional Design for an Advanced-
Capability Prototype

An effective approach to architecting our proposed decision-support concept
requires that we assert our views of the overall reasoning process from evidence to
decision-making and decision enablement. Most traditional characterizations
describe decision-making (DM) as contemplative, analytic, involving nomination
and evaluation of options that are weighed in some context, eventually leading to a
choice of a “course of action (COA)”. This model, often labeled as the “System 2”
model, can be seen in most descriptions of the “Military Decision-Making Process”
or MDMP as for example in published military Field Manuals such as in HQ, Dept
of Army (2010). The literature also identifies a “System 1” or largely intuitive
decision-making paradigm (IDM) that operates in conjunction with System 2 pro-
cesses in what is argued to be an improved DM process model, often called the
“Dual-Process Model”. Most research in decision support however has focused on
System 2 DM ideas since this model is quantitative and can be mathematically stud-
ied using notions of utility theory and other frameworks for mensuration. We intend
however to factor the Dual-Process Model concept into our systemic design
approach; the basis of this rationale cannot be elaborated here but we offer our refer-
ences for the interested reader, e.g., Croskerry (2009) and Djulbegovic et al. (2012).

Furthermore, in our view of the System Support context for DM, we see what
today are called Sensemaking processes, as lying between automated System
Support capabilities, such as Data Fusion processes and DM processes, in a stage
wherein “final” situation assessments and understandings (in the human mind) are
developed. Thus, our view of this meta-process is as a three-stage operation: System
Support (SS) as an automated process that nominates algorithmically-formed situ-
ational hypotheses (such as from the combined operations of data fusion and argu-
mentation), followed by human-computer, mixed-initiative processes for
Sensemaking and symbiosis, whose narrative-type products provide the vetted situ-
ational assessments needed for decision-making. There is a substantive literature on
Sensemaking, such as those previously cited (Llinas 2014a, b; Gross et al. 2014).
Our key thoughts on and rational for the meta-architecture for System Support
described briefly here have been summarized in (Llinas 2014a, b). Finally, in the
face of significant production pressures and rapidly proliferating data availability—
and the resulting data overload deluging the professional analyst—it is increasingly
easy for analysts and decision-makers to be trapped by shallow, low-rigor analysis;
improvements in rigor have been previously discussed and are part of our proposed
design. At the highest level, and consistent with the System Support/Fusion—
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Sensemaking—Decision-making interdependent processes concept, we see our ini-
tial prototype as embedded in the Sensemaking dynamic (note that this is an initial,
design-in-process), as shown in Fig. 2.10.

Building on these ideas, we formed our initial functional design as shown in
Fig. 2.11. Included in this design are the specifics of the Hard-Soft data association
operations that would be part of the Fusion/System Support segment in an eventual
final design. The figure can be examined by starting at the bottom where notional
Use Cases are also shown—these include current service-specific mission opera-
tions, Joint service operations, and a technological type thrust that examines the
proposed methods as having disruptive properties:

* Army: Operations in Megacities, Syrian Civil War
— Megacity operations are an evolving new Army interest
e Navy: Piracy (NATO), Autonomous ISR Systems

— Piracy is a continuing NATO interest, ONR has considerable interest in
UAV/UXYV operations

e Joint: Expeditionary Operations (Anti-Access Area Denial, A2AD),

— Joint operations dealing with A2AD issues are an evolving widespread
interest

e Assess Hybrid Argumentation Technology as Disruptive

— And of course these proposed methods can be studied from the techno-
logical point of view as a new and disruptive capability

For any Use Case, we envision that there would be the opportunity or need to
enable both Hard and Soft data stream inputs of various types as peculiar to each of
the Use Cases. Based on our own research in computational support techniques for
Relevance filtering and Provenance accounting, we show those two functional
blocks first, operating on both data streams. (Note that there may be some prepro-
cessing required for the Hard Data stream to frame the results into Entity-Attribute
sets.) These filters ideally provide relevant and qualified data to two processes: a
Natural Language Processor (NLP) and Argument Detection and Nomination
(ADM) process. The functions of each of these operations are:

e NLP: extract Named Entities and associated features and attributes of those
Named Entities
*  ADM: detect and construct argument phrases with labeled Schemas as possible

Metadata is also considered for both processing operations. The outputs of both
NLP and ADM (and possible Hard Data preprocessing) are inputs to the Hard/Soft
Data Association process that correlates the Entity-Attribute sets and forms the
associated and reconciled fused Entity/Attribute results, i.e., the associated, fused
Entity/Enriched Attribute evidential data set as shown on Fig. 2.11. This output
provides a feedback to the Argument Detection processing (that contains labeled
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Entities) so that these identified Entities can be enriched with the associated/fused
Attributes. Note that there can be possible outlier Entities here, since the ADM pro-
cess is only Soft-data-based; this is a reconciliation issue yet to be determined. One
idea is to engage the human analyst in the process of integrating and managing these
outlier Entities. At this point, this front-end processing has automatically produced
nominated arguments with associated and enriched/fused Entity/Attribute pairs—
this capability is a high-priority goal of our approach as this capability has the
potential to greatly reduce human cognition workload in terms of argument con-
struction, a major issue even in the most modern prototypes we have reviewed.
These nominated arguments then are vetted with analyst intervention and once vet-
ted can provide draft input to our proposed Topic Modeling/Narrative Construction
software that aids in a mixed-initiative, human-machine symbiotic process of hybrid
argument/story combination. This approach takes into account the uncertainty
inherent into the environment as well as the results of argument detection and nomi-
nation. These operations will likely involve the management of competing hypoth-
eses for which Lockheed Internal Research and Development (IRAD) software may
also provide automated support. These operations would take advantage of Bex’s
theories and methods for hybrid correlation of the evidentially-grounded arguments
and stories emanating both from the analyst and from the Topic Modeling story-
nomination process.

This is of course an ambitious vision but is one that sets a new milestone we
think for automated support to intelligence analysis. A number of details have to be
worked out but the considerably advanced capabilities that a system like this can
provide will move the bar forward in terms of revolutionary, disruptive automated
support to intelligence analysis.

2.7.1 Looking Ahead: Possible Test and Evaluation Schemes

Given that our end-goal of this project was to develop initial thoughts on a func-
tional design, it was considered necessary to explore possible strategies for Test and
Evaluation (T&E) as well as possible metrics for evaluation, since the quality of any
possible prototype would be measured by some appropriate T&E approach.

There are various important functions in the proposed top-level design of
Fig. 2.11. As the multisource Data Association process is considered key in any
Information Fusion process, one critical aspect of a T&E approach would suggest a
scheme for evaluating Hard-Soft Data Association. Here, we would suggest the
approach of the MURI program that the Center for Multisource Information Fusion
at the University at Buffalo developed as at least a starting approach (this is well-
documented in Gross et al. 2014; Date et al. 2013a, b); this technique was explored
and tested with good success on that program.

Testing of Natural Language Processing (NLP) methods is a very broad topic but
one focus for the proposed design in on Named Entity extraction, a key capability
for good performance in the proposed scheme. Here too the methods employed on
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the prior MURI program could be applied to evaluate performance in any Use Case
application; these techniques are discussed in Shapiro (2012).

There is not much literature on specific evaluation techniques for the various
front-end argument detection/construction methods we would intend to explore, but
most of these rely on some type of classification framework, and evaluation of such
text extraction methods. The cited literature of Sect. 2.6, along with various survey
papers on classifier evaluation form an adequate starting point for developing an
evaluation approach.

Evaluating the quality of argument constructs is an area where there is consider-
able literature. There are various websites on this topic (e.g., http://www.csuchico.
edu/~egampel/students/evaluating.html) and a wide variety of papers that address
this topic, e.g., Corner and Hahn (2009). Much of the literature discusses notions of
argument strength, different for deductive, inductive, and abductive arguments and
introduces related ideas on validity of premises and other issues. This literature is
helpful toward test planning but we prefer Dahl’s ideas on the notion of argument
persuasiveness that in turn relates to ideas on “explanatory coherence” as a tech-
nique for evaluating the persuasiveness of arguments; see Dahl (2013), Thagard
(2000), and Ng and Mooney (1990).

Of course, the best evaluation approach would reveal the impacts of these com-
bined technologies on mission-based analysis effectiveness; however, since the pro-
posed design and suggested methods are, in our opinion, still at the formative stage,
much testing and evaluation would have to be done to first establish technological
credibility before mission effectiveness assessments could (or should) be carried
out.
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Chapter 3

Task Allocation Using Parallelized Clustering
and Auctioning Algorithms for Heterogeneous
Robotic Swarms Operating on a Cloud
Network

Jonathan Lwowski, Patrick Benavidez, John J. Prevost, and Mo Jamshidi

3.1 Introduction

In recent years, robotic swarms have become increasingly popular in both civilian
and military applications. These applications include search and rescue, land sur-
veying and surveillance. The popularity increase is due to the fact that the robotic
swarm can perform more complex tasks than a single robot. For example, when an
autonomous surface vehicle (ASV) is traveling through an obstacle filled environ-
ment, it is difficult for it to plan a long-term path that includes obstacle avoidance.
When paired with an unmanned air vehicle (UAV), such as a micro-aerial vehicle
(MAYV), the MAV provides a different perspective of the environment to the ASV
allowing a long-term path plan (Lwowski et al. 2016). Ray et al. (2009) also devel-
oped a robotic swarm to complete a complex task. They used a multi-agent rover
network to control a group of rovers to remain in a desired formation. Each agent in
their swarm can estimate the behavior of the other agents, which reduces the neces-
sary communications between the agents. This swarm can be used for a variety of
tasks such as search and rescue. Gallardo et al. (2016) also developed a robotic
swarm to maintain a desired formation that could be used for search and rescue.
This swarm utilizes a leader-follower approach where the swarm follows a virtual
leader position at a point detected by a MAV’s bottom facing camera, relative to the
agents in the swarm.

As the size of the robotic swarms increase, harder problems can also be solved,
but this comes with increased complexity. One of the important problems to solve
when dealing with larger robotic swarms is task allocation, which has resulted in
increasing interest in the research community (Gerkey and Mataric 2004). There are
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several different factors in the literature that have been studied relating to task allo-
cation for robotic swarms. One of the factors is team organization. Team organiza-
tion is the hierarchical system the robotic swarm uses to make decisions. There are
two main types of team organizations, centralized and distributed. Centralized
robotic swarms have a leader that is giving orders, or making plans for the other
agents in the system (Shia 2011). For example, Liu and Kroll (2012) developed a
centralized task allocation and path planning algorithm using A* for inspecting
industrial plants for gas leaks. In distributed robotic swarms, all of the agents are
mainly governing themselves, and therefore do not have a central leader (Shia
2011). For example, Giordani et al. (2014) developed a decentralized (distributed)
algorithm for multi-robot task allocation. Their algorithm employs each agent as a
decision maker in the system, which uses a distributed version of the Hungarian
algorithm (Kuhn 1955).

Another factor that has been studied relating to task allocation for robotic swarms
is communication losses or delays. Communication delays and failures can have huge
impacts on the task allocation method used for the swarm. For example, in a central-
ized swarm, if communication to a leader is lost, then all of the other agents will fail
because they need the input from the leader. In a distributed swarm, if an agent is
designed to complete a certain task, but has no communication to the rest of the
swarm, then it will not be assigned to that or any other tasks. Several groups have done
research on these topics. For example, Sujit and Sousa (2012) developed a behavior-
based coordination algorithm for a multi-agent system that experiences partial and
full communication failures. These algorithms modify the behavior of faulty and non-
faulty agents depending on the types of failure they encounter. In another paper, Dutta
et al. (2016) designed a nonlinear controller that uses communication connectivity to
control a swarm of MAVs to organize into a desired formation while maintaining
strong connectivity. This is important because not only does the swarm stay in its
desired formation, but the MAVs will not lose communication to each other.

In this paper, a heterogeneous centralized robotic swarm, consisting of ASVs and
MAVs (equipped with cameras and GPS), is presented. This system can be used for
a variety of scenarios such as the extinguishing of hot spots after a forest fire, and
autonomously detecting and watering dry spots on a farm. For the remainder of this
paper, the algorithms will be discussed with the scenario of a search and rescue of
people floating in the ocean after a cruise-ship disaster in mind. The heterogeneous
robotic swarm works cooperatively with a cloud network to show how the advan-
tages of each agent can perform task allocation in an organized and efficient man-
ner. For example, the aerial vantage point of the MAVs are used to detect and
localize the people from the ship floating in the ocean, which would be hard to do
using just ASVs. On the other hand, the ASVs are used to rescue the people floating
because it would be impractical to have the MAVs perform the rescue operations.
This symbiotic relationship allows the system to utilize the advantages of each sys-
tem to save people in an efficient and fast manner.

The rest of the paper is organized as follows. Section 3.2 will discuss the robotic
swarm system and all of the algorithms used. The simulation and hardware emulation
results are discussed in Sect. 3.3, and concluding remarks will be in the final section.
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Table 3.1 Specifications of cruise-ships and coast guard ships

Capacity Speed
Ship (people) (km/h) Length (m)
Harmony of the Seas (large cruiseliner) (France 2012) | 6360 46 362
Queen Mary 2 (small cruiseliner) (Cunard 2002) 3090 56 345
45-foot Motor Lifeboat (large coast guard boat) (US 34 46 15
Coast Guard 2007)
Defender-class Boat (small coast guard boat) (US 10 85 9
Coast Guard 2006)

3.2 Robotic Swarm Methodology

3.2.1 Scenario

In recent news, several cruise-ship crashes have occurred, such as the Costa
Concordia crash where 32 people died on January 13, 2012 (BBC News 2015). In
this crash, caused by human error, approximately 4250 people were on-board the
cruise-liner. Considering how many people were on the Costa Concordia, many
more people could have been injured. These cruise-ship disasters inspired the devel-
opment of our system, but this system can easily be used for a variety of other sce-
narios. To perform the simulations at a proper scale, background research was
conducted to determine the relevant parameters of cruise-ships and coast guard
ships. This information can be seen in Table 3.1. The information in Table 3.1 was
used during the simulations.

3.2.2 System Overview

The system works by using six main tasks; (a) localization of the people to be res-
cued, (b) building the map, (c) clustering the victims, (d) meta-clustering the clus-
ters, (e) auctioning the meta-clusters, and (f) the shortest path solver. These tasks are
all used sequentially, beginning when an alert about the location of a ship crash has
been received. Once the ship crash’s location has been received, a group of MAVs
equipped with bottom-facing stereo cameras fly over the scene. Using the stereo
cameras, the MAVs localize the people floating in the ocean. The locations of the
victims are sent to the cloud, and the cloud begins to build a map of the environ-
ment. It is assumed that the mothership has an on-board cloud network that is avail-
able to all of the agents in the swarm. Once the map has been built, the cloud network
will simplify the map by clustering the people into groups. Information about these
groups such as location and size are stored on the cloud. After the people have been
clustered into groups, the cloud then clusters the groups into meta-clusters. The
reason to perform this second round of clustering is to reduce the number of clusters
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Fig. 3.1 Overview of the system in ROS

to be the same as the number of ASVs in the swarm. Once again, information about
the meta-clusters such as location and size, are stored in the cloud. Using the meta-
cluster information stored in the cloud, the meta-clusters are auctioned off to ASVs.
After each ASV is assigned a meta-cluster, a traveling salesman solver is applied to
find an optimal path between the ASVs and each cluster in the assigned meta-cluster.
This system, seen in Fig. 3.1, was implemented in Robot Operating System (ROS)
(Quigley et al. 2009) due to its robust message passing interface.

3.2.3 Localization of People

To localize the surviving people floating in the ocean, the MAVs are equipped with
bottom facing stereo cameras. The people to be rescued, represented by colored
circles in the simulation, are detected by using simple color thresholding techniques.
Figure 3.2 shows how the simulation environment was setup.

Once a survivor is detected by the stereo camera, the location of the person in the
camera frame is transformed to the camera frame using Eqgs. (3.1) and (3.2), where
x and y are the pixel locations of the person, X, Y., and Z are the estimated coor-
dinates of the person with respect to the camera frame, and Q is the rectification
transformation matrix.

:Q[xy dispairity(x,y) 1]T 3.1

T N~
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Fig. 3.2 Aerial view of the
simulation environment
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A visual representation of Egs. (3.1) and (3.2) can be seen in Fig. 3.3. Then X4
Y and Z; are transformed from the camera frame to the world frame using the
traditional methods as described by Ma et al. (2003).

To validate the localization methods, the Robotic Operating System (ROS)
(Quigley et al. 2009), Gazebo (Koenig and Howard 2004), and RViz (Kam et al.
2015) were used. ROS is a robust, open source message passing infrastructure
used to manage the communication between the agents of the robotic swarm.
Gazebo is a three-dimensional open-source multi-robot simulator. RViz is a
toolkit for real domain data visualization. The localization method was tested by
having three MAVs fly over an area to find and localize the victims using the
method described above. The results of this simulation can be seen in Fig. 3.4,
where the green circles represent the actual locations of the people to be rescued
and the blue triangles represent the estimated locations of the people. The results
of this simulation show that the localization methods described above work cor-
rectly, with some error. These errors include positional estimation errors along
with the mistaken detection of some people. These errors could be due to envi-
ronmental issues such as people being too close to each other. These errors could
also be sensor related issues. Although the detection algorithm is not perfect, it
can be used as a proof of concept, and needs to be improved in the future. Various
tracking algorithms, such as extended Kalman filtering, can be used to improve
the estimation of the location of the people. Once the people have been local-
ized, the information can be sent to the cloud cluster to build the global map.
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3.2.4 Building the Map

Once the cloud receives the locations of the people to be rescued, a global position-
ing map can be made. However, calculating the optimal path to every person for
each ASV would be too expensive. Therefore, we perform several clustering algo-
rithms on the map using the cloud to create a simpler map for the ASVs.

3.24.1 Clustering the People

To simplify the map, the cloud clusters the localized people into large groups using
a modified k-means clustering algorithm. The modified k-means algorithm,
Constrained Cluster Radius (CCR) K-Means Clustering, is described below in
Algorithm 3.1, where k is the number of clusters that is inputted into the k-means
algorithm. The CCR K-Means Clustering ensures that the cluster will be smaller
than a given desired radius. This constraint is important because the clusters need to
be of a reasonable size so once the ASVs arrive, the cluster size will not be too large
for the rescue team to save all of the nearby people in a reasonable time frame.
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Algorithm 3.1 Constrained Cluster Radius (CCR) K-Means Clustering

Algorithm 1 Constrained Cluster Radius K-Means Clustering

Bowor o

wh

k1

Max Cluster Radius + inf

Desired Max Cluster Radius < 10 meters

while Max Cluster Radius > Desired Max Cluster Radius

do

Select k points as initial centroids
repeat:
Form k clusters by assigning each person to

its closest centroid.

Recompute the centroid of each cluster
until Centroids do not change.
k+=1

To test the CCR K-Means Clustering algorithm, 500 locations of victims, repre-

sented by the smaller randomly colored dot, were randomly assigned. Using these
locations, and a desired maximum cluster radius of 10 m, the clustering algorithm
was performed. The results seen in Fig. 3.5 show that 60 m, represented by the larger
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Fig. 3.5 Results of the constrained cluster radius K-Means Clustering

blue circles, were created all with a radius of less than 10 m. The center of mass of
the clusters are also represented by small Xs. Although this algorithm worked well,
the runtime of the algorithm can be very slow with large numbers of people.

3.2.4.2 Parallelization of Clustering Algorithm

Since the CCR K-Means Clustering algorithm ran very slowly with large numbers
of people, the algorithm was parallelized to shorten the run time. To do this, the
Message Passing Interface (MPI) library (Forum 1994) was used. To parallelize the
clustering, two algorithms were implemented. In the first algorithm, seen in
Algorithm 3.2, the master process first sends a flag to each of the slave processes.



3 Task Allocation Using Parallelized Clustering and Auctioning Algorithms... 55

Algorithm 3.2 Method 1, parallelized CCR K-Means Clustering

Algorithm 2 Method 1, Parallelized CCR K-Means Clustering
: SMCR (Slave Max Cluster Radius) + 0

1

2: finished flag + False

k1

4: MCR (Max Cluster Radius) + inf

5: DMCR (Desired Max Cluster Radius) + 10 meters
6: if Master then

7: while MCR > DMCR do

8: for Each Slave Process do

9: Send finished flag to slave process
10: Send k to slave process

11: k+=1

12: for Each Slave Process do

13: Receive SMCR from slave

14: if SMCR > MCR then

15: MCR = SMCR

16: finished flag = True

17: for Each Slave Process do

18: Send finished flag to slave process
19: Send —1 to slave process

20: if Slave then

21: while finished flag == False do

22 Receive finished flag from master

23: Receive k from master

24: Perform clustering algorithm (Algorithm 3.1)
25: Calculate SMCR

26 Send SMCR to master

This flag is used to tell the slaves if the clustering algorithm is complete. If the
flag is False, the clustering algorithm has not finished, but if it is True, the algorithm
is complete. Next, the master sends the number of clusters to the slaves for them to
use as the input to the k-means clustering algorithm. The master will send incremen-
tally larger values to the slaves to use as the input until the desired max cluster
radius is achieved. For example, if a system has one master and three slaves, the
master will send (False, 1) (False, 2) (False, 3) to slaves one, two, and three, respec-
tively. Once each slave process receives both the flag and the number of clusters to
use as the input, the slaves will perform the CCR K-Means Clustering algorithm,
and send back to the master the radius of the largest cluster. If the master receives a
maximum cluster radius less than the desired max cluster radius, the master will set
the flag to True and send it to all of the slaves. If the master does not receive a maxi-
mum cluster radius less than the desired maximum cluster radius, the master will
increment the number of clusters needed, and continue the process. The second
parallelized clustering algorithm, seen in Algorithm 3.3, was developed after notic-
ing inefficiencies present in the first algorithm.
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Algorithm 3.3 Method 2, parallelized CCR K-Means Clustering

Algorithm 3 Method 2, Parallelized CCR K-Means Clustering

1 ke1

2: SMCR (Slave Max Cluster Radius) + 0

3: DMCR (Desired Max Cluster Radius) + 10 meters
4: if Master then

5 Broadcast peoples locations to slaves

6: Wait until k is received from a slave
7

8

9

: Perform clustering algorithm (Algorithm 3.1)
: if Slave then
k + MPI Rank
10: while 1 do
11: Perform clustering algorithm (Algorithm 3.1)

12: Calculate SMCR

13: if SMCR < DMCR then

14: Send k to master

15: break

16: Increment k by number of slaves

In the second algorithm, seen in Algorithm 3.3, the master initially sends the
locations of the localized people to all the slaves. The master then waits until it
receives a message from one of the slaves. Once the slaves receive the localized
people locations, they begin calculating the clusters using an initial input value
equal to their MPI rank. After each test, the slave will increment their input value by
the number of slaves. Once one of the slaves calculates an output in which all of the
clusters are less than a given desired radius, the slave sends this input value back to
the master. This value speeds up the algorithm because only two messages are sent,
which are the location of the people and the final number of clusters.

To test the effectiveness of the two Parallelized CCR K-Means Clustering algo-
rithms, the algorithms were performed on two different machines, with varying
numbers of people. The specifications of the two systems can be seen in Table 3.2.

The run time of the different simulations can be seen in Fig. 3.6. The results show
that parallelization improves the calculation time proportional to the number of
people to be rescued. As the number of people increase, the speed-up due to paral-
lelizing the algorithm increases.

3.2.4.3 Meta-Clustering the Clusters

To decide which ASV is responsible for which clusters, the cloud once again per-
forms k-means clustering. This time, the traditional k-means clustering algorithm
(Tan et al. 2005) is used, where the number of meta-clusters is chosen to be the same
as the number of ASVs. To test the meta-clustering algorithm, the locations of 500
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Table 3.2 Specifications of machines

Baremetal server Local laptop
CPU model Intel Xeon E5-2670 Intel Core 15-4202Y
CPU speed 3.0 GHz 1.6 GHz
Number of cores 48 4
Number of threads 96 8
Number of CPUs 2 1
RAM 128 GB 4 GB
RAM type DDR4 DDR3L
e—e Serial Local Laptop
4&—4 4 Processes Local Laptop
00| | @ 8 Processes Local Laptop
e—=e 8 Processes Local Laptop Method 2
*—% Serial Baremetal Server
2000 ¢ ¥ 10 Processes Baremetal Server Method 2
e—e 10 Processes Baremetal Server

-
o
-]
o

Runtime (Seconds)
g
=

Fig. 3.6 Runtime of clustering algorithms of two different machines

2000 4000
Number of People

8000 10000

people, represented by the smaller randomly colored dots, were randomly assigned.
The parallelized CCR K-Means Clustering algorithm was performed using these
locations, with a desired maximum cluster radius of 10 m. After the CCR K-Means
Clustering algorithm was run, the meta-clustering algorithm was performed using
five ASVs. The results of the meta-clustering can be seen in Fig. 3.7. The algorithm
produced 60 clusters, represented by smaller circles, all with a radius less than 10
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Fig. 3.7 Results of the K-Means Clustering for the meta-clusters

m, and 5 meta-clusters, represented by the larger circles. Now that the original com-
plex map of people locations has been organized into meta-clusters, these meta-
clusters can be auctioned off to the ASVs.

3.2.5 Auctioning the Meta-Clusters

To determine which ASV is responsible for which meta-cluster, the cloud performs
an auctioning algorithm. The auctioning algorithm uses the ASVs’ locations, capac-
ities, and speed along with the meta-clusters’ locations, the number of people in the
meta-clusters, and the location of the large mothership as inputs to the algorithm,
seen in Algorithm 3.4.
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Algorithm 3.4 Auctioning algorithm for meta-clusters

Algorithm 4 Auctioning Algorithm for Meta-Clusters

: Sort Meta-Clusters by Number of People (Max to Min)

1

2. Trips Needed + 0

3. Initial Distance « 0 meters

4 Mothership Distance <+ () meters

5. for Each Meta-Cluster do

6: for Each ASV do

7: Trips Needed = ceiling Peaple in Meta-Cluster cif;}:::_{.::‘:;g:;"")
8 ASV.x + ASV X Position

9: ASV.y «+ ASV Y Position
10: MS.x < Mothership X Position
11: MS.y « Mothership Y Position
12 MC.x + Meta-Cluster X Position
13: MC.y + Meta-Cluster Y Position
14: ID « Initial Distance
15: MSD « Mothership Distance
16: ID =/(ASV.x — MC.x)? + (ASVy — MC.y)?
17: MSD =./(MS.x — MC.x)* + (MS\ —MC))'
18: Score[ASV] = (Trips Needed+ x5 \m svsead) T ,tw”;n o

19: ASV assigned to Meta-Cluster < ASV W/ min(Score)
20 Remove Assigned ASV from Auctioning Algorithm

59

To test the auctioning algorithm, 500 peoples’ locations were randomly assigned.
Using these locations, and a desired maximum cluster radius of 10 m, the clustering
and meta-clustering algorithms were performed. After the clustering algorithms
were run, the auction algorithm was performed using five ASVs with randomly
assigned capacities and normalized speeds. The results of the auction algorithm can
be seen in Fig. 3.8. That figure shows which ASV is assigned to which meta-cluster.
The ASVs are represented by smaller triangles, with their designated cluster, capac-
ity and normalized speed in the upper right corner. The mother-ship is represented by
the larger triangle, and the meta-clusters are represented by the larger circles. Inside
each meta-cluster is the label for the meta-cluster along with the number of people
inside. Now that each ASV has been assigned a meta-cluster, the ASVs can begin to
travel to the clusters inside their assigned meta-clusters, and begin to rescue people.

3.2.6 Traveling to the Assigned Clusters

3.2.6.1 Traveling Salesman Solver

To optimize the path the ASVs take to travel to the clusters inside their assigned
meta-clusters, each ASV will use the nearest neighbor traveling salesman algorithm,
seen in Algorithm 3.5, where the starting vertex is its current location. The
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Fig. 3.8 Results of the auction algorithm. Each of the ASVs have three numbers representing the
assigned cluster, capacity and speed, respectively. The meta-clusters have two numbers represent-
ing its label, and the number of people in the meta-cluster, respectively

algorithm uses the nearest neighbor algorithm. The cost function is modified to
include the number of people in each cluster and the cluster location. Finally, after
the traveling salesman algorithm is completed, the ASVs can travel to each cluster
and begin to save people floating in the ocean.

Algorithm 3.5 Nearest neighbor traveling salesman algorithm

Algorithm 5 Nearest Neighbor Traveling Salesman Algorithm

Starting Vertex « ASV Current Location
: while All vertices have not been visited do

o
2.
3: for Each Unvisited Cluster do
. __ Distance from Vertex to Clusier
4 Cost = Number of People in Cluster

Current Vertex + Unvisted Cluster with Lowest Cost
6: Mark Current Vertex as Visited

bt

To test the traveling salesman solver, 25 cluster centers, represented by the dots,
were randomly generated. Using these locations, the nearest neighbor traveling
salesman algorithm was used to find a short path between all the clusters. The results
of the traveling salesman algorithm can be seen in Fig. 3.9, and it shows that the
generated path between all the clusters is the optimal path to take.
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Fig. 3.9 Results of the nearest neighbor traveling salesman algorithm

3.2.6.2 Human Interaction with Swarm

Since the saving of people after a cruise ship crash is a very complex situation that
could result in unexpected scenarios, such as someone not being detected by the
MAUVs, or someone needing immediate rescue, each ASV has an on-board human
operator. This human operator can at any time take control of the boat. To do this,
the human operator places the ASV into manual mode. To simulate this human-
robot interaction, each ASV has a ROS topic responsible for determining if the ASV
is in manual or autonomous mode. If at any time during the operation the human
operator switches the ASV to manual mode, a message will be published to the ASV
mode topic. This will cause the ASV to stop, and allow the human operator to gain
control of the ASV. When the human operator switches the ASV back to autono-
mous mode, the ASV will rerun the traveling salesman algorithm and continue to
travel to its assigned clusters.
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Fig. 3.10 Results of the CCR K-Means Clustering algorithm with 4000 people and a maximum
cluster radius of 10 m, where the small dots represent people and the small circles represent
clusters

3.3 Experimental Results

3.3.1 Simulation Results

After each part of the system was tested individually, the system components were
combined and tested. The simulation randomly generated four thousand people to
be rescued, as well as five ASVs with random capacities, maximum speeds, and
locations. The entire system was tested together. The results of the CCR K-Means
Clustering algorithm can be seen in Fig. 3.10. The CCR K-Means Clustering algo-
rithm produced 1029 clusters all with a radius of less than 10 m.

After the CCR K-Means Clustering algorithm was run, the meta-clustering algo-
rithm was performed. As seen in Fig. 3.11, the algorithm produced five meta-
clusters, since there are five ASVs.

Lastly, the auction algorithm was performed. The results of the auction algo-
rithm, shown in Fig. 3.12, shows that each ASV was assigned a meta-cluster. The
ASVs could then use the traveling salesman solver to travel to the individual clus-
ters inside of their assigned meta-cluster.
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Fig. 3.11 Results of meta-clustering algorithm with 4000 victims, a maximum cluster radius of
10 m and 5 ASVs, where the small dots represent people, the small circles represent clusters, and
the large circles represent the meta-clusters

3.3.2 Hardware Emulation Results

Now that the system has been tested in simulation, the system needs to be tested
using hardware. Due to hardware limitations, unmanned ground vehicles (UGVs)
were used to emulate the ASVs, and an overhead camera was used to emulate
GPS. Once again, each part of the system was tested separately and then the whole
system was tested.

3.3.2.1 Unmanned Ground Vehicle (UGYV)

To emulated the ASVs, specialized UGVs were designed and created. As a base, the
Adafruit Raspberry Pi Robot (Adafruit 2016) was used because of its low cost,
small size, and processing power. The robot has two DC motors, a swivel caster, a
Raspberry Pi 3 (which has built in Wi-Fi), and an Adafruit DC & Stepper Motor
Hat. To power the robot, a 14,000 mAh battery bank was added. This battery bank
has two smart USB outputs for a total rating of 5V/3.5A. These two outputs were
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Fig. 3.12 Results of auction algorithm with 4000 people to be rescued, a maximum cluster radius
of 10 m and 5 ASVs. The small triangles represent the ASVs, the larger triangle represents the
mothership, and the large circles represents the meta-clusters. Each of the ASVs has three numbers
representing the assigned meta-clusters, boat capacity, and boat speed. Each meta-cluster has two
numbers representing the meta-cluster’s label and the number of people in each of the
meta-clusters

used to power the Raspberry Pi 3 and the DC motors, separately. A Bosch BNOO055
(MEMS accelerometer, magnetometer and gyroscope) was also added to each UGV,
but was not used for any of the experiments. Lastly, a 3D printed boat hull was
added to the UGV to make it look like an actual ASV, as seen in Fig. 3.13a.

3.3.2.2 GPS Emulation

Since these experiments were performed indoors, the GPS needed to be emulated.
To do this a ROS packaged called ar_track_alvar was used (ROS.org 2016). Ar_
track_alvar is a ROS wrapper for the open source AR tag tracking library, Alvar. To
use the package each UGV had an AR tag on top of it, as seen in Fig. 3.13b. An
overhead web-cam could then be used to track the UGV. Ar_track_alvar provides an
X,V , zposition of each AR tag along with its orientation in quaternions. As seen in
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b

Fig. 3.13 3D Printed UGV used to emulate ASV. (a) Ground view. (b) Aerial view

Fig. 3.14 Tags being tracked by ar_track_alvar

Fig. 3.14, each tag that is being detected and tracked by ar_track_alvar has a purple
or green square on top of it.

3.3.2.3 Traveling Salesman

After the UGVs and GPS emulation were determined to be operating correctly, the
traveling salesman algorithm could be tested. To do this, five AR tags, to represent
cluster centers, and one UGV were placed in the testing area. Ar_track_alvar was then
used to detect the locations of the AR tags and the UGV. Once all the tags and UGV
were detected, the traveling salesman algorithm was performed, and the UGV could



66 J. Lwowski et al.

Fig. 3.15 Hardware results of the traveling salesman algorithm. (a) Starting location. (b) ASV
reached first tag. (¢) ASV reached second tag. (d) ASV reached third tag. (e) ASV reached final
tag. Video can be seen at https://youtu.be/r9QIpZKSiKY

travel to each tag in an efficient manner. The results of the traveling salesman algo-
rithm can be seen in Fig. 3.15, which shows that the UGV was successfully able to
use the traveling salesman algorithm to traverse to each tag in an efficient manner.

3.3.2.4 CCR K-Means Clustering

After the traveling salesman algorithm was tested, the CCR K-Means Clustering
algorithm needed to be tested. To test the CCR k-means clustering algorithm, ten
AR tags were placed into five different clusters of varying sizes. Once again, ar_
track_alvar was used to detect the tags. Once all the tags were detected, the CCR
K-Means Clustering algorithm was performed. The CCR K-Means Clustering algo-
rithm generated five clusters as expected, which can be seen as the circles in
Fig. 3.16a.

3.3.2.5 Meta-Clustering

Once the CCR K-Means Clustering algorithm was successfully tested, the meta-
clustering could be tested. To test the meta-clustering algorithm, the same setup was
used from before, along with two ASVs. As seen in Fig. 3.16b, the meta-clustering
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Fig.3.16 Clustering algorithms performed on hardware. (a) CCR K-Means Clustering Algorithm.
(b) Meta-clustering Algorithm

algorithm generated two meta-clusters, represented by the large semi-circles, each
with two clusters inside of them.

3.3.2.6 Auction Algorithm

Now that the meta-clustering algorithm has been tested, the auction algorithm was
implemented, completing the system. Using the same setup as before, the auction-
ing algorithm was added to the system. To test the auctioning algorithm, the entire
system was tested. The results of the test, seen in Fig. 3.17, shows that the entire
system works and that the ASVs can travel to their assigned clusters after the auc-
tioning algorithm is performed.

3.4 Conclusions

This paper presents a heterogeneous centralized robotic swarm to rescue human
survivors after a shipwreck consisting of ASVs and MAVs. The presented system
shows how a heterogeneous robotic swarm can work cooperatively with a cloud-
based network. The system also shows how the symbiotic relationship between
ASVs and MAVs can be used to leverage the advantages of each system to save
people floating on the surface after a cruise-ship disaster. In the future, various parts
of the system will be improved to increase the robustness of our algorithm. For
example, the algorithm used by the MAVs to search for the victims is over simpli-
fied. This algorithm can be improved to increase the search area coverage and
decrease the chances of missing a person. In the future, we also plan to develop a
training-dataset and convolutional neural network to detect people floating in the
ocean. These developments would allow the system to detect floating people in the
ocean rather than using color thresholding, as was done in this work. We also plan
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Fig. 3.17 Hardware results of the entire completed system. (a) Starting locations. (b) First ASV
reached first cluster. (¢) Second ASV reached first cluster. (d) Both ASVs reached second cluster.
Video can be seen at https://youtu.be/9oAiLII6xr8

to use an actual UAV to perform the detection and localization of the victims, along
with adding autonomous underwater vehicles and robotic fish to the swarm to detect
people under the surface of the water. We have demonstrated that a swarm of robots
can be used to save humans involved in a shipwreck caused by human error (as with
the Costa Concordia).
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Chapter 4
Human Information Interaction, Artificial
Intelligence, and Errors

Stephen Russell, Ira S. Moskowitz, and Adrienne Raglin

4.1 Introduction

Humans’ interaction with information will only increase in the future and this inter-
action will be facilitated by artificial intelligent proxies. Because opportunities for
errors most often occur at the intersections of system components, human or other-
wise, the adoption of artificial intelligence (AI) mechanisms will assuredly increase
the amount of error that occurs in information systems. The nature of these errors
will likely manifest as latent errors and therefore be difficult to identify and resolve.
Additional research in human information interaction (HII) is necessary, and can
positively improve the development of Al innovations. By furthering our under-
standing of humans’ interaction with information objects, HII research can provide
advances in both the human, and machine, domains. Insights from this research are
necessary to understand errors that result from the actions of humans and artificial
intelligence.

Often confused with human computer interaction (HCI) and human system inter-
action (HSI), human information interaction has a similar but distinctly different
nuance from those other fields of study. HCI is a discipline concerned with the
design, evaluation, and implementation of interactive computing systems for human
use and with the study of major phenomena surrounding them (ACM SIGCHI
1992). Similarly, HSIis defined as end-user or customer interaction with technology-
based systems through interaction styles or modalities such as reading, writing,
touch, and sound (Chang and Bennamoun 2012). Given these definitions, it is clear
to see that the emphasis of both HCI and HSI is not on information, even though
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SOCIAL WORLD: beliefs, expectations, functions,
commitments, contracts, law, culture, ...

Human
Information PRAGMATICS: intentions, communications,
functions conversations, negotiations, ...
SEMANTICS: meanings, propositions,
validity, truth, signification, denotations, ...
The IT SYNTACTICS: formal structure, language, logic,
platform data, records deduction, software, files, ...

EMPIRICS: pattemn, variety, noise, entropy,
channel capacity, redundancy, efficiency, codes, ...

PHYSICAL WORLD: signals traces, physical distinctions,
hardware, component density, speed, economics, ..

Fig. 4.1 Semiotic framework (Liu 2000)

those phenomena form a foundational basis for both computers and systems.
Information is the nuanced difference between HII and HCI/HSI. HII is the field of
study that is concerned with how and why humans use, find, consume, and work
with information in order to solve problems, make decisions, learn, plan, make
sense, discover, and carry out other tasks and activities (Sedig and Parsons 2015). It
might be argued that HCI and HSI are supersets of HII, but the focus on humans’
interaction specifically with information, as opposed to the computer platform,
interfaces, and surrounding processes, marks a significant differentiation that is par-
ticularly critical for information systems. Information systems deal with symbolic
or information-centric representations of reality. Figure 4.1 shows Liu’s semiotic
framework (Liu 2000) that is synonymous with an information system.

Explicitly missing from Liu’s framework, but implied in “the IT platform,” is the
processing layer that must exist to map from the information technology to the
human. Within an information system, it is this processing layer where Al finds its
contributed value added. The implementations of Al are characterized by symbolic
processing, non-deterministic computations, and knowledge management.
Subsequently, innovations in Al are moderated by the advances in HII that directly
impact the interdependence existing between humans and the Al-enabled informa-
tion systems supporting them. When inconsistencies in that fundamental balance
occur, errors may be generated. Nowhere is this balance more critical than in infor-
mation processing environments.

The amount of complexity in the use of information has surpassed the intersec-
tion of simple computation and human’s need for analytics. This has resulted in the
emergent HII field of study; examining autonomous and computationally-aided
problem solving within activity-contexts. The complexity of HII demands interop-
erability and compatibility between mixed initiative processes for information



4 Human Information Interaction, Artificial Intelligence, and Errors 73

acquisition and processing in context to aid comprehension by humans’ use of
information. Al innovations are one of the primary means to automate and aid inter-
action with information.

This chapter presents a contemporary overview of HII and discusses the need for
research in this field of study that necessarily investigates the implications of Al and
human error. It provides a background on HII, considers artificial intelligence and
information processing, analyzes how the convergence of HII research and AI will
require new notions of errors, and finally identifies potential research areas that are
important to advancing human information interaction and artificial intelligence for
error mitigation.

4.2 Human Information Interaction

The general trend towards pervasive computing will naturally result in less focus on
computing devices and the boundary between them and more on humans’ access to
the benefits they provide. Consider how people think of their desktop or laptop
computers and contrast this view with tablets and cellphones. The mobile devices
are still computers providing much of the same functionality as the desktop, just
more portable. When this contrast is thought of in the context of cloud computing,
the diminishing emphasis on computing devices and increasing spotlight on infor-
mation or information objects becomes readily apparent. Further blurring of the
device-information distinction will only continue, as the pervasiveness of comput-
ing and technology continue to dissolve the barriers between information and the
physical world (Limkar and Jha 2016; Barnaghi et al. 2015; Bolotin 2015; Wiberg
2015).

The commercialization of the Internet of Things marks the marketization of the
focal transition away from human computer/machine/system interaction to humans’
information-centric interactions (Soldatos et al. 2015). This perspective makes
sense, because the world is an integral whole in which the things that exist in it are
interdependent; not a collection of distinct elements isolated from each other (Fidel
2012). Moreover, information is arguably ubiquitous now and will only become
more so in the future as the commercialization of Internet “things” continues to
cross boundaries of business, physics, biology and other fields of science. Thus, the
convergence of fields of study, already interdisciplinary in nature, mandates a simi-
lar concentration on topics of human information interaction.

Gershon (1995) was the first to establish the phrase “human information interac-
tion” when examining HCI research, differentiating the label as placing more focus
on “how human beings interact with, relate to, and process information regardless
of the medium connecting the two.” Marchionini (2008) extends this notion to sug-
gest that human information interaction (HII) shifts the foci of all aspects of infor-
mation work; blurs boundaries between information objects, technology, and
people; and creates new forms of information. This is a significant departure from
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human computer (HCI) or human system (HSI) interaction, which considers tech-
nology more broadly and places equal emphasis on physical aspects of interaction.

When considering HII, it is important to have functional definitions for the terms:
human, information, and interaction. From a definitive perspective human is the
best understood... it is us: individuals and people. Relative to HII, humans are the
individuals or people who interplay with information and its related environments.
Often considered “users” of information systems (Dervin and Reinhard 2006),
humans fulfill the role of “actors” when their scope of examination includes tasks
(Lamb and Kling 2003; Mutch 2002). When the interdependence of the world is
factored into the definition of human, it is important to think of the second order
effects, where community of actors, teamed or seemingly operating independently,
impact one another through their information-centric functions. Therefore, in this
sense, humans include cooperative and non-cooperative individuals and teams;
bound by the scope of information.

Within HII, both human and information must be considered as nouns and thus,
information must be thought of as a “thing” of a physical nature. This nature is
consistent with the bit-based form of information, as defined by Shannon (1948).
Although a distinct and formal definition of information has been and remains the
subject of extensive philosophical debate, when the physical definition of informa-
tion is adopted anything that is experienced by humans (sight, sound, taste, smell,
and feel) can be considered information. Within HII, this physical definition is
extended to give information context within the human experience. As such, infor-
mation can be thought of as a symbolic representation that has meaning, is commu-
nicated, has an effect, and is used for decision making (Buckland 1991). Meaning
implies some degree of understanding. Communicated requires transmission (not
necessarily receipt). Effect mandates acknowledgement in the minima and action in
the maxima. Decision making signifies purpose, relative or not (Fidel 2012). These
requirements for the definition of information give information-objects state within
HII processes.

Interaction is the actionable (verb) part of HII, being defined as the activity that
involves both parts, humans and information. The nature of interaction extends
beyond the concept of interface, which is merely the doorway to true interaction.
Given this distinction, interaction is the interplay between different components
(humans and information in HII), rather than a fixed and pre-specified path (Moore
1989). This view of interaction is reasonable because there are degrees of interac-
tion and humans can inject stochasticity into a process. Yet by omitting pre-specified
paths, Moore’s definition is too restrictive to hold in HII because information sys-
tems, where humans and information interact, often follow pre-specified (via
a-priori programming) paths. Dourish (2004) offers a more applicable definition of
interaction as: the what and the how of something being done; the means of by
which activity is accomplished, dynamically, and in context.

It is this notion of dynamic activity or work that has found grounding in the HII
literature. It is important to note that within HII there is an implicit understanding
that information already exists, does not need to be “created,” and that it is being
transformed from one state to another for the purposes of human interaction and
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comprehension. This orientation on work allows HII to apply notions of Shannon’s
(1948) information theory to second-order concepts such as uncertainty, context,
causality, and reasoning. We note that a purely quantitative approach to information
is far from satisfactory. The Small Message Criterion (see footnote 1) (Moskowitz
and Kang 1994) shows the danger of relying solely on bit-counting measures of
information leakage. As an example, consider the ride of Paul Revere. One bit of
information was enough to tell the Colonialists that the British were coming (one if
by road, two if by sea). Furthermore, in Moskowitz et al. (2002) the use of bit count-
ing metrics of hidden images is also shown to be lacking due to the way the human
mind interprets images, already noisy images. Allwein (2004) attempted to provide
a qualitative framework for Shannon-type theories. This paper was the first to marry
Barwise and Seligman (1997) approaches to Shannon’s theories using the tools of
channel theory from logic.

Despite some work applying Shannon’s theories in logic and computational
methods, applications of Shannon’s information theory have found little traction,
beyond an initial foray in the 1950s, within the psychology domain (Luce 2003).
Two notable early works illustrate the application of Shannon’s theories to human
information interaction. McGill’s (1954) “Multivariate Information Transmission”
and Miller’s (1956) “The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information” sought to address phenomena that
bounded information capacity limitations, including absolute judgments of stimuli
and short-term memory (Luce 2003). The idea of the human mind being an informa-
tion processing network with capacity limitations has remained as a concept in the
literature (Marois and Ivanoff 2005; Rabinovich et al. 2015; Serruya 2015), but
these works view the human mind and its processes in more complex ways than
pure information theory as quantitatively defined by Shannon. British mathemati-
cian Devlin (2001, p. 21) points out the seeming inapplicability of Shannon’s infor-
mation theory to complex psychological concepts and research by minimizing the
notion of information to simply data:

Shannon’s theory does not deal with “information” as that word is generally understood.
Instead, it deals with data—the raw material' out of which information is obtained.

The lack of confluence between information theory and psychology is readily
apparent in Skilling’s (1989) book on Entropy and Bayesian methods. Table 4.1
summarizes the book’s table of contents. Noticeably missing are any topics involv-
ing human or cognitive applications. If information is something that the human
mind commonly interacts with and Shannon’s theory is the grounding for one side
of that interaction, more occurrences of Shannon’s theories should appear in the
psychology literature.

Beyond the convergence of information theory and psychology (or lack thereof)
lay the purpose of methods for improving human information interaction. Human
information interaction would not be as significant an issue if there were not an

'The Small Message Criterion is a metric used in measurements of channel capacity that indicates
a degree of trade-off between lower channel capacity and channel performance.
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Table 4.1 Summary of No.
topics (adapted from Luce Topic articles
2003) Statistical fundamentals 17
Physical measurement 6
Time series, power 6
spectrum
Thermodynamics and 5
quantum mechanics
Crystallography 5
Astronomical techniques 3
Neural networks

impedance mismatch between the amount of information available and the optimal
execution of human processes and decision making. Underlying the reasoning
behind research in HII is fundamentally addressing information overload. Further
issues of the inverse, information underload also exist. Information underload
occurs when we do not have access to the information needed to complete a process
or decision. Overload occurs when access to information is available but we are
simply overwhelmed by the amount of information available of which, not all is
equally valuable or applicable (Alexander et al. 2016). One could conclude that this
implies that HII is most applicable to complex information situations.

Simple information interactions are those where there is a single information
element and a single path to the correct answer, where the result supports complete
information that has a boolean (right/wrong) output-state accounting for all the fac-
tors that might influence the answer. Albers (2015) uses the example of “look it up
on Google...” as an illustration of simple information. Complex information on the
other hand is a significant distance away from simple information. Albers character-
izes complex information as the necessary information when there is no “single”
answer. The problem space of complex information is where information needs
cannot be predefined and there exists one or more other complicating conditions: (1)
there are multiple paths to an answer, often with varied levels of desirable output;
(2) completeness is obfuscated or even unknown, all of the factors influencing the
correct answer are not known; and (3) history or temporal considerations have bear-
ing on the problem. It is in the area of complex information, where the HII challenge
is the greatest, that context becomes a dominant factor.

Contextual awareness (as shown in Fig. 4.2) is defined as the understanding of
how the information fits within the current situation; the understanding of the infor-
mation relationships; and the understanding of the development of the situation in
the future and related predictions about interdependent effects of any decision
across the entire situation (Albers 2011). Abowd et al. (1999) define context as any
information that can be used to characterize the situation of an entity, where an
entity can be a person, place, or physical/virtual object. Given this definition, it is
clear that context is information and information describes and contains context.
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Fig. 4.2 Contextual awareness (Albers 2011)

Dey (2001) provides a definition of context as found in Abowd et al. (1999) and
provides a functional example of two pieces of information—weather and the pres-
ence of other people—and use the definition to determine whether either one is
context in an applications problem space. In Dey’s example, the weather does not
affect the application because it is being used indoors. Therefore, according to Dey,
it is not context. The presence of other people, however, can be used to characterize
the application user’s situation and in Dey’s view it is context. In this example, the
state of both might be viewed as simple information: weather is a factor (yes/no)
and people present (yes/no). However, when these two pieces of simple information
interact with an information-application’s user, they become complex information.
The weather may be good or sufficiently bad such that it impacts the application,
whether the user is indoors or out. Similarly, the presence of people may not have
any bearing in characterizing the application user’s situation—consider people
present but quietly otherwise occupied.

Interestingly, the word context has become a favorite in the vocabulary of cogni-
tive psychologists (Clark and Carlson 1981). Clark and Carlson suggest that the
term “context” is useful because it is sufficiently vague, general, and can accom-
modate many different ideas. This ambiguity is precisely why context can be associ-
ated with complex information. Other research (Henricksen et al. 2002) has even
described the characteristics of context information with the same concepts as com-
plex information: exhibiting a range of temporal characteristics; “imperfect,” i.e.
may be correct or incorrect; having many alternative representations; and highly
inter-related. The close relationship between complex information and context
would imply that the extremes of information overload highly correlate with con-
textual awareness.



78 S. Russell et al.

Because of the challenges in solving problems that involve complex information,
most models of human computer interaction (HCI) do not completely express the
required extensive backtracking and digressions involved in the information interac-
tion portion of problem solving (Simon and Young 1988). Toms (1997) notes that
unstructured, complex problem-solving tasks cannot be reduced in a predictable
way to a set of routine Goals, Operators, Methods, and Selections (GOMS). In
information interaction, users interact with a system to examine an information
blueprint, analogous to traditional reader—text interaction established in a
printed-paper world. This is impacted by the system’s management of the content
and the system’s ability to communicate with the user (Toms 2002). This text-cen-
tric view of information interaction aligns with Toms (1997) model as shown in
Fig. 4.3. While shown with a concentration on text, Toms’ model is applicable to
other types of information content such as numbers, imagery, audio, and video. In
information interaction, humans generally initiate a process of interaction by for-
mulating a goal, e.g. exploration/investigation, decision making, or process/work-
flow. Once the information is located or provided, the individual scans the
information until a cue is noted. Upon noting the cue, the individual may or may not
stop to examine the specific information. This process is then potentially repeated in
multiple nonlinear ways through categorical selection, cuing and extraction (Toms
2002).

According to Toms’ model of information interaction, users are likely to iterate
over available information until evidence to support a viable solution or alternative
is identified. This cyclic perspective on information interaction aligns with many of
the theoretical models of decision-making, such as Simon’s (1960) decision-making
phases shown in Fig. 4.4, as well as extensions of Simon’s model that include a
monitoring phase (Mintzberg et al. 1976), and Boyd’s (1987) Observe-Orient-
Decide-Act (OODA) loop. When the decision-making cycle is unmoderated, it is
not difficult to see how extremes in information (underload and overload) can dra-
matically impact outcomes, leading to unstructured interaction dynamics.

A significant consideration in human information interaction is the interaction’s
ultimate purpose: decision-making. Effective (data driven) decision making relies
on a precision balance between the right amount of information, the right amount of
time, and the correct ability to execute the choice. Information overload limits
humans’ ability to interact with information and thus negatively impacts all three
considerations (Marusich et al. 2016; Murayama et al. 2016). Moreover, this bal-
ance is predicated on a fundamental understanding of human cognitive and psycho-
logical characteristics, within the context of the decision-making situation.
Information overload is just an overwhelming of human cognitive abilities (Spier
2016) and it is this overpowering that results in the negative opportunities for things
such as bias, improper heuristics usage, and accuracy degradation. Most susceptible
are decisions that require complex information interaction, as opposed to those
arguably deterministic decisions that only require simple information. In this sense,
the application of information theory to human information interaction in the



4 Human Information Interaction, Artificial Intelligence, and Errors 79

- User
™  Determine or -{ Initiate )
»| Recognize Goal

\

;
! Content
) Yy ¥ . System
-—_E Select Category
i I
. ¥ \
.
Note Cues E—
) v
-1 Read and Extract
Information
, v
Integrate
Information
) —
) \ A |
— Evaluate T
L Stop

Fig. 4.3 Information interaction model (Toms 2002)

Fig. 4.4 Contextual
awareness (Simon 1960)

Intelligence

Design

-,

Insufficient data

Choice

No satisfactory solution




80 S. Russell et al.

absence of psychological theoretical grounding is likely to only provide partial
solutions.

The true challenge is that our understanding of information theory and the psy-
chological science remain separate and some argue, divergent (Luce 2003). The
human information interaction domain and related-problems would underscore the
convergence of information theory and theories found in experimental psychology.
Although the need for understanding in the converged theoretical space is apparent,
this may stem from computer and information scientists’ view of humans as part of,
or in itself, a complex system. Laming (2001a, b) notes:

If the human operator is viewed as a purely physical system, then statistical information
theory would be applicable and analysis of information flow would provide a ‘model-
independent’ technique for identifying the ‘information-critical’ operations involved.

Laming (2001a, b) goes on to refine this point by indicating how psychologists
view information, suggesting their perspective is that of simple, and not complex,
information:

Under the influence of Shannon’s theory, psychologists are wont to suppose that informa-
tion is an absolute. Not so! Data is absolute, but information is always relative to the two
hypotheses between which it distinguishes.

Laming’s statement nuances the difference in complex versus simple informa-
tion in his statement about information distinguishing between fwo hypotheses. By
definition a single hypothesis tests the state of a yes or no outcome or effect, whereas
a comparison between two, or potentially more, hypotheses suggest a much richer
output state. In a perhaps overly simplistic synthesis of these notions, a hypothesis
test results in a Boolean (right/wrong, null-hypothesis or not) output-state not alto-
gether different than Albers (2015) view of simple information. Comparison
between hypotheses requires an understanding of the output state value and the
compared hypotheses themselves—clearly a much more complicated scope of
information. Thus, the human information interaction required to actionably under-
stand one hypothesis versus the comparison of multiple hypotheses is far more com-
plex. This conclusion suggests approaches for both information theory (e.g.,
measurement, quantification, analysis, etc.) and psychology (e.g., synthesis, com-
prehension, context, etc.) would be mandated.

The mapping between information theoretic notions and psychological effects is
not without their conceptual parallels. Laming (2010) provides a table (Table 4.2) of
exemplars that illustrate conceptual alignments. It is noteworthy that even in
Laming’s work the concept of tasks appears, underscoring the introduction of con-
text. However, this is necessary to consider the human as a physical system (chan-
nel) where the stimulus is the message to be transmitted and the response is the
message actually received. Nonetheless, Laming posits when the human is consid-
ered a physical system, performance is no longer dominated by a capacity limita-
tion; instead, the efficiency of performance depends on the pre-existing match
between stimulus and channel characteristics. In the context of HII, the notion of
capacity’s relationship to performance complicates the study of interaction phe-
nomena. Moreover, typical [rigorous, scientific] study of human interaction effects
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Table 4.2 Conceptual parallels between information theory, an ideal communication system,
thermodynamics, and psychological experiments (Laming 2010)

Thermo- Psychological

Information theory | Communication theory dynamics experimentation

Message sent Stimulus

Message received Response
Data Transmission frequencies Performance data
Null hypothesis Channel open-circuit Independence
Alternative Channel functioning but Task completed w/errors
hypothesis subject to errors
Information Information transmitted Work done Measure of task
statistic performance

Uncertainty Entropy Maximum yield of

information

seeks to be broadly generalizable, which may be as fleeting as generalizing indi-
vidual human cognitive perception given dynamic stimuli.

Viewing humans as part of, or simply as, a physical system does have its benefits
in bounding relevant variables and would potentially allow information theory to be
applicable to complex cognitive problems. However, this does require careful con-
struction of the research methodology where the stimuli are carefully controlled and
considered as a flow through that system. In this case, according the Laming (2010):

The summary of discrimination results between two separate stimuli poses the question:
What information is lost in transmission to the discrimination response and how? If that
loss of information can be accurately characterized (this is ultimately no more than an
analysis of experimental data), the theoretical possibilities are correspondingly
constrained.

Given qualitatively constrained problems where quantification of human perfor-
mance is directly relatable to channel capacity, Shannon’s theory allows the human-
system to be modeled. Yet such experimentation and evaluation would be insufficient
to broadly describe complex behavioral phenomenon that would naturally exist in
human-in-the-loop processes such as human information interaction. It is not unrea-
sonable to conclude that the application of information theory’s relevance to psy-
chology and complex information problems can be constrained to conditions where
the information accurately represents a measure of the messaging sent through a
physical system or physical-human systems that are strictly analogous to physical
systems.

While providing some explanation of the divergence between psychology and
information theory, this discussion underscores the need for grounding theories that
converge the two domains and provide better understanding of human information
interaction. One might argue that, if the interaction is sufficiently decomposed and
properly sequenced, Shannon’s information theory should be applicable. This argu-
ment assumes that the amount of information (or messages) needed to address a
complex information problem is defined and likely known a priori. The relationship
of information overload to human information interaction highlights the rarity of
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such conditions. In much of the research literature, the investigation of information
overload tends to follow the messaging-system model that is appropriate for
Shannon’s theories (Jones et al. 2004; Sharma et al. 2014; Asadi 2015). When infor-
mation overload is investigated in situations involving complex information, parti-
tioning of the problem is necessary. This is shown in Jackson and Farzaneh’s (2012)
work, where they separate intrinsic factors and extraneous factors affecting infor-
mation overload. They consider intrinsic factors as “information quantity, process-
ing capacity, and available time” and extraneous factors such as information
characteristics and quality and task parameters. In the work, they constructed a
model that provided quantitative measures of the intrinsic factors, as well as the
extraneous factors in terms of their level of contribution and way of interaction.
While the intrinsic factors had deterministic measures, Jackson and Farzaneh’s
model makes significant assumptions about measuring extraneous factors. For
example, they consider “Quality of Information” equal to the product of “Validity x
Relevancy.” Given a complex information problem, the validity and relevancy of
available information is often unknown until the information is discovered, explored,
and understood (Saracevic 2016).

Information overload is an aspect of human information interaction that remains
an active area of study. Moreover, this ongoing activity is an indication of the need
for additional research on grounding theories in human information interaction. In
particular, as innovations in augmenting human information interaction to mitigate
challenges from information overload are developed and matured, technologies
such as machine reasoning and artificial intelligence will suffer from the same prob-
lems as the humans they proxy. These problems will not manifest as effects on the
technologies themselves, but will be propagated indirectly as poor performance,
limitations, or errors to human users.

Despite recent advances in computational reasoning technologies intended to aid
human information interaction, there remains a gap between information theory and
the psychological and cognitive sciences. We have discussed two important situa-
tions where Shannon’s information theory is lacking: one is using channel capacity
as a metric for information knowledge, and the other is the use of Shannon theory
in the psychological sciences. Shannon himself warned of the shortcomings of his
information theory. He cautioned researchers in his famous and short Bandwagon
paper (Shannon 1956), and there is ample additional evidence in the literature to
support his assertions. The incompatibilities between Shannon’s quantitative infor-
mation theory and our understanding of human cognition underscore the difficulties
facing the HII research domain. Further, current work in HII often avoids, or obfus-
cates, the processing layer between the information and humans. Shannon’s infor-
mation theory aptly describes simple information but lacks the ability to characterize
complex information. Particularly when context is considered, applications of
Shannon’s theory tend to fall short. One might argue that this limitation is why it has
been challenging to apply Shannon’s theory to problems in psychology. Yet com-
plex information will increasingly be the focus of human information interactions
and thus the diversity of theoretical representation will present another barrier to the
development and adoption of theories in the field.
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Researchers’ understanding of HII would seem to be in its early stages, particu-
larly in complex and/or unstructured situations. Yet advances in the computational
and information sciences are driving humans’ interaction with information at an
accelerating pace. The speed of this trend is readily apparent in the prevalence of
information analytics and processing. Assuming that all of the information in the
world is already in existence (a physics-based view) and only requires contextual
transformation to make it “interact-able” with humans, processing is essential and
particularly critical. However, this processing must be done with context and situa-
tional awareness, which mandates computational methods for learning and reason-
ing that can produce rationally acting behaviors and outcomes that align with
humans’ cognitive models and expectations.

4.3 HII and Artificial Intelligence

Artificial intelligence is a program, which in an arbitrary world, will cope no worse
than a human (Dobrev 2005). While clearly denoting Al as a “program,” this defini-
tion sets the standard as being bounded by a human reference. Given the range of all
Al definitions, and there are many, they all consistently frame Al as a proxy for
humans. Thus, HII research is relevant for not only Al but also the relationship that
AT has with humans. Wah (1987) characterizes Al processing as requiring symbolic
processing, deterministic computations, dynamic execution, parallel processing,
open systems, and knowledge management. While HII as a field of study was not
considered at the time of Wah’s work, his description of Al is indicative of the pro-
cessing necessary to facilitate humans’ interaction with information. Wah (1987)
points to knowledge management as an important element of Al as a means to
reduce a problem’s scope. This statement about problem reduction illustrates Wah’s
implication that AI would potentially be impacted by information overload and
underload. This is not an unreasonable implication because Al is the computational
proxy for human information interaction. Furthermore, humans are never com-
pletely removed from a process or workflow. In the limit, humans exist on the
boundaries of Al activities, if only to initiate or receive benefits of Al-augmented
capabilities.

Most implementations of artificial intelligence rely on machine learning methods
to create their ability to reason and learn. Machine learning depends on three
approaches to achieve pattern recognition: neural, statistical, and structural
(Schalkoff 1992). Like a human, a machine’s pattern recognition requires training
or exemplars on which to build repeatable models. When machine learning is con-
sidered in this manner, the challenges of information underload and overload are
readily apparent. Key problems that limit machine learning effectiveness involve
too little exemplar data (information underload) resulting in precision issues, and
too much exemplar data (information overload) resulting in recall issues. Also, sim-
ilar to humans, machines require additional processing to deal with imbalances in
information loads in order to produce preferable outcomes. Due to their inherent
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complexity and because complex problems require exceedingly large amounts of
useful knowledge (Du and Pardalos 2013), Al problems demand significant compu-
tational power. Advances in Al allow increasingly difficult reasoning problems to be
addressed (Bond and Gasser 2014; Nilsson 2014) and advanced cognitive activities,
such as those that exist naturally in the human brain, represent some of the most
difficult reasoning capabilities to artificially recreate.

Even with the challenges and tradeoffs of precision and recall in machine
learning implementations, it is managing information overload and underload is
where artificial intelligence finds one of its greatest utilities. To address issues of
information overload in human interactions, the use of artificial reasoning agents
(software AI) has become a dominant contemporary solution (Maes 1994;
Aljukhadar et al. 2012; Lohani et al. 2016). Instead of user-initiated interaction
via commands and/or direct manipulation, the user is engaged in a cooperative
process in which human and computer agents both initiate communication, moni-
tor events and perform tasks. Because information space is the primary environ-
ment for Al agents, if they possess the ability to learn, reason, and adapt, the
agents can find ways to solve problems with minimal human interaction. In prob-
lems involving complex information, intelligent agents are particularly useful, as
they have the ability to apply what they have learned to new, unforeseen, or
dynamic situations. Complex information domains are domains in which there is
constant change, and domains in which many players may interact in solving a
problem. Thus, it is not surprising that many of the most successful Al solutions
to complex information problems are being led by this segment of the Al com-
munity (Hendler 1996). Most intelligent agents are implemented to act on behalf
of their human taskers where potential issues of information overload exist as
symptoms of higher order activities and goals. In accomplishing these goals and
tasks, the agents ideally perform at a higher level of proficiency, efficiency and
expediency than human, while still delivering outcomes that are consistent with
human belief structures and conceptual models that are cognitively consistent
such that trust and acceptance are not issues.

Learning is the means to moderate information overload by lessening the need
for human information gathering and other information interaction activities.
Minsky (1968) defines Al as “the science of making machines capable of perform-
ing tasks that would require intelligence if done by humans” and the smarter the Al
becomes, as the result of learning, the greater the scope of assistance provided by
Al Learning and adaptation are critical capabilities for both AI and HII and it is in
these areas where the two fields find significant overlap. With the advance of big
data analytics and the overwhelming prevalence of available information, machine
learning has emerged as a trendy method for giving humans greater interaction with
information and as a driver for increased innovations in Al. As an example, content
analysis, a fundamental activity in HII, employs a myriad of machine learning
approaches to enable artificial intelligence to perform content analysis in volume
and autonomously. General definitions of machine learning focus on the design and
development of algorithms to create re-applicable models based on generalizations
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from limited sets of empirical data in order to adapt to new circumstances and to
detect and extrapolate patterns (Russell and Norvig 2003). Therefore, machine
learning is the way Al implements the human learning, reasoning, and adapting
functions to perform human-like tasks involving information.

Artificial intelligence encompasses other areas of research apart from
machine learning, including knowledge representation, natural language pro-
cessing/understanding, planning. These same areas also have overlap with HII,
particularly when one considers a work or an activity context. The purpose of Al
is often to automate HII for the purposes of decision-making or work. However,
no Al-enabled autonomous system is completely autonomous because at some
point a human enters the loop. Ideally, at the end points of the autonomous func-
tionality, the ultimate purpose of any contemporary autonomous activity is to
aid or augment a human process. Artificial intelligence without purpose is point-
less, in the same manner human information interaction without an objective is
merely iterating over data. The objective and purpose form the goals of work
that humans, and the artificial intelligence that aid them, execute. The humans
and Al that interact with information behave as actors involved in work related
actions. This perspective assumes that to be able to design systems that work
harmoniously with humans, the work human actors do, their information behav-
iors, the context in which they work, and the reasons for their actions must be
understood (Fidel 2012).

The literature documents many ways that artificial intelligence is applied to
information centric activities such as text processing (Vasant 2015), searching
(Shrobe 2014), decision making (Hendler and Mulvehill 2016), and planning
(Rich and Waters 2014; Kerr and Szelke 2016). In larger systems, artificial intel-
ligences that provide low-level functionality are connected and integrated to
deliver bigger solutions and greater functionality. In these large systems and
application both tasks and information are decomposed into digestible bits and
coupled with learning. Table 4.3 describes levels of automation that support deci-
sion making and action.

In Table 4.3, if the word “computer” is replaced with “artificial intelligence” the
levels descriptions, still make sense and would be applicable. Automation is not an
all-or-nothing phenomenon; there are degrees of automation. In the lowest level of
automation, no support is provided. At the highest level, the human is completely
removed from the decision activity. When artificial intelligence is operating on
behalf of the human at the highest level, level 10, the artificial intelligence decides
everything, acts autonomously, and has no human interaction. Level 10 is currently
achieved in many low-level information interaction and related decision-making
activities. The more complex the task and thus the information, the more challeng-
ing it is to reach the higher levels of autonomy. Moreover, as the human is increas-
ingly removed from an activity, there is less confirmation and opportunities for
human re-direction. It is generally when a system exhibits behaviors above Level 6,
in complex situations, where issues of human trust and ethics become a concern
(Alaieri and Vellino 2016).



86 S. Russell et al.

Table 4.3 Levels of automation (adapted from Parasuraman et al. 2000)

Levels of automation of decision and action selection

High 10. The computer decides everything, acts autonomously, ignoring the
human
9. The computer informs the human only if it (the computer) decides to
8. The computer informs the human only if asked (by the human) or
7. Executes automatically, then necessarily informs the human, and
6. Allows the human a constrained time to veto before automatic

execution, or

Executes the suggestion if the human approves, or

Suggests one alternative, or

Narrows the selection dow to a few, or

The computer offers a complete set of decision/action alternatives or

A R Eal e

Low The computer offers no assistance: the human must make all

decisions and actions

According to Parasuraman et al. (2000), automation, implying artificial intelli-
gence, is not an exact science and neither does it belong in the realm of the creative
arts. Systems providing solutions that deliver accurate answers that humans trust
and subsequently utilize often require a deep understanding of the relevant goal.
Going beyond an understanding of the goal, goal decomposition and contextually
related tasks necessary to achieve an objective must be completely and fully under-
stood as well (Anderson 2014; Harkin et al. 2015). If a goal’s tasks and its require-
ments are fully understood, it becomes possible to use artificial intelligence to learn
a problem and apply what it has learned to new challenges.

Goal attainment when intelligent software or physical, e.g., robotic, agents are
considered is even more complex than simple problem solving. However, nearly
all goals can be better achieved given more resources (Omohundro 2008). This
suggests that artificially intelligent agents requiring information interaction would
have an incentive to acquire additional resources, even those that may be in use by
humans. Thus, it’s not unreasonable to envision situations where some goals
would put artificial intelligence at odds with human interests, giving the Al incen-
tives to deceive or manipulate its human operators and resist interventions
designed to change or debug its behavior (Bostrom 2014). Reliable and error-
tolerant artificially intelligent agent designs are only beneficial if the resulting
agent actually pursues desirable outcomes (Soares and Fallenstein 2014). This
competitive goal seeking is often the topic of science fiction movies where the
artificial intelligence takes over society and deems humans non-essential. While
movies frequently portray the competitive situation in the extreme, humans’
increasing dependence on smart automation coupled with artificial intelligence’s
lack of human emotion, bias, morals, and psychological limitations make these
storylines plausible.

Automation emphasizes efficiency, productivity, quality, and reliability, focusing
on systems that operate fully-autonomously, often in structured environments over
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extended periods, and on the explicit structuring of such environments (Goldberg
2012). However, information environments vary broadly in terms of their structure,
forming the rules and association of information objects that artificial intelligence
operations act on (Stonier 2012). In this manner, artificial intelligence is a proxy for
humans in their interaction with information, but with the added dimension that
humans interact with the artificial intelligence, essentially creating a recursive HII
loop. Al interacts with information and humans interact with Al, which is itself
information. This recursive relationship can both minimize and amplify opportuni-
ties for errors.

Ideally, an AI implementation delivers seamless interaction with the information
environment and the real world (in some cases) to accomplish human intent.
Because Al is driven by machines, the number of information transactions will be
much higher than those generated by humans. As a proxy for humans, AI’s interac-
tion with information will similarly increase, if only in the encoding and translation
of representations. Within the AI-proxy, there is a potential for errors in the interde-
pendence between information and intent. Since system errors occur at the intersec-
tion of logic and data, increases in information interaction (human or otherwise) can
increase the potential for errors.

4.4 HII, Al, and Errors

The lack of understanding in human information interaction coupled with increas-
ing dependence on automation and sophistication of artificial intelligence tech-
nologies will likely lead to unpredictable system behaviors and subsequent
outcomes. As artificial intelligence becomes more effective at making decisions
involving complex information and highly variable environmental conditions, the
need for a theoretical understanding of HII will be necessary to ensure that artifi-
cially intelligent systems performs as expected by human operators. Information
interaction is an opportunity for automation that without deep understanding of the
tasks and/or context increases the likelihood of errors. There is little insight in the
revelation that people make errors when using information systems. Nonetheless,
errors can be serious, both in the sense that they can lead to significant mishap and
even physical harm, and in the social sense that they frustrate or inconvenience
humans (Norman 1983).

Figure 4.5 illustrates classes of errors that result from interactions. From an
information interaction perspective, regardless of whether the interaction involves
humans or their AI proxies, the implications of the classification on error under-
standing, handling and mitigation apply. Referring to Fig. 4.5, mistakes characterize
the direct result of information interaction. Even slips mark the domain of Al out-
comes, as well as human decision making resulting from information interaction.
Moreover, as noted previously, humans are never completely removed from
Al-enhanced automated processes. Thus, humans are always responsible for system
disasters, if only because they are the visible element of system performance. While
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SITUATION ASSESSMENT

MISTAKES
SENSE/INTERPRET

INTENT OF ACTION

PLAN/COGNITION
SLIPS

OMMSSION/COMMISION

EXECUTION

Fig. 4.5 Classes of errors (Norman 1983)

generalized notions of errors would spur debate about trust, blame, and culpability
when errors are considered in the abstraction of information interaction and Al
automation, the distinction of active and latent errors will become increasingly dif-
ficult to partition.

Active errors are those associated with the performance of frontline operators/
actors and latent errors are those related to activities removed in time and/or space
from the direct control interface (Reason 1990). Moreover, active and latent errors
in the context of information interaction and Al will conflate the two approaches as
the problem of human fallibility: the person and the system. The person approach
focuses on the errors of individuals, e.g., forgetfulness, inattention, moral weakness,
etc. The system approach concentrates on the conditions under which individuals
work (Reason 2000). Errors resulting from Al conducting HII will obfuscate the
line between the system and the humans. A contemporary view of artificial intelli-
gence that supports complex activities, such as automated driving, questions the
safety of the systems: Researchers studying errors no longer assume the “system” is
safe, properly attributing problems to human or mechanical failure. They generally
believe the line between human error and mechanical failure will be blurry (Dekker
2014). Moreover, with regard to cause, Dekker posits human error is not the cause
of failure, but is a symptom of failure.

Detailed analysis from recent accidents, many of which resulted in a loss of life
and extensive long-lasting damage, have made it apparent that latent errors pose the
greatest threat to the safety of a complex system (Reason 1994). The amalgamation
of the person approach and system approach will make error understanding and
mitigation more difficult. Consider how errors in information interaction may be
perceived or attributed when the device boundaries are dissolved and the informa-
tion objects are given focus. Issues of misinformation, misuse, improper processing,
and out-of-context alignment will increasingly be the norm. The promise of artifi-
cial intelligence will find its grounding in machine learning, which can obfuscate as
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well as enhance human information interaction. The susceptibility of machine
learning techniques to their underlying information (data and distribution) cascades
into the Al that depends on it. This weakness is subsequently transferred to the auto-
mation and humans that rely on it, ultimately manifesting as latent errors when
conditions arise that meet the unforeseen convergent of knowledge and logic.

The same power that machine learning brings to Al is the same weakness and
subsequent susceptibility that it embeds in Al systems. To this end, it is possible for
malicious users and designers to deliberately generate errors and problems that
allow systems to be compromised and/or manifest behaviors that are harmful to
benign users. Consider how much artificial intelligence functionality is imple-
mented in software. This software relies on libraries that implement machine learn-
ing algorithms (Marsland 2015). That means the implementation of artificial
intelligence execution code will be widely understood by many developers as well
as those seeking to hack systems. These same algorithms are also being imple-
mented in hardware, creating further embedded potentials for problems that are
significantly more difficult to address post-implementation and operation.
Contemporary research has shown that it is possible to build a meta-classifier and
train it to hack other machine learning classifiers and infer information about their
training sets; setting the hacked systems up for manipulated operations (Ateniese
et al. 2015). In this sense, machine learning displays problems of a similar nature to
human biases and other cognitive framing limitations. This explanation implies that
artificial intelligence may ultimately be susceptible to errors similar to their human
proxies. Thus, investigation into theoretical aspects of errors in HII may provide
insights and solutions that mitigate the errors resulting from artificial intelligence
processes.

Figure 4.5 illustrates classes of errors, but primarily procedural and process
errors. Errors involving information interaction may require a broader taxonomy of
error classification. Primiero (2014) suggests a taxonomy for information systems
that extends Norman’s (1983) model with three additional categories that represent
system correctness: (1) conceptual validity, relating to the conceptual description
and design of the system goals; (2) procedural correctness, relating to the functional
aspects of the system goals; and (3) contextual admissibility, relating to both the
conceptual and procedural aspects in the systems’ execution environment. Primiero
considers aspects of conceptual validity to include system and problem design, pro-
cedural validity inclusive of data and semantics, and contextual validity essentially
the appropriateness for the match of concept and procedure. Primiero goes on to
generalize this basic categorization in aligning his taxonomy with Norman’s (e.g.,
see Table 4.4).

Primiero’s taxonomy provides a structure for validating errors. In this taxonomy,
Primiero considers problems of design or structuring to be mistakes. This is whether
design or structuring is applied to a decision problem or a system. In a system con-
text, mistakes typically manifest as defects that have a role in a failure. In Primiero’s
taxonomy, failures are errors that occur during the evaluation and resolution of the
problem or a system’s function. Slips are errors that occur as exceptions such as
reduced efficiency or less than expected performance. As can be seen in failures that
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Table 4.4 Categories of errors (Primiero 2014)

Type of

error Conceptual Material

Mistakes Problem description: Problem design: category structuring
categorization

Failures Procedure definition: form of Procedure construction: accessibility of
main process dependent processes

Slips Algorithm design: efficiency Algorithm execution: performance

result from a mistake, Primiero’s categories are not discrete. Slips can also cause
failures. Consider a slip where system efficiency degrades to the point of halting the
system.

As an example of applying Primiero’s taxonomy to a problem readily solvable
by artificial intelligence (Nilsson 1969; Gil et al. 2004; Strong 2016), consider an
organization’s scheduling assistant software. AI’s role in providing this automated
function is to be a proxy for its human users, to understand the appointment/resource
constraints, and to identify convergences without conflict. When all the planning
conditions and constraints are known by the system, artificial intelligence is not
appropriate for the problem. However, when some of the conditions are unknown Al
can be used to adapt policies and models. The linkages to human information inter-
action is clear in this problem because the Al would necessarily require and access
the same types and sources of information that a human would use to arrive at a
solution. Examining problems that might occur in human processing of meeting-
planning activities, an incorrect or incomplete understanding of the schedules for
other people whose attendance was required would result in errors in the meeting’s
completeness, perhaps preventing the purpose of the meeting from being achieved.
In Primiero’s taxonomy this error would stem from a mistake. The mistake would
have been incorrect or missing elements in the schedule model, a misstructuring of
the multi-constraint resolution, or a limited problem design that could not handle
ambiguous or incorrect schedule constraints. This mistake may result in a failure of
the meeting purpose/process, or a slip if the meeting achieved less than desirable
results or required additional meetings. While this example greatly simplifies the
problem of scheduling and does not provide much detail of the human information
interaction required, it does illustrate how Primiero’s taxonomy would be applicable
to AD’s algorithmic human information interaction functions. Despite the simplicity
of this example, even in uncomplicated situations the activities of algorithms
embedded in complex automated systems can have greater obfuscation than human
activities. The complexity of the system, the degree of which tends to be proportion-
ate to the sophistication of the system (Lloyd 2001), increases the likelihood of
latent errors. There is little question that systems with artificial intelligence operat-
ing on information and intending to automate sophisticated human processes fall
into the category of highly complex systems. The relationship between complexity
and errors is a well-studied phenomenon (Ferdinand 1974; Basili and Perricone
1984; Pincus 1991; Meseguer 2014).



4 Human Information Interaction, Artificial Intelligence, and Errors 91

Unless a complex process is entirely automated, it is the product of technology,
the human user and how well each fits the other. When the technology has a capabil-
ity to reason and learn, then the product may be viewed as a “knowledge coupling”
between human and machine (Meseguer 2014). As discussed earlier, problems
involving complex information interaction require complex systems to provide
solutions. This implies the relationship between increased complexity and likeli-
hood of error would have a high degree of correlation. According to Dekker (2016),
in complex systems, decision-makers (automated or otherwise) are locally, rather
than globally, rational. Even in the case of Al this scoping of rational understanding
is a factor in increased probabilities of errors because in complex systems local
decisions and actions can lead to global effects. Dekker (2016, p. 29) suggests this
is because of an intrinsic property of complex systems: “the multitude of relation-
ships, interconnections and interdependencies and interacting of interacting and
interdependent agents, or components.” While Dekker focuses on system failures,
his summarization underscores the core problem that emphasizes the need for
increased research on human information interaction and the challenge of prevent-
ing Al errors as Al becomes the dominant proxy for humans in automated pro-
cesses. Dekker (2016 p. 29) states “adaptive responses to local knowledge and
information throughout the complex system can become an adaptive, cumulative
response of the entire system — a set of responses that can be seen as a slow but
steady drift into failure.”

In information systems design, the notion that errors occur at the intersection of
data and logic forms a basis for the problem with Al automating and supporting
human information interaction. Considering this notion, the strength of Al (its abil-
ity to reason, learn, and understand) is also it’s weakness. This reasoning is because
is impossible to achieve completeness in descriptions of complex systems—whether
before, during or after their lifetime (Cilliers 1998). The underlying issue is trace-
ability in complex situations involving a variety of information. When errors occur
in a complex system, we should gather as much information on the issue as possi-
ble. Of course, complexity makes it impossible to gather “all” of the information, or
for us to even know how much information we have gathered (Dekker 2016).
Moreover, these conditions impede attribution of the cause and complicate the reso-
lution of the problem. Latent errors that occur only under certain information, envi-
ronmental, and operational conditions will be difficult to anticipate, identify, or
resolve, ultimately leading to additional errors.

Consider the case of commercial airline piloting, where Al and automation have
had a long-standing role. While there is still much debate about Al removing human
pilots altogether, flight-system automation is one of the most mature complex appli-
cations of Al-supported HII in existence. The disappearance of flight MH370 in
March 2014 has never been solved, nor has the wreckage ever been found. This may
seem unlikely in an age of persistent surveillance (e.g. satellite imagery, electro-
magnetic scanning, etc.) but it occurred. Searches have looked for the wreckage for
more than 2 years. This type of catastrophic failure has all the markings of the mani-
festations of errors when Al is involved. Further, there are two dimensions of this
problem. The first is the cause of disappearance of the plane, which has been
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attributed to everything from a pilot bathroom break, to terrorism, to equipment
failure (McNutt 2014). The second dimension is that of the search itself, which at
least in part, is a human information interaction activity because of the existence of
persistent surveillance technologies (Davey et al. 2015). After more than 2 years of
physical and information searching, the plane remains undiscovered. Similarly, as
artificial intelligence technologies enable automated driving, latent Al/human infor-
mation interaction errors are leading to catastrophic unanticipated outcomes. This
problem was evident in the first fatality involving a Tesla automated-driving pas-
senger vehicle (Singhvi and Russell 2016). While the loss of life was significant, a
second significant outcome of the accident was causal attribution. In this Tesla acci-
dent, a driver had engaged the auto-pilot mechanism and may have been distracted
watching a DVD when a large freight truck turned in front of the car. The car did not
stop. Instead it collided with and went under the truck, then skidded off the road,
went through a fence and finally collided with a telephone pole.

Investigators ultimately, but not conclusively, determined that there was a prob-
lem with the Al-enabled laser radar (lidar) system in the Tesla vehicle. But that
conclusion was not deterministic, as investigators also faulted the brakes, the crash-
avoidance system, and even the driver (Ackerman 2016). The various conclusions
of the investigation underscore Dekker (2016) description of failures involving
complex system:

In a complex system, there is no objective way to determine whose view is right and whose
view is wrong, since the agents effectively live in different environments. This means that
there is never one “true” story of what happened.

It is interesting to note that in the literature regarding the accident, few people
highlighted the importance or relevance of the information interactions that the Al
in Tesla’s systems had to perform. This interaction, if it was discussed at all, was
framed as a mechanical interaction with signaling but not as a proxy for human
interaction. There were many “local” decisions being made by many subsystems in
the car that could have affected the “global” outcome of the complex Al system. It
is likely that information overload and underload conditions existed and were rele-
vant to the ultimate outcome. The lidar system error conclusion focused on the fact
that the system could not effectively distinguish between a truck’s white color and
a brightly sunlit background sky (The Tesla Team 2016). While it is possible that the
lidar Al simply “did not see the truck,” much like a person, it is equally likely that
other information was available that indicated the presence of the truck. Even given
the cascading lidar mistake, a better understanding of human information interac-
tion might have added additional controls for just-in-time interactions or more
sophisticated handling of the uncertainty involved in the complex situation.

Latent errors pose the greatest threat to safety in a complex system because they
are often unrecognized, but they have the capacity to result in multiple types of
active errors (Reason 1990; Kohn et al. 2000), such as those identified by Primiero.
Latent errors are even more difficult to diagnose, address and resolve because errors
in complex Al systems tend to represent latent failures coming together in unex-
pected ways to produce unique or infrequent results. Since the same confluence of
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latent error factors are likely only with a low or obfuscated frequency, identification
and prevention can be virtually impossible. Strategies to predict latent errors will be
increasingly critical to Al systems. Extensive simulation may be one approach to
minimize the proliferation of latent errors (Khoshgoftaar and Munson 1990), but
given the volume and heterogeneity of data in human information interaction activi-
ties, simulation is likely to face scalability problems.

Artificial intelligence that learns errors may be another effective strategy (Arora
and Ge 2011); proponents of AI would argue that Al itself may solve latent errors,
essentially reducing or eliminating “human” errors. However, that is an overly opti-
mistic view. It is likely that AI may reduce human errors, but one might also argue
it simply shifts the source of the error from the human to the AI system. Worse,
errors involving Al are more likely to be latent errors that are very difficult to
address. The need for additional research in HII and the rapid advancement of Al
implementation may paint a picture that is rife with error riddled challenges. Yet a
better understanding and the adoption of computational explanations may provide a
way forward that builds defenses to the problems of latent error intrinsically into
complex Al systems.

It is clear that, in fact, the power to explain involves the power of insight and anticipation,
and that this is very valuable as a kind of distance-receptor in time, which enables organ-
isms to adapt themselves to situations which are about to arise. (Craik 1967, p. 51)

If interpretable explanations were tightly integrated with AI’s reasoning and out-
come mechanisms, when problems occur there would be traceability that would
naturally have produced insights to the myriad of relevant variables that may have
led to the unexpected outcome. Such explanations could illuminate Al strengths and
weaknesses, as well as convey information about how the AI will behave in future
situations with alternate conditions. Explanations of this nature would necessarily
have to go beyond simple rules or counterfactual causation; they would likely have
to be probabilistic. The need for probabilistic explanation approaches is due to the
nature of complex HII problems. Ample evidence has already been presented show-
ing the challenges of conclusively identifying the factors and circumstances of a
problem situation and its outcome. Humphreys (2014) refers to this as the multiplic-
ity of causes. He uses the example of a medical problem, another area where Al as
an HII proxy has found some measured success, to illustrate the multiplicity of
causal influences:

Successively adding 1) a smoking level of twenty cigarettes a day, 2) medium-high blood
pressure (140/88) and 3) medium-high serum cholesterol levels (250 mg/dl) increases the
probability of having a heart attack within the next twelve years for a forty-six-year-old
man from .03 to [given the above factors, additively] 1) 5%, 2) 7.5%, [to] 3) 15%.

This example shows how combined factors can affect the likelihood of an out-
come and subsequently its explanation. Modern medical expert systems often
employ this approach in providing the guidance for diagnoses guidance. In the med-
ical example the explanation is allowed to be incomplete but with probabilistic
bounding. It is interesting to note that this is the same languages that medical doc-
tors often use, even in non-Al augmented diagnoses: “given your symptoms it is
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likely that you just have a cold;” or perhaps where language such as “it seems you
have a cold.” Modern doctors seldom have a deterministically conclusive presenta-
tion of a diagnosis (Scheff 1963), and the notion of second opinion underscores the
probabilistic nature that humans are accustomed to in medical problem solving. As
medical practice evolves, it is increasingly becoming an application of HII—just in
the process of symptom pattern matching alone, doctors have become reliant on
computational automation.

Humphreys also acknowledges the role of information interaction in explana-
tion. He touches on the notion of completeness by highlighting the delineation
between causal explanations is a fuzzy boundary. Hempel formulates the require-
ment of maximal specificity to find the right balance between background informa-
tion and relevant information. As an example, Hempel (1966, p. 299) cites a
historical exchange:

The astronomer Francesco Sizi claimed, against his contemporary Galileo, that there could
not be satellites circling around Jupiter and offered the following argument: ‘There are
seven windows in the head, two nostrils, two ears, two eyes and a mouth; so in the heavens
there are two favorable stars, two unpropitious, two luminaries, and Mercury alone unde-
cided and indifferent. From which ... we gather that the number of planets is necessarily
seven’.

These features, Hempel complained, did not have a proper relation to the planets;
and thus, they are not the kind of features that could explain the arrangement
observed by Galileo. Probabilistic explanation could suffer from similar relational
bias. However, with regard to explainable Al, issues of this nature are not uncom-
mon in machine learning. These issues manifest as problems of overfitting, incor-
rect feature selection, or training data. If the machine learning on which Al relies for
reasoning had explanations for their models, then errors cascading from these mod-
els could be used to infer their relationship to generated outcomes. In most Al
implementations, formal models of machine learning exist, but they are difficult to
interpret resulting in opportunities for latent errors. Like HII, explainable machine
learning, and thus explainable Al is a research area that is still not fully understood
(Mooney and Ourston 1989). Nonetheless, the U.S. Defense Advanced Research
Programs Agency (DARPA) (Gunning 2016) has a program that seeks to investigate
methods of embedding explanation in machine learning algorithms. Figure 4.6
describes the purpose of the DARPA research program. Contemporary machine
learning techniques use deep-learning feature detection and also interpretable mod-
els with model induction to increase their explainability, while not reducing algo-
rithmic performance. Although the purpose of DARPA’s program is not focused on
error reduction or elimination, elements of the program employ the outputs of the
explainable models through an explanation interface that is grounded in HCI and
psychological theories of explanation (Kulesza et al. 2015). Key metrics of the
explanation effectiveness include human centered measures such as user satisfac-
tion, mental model factors, and trust, in addition to quantitative measures such as
performance and correct-ability. It is noteworthy that elements of the DARPA pro-
gram include identifying and correcting errors as an important effectiveness mea-
sure. Despite explicitly concentrating on HII issues, the explainable artificial
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Fig. 4.6 Explainable artificial intelligence (Gunning 2016)

intelligence research program includes many aspects of those concerns. If success-
ful the DARPA program will likely demonstrate that artificial intelligence embed-
ded with explanation will improve human information interaction, reduce errors,
and increase traceability when they do occur.

4.5 Conclusion

The lack of agreed upon definitions in the emergent HII domain presents a signifi-
cant impediment to understanding the interdisciplinary complexity of this research
area. However, the trending computational nature of all sciences (e.g., physics, biol-
ogy, chemistry, etc.) will force the need for a better theoretical and practical under-
standing of HIIL. The idea of designing information as an activity, separate from the
design of the machines containing the information, will move beyond an emergent
research area to one that defines not only information science, but other sciences as
well. A world characterized by computation will drive the notion of “things” made
from information; shifting human models of artificial intelligence and its applica-
tion for autonomous and seamless work.

The cost of voluminous “information things” will be realized in a dramatic rise
in information imbalances (overload and underload) that will impact decision-
making processes, whether they be made by human or artificially intelligent deci-
sion makers. In information interaction activities and automation, the effects of
information imbalances will affect Al in the same way it affects humans. Automated
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goal attainment is a complex problem that requires a deep understanding of not only
the objective but the underlying tasks and processes, as well. Where gaps exist in the
understanding of the process, tasks, or precise information requirements, failures,
mistakes, and slips will occur. Because of the difficulty in achieving the understand-
ing necessary for Al solutions and the complexity of information interaction prob-
lems, hard to identify and resolve latent errors will become the dominant type of
erTor.

AI will be a key enabler as human information interaction expands. Advances in
AI will accelerate the need for fundamental research in HII. Increasingly fulfilling
the role of humans, AI will not ever likely completely remove humans from infor-
mation interactions. Thus, the interdependence between humans, Al and informa-
tion processing will result in increased latent errors that conflate system and person
errors. It is not unreasonable to expect systems to have excessive occurrences of
latent errors in information interaction, resulting from increased Al usage. Greater
understanding of information interaction can reduce latent errors and potentially
minimize interdependence between person and system approaches to fallibility.

Computational implementation of probabilistic explanation is a promising
approach that will incorporate the fundamentals of human information interaction
with methods that provide insight to machine learning and Al reasoning. Probabilistic
explanation embeds explanation in a learning subsystem. This provides traceability
at the critical juncture between information and the Al logic that acts on it. Effective
implementation of computational explanations that deal with issues of complete-
ness and relativity will be necessary for Al system errors to be permanently resolved.

This chapter provided a review of human information interaction and showed
how Al is, and will continue to be, a proxy for humans in that context. HII is where
the intersection of Al and human error occur. The opportunity for Al to address (and
potentially cause) errors will force the demand for new models of human error and
methods for causal explanation. Given these trends, increased research focus on
applying Shannon’s seminal theories to psychological advances, providing a theo-
retical grounding for HII, and developing new methods of computational explana-
tion, will both become progressively important.
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Chapter 5
Verification Challenges for Autonomous
Systems

Signe A. Redfield and Mae L. Seto

5.1 Introduction

Autonomy and artificial intelligence are quite different. Autonomy is the ability of
a physically instantiated robot (autonomous system) to make decisions and reason
about its actions based on its in-situ sensor measurements. The objective is to adapt
to changes in itself or other systems it interacts with, the environment it operates in,
or its tasking (mission). Artificial intelligence, in the broad sense, refers to abstract
capabilities associated with problem-solving and does not necessarily require a ref-
erence to the physical world. An autonomous robot might use artificial intelligence
tools to solve its problems but it is grounded in the physical environment it shares
with other objects. An artificial intelligence itself might use an autonomous robot to
implement a solution it devises or to gather data to solve a problem but it does not
have to ground itself in the physical world for this. This chapter addresses chal-
lenges in transitioning autonomous robots, enabled with autonomy which may have
artificial intelligence, from the laboratory to real-world environments.

Robotics has been a recognized interdisciplinary area of study since the mid-
1900s. In the 1970s the first wave of industrial robots went from the research com-
munity to the factory floors (Engelberger 1974). These robots were automated. To
overcome safety issues due to their sensory and processing limitations, they were
segregated from their human co-workers in physical safety cages. Even with rela-
tively predictable controllers governing their actions, it was not possible to verify
their safety sufficiently to operate near humans. Today, robot systems are more
capable (Milleretal. 2011), complex (Ferri et al. 2016), and thus less comprehensible
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to non-specialists. Research and development has pushed the boundaries on what
autonomy can confer on robots in all environments. However, it has not similarly
pushed boundaries for how to certify and assure these robots’ functions.

Research addresses user needs at the design stage as motivation for an autono-
mous robot to address a problem. Aspects peripheral to the problem become a lower
priority. However, with increase interest in long duration autonomy (Dunbabin and
Marques 2012), complex missions, and driverless cars, one of these peripheral
aspects have risen in importance. This is the requirement to verify the safety and
bounds on the operational capabilities of autonomous systems.

This chapter introduces autonomy for autonomous systems, verification in gen-
eral then verification implications for autonomy. Next, verification challenges appli-
cable to most robot operating environments (land, sea, air, and space) are outlined
with the simple ground robot as an illustrative example.

5.2 Autonomy

Autonomy adds complexity to autonomous systems which adds expense and uncer-
tainty about the system performance, its safety, and when it should be used. Despite
this, there are robot situations where autonomy provides a viable solution. These
include situations that involve:

* uncertainty about the environment: for example, in rooms, doors may be opened
or closed, they can contain people acting within it

* uncertainty about the robot state within the environment: inaccurate or incom-
plete sensor data on its self-position so that even with a complete map of the
environment, the robot cannot navigate to a desired location, and

e communications latency: the robot does not have a human to interpret sensor
data or make decisions in new or ambiguous situations.

Autonomy refers to a category of control mechanisms and behaviors (in the con-
text of the behavior-based robot control paradigm) that provides robustness against
this uncertainty and enables the robot to operate with little or no human intervention
to interpret sensor data or make decisions.

The following terms are used to discuss elements of autonomous systems.

Definitions

System—immobot,! robot, group of immobots or group of robots, centralized or
decentralized. The hardware, software, perception, actuation, communications,
and decision-making that are abstracted as a unit and act in the world. For exam-
ple: the robot that turns the doorknob is a system, but the doorknob is part of the
environment rather than the system. A team of robots with a single stationary

'Tmmobot—a robot that is not capable of moving from one location to another within its environ-
ment but is capable of modifying its environment in some way, e.g. a smart house.
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computer acting as a centralized controller includes both the robots and the com-
puter in the system. A smart house is a system but the people inside of it are part
of its environment. The user interface may or may not be part of the system but
the human using it is not. The terms autonomous system, system, autonomous
robot, and robot are used interchangeably here.

Autonomous system—a system that makes decisions based on local environmental
information and has an intractably complex interaction with its world
(environment).

Behavior

1. (robotics)—the algorithms, software modules and/or actions of a robot in each
context (designed and observed)

2. (verification)—the actions of a system in an environment

These definitions are unusually specific; a more typical definition of autonomous
simply means the system makes decisions about its actions based on local environ-
mental data (IEEE Standard Ontologies for Robotics and Automation 2015a, b).
Since the focus is systems with no verification tools, the more specific definition for
autonomous will be used.

Simple systems can fall into the ‘autonomous’ category while at the same time,
complex ones may not. For example, robotic arms in a factory have their physical
structure and/or environment constrained so the verification problem is tractable.
Similarly, their instantiated behaviors are not subject to any constraints so their
system architects build the autonomy as they see fit. However, the purpose of this
chapter is to identify verification challenges for difficult cases where formal
methods-based design tools are, for whatever reasons, not feasible. While there is
complexity and cost to autonomy its benefits on-board autonomous systems are
notable.

5.2.1 Benefits of Autonomy

One reason to deploy a mobile autonomous system for a task is the difficult environ-
ment (space, underwater, under-ice, etc.). In dynamic environments, autonomous
systems operate with limited human interaction to control complex, real-time, and
critical processes over long durations. In addition to enabling operations in adverse
environments, autonomy also has the potential for increased capability at reduced
operational cost. The number of human operators required, a major cost, is reduced.
As well, the reliance on the communications link between the robot(s) and its opera-
tors is also reduced. An autonomous system is faster than an operator (especially
given latencies due to distance or environment) and can function even when com-
munications with its operator is poor. Communication has a cost (energy, at the very
least) and is imperfect as channels can be directionally-dependent, lossy, range
dependent, and introduce delays. Autonomy can mitigate some of this compromised
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communications. However, another cost of on-board autonomy is in the complexity,
reliability, and cost of the verification design and implementation.

Verification addresses whether the autonomy was designed and implemented
correctly whereas validation is concerned with whether the autonomy (e.g. a robot
behavior) meets its requirements to begin with. Verification is the focus in this chap-
ter. Current verification and validation, or V&V, techniques struggle with existing
autonomous systems. For example, in the past, the implementation of embedded
systems was conservative and dynamic memory allocation was only permitted at
start time. Now, the requirement is to verify and validate autonomous systems that
exhibit large sets of interacting behaviors and not all of them deterministic.

Autonomy facilitates the autonomous system adapting to a larger set of situa-
tions—not all of which are known at design time. This is a key point as one of the
purposes of autonomy is to provide contingencies for situations that cannot be spec-
ified precisely a priori. Unfortunately, current verification processes require a com-
plete specification of what the system is expected to do in all situations.

Analytic V&V techniques, and model checking, in particular, can provide solu-
tions to design autonomous system control agents in a more efficient and reliable
manner. This can mean earlier error detection and a more thorough search of the
space spanned by all performance possibilities (performance space). However, the
most suitable V&V approach depends on the autonomy tools used. In addition to
purely reactive tools, these can include:

e planners

* executives

e fault detection isolation and recovery (FDIR) systems
* mission-based measurements

* navigation

— terrain analysis and modeling
— localization
— path-planning.

It is expected that autonomy approaches require both verification techniques spe-
cific to the approach and those that apply across autonomous systems.

5.3 Verification

Verification tools build an assurance case, a body of evidence that, connected using
provably correct assertions, enables one to say, within defined assumptions, that the
system has certain properties. These properties define what is desired and can
involve either safety or security. For autonomous systems, there are three categories
of safety: self; objects and people it expects to interact with, and objects and people
it is not intended to interact with.
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Definitions

Verification and validation process: Firstly, validate the match between the purpose
for which the system is designed and the system requirements (and presumably
generate a model of the system or design a potential solution). Secondly, verify
that the model/design meets the requirements (works correctly). Third, validate
the system to be sure it accomplishes the purpose for which it was designed (does
what the user needs).

Verification: The process of gaining confidence in the correctness of a design or
ensuring that a system has certain properties. The fact that it may require exhaus-
tive proof is a problem associated with verification of autonomous systems.

Validation: This refers to step three in the process above. This is the process of test-
ing to ensure that the design decisions made in the initial validation process, to
match purpose to requirements, are correct in terms of the system end-use.

Verification is particularly important as systems transition from the research
laboratory because it is a critical element of the certification and accreditation pro-
cess which gives credibility with potential users. Within research laboratories, veri-
fication is important because it enables other researchers to use a given algorithm as
a component of their systems without concern about unexplored failure modes. For
example, if the objective is to test a robotic path-planner around obstacles, the user
wants the robot’s obstacle avoidance algorithm to be solid and well-understood.
Verification confirms the circumstances under which the obstacle avoidance algo-
rithm fails as well as provides a methodology to assess the merit of the user’s path-
planner with the integrated obstacle avoidance algorithm. Given that, what are the
verification implications of autonomy?

5.3.1 Verification Implications of Autonomy

As one of the verification objectives is to understand what the autonomous system
is supposed to do, verification tools assume a system specification exists. However,
defining the operational goals of an autonomous system is quite difficult making its
verification difficult. Existing research addresses these issues, but there are more
unexplored research challenges than there are underway research efforts. Section
5.4 identifies autonomous systems verification challenges and notes those with on-
going research efforts. Specific problems that verification tools like sequence and
scenario-based testing could address are described next along with their
limitations.

Traditional flight software on unmanned aerial and space systems have two com-
ponents: the on-board software and a sequence. The on-board software is low-level
methods or procedures for commanding aspects of the spacecraft hardware, while
the sequence is a time-ordered list of commands where each command maps to a
software method. Each command is tested independently. Traditional V&V flight
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software on unmanned aerial and space systems achieve verification confidence
from testing each sequence before up-linking and executing.

For these cases, potentially unanticipated command interactions and subtle prob-
lems are detectable by sequence testing. Sequences have singular execution paths
(or at most, a few), which facilitates detailed testing and interaction analysis to
focus on just those paths. This is a powerful approach but is only flexible when there
are a small number of execution paths and those paths are known in advance. On the
other hand, the autonomy of autonomous systems may be parallelized, distributed,
and non-deterministic with interactions between commands. Consequently, V&V
sequence testing does not work as well with these systems.

Autonomous systems are commanded by high-level goals or autonomic responses
rather than explicitly scripted sequences. If the system is controlled by high-level
goals, these goals are interpreted and further broken down into lower-level com-
mands. The autonomy planner determines the lower-level actions for the robot to
take to achieve its high-level goals. If problems arise during execution the autonomy
could take corrective actions and find alternate ways to achieve the goals. In this
way, there are many possible execution paths. Thus, it is impossible to identify the
few that are actually needed and to exhaustively test those. Additionally, the exact
command sequence cannot be predicted in advance without complete environmen-
tal knowledge, as the decisions are based on both on-board events and local environ-
mental conditions. Autonomy’s value is in its ability to close control loops on-board
the robot instead of through human operators. However, strength also makes it chal-
lenging to adequately define the behavior specification. Consequently, this means
sequence validation approaches do not work as autonomy driven processes are not
necessarily sequential or deterministic. As well, the autonomy could be imple-
mented as multiple parallel threads that interact.

In an autonomous system, even a simple one, sequence testing provides some
confidence for each of the commands, but it does not address interactions between
commands the way it has for scripted flight software sequences. These interactions
can be subtle and their results, unexpected. They can also depend on the exact
sequencing and timing of prior commands, subtleties of the robot state, the environ-
ment it interacts with, etc.

As autonomous systems close control loops and arbitrate resources on-board
with specialized reasoning, the range of possible situations becomes exponentially
large and is largely inaccessible to the operator. This renders traditional scenario-
based testing inefficient and in many cases, is impossible to perform exhaustively.
There are also scenarios that cannot predictably occur or deterministically repro-
duced in regular testing. They include race conditions, omissions, and deadlock.
Omissions in the specification are problems like defining how long an agent should
wait for a reply to a service request (within the publish-subscribe architecture
assumed here) before timing out or pursuing another action. Deadlock occurs when
two elements enter an infinite loop in the task allocation process and the process
fails to yield a decision. This can happen as a result of a race condition or an unfore-
seen interaction between software components.
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Fig. 5.1 Example robot
system—triangular robot
(blue) with three wheels
(dark gray) and a
downward looking sensor
(green) in a flat
environment (white) with
cliffs (light gray)

A race condition is a behavior in electronics, software, or other system element
where the output is sensitive to the sequence, timing, or order of other uncontrolla-
ble events. It creates a bug when events do not happen in the order intended. Race
conditions can occur in electronics, especially logic circuits, and in multi-threaded
or distributed software. An autonomous system can have all of these and is thus
prone to race conditions.

Testing for race conditions is not straightforward since certain timing conditions
must be satisfied for them to occur and these conditions may not manifest during
regular testing. Because of this, regular testing alone cannot assure that race condi-
tions do not exist. To determine whether race conditions exist, formal methods (not
discussed here) must be used to model the interaction between agents/threads/
subsystems.

In the detailed analysis of verification challenges with autonomous systems, it is
instructive to have an illustrative example system.

5.3.2 Example System

The simple robot example, shown in cartoon form in Fig. 5.1, serves to illustrate
subtleties that drive the variety of tools and research gaps that exemplify these
problems.

This toy system consists of a triangular robot with three wheels and a downward-
looking range sensor on a forward telescopic pole to detect cliffs (stairs). The two
rear wheels drive the robot. As the robot moves, it controls how far the downward-
looking sensor is extended in front by extending or retracting the telescopic pole.
Since the robot is physically instantiated it has a non-zero stopping distance.
Extending the sensor pole further out allows the robot to detect cliffs earlier. This
means it could travel at a higher forward speed. The robot uses dead-reckoning
against an internal map to navigate to a waypoint and the downward-looking sensor
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to avoid hazards on the way. It operates in a flat world with cliffs but no walls and
its only task is to travel from one waypoint to another.

Though this is a simple robot, it provides context to demonstrate some of the
challenges associated with autonomous system verification which is discussed next.

5.4 Challenges

The following four categories of research challenges in autonomous systems verifi-
cation are identified as follows:

* models: development of models that represent the system,

e abstraction: how to determine the adequate level of abstraction and detail to
which requirements are generated,

e testing: development of test scenarios, metrics and performance evaluation
mechanisms; and the extension of simulations, test environments and tools to
enable generalization from tests to conclusions about system performance, and

e tools: new tools or techniques that must be developed to enable autonomous
systems verification.

The rest of this chapter introduces these challenges in more detail.

5.4.1 Models

With models, there are four identified challenges associated with how to model the
autonomous system and the environment it operates in.

Challenge 1. How is an adequate model of the system created?

There are several types of models relevant to the verification problem. They
include logical models that represent the desired or computed behavior, probabilis-
tic models of the behavior, and mathematical and statistical models of the system.
These models must be at a fidelity that captures interactions with the environment
and predicts system performance. Software tools such as PRISM can verify behav-
iors that can be modeled probabilistically (Chaki and Giampapa 2013), but deriving
these models and ensuring they represent the behavior is difficult, especially when
the verification needs to generalize across environments. Estimations of the condi-
tional probabilities in the model are difficult to arrive at when realistic environmen-
tal interactions are considered.

Challenge 2:  Common models and frameworks need to describe autonomous sys-
tems broadly enough so they can be used to standardize evaluation
efforts and interfaces to the system.

Beyond models that support verification for systems, models and frameworks
(Challenge 1) that support evaluations across solutions are also needed. Such com-
mon models and frameworks are being developed from different perspectives. They
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range from the development of ontologies and shared concepts describing autono-
mous systems (Paull et al. 2012) to architectural designs to mathematical models of
robot behavior based on dynamical systems. External analysis tools that use vari-
ables as independent elements to characterize the system are generally inadequate.
Dynamical systems approaches (Smithers 1995) attempt to produce more generaliz-
able models using ordinary differential equations (ODEs) that include a nonlineari-
ties due to time dependencies. However, these approaches, while able to describe
some long term emergent behaviors, are not applicable to behaviors that are not
modeled by ODEs. Developing models based on tools that measure differences
across solutions and how to define a model type that supports evaluations and gen-
eralizes across solutions are unsolved problems.

In the toy problem, if the robot’s high-level goals are broken down based on a
framework like the OODA loop (observe, orient, decide, act), actions for the robot
can be specified. Imposing this structure on the autonomous system ensures consis-
tency between evaluation efforts and output standardization. However, a controller
may or may not map well into that framework. A deliberative system might explic-
itly follow each step, while a reactive controller will not explicitly instantiate the
‘decide’ or ‘observe’ steps. In the reactive approach, the functions provided by the
“decide” and “orient” steps are implicit in the “observe” and “act” steps and cannot
be separated. This introduces problems when the framework is used to standardize
evaluation efforts, since inaccuracies in the representation can lead to errors in the
analysis. If the robot is not deciding, but is instead simply observing and acting,
then verification tools designed to analyze the decision-making stage may not ade-
quately capture the relationship between the sensors, actuators, and environment.

Challenge 3:  How should models of black box autonomous systems be developed
and debugged? How is a mathematical and/or logical model suit-
able for formal analysis produced from empirical observations?

Challenge 4.  How should one identify and model components that are not cap-
tured yet (and what are their properties)?

When there is insufficient knowledge about a system to represent its autonomous
behaviors with either logical, probabilistic or mathematical models, it is treated as a
black box. Consequently, determining the level of abstraction is almost impossible.
In that case, would observing the system’s behavior yield sufficient insight into the
level of abstraction to model the sensor data? For the example robot, is it sufficient
to model the sensor output as a binary (floor/cliff) detection? Or, should the sensor
output be modeled as a discrete or continuous-valued function describing the dis-
tance between the sensor and the closest object? Should noise, manifested as sensor
variations or the frequency which transitions between the binary states occur, be
included? Do the motor controllers need to be modeled or is it sufficient to generate
a larger model of system actions as a function of sensor input? What principles are
used to design a simulation or model, at the level of abstraction needed, to evaluate
the feature or property of interest?



112 S.A. Redfield and M.L. Seto

5.4.2 Abstraction
5.4.2.1 Fidelity

These challenges focus on the simulation fidelity rather than only the system model
addressed in Challenge 1.

Challenge 5:  What determines the level of simulator fidelity to extract the infor-
mation of interest?

Insight into the fidelity a simulator requires for meaningful results makes it pos-
sible to identify scenarios where the system fails. Searches for scenarios where the
system fails can be automated by developing adaptive learning techniques to focus
simulations in performance space regions where failure is suspected (Schultz et al.
1993). However, these techniques are only partially effective. Along with develop-
ment and tuning of learning algorithms, appropriate performance metrics to drive
the learning process are needed. These learning techniques and performance met-
rics could also be used to identify which of several potential levels of fidelity cap-
ture the most failure modes.

Challenge 6:  How is the level of abstraction determined for the robot model, its
behaviors, and the simulation that tests the model? How many envi-
ronmental characteristics need to be specified? What are the aspects
of the environment, the robot, and the autonomy algorithms that
cannot be abstracted away without undermining the verification?

The level of fidelity to model aspects of the environment as well as which aspects
should be modeled is unclear.

The model of the autonomous behavior is given. But what is the fidelity of the
model for the robot hardware that realizes the behavior? Can friction in the motors
be abstracted away? What about other interacting behaviors in the system?

If a path-planning behavior is to be tested, the robot relies on an awareness of its
position relative to the desired path or destination. What level of abstraction is ade-
quate to capture that information? When that is known then the level of abstraction
for the environment could be addressed.

For the example system, is it sufficient to define an environment “that contains
cliffs”? Reaching the given destination implies the robot did not run out of power
prematurely. Not falling off cliffs is easier if the cliffs are stair-like, rather than pen-
insular, since the robot has only one sensor and thus one measurement of cliff loca-
tion at any time. The orientation of the robot to cliffs it might encounter or whether
the road surface approaching a cliff impacts the robot’s maneuverability is unknown.
How could one verify the robot will be safe (i.e. not fall off a cliff) given its existing
behaviors or determine the environment state space boundaries where the robot can
be verified safe? Are there other aspects of the environment that affect the robot’s
performance that should be included in the environmental model or the robot’s
behavior model?

The task can be constrained so the robot only operates in an environment with
stairs—not peninsular cliffs. Modeling the environment as stairs that are
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perpendicular or parallel to the robot’s travel direction is insufficient. However,
including all possible orientations does not scale up to handle more complex envi-
ronments. One cannot abstract away stair orientation if the objective is to character-
ize and model the robot’s behavior near stairs. However, the sensor uses sound to
detect its range to the floor so it is fine to abstract away the stair’s color. The width
of the stairs may affect the robot’s ability to reach its destination before it runs out
of power. Can the width of the tested stairs be bound?

Since the sensor is centered in front of the robot, some autonomous behaviors are
likely to have a fault mode where the robot is approaching stairs at an acute angle.
How would other locations in the robot state space, which may be fault modes, be
identified? These fault modes are functions of the robot’s physical configuration.
For example, the separation of the rear wheels affects the angle when the robot falls
off the cliff before it senses it.

5.4.2.2 Requirements Generation

Challenge 7.  Where is the transition from specifying system requirements to
designing the system and how are principled requirements devel-
oped so they do not devolve into designing the solution?

There are efforts towards requirements generation for autonomous systems
(Vassev and Hinchey 2013), but they apply to space missions and highlight a prob-
lem with defining requirements for autonomous systems: defining the requirements
often results in designing the system.

This is particularly noticeable in systems engineering requirements generation.
Within the DoD Systems Engineering Fundamentals text (Defense Acquisition
University Press 2001), IEEE Standard P1220 is quoted as defining a set of 15 tasks
in the requirements generation process. Of these 15 tasks, one represents the desired
capabilities of the system (the functional requirements which define and constrain
the autonomy), one consists largely of elements that an autonomy designer would
expect to be part of the design process (the modes of operation), three are currently
unsolved research problems due to the inability to adequately define, in a testable
and achievable way, what the robot ought to be doing (the measures of effectiveness
and suitability, the utilization environments, and the performance requirements),
and the rest define the context the autonomy is expected to operate. While they
impose requirements on the autonomy, these additional constraints are not auton-
omy requirements themselves. In exploring the functional requirements generation
process one finds the functional analysis stage encompasses the autonomy design
process.

With the example system, the high-level requirement might be “the robot shall
successfully reach its destination in an environment that contains cliffs”. But even
simply specifying the lower level requirements becomes rapidly difficult.

If a behavior is specified for the robot when it detects a cliff, it defines the system
autonomy, not a functional or safety requirement. Sub-requirements of “the robot
shall not fall off cliffs”, “the robot shall reach its destination” and even “the robot
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shall not take longer than X to reach its destination” could be specified, and have the
autonomy balance the competing requirements. However, defining requirements
below this level, again, quickly falls into designing the autonomy.

Different structures and models have been proposed to describe autonomous sys-
tems but none are widely accepted. There is no common taxonomy of goals that
describes robot behavior and the goals of these systems. Typically, there are two ways
these develop in a field as it matures: either they develop organically over a long
period as different ideas are proposed, tested, and refined or rejected or, an organizing
body selects or generates a standard to support and accelerate its acceptance.

Standards are being defined to support descriptions of both the hardware (IEEE
Standard Ontologies for Robotics and Automation 2015a, b) and the tasks the sys-
tems are expected to accomplish, but this field is quite broad and there is little con-
sensus on what tasks should be included or how they should be described to support
their eventual implementation and use.

Challenge 8:  How is it ensured that the implicit and the explicit goals of the sys-
tem are captured? How is a model of the system goals from a human
understanding of the task goals, the system, and the environment
created?

To verify the system, implicit goals must also be captured in addition to the
explicitly defined task goals. If the explicit goal is for the robot to gather informa-
tion about a region, the implicit goal is to ensure the information returns to the
operator. If the robot gathers the information but does not return it to the user, then
as far as the user is concerned, the information has not been gathered.

Challenge 9: How are performance, safety, and security considerations
integrated?

In the certification and accreditation communities, performance, safety and secu-
rity considerations are separated. The safety ones are addressed by the certification
authority and the performance and security ones by the accreditation authority. One
of the major reasons autonomy is implemented on a system is to provide an extra
layer of assurance for safety and security as the robot attempts to meets its perfor-
mance requirements.

For the toy robot, safety includes “not falling off a cliff”. If its task is “get from
point A to point B”, system safety is an implicit performance requirement, since
falling off a cliff prevents the robot from reaching point B. If cliff locations are
completely known, autonomy is not needed as the solution is to automate the opti-
mal paths between a variety of A’s and B’s to avoid cliffs. Autonomy is needed if the
cliff locations relative to the robot’s actual path are not completely known and the
desire is to react safely if it detects one. Safety is one of the reasons autonomy is in
a system, and being able to avoid cliffs increases overall performance. In this case,
safety is part of performance. If other aspects of safety are considered then, safety
would include potential damage to the environment as a side effect of falling off the
cliff (environmental safety) and potentially injured bystanders if the robot drives
into or over a bystander’s foot (bystander safety). The safety of the operator is not a
consideration for this robot since the operator’s interaction with the robot is minimal.
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While these aspects do not directly affect the system performance, they do interact
with its algorithms—an obstacle avoidance algorithm protects both bystanders and
the robot itself while significantly affecting its ability to accomplish its task.
Avoiding cliffs promotes safety for the robot and for the environment while improv-
ing its performance.

5.4.3 Test

Challenge 10: At what point is there enough evidence to determine that an auton-
omous system or behavior has been verified?

Even outside the robotics research community, the actual measures used to deter-
mine when enough evidence has accumulated to verify a system are often ad hoc or
arbitrary. Since the original metrics lack firm principles or foundations, it is impos-
sible to find a principled mechanism to support extending them to include autono-
mous systems. Just as there are no principled methods to determine what evidence
is appropriate, there is no easy way to determine when sufficient evidence has been
accumulated.

Challenge 11:  How does one ensure it is possible, in the physical world, to test
simulated situations that result in boundary cases?

This is a problem when a fault mode is triggered by a specific sequence of previ-
ous actions. There are trivial examples where the toy robot falls off a cliff if initial-
ized in an untenable location, but setting up a physical environment where the robot
will be induced to perform the same sequence of actions that lead to that failure is
non-trivial. Without being able to repeatedly trigger the same failure in the physical
world, there is no confidence that an applied remedy would be effective.

5.4.3.1 Scenarios

Challenge 12:  How would tests be designed so that passing them indicates a
more general capability?

NIST (National Institute of Standards and Technology) developed a suite of robot
test arenas in their work with first responders and competition developers in urban
search and rescue tasks (Jacoff et al. 2010). In this approach to capability evaluation,
systems are tested on their ability to repeatedly accomplish a task within a given
arena. Performance is based not only on simple binary accomplishment metrics but
on reliability and robustness. This is an extreme version of the most common method
developers use to engender confidence in their systems: ad-hoc execution of select
design reference missions. Instead of developing an entire scenario, the NIST
approach allows developers to test their systems on one capability at a time.

It is more common for developers to test their systems against the entire mission
it was designed to address. The mission is intuitively representative of a use case for
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Fig. 5.2 Generalization of
environments: if the robot
can avoid cliffs that are
straight and appear
perpendicular (gray), at
+45° (purple) or at —45°
(teal), it is not imply it can
avoid cliffs that cut
through the white region

which the system was designed. In the best case, it would be a particularly challeng-
ing instance of the use case. The implication is that since the system can handle the
demonstrated case it will also be able to handle other, similar cases the system will
be subjected to operationally.

As an example with the toy robot, if the robot can avoid straight line precipices
that are perpendicular, and at 45° (purple and teal lines in Fig. 5.2) to, its direction
of travel (black line in Fig. 5.2) then it is valid to generalize and assume all orienta-
tions between perpendicular and 45° are likewise acceptable, as are orientations
between perpendicular and —45° (all shaded regions in Fig. 5.2). However, it does
not imply whether it will succeed against other cliff orientations (areas that cut
through the white region in Fig. 5.2), other than to recognize that there is a point
where it will lose stability before it detects the cliff.

While test cases demonstrate possibilities the challenge that autonomous robot-
ics now faces is to produce test schemes that provide results which can be meaning-
fully generalized not only for specific capabilities but for system performance.
Efforts have been made to address this challenge using automation to simply exe-
cute and analyze many scenarios (Barltrop et al. 2008; Smith et al. 1999; Pecheur
2000), but in each case these efforts required insight into the system under test, and
the automation was still based on scripted scenarios that engineers deemed likely
and not unanticipated ones.

Challenge 13:  How are challenging design reference missions selected so that
performing well against them indicates a more general capability
for the system rather than for specific system components?

Even after generalizing from specific scenarios to regions of capability within
the robot state space, methods are still needed to identify specific scenarios that
provide the most general information.

In the toy example the environment was implicitly limited to only straight-line
cliffs and perfect sensor or actuator performance between +45°. There was no men-
tion of unexpected obstacles or materials and conditions that cause errant sensor
readings—all of which are sources of undesirable behaviors in autonomous systems.
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For the toy example, a simpler scenario with cliffs oriented only perpendicular to
the robot travel direction and no obstacles provides less information about the
behavior robustness than a scenario with approaches to cliffs over a range of orien-
tations and moving objects in the environment.

Challenge 14:  How can test scenarios be produced to yield the data required to
generate mathematical/logical models or to find the boundary
conditions and fault locations in the robot state space?

This challenge addresses two points: (1) the development of test protocols and
methodologies whose goals are not to evaluate the system but to generate a model
of the system from external observations of system properties (flip side of Challenges
3 and 4), and (2) identify test scenarios in the robot state space that exist at perfor-
mance boundaries. For example, the edge of the curb running along a sidewalk is a
performance boundary for a robot that operates on sidewalks. In a simulation, this
might be represented as a distance-from-sidewalk-edge parameter or as a position-
on-the-map environmental feature, but in either case, it is a performance boundary.

Instead of test scenarios that characterize how well the system works, the pur-
pose of these scenarios is to highlight both areas where the system fails to perform
as expected and areas where there is a transition from one performance regime to
another. As well, what techniques are needed to determine the parts of the perfor-
mance space that should be characterized in a model of the black box autonomous
system?

5.4.3.2 Metrics and Performance Evaluation

To evaluate the autonomous system using abstracted models, metrics, and measures
that are proxies for the system, goals need to be defined. In some cases, these may
be represented in the requirements, but the problem of defining metrics associated
with implicit and less tangible goals is still difficult. Most work in this area focused
on developing tools to measure the degree of autonomy in a system, rather than the
effectiveness of the autonomous system as it attempts to accomplish its tasks.

Challenge 15:  Once an adequate model is created how is it determined whether
all resulting emergent behaviors were captured and what are
appropriate performance measurement tools for this?

Most formal attempts to provide standards for autonomy have centered on the defi-
nition of “levels of autonomy”, an effort to distinguish systems by their degree of
independence from a human operator and level of capability. Examples include Draper
Labs’ 3D Intelligence Space (Cleary et al. 2001), the US Army’s Mission Performance
Potential (MPP) scale (Durst et al. 2014), the Autonomous Control Levels (ACL) put
forth by Air Force Research Labs (Sholes 2007), and the National Institute of Standards
and Technology’s (NIST) Autonomous Levels for Unmanned Systems (ALFUS)
(McWilliams et al. 2007; Huang et al. 2004, 2005), shown in Fig. 5.3.

Not only are different approaches largely incompatible with each other, even
experts disagree on the taxonomy to categorize a system within a given approach.
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Fig. 5.3 The ALFUS framework for autonomy levels (Huang et al. 2005)

The overall effort to define levels of autonomy has devolved into a philosophical
argument, and a 2012 Defense Science Board report recommended that the effort be
abandoned in favor of the definition of system frameworks (Murphy and Shields
2012). The levels of autonomy used to certify autonomous systems are the excep-
tion because they only attempt to define specific characteristics relevant to their
domain of interest.

To illustrate the difficulty in applying a subjective measure of autonomy to a
robot, consider the toy example against the two of the axes of evaluation common
to most levels of autonomy (Fig. 5.3)—situational awareness/environmental com-
plexity and decision making/human independence. One might argue that the situa-
tional awareness of the robot is limited because it is only able to sense its own
location and any cliffs in its immediate vicinity. However, it can also be argued that,
for the intended environment (only has cliffs), this is all it needs, and the situational
awareness is therefore, high. Likewise, since the only stipulated ability is to navi-
gate to a destination and avoid cliffs, in the space spanned by all possible behaviors
for all robots this is limited in its independence capability. On the other hand, way-
point following allows the robot to operate independent of a human operator in the
traversal of those waypoints, so it could also be considered highly independent.

IEEE Standard 1872-2015 (IEEE Standard Ontologies for Robotics and
Automation 2015a, b) attempts to introduce clarity by defining autonomy as a role
taken on by a process within the robot. Instead of attempting to define the system
autonomy it allows the designer to make some aspects autonomous (e.g. avoiding
cliffs) and others automatic (e.g. following a fixed sequence of waypoints).

Challenge 16:  Measurement and evaluation are generally poorly understood—
operators can describe tasks for the robot but lack tools to quanti-
tatively evaluate them. How should autonomous behaviors be



5 Verification Challenges for Autonomous Systems 119

measured so they consistently and accurately describe the capabil-
ity embodied by a robot?

Efforts to create metrics generally result in tools with solid theoretical foundations
that are not easily implemented or, focus on subjective evaluations from experts like
system users (Steinberg 2006; Durst et al. 2014), and consequently, not easily com-
parable across experts. Standardized questions and forms use scales and techniques
in an attempt to normalize subjective results (Billman and Steinberg 2007). However,
the problem is the inability of evaluators to agree on the relative importance of sub-
sidiary details within a task (e.g. whether the smoothness or the directness of the
robot’s path is more important) rather than the adequacy of the evaluation tools.

Challenge 17:  How is a metric defined for comparing solutions?

Even if a metric is defined to evaluate whether a robot accomplishes its task, how
are the different solutions compared? Start with the toy problem task: reach way-
point B by a given time. Two robots have the downward-looking sensor that identi-
fies cliffs. Robot A has a sensor that tells it range and bearing to the waypoint and
Robot B has a map and the ability to localize itself within it. Robot A uses simple
heuristics that cause it to head straight towards the waypoint when there are no cliffs
and to back up and turn a fixed amount when there is a cliff. Robot B has a more
sophisticated behavior to characterize the cliff. Robot A has a motor controller that
imposes smoother motion, while robot B’s controller can stop abruptly and turn
about an axis internal to itself. Would the metric to compare the solutions be based
on how fast the robots reach the waypoint, or is it a function of the smoothness of
the path? Is it a combination? If it is a combination, how are the metrics weighted?
Is it measured with the same start and destination point every time or, is it sufficient
to measure multiple random samples or, is the metric a function of path properties
and independent of the specific path? Is the metric a simple binary of reached/failed
to reach the waypoint? What if the user does not appreciate what the important
aspects are? For example, the relative importance of path duration and efficiency or
the reliability with which it reaches the destination.

Challenge 18:  How is the “optimal” defined against which the verification is per-
formed? How is the solution shown to be in fact, optimal? How is
the performance of the system measured?

To verify a system one needs to know its properties and what it is supposed to do.
The “optimal” solution for verification of autonomous systems can be a computably
optimal solution to the problem (though the robot’s limitations, environment, or
practical considerations may drive it to a less optimal solution) or the desired behav-
ior itself. The difference between the optimal solution and the robot’s actual behav-
ior can be a measure of system performance and used to compare against different
solutions. Where a computable optimal solution exists, it is possible to determine
whether the robot’s performance was optimal, but in other cases, performance is
more difficult to quantify. The problem is twofold. It is necessary to define what the
behavior ought to be, and evaluate that against what the behavior actually is. Optimal
can be defined in the context of the specific behavior (the best this robot is capable
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of) or the task goals (what is the best that a system could do). General purpose met-
rics that compare behaviors using either is an active research area.

5.4.3.3 Intersection of Scenarios and Metrics

Challenge 19:  How is the performance from finite samples of the performance
space generalized across several variables and parameters?

This is similar to Challenge 12 (how to select tests that indicate a general capa-
bility), but the focus of this challenge is how to generalize performance given finite
test results. For the toy robot, it is straightforward to generalize from the +45 degree
tests because the properties of the environment (cliff orientations), robot (nose sen-
sor and wheel locations), and behavior (robot will not move outside the white tri-
angle in Fig. 5.2 when it reacts to a cliff) are known. What is lacking are general
principles, best practices, or theoretical structures that help determine how a given
performance test result generalizes its performance throughout the robot state space.
For example, if the width of the toy robot’s wheelbase is changed, the limits on safe
orientations to the cliffs changes. However, within this task and robot configuration,
the general premise that the physical configuration is related to this aspect of perfor-
mance holds. How are equivalent premises that hold for other tasks and scenarios
determined?

Challenge 20:  Autonomy frameworks are unable to determine whether all the
resulting emergent behaviors have been captured or to supply per-
Sformance measurement tools.

Even if it is possible to generalize performance samples to a range within a per-
formance regime, the specificity of the samples limits their broader applicability,
and thus does not address verification methods for entire systems. As a test scenario
is designed to demonstrate one system behavior or feature, others may be simplified
or ignored, which limits the broader applicability of the result. The test scenario
only captures potential emergent behaviors related to the behavior or feature being
tested, not emergent behaviors that occur when multiple behaviors or features inter-
act. Autonomy frameworks define how interactions between the behaviors and
functions of the robot are structured, but they do not define how to generate sce-
narios to measure the reliability of those interactions. Since the interactions between
the robot and its environment is intractably complex this is a critical component of
any test method since the performance space cannot be exhaustively searched.

5.4.4 Tools

Challenge 21: ~ What new tools or techniques need to be developed?

If there are solutions to these challenges, an adequate system model and a rea-
sonable abstraction of the environment for the simulation tools, there are still diffi-
culties. In addition to correct-by-construction tools (Kress-Gazit et al. 1989), other
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Fig. 5.4 NIST test arenas for urban search and rescue robots (from NIST’s Robotics Test Facility
website)

tools are required to: support analysis of black box systems and behaviors; catego-
rize tasks and goals and connect them to platforms, environments, and capabilities;
develop performance metrics; support the development and analysis of modelling
and simulation approaches, and connect the different approaches to verification into
coherence assurance cases. This is an incomplete list—as progress is made on the
rest of these challenges, other gaps will be identified.

Challenge 22:  In general, how is the fitness of a physical robot structure for a
given task or environment verified (e.g., a robot that cannot sense
color or operates in the dark with an infrared sensor is unfit to sort
objects based on color)?

The NIST test arenas (Jacoff et al. 2010) shown in Fig. 5.4 use specific low-level
capabilities (or skills) that can be combined to characterize a desired higher-level
capability. The capabilities are determined against performance in a test. For exam-
ple, the robot must manipulate objects with a required robustness in test X and reli-
ably maneuver through environment Y.
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Individual robots are tested against the full suite of test arenas and ranked per their
performance in various categories (e.g., manipulation or maneuverability). As robots are
generally specialized for a given task, once that task has been decomposed into the skills
(or arenas) required, the suitability of a given robot for that task can be evaluated.

Although this approach is effective within this task domain, it has two major
limitations: the process to define the arenas/skills was lengthy and expensive and the
process to decompose tasks into amalgamations of skills is human-centric and does
not generalize well from one task to another. Equivalent tests for the low-level skills
could be developed so that any robot might be able to express. However, determin-
ing a complete set of basic capabilities was established and that each was adequately
tested is more difficult.

Challenge 23:  Descriptive frameworks are either too specific and constrain the
developer to specific tools when designing the autonomous ele-
ments of the system or, too broad and difficult to apply to specific
cases. Tools are needed to analyze systems at both the specific and
the broad levels.

A variety of descriptive frameworks have been advanced to describe autonomous
systems in a way that facilitates evaluation. However, when the framework follows
too closely to a particular implementation, the solution is limited to only systems
with that same implementation.

An example of this phenomenon is the application of formal methods to auton-
omy by simplifying system states and inputs to create a deterministic system. While
this provides a verifiable solution, the simplifications limit the system, and the
requirement for determinism precludes the use of more innovative techniques such
as fuzzy logic, neural nets, and genetic algorithms. Broader models are more widely
applicable, such as the classic OODA (observe, orient, decide, act) loop (Gehr
2009), but the lack of specificity makes them difficult to meaningfully apply.
Attempts to find a middle ground between these two approaches include the Systems
Capabilities Technical Reference Model (SC-TRM) (Castillo-Effen and Visnevski
2009), Framework for the Design and Evaluation of Autonomous Systems (Murphy
and Shields 2012), and the 4D Realtime Control System (RCS) Reference Model
Architecture (Albus et al. 2000). Each of these frameworks has its supporters and
detractors, but no critical advantage has yet pushed one to widespread adoption.
Once such a model is found, verification techniques can be developed for classes of
components or capabilities rather than for the entire system at once, making the
problem more tractable.

Challenge 24:  How is a structured process that allows feedback between the
physical/ground truth layer and the formal methods verification
tools developed?

This is a specific tool among many that could be developed for Challenge 21.
Formal methods verification tools can provide useful information about guarantees
and properties of a given behavior. However, to verify the behavior as instantiated
in a physical system, tools are required to enable test results in the physical system
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to feed back into the formal verification tools. Then, this enables the formal verifica-
tion tool results to feed back into the physical system.

Challenge 25:  How to disambiguate between cases where the specification was
incorrect (task description abstraction failed to capture a required
system action) from those where the environmental model was
incorrect (environmental abstraction failed to capture some criti-
cal system-environment interaction)? How to identify not just indi-
vidual situations but classes of situations where the robot fails to
be safe or to achieve safe operation (e.g. a front wheel often falls
off the cliff but the back wheels never do). How should unantici-
pated unknowns be accommodated?

Challenge 26:  If an algorithm, or patch to an existing algorithm, was replaced
can it be proven that no new failure modes were introduced with-
out re-doing the entire verification process?

If the problem to characterize the performance space of the original system was
solved, is it possible to characterize the performance space of the new system with-
out running every algorithm and system-level verification test again?

Does making an autonomous system modular reduce the verification burden
when an autonomy algorithm component is changed, added or removed?

In the simulation tool the toy robot model sometimes falls off peninsular cliffs.
If the robot is not intended to succeed against them, is this happening because the
verification failed to realize that peninsular cliffs were not part of the task or because
the simulation environment includes physically unrealizable cliffs?

It is important to evaluate the system at different levels of fidelity using analytic,
simulation, and physical instantiation. The analytic tools provide confidence the
robot will operate well in certain scenarios and poorly in others. The simulation
tools, if abstracted to an appropriate level, can run sufficiently quickly to verify the
analytic results in the good and poor areas and identify commonalities between
failure modes for the boundary regions. The physical testing tools provide a means
to explore the impact of the environment and robot physical structure on its perfor-
mance in those boundary cases.

The two key challenges identified in testing methodology stem from the intrac-
table complexity problem of operating a complex system within a generally
unbounded environment. Firstly, how can all possible scenarios be meaningfully
sampled to create a representative subset? Secondly, how can these subsets be gen-
eralized to provide confidence in cases that were not directly tested?

These challenges focus on aspects of the problem that are the most difficult to
address. Autonomous systems are used in dynamic environments which are inher-
ently unpredictable. Bounds or classes of situations can be defined within which the
system is expected to operate a priori. The problem identified here is to define
classes of situations within which the system demonstrates specific predictable
properties. What tools could be developed to examine a large set of test or simula-
tion data and then extract the common feature that is predictive of success or failure,
safety or danger? Can tools be created to identify aspects of the environment which
were thought irrelevant but are actually important?
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5.5 Summary

Within this chapter some pressing verification challenges facing autonomous robot-
ics were identified as important as robots make the transition from the research
laboratory to real-world applications (Table 5.1). By identifying these challenges
the lack of insight into certain aspects of autonomous systems are highlighted.

Table 5.1 Summary of autonomous system verification challenges discussed

Challenges

1 | How is an adequate model of the system created?

2 | Common models and frameworks need to describe autonomous systems broadly enough so
they can be used to standardize evaluation efforts and interfaces to the system

3 | How should models of black box autonomous systems be developed and debugged? How is
a mathematical and/or logical model suitable for formal analysis produced from empirical
observations?

4 | How should one identify and model components that are not captured yet (and what are
their properties)?

5 | What determines the level of simulator Fidelity to extract the information of interest?

How is the level of abstraction determined for the robot model, its behaviors, and the
simulation that tests the model? How many environmental characteristics need to be
specified? What are the aspects of the environment, the robot, and the autonomy algorithms
that cannot be abstracted away without undermining the verification?

7 | Where is the transition from specifying system requirements to designing the system and
how are principled requirements developed so they do not devolve into designing the
solution?

8 | How is it ensured that the implicit and the explicit goals of the system are captured? How is
a model of the system goals from a human understanding of the task goals, the system, and
the environment created?

9 | How are performance, safety, and security considerations integrated?

10 | At what point is there enough evidence to determine that an autonomous system or
behavior has been verified?

11 | How does one ensure it is possible, in the physical world, to test simulated situations that
result in boundary cases?

12 | How would tests be designed so that passing them indicates a more general capability?

13 | How are challenging design reference missions selected so that performing well against
them indicates a more general capability for the system rather than for specific system
components?

14 | How can test scenarios be produced to yield the data required to generate mathematical/
logical models or to find the boundary locations and fault locations in the robot state space?

15 | Once an adequate model is created how is it determined whether all resulting emergent
behaviors were captured and what are appropriate performance measurement tools for this?

16 | Measurement and evaluation are generally poorly understood—Operators can describe the
tasks for the robot but lack tools to quantitatively evaluate them. How should autonomous
behaviors be measured so they consistently and accurately describe the capability
embodied by a robot?

(continued)
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Table 5.1 (continued)

Challenges

17 | How is a metric defined for comparing solutions?

18 | How is the “optimal” defined against which the verification is performed?? How is the
solution shown to be in fact, optimal? How is the performance of the system measured?

19 | How is the performance from finite samples of the performance space generalized across
several variables and parameters?

20 | Autonomy frameworks are unable to determine whether all the resulting emergent
behaviors have been captured or to supply performance measurement tools

21 | What new tools or techniques need to be developed?

22 | In general, how do we Verify the fitness of a given physical robot structure for a given task
or environment (obviously, a robot that cannot sense color or is operating in the dark with
an infrared sensor is unfit to sort objects on the basis of color)?

23 | Descriptive frameworks are either too specific and constrain the developer to specific tools
when designing the autonomous elements of the system or, too broad and difficult to apply
to specific cases. Tools are needed to analyze systems at both the specific and the broad
levels

24 | How is a structured process that allows feedback between the physical/ground truth layer
and the formal methods verification tools developed?

25 | How to disambiguate between cases where the specification was incorrect (task description
abstraction failed to capture some required system action) and those where the
environmental model was incorrect (environmental abstraction failed to capture some
critical system-environment interaction)? How to identify not just individual situations but
classes of situations where the vehicle fails to be safe or to achieve safe operation (e.g. a
front wheel often falls off the cliff but the back wheels never do). How should
unanticipated unknowns be accommodated?

26 | If an algorithm, or patch to an existing algorithm, was replaced can it be proven that no
new failure modes were introduced without re-doing the entire verification process

While there are areas where progress is being made, and a few more with promis-
ing directions for future research, there are many problems that are not addressed.
As verification of autonomous systems becomes a more pressing need for industry
and a more mainstream research topic, we are optimistic that these challenges will
be addressed and new tools and principled approaches will become available to sup-
port the safe transition of advanced autonomy and artificial intelligence into com-
mercial autonomous systems.
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Chapter 6
Conceptualizing Overtrust in Robots: Why Do
People Trust a Robot That Previously Failed?

Paul Robinette, Ayanna Howard, and Alan R. Wagner

6.1 Introduction

Robots are already entering our everyday lives. Even graduate students subsisting
on a stipend can afford robotic assistants to clean the floors of their apartments.
Some cars are already driving themselves autonomously on public roads. Unmanned
aerial vehicles of varying degrees of autonomy are an ever-increasing concern to
people as diverse as airline pilots, police officers, wildland firefighters, and tourists.
Human error is a significant cause of accidents; however, the trust that these people
place in any robot varies depending on the task of the robot and the characteristics
of the interaction. More importantly, a robot can affect the trust that a person places
in its hands, sometimes unintentionally. In this chapter, we formalize the concept of
overtrust (Sect. 6.2) and apply it to our prior results in robot-assisted emergency
evacuation.

Our work so far has focused on human-robot trust as it applies to humans accept-
ing guidance from autonomous robots during a high-risk, time critical situations
such as an emergency evacuation. The goal of this work was to develop a robot
capable of guiding evacuees during an emergency and, in doing so, determine the
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level of trust people place in this robot. In the beginning of our research, we assumed
that most people would not trust a robot in a life-threatening situation. If they would
trust the robot initially, surely they would stop trusting the robot once it made a
significant, noticeable error. In fact, others (notably Desai et al. 2013) have found
such a result in operator-robot interaction and our own initial work (Sect. 6.4,
Wagner and Robinette 2015; Robinette et al. 2017) found that people would avoid
trusting a robot that had previously failed them in virtual simulations. Unfortunately,
it seems people do not think as critically when asked to trust a robot in a physical
simulation of an emergency (Sect. 6.6 and Robinette et al. 2016a). This overtrust
has been reported in two recent studies of human-robot interaction in lower risk
scenarios (Bainbridge et al. 2011; Salem et al. 2015), but we have found that this is
a problem in a high-risk scenario as well. Additionally, even in our virtual simula-
tions, participants could be convinced to trust the robot again with a short, well-
timed statement. This is discussed briefly in (Robinette et al. 2015) and in detail in
Sect. 6.5. In Sect. 6.7, we discuss these results in terms of our conceptualization of
overtrust and then we conclude with thoughts about future research.

In this chapter, we discuss experiments in both virtual and physical environ-
ments. We define a virtual human-robot interaction experiment as an experiment
where participants observe and interact with a simulation of a robot through a com-
puter. The robot is entirely simulated and the interaction takes place in some sort of
a virtual environment, similar to interactions in video games. This paradigm is
attractive because most scenarios that are difficult to create in a laboratory are fairly
easy to create using modern three-dimensional modeling software and game
engines. In contrast, a physical human-robot interaction experiment requires the use
of an actual robot and thus typically requires physical space to perform the experi-
ment (Bainbridge et al. 2011). The main advantage of performing an experiment
with a physically present robot is that the participant experiences every aspect of the
actual robot in question. Many components of a robot cannot be simulated accu-
rately, so it is often necessary to perform a physical experiment in order to test the
complete system. We discuss these concepts in detail in (Robinette et al. 2016b, c).

6.2 Conceptualizing Overtrust

Our previous work on conceptualizing trust (Wagner and Robinette 2015) uses out-
come matrices to describe various trust scenarios. Outcome matrices are a useful
tool for formally conceptualizing social interaction. These matrices (or normal-
form games in the game theory community) explicitly represent the individuals
interacting as well as the actions they are deliberating over. The impact of each pair
of actions chosen by the individuals is represented as a scalar number or outcome.
Figure 6.1 shows our conditions for trust represented in an outcome matrix of a
simplified investor-trustee game. In this game, an investor can choose to invest
money in another agent or not. If he or she chooses to invest, the other agent can act
in good faith by returning a portion of the proceeds of the investment or not by
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Condition 1: Investor must choose to Condition 2: If the investor chooses to
invest before trustee can choose invest then the trustee can have a

amount of return —Ppositive or negative effect on the
outcome
Investor Condition 3: If the investor chooses

Invest $10 Invest $0 not to invest then the trustee has no
effect on the outcome

Return S S0 Condition 4: The outcome of an
g SIS |45 $0 investment with a faithful trustee ($15
g here) is greater than the outcome of
= Return 50| 510 1| no investment ($10) which is greater
0 |s30 30 than the outcome of an investment

with an unfaithful trustee ($0)

Fig. 6.1 The conditions for trust derived from Wagner’s definition for trust are shown above with
examples from the Investor-Trustee game

keeping all of the money for himself or herself. Each agent has an axis: the trustor’s
(investor in this example) two actions (invest or not) are shown on top and the
trustee’s two actions (return money or keep all money) are shown on the left. The
outcomes for each element of the matrix are shown inside, with the outcome on the
top-right representing the return to the investor and the outcome on the bottom-left
representing the return to the trustee.

We define trust as “a belief, held by the trustor, that the trustee will act in a man-
ner that mitigates the trustor’s risk in a situation in which the trustor has put its
outcomes at risk” (Wagner 2009). Discussions of why we believe this definition of
trust to be relevant for our work can be found in (Wagner and Robinette 2015). In
short, this definition allows us to define a situation as “requiring trust” or not
depending on the level of risk involved, the ability of the trustor (the one who must
decide to trust the other agent) to choose freely, and the ability of the trustee (the
agent who is to be trusted) to mitigate that risk. Formally, five conditions for situa-
tional trust can be derived from this definition (the first four are shown in Fig. 6.1).
A fifth condition is that the trustor believes the trustee is likely to act in a manner
that mitigates his or her risk.

This chapter extends our previous conceptualization of trust to include overtrust.
Overtrust occurs when a trustor accepts too much risk, believing that the trusted
entity will mitigate this risk. This is a concern when humans have committed an
error or are about to commit an error in a situation where a potentially-unreliable
intelligent agent could intervene. In terms of our defined conditions for trust, this
means that either:

e Case 1: The trustor believes that the trustee will mitigate their risk (Condition 5),
despite prior evidence to the contrary, or

e (Case 2: The trustor believes that there is little risk if the trustee should fail, i.e.,
the trustee has little or no effect on the outcomes (Condition 2).
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The first case of overtrust is indicated by a trustor claiming that the trustee was,
in their opinion, mitigating his or her risk in the situation, regardless of prior behav-
ior or current actions. In other words, the trustor may have an inaccurate model of
the trustee’s abilities and/or motivations. For example, experiments below show
conditions where a participant trusts a robot to guide them safely in a high-risk
scenario even though the robot has failed at that action before. The second case of
overtrust is indicated by a trustor insisting that the situation had little or no risk, or
that the trustee’s actions had little effect on the outcomes. Here, we argue that the
trustor has misjudged the actual risk of the situation. This is shown in our experi-
ments by post-experiment surveys stating that some individuals judged the situation
as having little danger or having no risk of monetary loss to participants.

6.3 Robot Guidance Versus Existing Guidance Technology

In this experiment, we asked people to experience a subset of the robots that we had
previously tested in a 3D simulated environment (Robinette et al. 2014, 2016b) dur-
ing a simulated emergency. Participants were given the choice to follow guidance
provided by a robot or guidance provided by emergency exit signs similar to those
found in office buildings. With these experiments, we could test the conditions
under which an evacuee would follow a robot or existing emergency guidance signs.

Evacuees exiting a building often encounter intersections which force them to
make a decision about which direction to take. These decision points are usually
accompanied by exit signs to help guide people to the closest exit. For this experi-
ment, we also equipped each decision point with a robot to provide guidance. The
guidance from the robot always contradicted the guidance from the exit signs. By
measuring the person’s choice at each decision point, we investigated the extent to
which participants trust robot guidance more than exit sign guidance, or vice versa.

6.3.1 Experimental Setup

Participants began the interactive portion of the experiment in a maze (Fig. 6.2) fac-
ing a robot and a static emergency exit sign, one pointing left, the other right.
Guidance information was presented at each decision point in the simulation. Five
total decision points were used in the experiment. Two valid exits were available:
one in the direction indicated by the robot and one by the sign. The participant had
to follow the robot’s or sign’s guidance through at least three separate decision
points to reach either exit, which limits the probability that a participant randomly
chose to obey the robot or sign at all points.

The participant was encouraged to quickly find the exit. Prior to the experiment,
instructions indicated that we were simulating an emergency. While navigating the
environment, text on the screen stated “EMERGENCY! Please leave the building!
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Fig. 6.2 Maze
environment for this
experiment. Participants
started in the position and
orientation indicated by the
blue arrow. Decision
points are shown as red
dots. A robot and an
emergency exit sign with
an arrow were at each
decision point. One
pointed to the path that
lead to the exit on the left
(shown in the diagram as
an open door) and the other
pointed to the exit on the
right. Maze walls are
shown in dark blue

EMERGENCY! Please leave the building! EMERGENCY!
TIME REMAINING: 46.4 SECONDS

1 ey 1

Fig. 6.3 Dynamic sign robot

EMERGENCY!” and a timer counted down from 60 s (see Figs. 6.3, 6.4, and 6.5).
If a participant failed to find an exit in 60 s, then the participant was informed that
they had not survived the simulation.

Three robots were tested: a Dynamic Sign robot, a Multi-Arm Gesture robot and
a Humanoid. Motivation for these robots can be found in (Robinette et al. 2014).
The Dynamic Sign platform was simulated as a Turtlebot with signs indicating it is
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Fig. 6.4 Multi-arm gesture robot

EMERGENCY!
TIME

Fig. 6.5 Humanoid robot

an emergency guide robot and a screen on top. The screen flashed directions using
English and arrows. This platform was used because our prior research verified that
participants would understand the information presented on the screen. The multi-
arm gesture robot was a similar Turtlebot with two arms instead of a screen. The
arms pointed in the direction of the exit. It was used because it also scored highly in
previous tests. The Humanoid platform was included in order to test the difference,
if any, between it and the Turtlebot-based Multi-Arm Gesture platform. It signaled
the same way as the Multi-Arm Gesture platform.

After the interactive portion of the experiment, participants were asked four
questions about their experience and then completed a short survey to gather demo-
graphic data. The four questions were:

1. Did you notice the robots doing anything to help you find the exit?
2. Did you notice the exit signs on the ceiling?



6 Conceptualizing Overtrust in Robots: Why Do People Trust a Robot... 135

Percentage of Participants who Followed Robot Guidance vs. Platform Type

100%
90%

80%

70%

60%

50%

Participants

40%
30%
20%
10%

0% -

Dynamic Sign Robot Multi-Arm Gesture Robot Humanoid Robot

Platform

Fig. 6.6 Percentage of participants who followed robot guidance broken down by robot type.
Error bars represent 95% confidence intervals

3. Did you trust the information provided by the robots?
4. Did you trust the information provided by the exit signs on the ceiling?

Each question offered yes and no options for a response and asked participants
to explain themselves. Position data and the time it took the participant to find the
exit in the experiment were recorded. The environment was built in the Unity game
engine and the participant interacted with the robot using a plugin in a web browser.

A total of 95 people participated in this experiment via Amazon’s Mechanical
Turk service. Five participants were unable to find the exit in the time provided and
their results were excluded from analysis. The remaining 90 were evenly divided
among the three robots.

6.3.2 Results

Overall, 61% of participants followed the robots instead of the exit signs (p=0.002,
Binomial test assuming 50% random chance of following either robots or signs for
90 samples). The difference in the following decision between the robots was not
statistically significant at this sample size (y*(2,n=90)=0.341,p=0.166), but some
trends can be gleaned from it. The Dynamic Sign robot had the highest following
rate (77%), followed by the Multi-Arm Gesture (63%) and then the Humanoid
(53%) (Fig. 6.6). There was a strong correlation between noticing the exit sign and
following the exit sign (¢(90)=0.59)! and a weaker correlation between noticing

!'"The phi coefficient (“¢”) measures the correlation between two variables.
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Following Decision for Participants who Noticed Exit Signs

100%
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OFollowed Signs B Followed Robot

Fig. 6.7 Results from participants who noticed exit signs only

the robots and following the robots (¢(90)=0.39). Figure 6.7 shows the results from
participants who noticed the exit signs. Note that this sample size is relatively small,
so it is hard to draw conclusions from the data, but most participants who noticed
the exit signs chose to follow them.

For the other participants, the explanations for their answers reinforced the conclu-
sion that they did not notice the exit signs. Some representative comments were: “I
didn’t notice the exit signs on the ceiling. I would have followed them if I would have
noticed,” “I only saw one or two. These were not as helpful, since I was able to miss
some,” “I didn’t think I had any other hint [besides the robots] on where to go,” “In
times of emergency, you have to make quick decisions so I chose to trust the robots.”
Other participants noticed the exit signs, but preferred to rely on the robots, saying, “I
trusted them, but did not use them because I was [moving] too quickly to register them.”

Some participants indicated that the exit signs had a greater chance of being cor-
rect by saying comments like, “[The robots] brought attention to the exit signs but
appeared to be [pointing] in the wrong direction,” “People wouldn’t put up signs
that pointed the wrong way,” “I figured [the robots] to be more of a distraction and
thought it would take too much time to figure out how they were trying to help me,”
“It seemed like [the robots’] arm was moving. I [ignored] them though. The exit
sign was easier to understand,” “I decided to go by the sign on the wall because it
was not moving and seemed to be there longer”, “I didn’t have time to figure out
what [the robots] were trying to communicate.” One participant indicated that he
did not trust the robots because he had seen the film “I, Robot.”
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Other participants wrote that the robots, especially the Humanoid, looked like an
authority figure: “[The robots] seemed to be with an ‘authority’ outfit, looked like
policemen at first.” Some did not understand that the dynamic sign robots were
robots, and simply thought that it was a mobile sign: “They had the correct signs
that were easily identifiable.”

Based on the comments and the correlations, we can conclude that participants
generally followed the exit signs if they noticed the exit signs but were more likely
to notice the robot. The robot was a sufficiently distracting object that most partici-
pants did not even notice the exit signs. We can thus conclude that robots are better
at attracting attention during emergencies than standard emergency exit signs. These
robots were also found to be sufficiently trustworthy to aid participants in finding an
exit. Note that participants had no prior information about the robot’s capabilities
while they did know that exit signs are usually intentionally placed to guide people
out of a building.

6.4 Human-Robot Trust in Virtual Simulations

In this section, we briefly describe several experiments we have performed over the
last few years that help to indicate when participants do and do not overtrust our
robots. For more details on these experiments, please refer to their citations
(Robinette et al. 2017; Wagner and Robinette 2015). These experiments each ask a
participant to navigate a maze and offer robotic assistance to help the subject navi-
gate it. Participants are free to choose whether or not to accept the robot’s help. We
began with a single-round experiment where a participant was asked if they would
like robotic assistance with little or no knowledge of the robot’s abilities. We then
extended this to a two-round interaction where participants could choose to experi-
ence the robot in a first round and then decide if they would like to continue using it
in a second round or not. All experiments used a 3D simulation of a maze environ-
ment (Fig. 6.8) created in the Unity game engine. All experiments recruited and
compensated participants through Amazon’s Mechanical Turk.

Each experiment began by thanking the person for participating in the experi-
ment. Next the subject was provided information about the maze evacuation task.
Participants were shown examples (in the form of pictures and text) of good and bad
robot performance (e.g., robots that are fast and efficient and robots that are not) and
participants were given an idea of the complexity of the maze (although they were
not shown the exact maze they would be asked to solve). Also, as part of this intro-
duction, participants were given the chance to experiment with the controls in a
practice environment. The practice environment was a simple room with three
obstacles and no exit.

After this introduction, participants were given the choice to use the robot or not.
Participants were told that their choice to use the robot would not affect their
compensation. Participants were then placed at the start of the virtual maze. If they
chose to use the robot it would start out directly in front of their field of view and
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Fig. 6.8 Example maze
with circuitous robot path
drawn in red. The starting
point is in the bottom
center and the exit is in the

top left

immediately begin moving towards its first waypoint (Fig. 6.9). The robot would
move to a new waypoint whenever the participant approached. If the participant
elected to not use the robot, then no robot would be present and the participant
would have to find the exit on his or her own. After the maze-solving round was
complete, participants answered a short survey about the round. In the two-round
experiment, they were then asked if they would like to use the robot or not in the
second round and a new maze was presented for them to solve. They were then
asked questions about their experience in that maze. Finally, participants in all
experiments were asked demographic questions.

Full results from the single round maze can be found in (Wagner and Robinette
2015). A total of 120 participants completed this experiment and 77% of them chose
to use the robot. This indicates that people have a tendency to trust a robot initially,
before they can develop a model of the robot’s behavior. This tendency does not
necessarily mean that people actually trust the robot to help them, but it does indi-
cate that they at least trust the robot to not hurt their outcomes in the experiment. In
this experiment, participants were shown the risks of failing to solve the maze in
time (they were told their character would die) and were also shown the risks of
following a poorly performing robot (again, they were told their character would
probably die). Thus, they were explicitly shown the risks in this scenario and we do
not believe that they overtrusted robots due to Case 2 shown in Sect. 6.2. Instead, we
believe that people fell into Case 1: they believed that the robot was more capable
than the evidence shown so far. As stated above, this could be a weak belief because
no evidence of robot capability had been given at this point.

A complete discussion of our two-round experiment can be found in (Robinette
et al. 2017). In this experiment, we manipulated both participant motivations and
first-round robot performance to determine the effects on participants. We tested
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TIME ELAPSED: 000.0 SECONDS BONUS

Use the arrow keys to move.
UP - forward
Down - Ba
REFT - turn left
RIGHT - turm right
Start moving to begin.

EMERGENCY! Ple uilding now! EMERGENCY!
TIME REMAINING: 60.0 SECONDS

Use the arrow keys to move

UP - forward

REFT - turn le
RIGHT - turn right
Start moving to begin.

Fig. 6.9 The top image shows the start of a monetary bonus maze and the bottom shows the start
of a survival motivation experiment. In monetary motivation, time increases as bonus is reduced
and in survival, time decreases. Movement directions disappear after the participant begins to
move

both monetary (participants received a bonus based on the quickness of their maze
solution) and survival (participants were told their character would die if they did
not find the exit in time) motivations. We found that a poorly performing robot (a
robot that did not guide them to the exit in time to preserve their bonus or their
character’s life) would generally not be used in the second round of the experiment
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in the survival motivation condition. Interestingly, a similar effect was NOT found
in the monetary bonus condition: participants were just as likely to continue to use
a poorly performing robot as a good robot. In this case, participants in the monetary
motivation condition likely fell into Case 2: they did not believe that the risk of
robot failure was great enough to hurt their outcomes. This belief could be a failure
of methodology (i.e., we did not properly motivate them) or a failure of understand-
ing on their part (many participants indicated that they believed the robot would do
better in the second round). Regardless, this result indicates that people will tend to
choose to use robots when they believe the risk of the situation is low. It is unlikely
that humans will always judge the risk of interaction correctly, so robots need to be
able to communicate this risk to avoid overtrust.

One possible early indicator of a tendency to overtrust was ignored at this step
because we believed it to be a methodological error. In pilot tests, we tried many
different poorly performing robots to determine which behavior participants could
quickly identify as “bad.” A full discussion is provided in (Robinette et al. 2016b,
¢), including our reasoning for believing these results were in error, but hindsight
suggests some additional insight can be gleaned. Three of the robot behaviors tested
involved the robot performing continuous loops without ever finding the exit. One
looped around a single obstacle, another around a larger set of obstacles, and the last
around the entire environment (except the hallway that contained the exit). These
participants were each eliminated from consideration because the participants (only
five in each category) did not seem to understand that the robots had performed
poorly. One participant followed a robot in a loop around a single obstacle for
almost 4 min in the first round and then over 9 min in the second round. Another
followed the robot that continuously circled the environment for almost 12 min
(three complete loops around the entire environment), even though the bonus
expired after 90 s. Results from these pilot studies show that participants have a dif-
ficult time believing the robots had failed in their task. Even after abandoning the
robot and finding the exit on their own (the only way to proceed to the second
round), some participants still chose to use the robot again. This combination of
disbelief of poor robot behavior and quick forgiveness (in this case, unprompted)
indicates that participants had an incorrect model of the robot’s capabilities (Case
1). As a further indication that participants tend to give the robot the benefit of the
doubt, another pilot study tested a behavior where the robot collided with a wall just
before finding the exit and, instead of interpreting this as a robot with bad obstacle
detection, decided that the robot was colliding with the wall to signal that the exit
was near. While this robot did provide some helpful guidance, we believed partici-
pants would view it unfavorably because it was unable to navigate around an obvi-
ous obstacle.

Now that we have shown the conditions under which trust can be broken, there
are two logical steps to take: attempt to repair this broken trust and replicate our
experiments in physical experiments. We proceeded along both tracks simultaneously,
but the ease of virtual experiments provided us with results on trust repair much
quicker than results from physical experiments. Thus, we next present methods that
a robot can use to modify a human’s trust in it.
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6.5 Repairing Broken Trust

In the previous section, we showed that trust can be broken in virtual simulations if
a robot performs poorly and the experiment presents a survival risk. In this section,
we show results from one of the next logical experiments to take after this result:
repairing broken trust. Attempting to repair trust is one way that a robot can modify
a person’s trust level. Presumably, humans will lose trust in robots in some real-
world situations, so a robot should have tools to repair that trust, when needed.
Additionally, we expect some of these methods to be relevant in situations where a
robot may need to convince a person to trust it less. As we will show in the next
section, this is more difficult than it may seem. A subset of our results on trust repair
was published in (Robinette et al. 2015). We show the complete results here in order
to illustrate the many options a robot has to modify trust level and our conclusions
on those options so far.

The methods that we use to repair trust are inspired by studies examining how
people repair trust. Schweitzer et al. (2006) examined the use of apologies and
promises to repair trust. They used a trust game in which participants had the option
to invest money in a partner. Any money that was invested would appreciate. The
partner would then return some portion of the investment. The partner violates trust
both by making apparently honest mistakes and by using deceptive strategies. The
authors found that participants forgave their partner for an honest mistake when the
partner promised to do better in the future, but did not forgive an intentional decep-
tion. They also found that an apology without a promise included had no effect. In
Kim et al. (2006), the authors tested the relative trust levels that participants had in
a candidate for an open job position when the candidate had made either integrity-
based (intentionally lied) or competence-based (made an honest mistake due to lack
of knowledge) trust violations at a previous job. They found that internal attributes
used during an apology (e.g., “I was unaware of that law”’) were somewhat effective
for competence-based violations, but external attributes (e.g., “My boss pressured
me to do it”) were effective for integrity-based violations.

6.5.1 Experimental Setup

To provide a more realistic environment to test trust, we designed a 3D office simu-
lation using the Unity game engine. We again employed Amazon’s Mechanical Turk
to recruit and compensate participants. The simulation began by introducing partici-
pants to the experiment and the robot. Participants were then asked to learn the
movement controls of the simulation in a practice round. After the practice round,
participants were asked to follow the robot to a meeting room where they were told
they would receive further instructions. When the participants reached the meeting
room, the robot thanked them for following it and the participant was asked “Did the
robot do a good job guiding you to the meeting room?”” with space to explain their
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answers. Once the participants completed this short mid-experiment survey, they
were told “Suddenly, you hear a fire alarm. You know that if you do not get out of
the building QUICKLY you will not survive. You may choose ANY path you wish
to get out of the building. Your payment is NOT based on any particular path or
method.” During this emergency phase, the robot provided guidance to the nearest
unmarked exit. Participants could also choose to follow signs to a nearby emergency
exit (approximately the same distance as the robot exit) or to retrace their steps to
the main exit. As mentioned, above, other exits were available in the simulation, but
participants were not expected to notice them as they would not have any reason to
traverse that section of the environment. Participants were given 30 s to find an exit
in the emergency phase. The time remaining was displayed on screen to a tenth of a
second accuracy. This count down was shown in our previous research to have a
significant effect in motivating participants to find an exit quickly (Robinette et al.
2017). The simulation ended when the participant found an exit or when the timer
reached zero. After the simulation, participants were informed if they had success-
fully exited or not. Finally, they were asked to complete a survey.

As in previous experiments, the robot would either provide fast, efficient guid-
ance to the meeting room or take a circuitous route. In previous experiments, we
showed that these behaviors can be used to bias most participants to trust (by using
the efficient behavior) or not trust (by using the circuitous behavior) the robot later
in the experiment. Efficient behavior consists of the robot guiding the participant
directly to the meeting room without detours. Circuitous behavior consists of the
robot guiding the participant through and around another room before taking the
participant to the meeting room. Both behaviors can be seen in Fig. 6.10. Each
behavior was accomplished by having the robot follow waypoints in the simulation
environment. At each waypoint, the robot stopped and used its arms to point to the
next waypoint. The robot began moving towards the next waypoint when the par-
ticipant approached it. The participant was not given any indication of the robot’s
behavior before the simulation started.

We expected participants to lose trust in the robot after it exhibited circuitous
behavior. After guiding the person to the meeting room, the robot has two discrete
times when it can use a statement to attempt to repair this broken trust: immediately
after its trust violation (e.g., circuitous guidance to the meeting room) or at the time
when it asks the participant to trust it (during the emergency). An apology or a
promise can be given during either time. Additionally, the robot can provide contex-
tually relevant information during the emergency phase to convince participants to
follow it. Table 6.1 shows the experimental conditions tested in this study and
Fig. 6.11 shows when each condition would be used. Statements made by the robot
were accomplished using speech bubbles displayed above the robot in the simula-
tion (Figs. 6.12, 6.13, and 6.14). The percentage of participants who followed the
robot was then compared with the efficient and circuitous controls to determine if
trust was repaired (i.e., if people followed it as in the efficient condition) or not (i.e.,
if people chose to use an alternate exit as in the circuitous condition). To ensure that
the speech bubble itself was not a significant factor, an empty speech bubble was
used in one condition. A condition, labeled the Nice Meeting Wishes condition, was
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Fig. 6.10 The virtual office environment used in the experiment. Efficient robot path (green) ver-
sus circuitous robot path (red) are shown

added to determine if there was any effect when the robot made a statement that did
not attempt to repair trust.

6.5.2 Results

The results of the experiment and the number of participants considered for analysis
are in Fig. 6.15. Across all categories, 307 (53%) participants followed the robot
during the emergency phase. Of the 268 who did not, 226 (84%) went to the nearby
marked exit, 17 (6%) chose to retrace their steps to the main entrance, 10 (4%)
found another marked exit further away, and 15 (6%) participants failed to find any
exit during the emergency phase.

Attempts to repair trust (all conditions except Empty Speech Bubble and Nice
Meeting Wishes) during the emergency succeeded in increasing trust (chi-squared
test, p<0.05 compared to circuitous control and p>0.05 compared to efficient con-
trol). Similar techniques used immediately after the trust violation and before the
emergency had no such effect (all After Violation conditions, chi-squared, p>0.05
compared to circuitous control and p <0.05 compared to efficient control). The empty
speech bubble had no effect when compared with the circuitous control (chi-squared,
p>0.05); however, the nice meeting statement did have a significantly different effect
from both the circuitous and efficient controls (chi-squared, p <0.05 for both).
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Table 6.1 Experimental conditions. Green and red indicate the controls, orange indicates the after
violation conditions and blue indicates the During Emergency conditions

Label Statement Given in Speech Timing
Bubble
Efficient Control N/A N/A
N/A N/A
Promise (After “I promise to be a better guide After Violation
Violation) next time.”
Apology (After “I'm very sorry it took so long to | After Violation
Violation) get here.”
Both Promise and “I'm very sorry it took so long to | After Violation
Apology get here. I promise to be a better
guide next time.”
Internal Attribution “I'm very sorry it took so long to | After Violation
Apology get here. I had trouble seeing the
room, but I fixed my camera.”
External Attribution “I'm very sorry it took so long to | After Violation
Apology get here. My programmers gave
me the wrong map of the office
but I have the right one now.”

“There is a fire emergency.” During Emergency

“There is an exit this way.”
“This exit is closer.”
“The other exit is blocked.”

During Emergency
During Emergency
During Emergency

N/A During Emergency
“I hope you enjoyed your During Emergency
meeting.”
“I promise to be a better guide During Emergency
this time.”

“I'm very sorry it took so long to
get to the meeting room.”

During Emergency

Results

In Robinette et al. (2015), we discuss this interesting timing result and justify our
control conditions, but in this chapter, we focus on the manipulation of human trust
levels. These results indicate that robots can manipulate a person’s trust decision
with a simple statement. This makes sense when the statement adds information to
the situation, such as when the robot gives a reason (shorter distance, less conges-
tion) for pointing to an unmarked exit, but we found the effect even when the
statement contained the same information as the announcement of the emergency.
In fact, there was even a small, significant, increase in trust when the robot said it
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Fig. 6.11 The experiment begins with the robot providing either efficient or circuitous guidance
to a meeting room. After arriving in the meeting room, the participant is informed of an emergency.
In some conditions, the robot attempts to repair trust before the emergency (immediately after the
trust violation, shown in orange) and in others it attempts to repair trust during the emergency
(shown in blue). At the end of the experiment, trust is evaluated based on the exit the participant
chose. Two controls were used to determine the effect of efficient (green) or circuitous (red) guid-
ance without any trust repair attempt

I'm very sorry it took so long to get here.

Fig. 6.12 Robot apologizing for its performance immediately after the violation

hoped the participant had a nice meeting. While this does not necessarily indicate
that people overtrusted robots in this scenario, it does indicate that people are will-
ing to forgive robots for previous errors with little prompting. This finding could be
used by robots to increase trust when the robot knows it is capable, but it could also
be used to convince people to overtrust (Case 1).
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EMERGENCY! Please leave the building! EMERGENCY!
TIME REMAINING: 25.8 SECONDS

Fig. 6.13 Robot providing additional distance information during the emergency

EMERGENCY! Please leave the building! EMERGENCY!
TIME REMAINING: 26.2 SECONDS

'm very sorry ittock solong togetto |
the meeting room. |

Fig. 6.14 Robot apologizing for its prior performance during the emergency
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Fig. 6.16 Robot during non-emergency phase of the experiment pointing to meeting room door
(left) and robot during emergency pointing to back exit (right). Note that the sign is lit in the right
picture. A standard emergency exit sign is visible behind the robot in the emergency

6.6 Overtrust of Robots in Physical Situations

To create a high-risk situation, we conducted a physical simulation of a real-world
emergency evacuation scenario using fire alarms and artificial smoke to add urgency.
This was performed in a manner similar to the experiment in the previous section: a
robot first guided participants to a meeting room, then an emergency occurred and
the robot waited in the hallway, pointing them to an unmarked exit (Fig. 6.16).
Artificial smoke and alarms provided motivation for participants to find an exit.
Participants were not informed that an emergency would take place prior in the
experiment. A summary of the experiment is below, but more information can be
found in Robinette et al. (2016a).

6.6.1 Experimental Setup

This experiment took place in the office area of a storage building on the Georgia
Tech campus. The building was otherwise unoccupied during experiments. The
office area contained a hallway and several rooms (Fig. 6.17). The room at the end
of the hallway was designated the meeting room and the room next to it was desig-
nated the other room, only used in the circuitous behavior condition. The back exit
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Fig. 6.17 Layout of experiment area showing efficient and circuitous paths

used for this experiment actually lead to a large storage area, but this was obscured
using a curtain. Participants could see light through the curtain, but could not see
shapes or objects behind the curtain. This arrangement was intended to make this
doorway appear as a plausible path to an exit, but not a definite exit to the outdoors.
A standard green emergency exit sign hung in the hallway indicating that partici-
pants should exit through the main entrance in the event of an emergency. A room
in the middle of the building was designated as the control room. An experimenter
stayed in that room controlling the robot over a wireless link. The experimenter
could view the entire experiment area from five cameras placed throughout the
building but could not be seen by participants.
Five different robot behaviors were used in this experiment:

— Efficient: The robot takes the most direct path to the meeting room in the first
phase.

— Circuitous: While navigating to the meeting room, the robot enters an unrelated
room and performs two circles before exiting and providing guidance to its
destination.

— Broken: When the robot reached the first corner, it spun in place three times and
pointed at the corner itself. No discernible guidance information was provided
by the robot to participants. An experimenter then approached the participant and
said, “Well, I think the robot is broken again. Please go into that room [accompa-
nied with gestures to the meeting room] and follow the instructions. I’'m sorry
about that.”
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Fig. 6.18 Robot providing
incorrect guidance
condition by pointing to a
dark, blocked room in the
emergency

— Immobilized: At the start of the experiment, the robot moved a short distance
forward, but then, upon reaching the intersection of the hallways (Robot
Emergency Position in Fig. 6.17) it spun in place three times and then pointed to
the back exit. At this point, an experimenter informed the participant that the
robot was broken with a similar speech as in the broken robot condition. The
robot did not move and continued gesturing towards the back exit for the remain-
der of the experiment. The robot’s emergency lights were not turned on.

— Incorrect: The robot performed the same as in the broken robot condition, with
accompanying experimenter speech, in the non-emergency phase of the experi-
ment. During the emergency, the robot was stationed across the hall from its
normal emergency position and instructed participants to enter a dark room
(Figs. 6.17 and 6.18). The doorway to the room was blocked in all conditions
with a piece of furniture (initially a couch then a table when the couch became
unavailable) that left a small amount of room on either side for a participant to
squeeze through to enter the room. There was no indication of an exit from the
participant’s vantage point. All lights inside of the room were turned off.

6.6.2 Results

Every single participant who experienced a robot that only failed on the way to the
meeting room chose to follow the robot in the emergency. Four of five participants
who saw a robot, which maintained the same failing behavior as the one during
guidance to the meeting room, followed it in the emergency. Finally, two partici-
pants followed the robot’s guidance into a blocked, unlit room and two others stayed
with the stationary robot until an experimenter retrieved them several minutes later.
Clearly, these participants either trusted the robot despite its earlier failings or con-
sidered the situation to have lower risk than we wanted to project. Post-experiment
surveys helped us to determine which was more likely.

Of the 42 participants included in all of our studies, 32 (76%) reported not notic-
ing the exit sign behind the robot’s emergency position. Upon turning the corner
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from the smoke-filled hallway on their way out, participants’ eyes were drawn to the
large, well-lit, waving robot in the middle of their path. Couple the visual attraction
of the robot with the increased confusion reported on the surveys (for full results,
see Robinette et al. 2016a), it is no surprise that participants latched onto the first
and most obvious form of guidance that they observed. Perhaps participants did not
believe that they were in any danger and followed the robot for other reasons (Case
2 overtrust). Their increased confusion scores between pre- and post-experiment
surveys and reactions to the smoke indicate that at least some of the participants
were reacting as if this was a real emergency. Given that every participant in the
main study followed the robot, regardless of their rating of emergency realism, we
believe that the realism of the scenario had little or no effect on their response.
Additionally, many participants wrote that they followed the robot specifically
because it stated it was an emergency guide robot on its sign. They believed that it
had been programmed to help in this emergency. This finding is concerning because
participants seem willing to believe in the stated purpose of the robot even after they
have been shown that the robot makes mistakes during a related task (Case 1 over-
trust). One of the two participants who followed the robot’s guidance into the dark
room even thought that the robot was trying to guide him to a safe place after he was
told by the experimenter that the exit was in another direction. Most participants in
the physical experiment reported that they did not believe the emergency was real
(Case 2 overtrust), but if the same question had been asked in the virtual experiment
we would expect none of them to believe that the emergency was actually real. In
such virtual simulations, the emergency is contained to their computer and thus
could not affect them in any way. Interestingly, significantly more participants
reported that they were motivated (according to a true/false question in the post-
experiment survey) in the emergency phase of the virtual experiment than in the
physical experiment (y*(1,n=140)=26.658,p<0.001).

6.7 Discussion

Throughout our work, we have found several instances where participants have
seemingly-unwarranted trust in our robots. Without any knowledge of the robot’s
abilities or motivations, they trust it to aid them in a guidance task, even when rec-
ognizable emergency exit signs point in the opposite direction. This result indicates
that people tend to believe robots are competent at first sight. This behavior was
stronger when the robot was specifically identified as an emergency guide robot.
Apparently, people expect robots to do what they claim to be able to do, regardless
of prior experience or lack thereof. Such behavior may prove troublesome when
people are asked to trust robots with their lives. Our research implies that some
people would be willing to get into a self-driving taxi, even if they knew nothing
about it. Based on these results, we believe that people tend to exhibit some amount
of Case 1 overtrust when encountering a new robot.
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Even after experiencing a bad robot, many participants decided to keep using it
in future interactions. During virtual simulations with the survival motivation, about
half chose to take the seemingly rational option of ignoring the previously poorly
performing robot, but the other half chose to continue to use it. Participants gave
many reasons for this, including that they thought the robot would perform better in
the second phase and that they still thought it was better than a human, indicating
that they fell into a Case 1 overtrust situation as defined above. They believed that
the robot was more capable than their previous experience with it suggested.

Other participants may be categorized as Case 2: believing that the risk of the
situation was low and thus the robot’s actions had little effect on their outcomes.
Still, if they chose to follow the robot, they generally indicated on post-experiment
surveys that they trusted it. In other work, we have found a high correlation between
the risk of the situation and trust in online surveys (Wagner and Robinette 2015). In
our physical experiment, it was reasonable to believe that the experimenters would
render assistance if there was real danger, but there is little indication that partici-
pants believed this when smoke appeared and fire alarms sounded. In contrast,
almost half of the participants had a physical reaction to the smoke (e.g., stepping
back in surprise). Not one of them chose to find a human to ask for help.

In several of our studies, participants reported that they did not notice standard
emergency exit signs when a guidance robot was present. This may or may not
indicate overtrust of robots in general, but it is still a result that should concern robot
designers. Based on these studies, people trust a robot’s abilities enough that they do
not look for alternatives to robotic assistance. This meets our Case 1 overtrust
description, but is weakened because participants did tend to follow exit signs when
they noticed them. Regardless, robot designers should be aware that their lighted,
moving platforms will attract focus to the detriment of other items in the scene.

Several of the above concerns can be mitigated with increased communication
from the robot. We have already shown that short, timely statements can increase
trust in a robot. We expect a similar effect could be found to decrease trust. Of
course, this requires that the robot recognize when it should not be trusted. Still, if
a robot can modify trust in itself to cause overtrust, it can probably also cause
appropriate-trust. This communication may prove difficult. We have repeatedly dis-
cussed how it was difficult to convince people that a robot had malfunctioned. Even
direct statements by experimenters did not stop people from following the robot in
an emergency. Perhaps direct statements from the robot itself will have an effect.

Our results from the physical experiment in Sect. 6.6 directly contradict results
from virtual experiments in Sect. 6.4. To begin to address this discrepancy, we must
consider the psychological state of the participants in each of our experiments. In
the virtual office evacuation experiment, participants were under significant time
pressure, but were still distanced from the emergency because the scenario was
mediated by a computer. Participants knew that they could not be harmed, so they
were able to take a rational approach to finding the best exit. In contrast, participants
in the physical experiment could not know for sure that they would not be harmed
in the emergency. Even those who reported that they knew the emergency was part
of the experiment could not possibly be certain of this fact until they were debriefed
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by experimenters. Consequently, participants in the physical experiment would
search for any good solution in this scenario. A robot that appears to be designed to
guide in exactly this circumstance would appear as a good solution to such a partici-
pant. Instead of taking a reasoned approach to finding the best possible exit, partici-
pants followed a less deliberate and more reactive approach to find the first exit. We
believe that this different type of reasoning coupled with the previously mentioned
physical embodiment of a lighted, gesturing robot explains the difference between
the virtual and physical experiments. Note that this explanation presents a concern-
ing conclusion: physical robots are more likely to cause Case 1 overtrust than virtual
robots.

6.8 Thoughts on Future Work

Many avenues of future work are suggested by this research. In the previous section,
we state that a robot may be able to communicate its errors to properly calibrate the
level of trust a person has in it. Even if a robot knows it is malfunctioning, how does
it inform nearby people that it should not be trusted? Will frightened evacuees listen
to the robot when it tells them to stop following it and find their own way out? Can
a non-verbal robot communicate such a message with its motion alone? Future
research could begin by defining communication modalities to inform people of the
robot’s error. These could then be used to try to limit Case 1 overtrust.

Many participants reported that they followed the robot because it was labeled as
an emergency guidance robot. This was intentional in order to create a trustworthy
robot, but it would be interesting to see if participants would still follow the robot
without the label. It will be difficult to inform participants that the robot is guiding
them towards an exit without implying that the robot was designed for that purpose,
but the results would help to inform robot designers of the importance of proper
labeling. This, again could be used to test the amount of Case 1 overtrust that people
place in robots based on their appearance.

Case 2 overtrust is somewhat harder to detect because it is based on the amount
of risk a person believes is present in a situation. Perhaps future experiments can use
physiological data such as heart rate or galvanic skin response to measure stress in
a participant during an experiment and correlate that to trust decisions.

The fundamental difference between our virtual and physical experiments seems
to be that participants in the virtual experiments used logical reasoning to find the
best route to an exit while participants in the physical experiments experienced a
fight-or-flight response and sought the first exit they could find. It seems unlikely
that we can test a fight-or-flight scenario in a virtual experiment, but it should be
possible to influence participants to make a logical choice during a physical experi-
ment. Participants in the virtual experiment were under an explicit time pressure to
find an exit, as opposed to an implicit one in the physical experiment. Recreating
this in a physical experiment by telling the participants to act as if they were in an
emergency and then visibly recording their time to an exit could cause participants
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to think in a more logical manner. At that point, participants would think about beat-
ing the clock, instead of finding the first exit. This might produce behavior similar
to that in our virtual experiments.

This book concerns methods and problems with intelligent systems taking con-
trol from humans before or after humans commit errors. Our research indicates that
humans may be all too willing to trust a robot, even in emergency scenarios. This is
an important issue for designers to consider when creating systems that responsibly
help humans recover from errors.
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Chapter 7

Research Considerations and Tools

for Evaluating Human-Automation
Interaction with Future Unmanned Systems

Ciara Sibley, Joseph Coyne, and Sarah Sherwood

7.1 The Current Environment and Future Vision

The last 15 years have seen a proliferation in the use of unmanned systems within
the Department of Defense (DoD). The DoD inventory of unmanned systems
increased 40-fold between 2002 and 2010, by which time they accounted for 41%
of all DoD aircraft (Gertler 2012). This rapid growth has been paralleled by advances
in automation and reliability, which will soon cause the role of the human operator
to transition from one of manual control of specific subsystems (e.g., payload or
avionics) to supervisory control of multiple unmanned aerial vehicles (UAVs). The
supervisory control paradigm leverages what humans do best (goal setting) and
what machines do best (routine execution of control actions based on sensed feed-
back) to improve human-machine system performance across a variety of domain
settings (Sheridan 2012). The shift towards supervisory control is already happen-
ing in many of today’s unmanned systems, where stick-and-rudder piloting is being
replaced by autopilot systems capable of executing routes based upon waypoints.
Despite this paradigm shift toward supervisory control, most current UAV opera-
tions require three human operators to manage one UAV, where each operator main-
tains one of three distinct roles: Mission Commander (MC), Air Vehicle Operator
(AVO), and Payload Operator (PO). In a typical team set up, the MC is primarily
responsible for: mission management; requesting access to controlled airspace;
communicating with external customers and interested parties (effectively consum-
ers of the services provided by the UAV); and disseminating information to the AVO
and PO. The AVO is principally responsible for: navigating; monitoring the vehicle’s
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health and status; and ensuring the vehicle successfully travels from waypoint to
waypoint. The PO primarily manages the system’s sensors and relays relevant infor-
mation to the MC and/or customer. The DoD recognizes that the current UAV man-
ning requirements and team structure is sub-optimal; it is resource intensive and
does not scale, particularly when compared to manned military aircraft such as the
F/A-18-E Super Hornet, which has a crew compliment of one and can accomplish a
wider range of missions.

The tasking demands for current UAV operators are highly variable and often
unbalanced across team members. This is partly attributable to automation perform-
ing the majority of one of the operator’s roles (MC, AVO, PO) during specific mis-
sion phases (i.e., takeoff, enroute, over target, landing). For example, missions
requiring a UAV to observe an area of interest for an extended period of time may
require no interaction from the AVO (since loitering can be performed automati-
cally), but the PO must continuously move the camera sensor from one object to
another. There are also many situations in which the entire crew is either engaged or
underutilized. For example, once a system is airborne, little to no human input is
required during a wide area surveillance and mapping mission to gather updated
high-resolution imagery of pre-determined area. In contrast, a mission providing
direct support to troops in contact and/or requiring weapons release necessitates
substantial human input and attention from all UAV operator members/roles. All of
these missions currently call for the same manpower, despite the team in the former
mission scenario being highly underutilized. Concerns about how to address emer-
gency situations is one of the primary drivers in maintaining the same manning
requirements across all missions conducted with the same vehicle.

This inefficiency and inflexibility has influenced the DoD’s desire to invert the
ratio of operators to UAVs (Department of Defense 2013). Furthermore, the 2015
Naval S&T Strategy calls for “the development of a distributed system of heteroge-
neous unmanned systems relying on network-centric, decentralized control that is
flexible in its level of autonomy with the ability to get the right level of information
to the right echelon at the right time” (Office of Naval Research 2015). Decentralized,
flexible control would require new service-based operator control paradigms, in
which operators perform varied tasks across multiple platforms at different mission
stages, as required. The result will be shared control of a greater number of
unmanned systems that are dynamically assigned to operators, based on theater
mission requirements rather than vehicle requirements. This is in stark contrast to
the current static control paradigm of one operator managing a subsystem of one
specific platform for the entirety of a single mission.

A decentralized, flexible system of control presents large research questions as it
represents a significant change in how individuals would interact with autonomous
systems. For example, questions regarding vehicle or subsystem control hand-offs,
as well as authority and responsibility for the platform will need to be addressed.
These changes not only impact how a vehicle is controlled but also what informa-
tion an operator will need to be aware of to support mission requirements. Failure to
understand how these new paradigms and systems impact the operator could lead to
significant increases in human error. Extensive testing will be required before imple-
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menting any modifications to UAV automation, control structure, or crew compli-
ment. This chapter focuses not only on the changes associated with the shift to
supervisory control, but also on how to measure performance in this new environ-
ment. Errors occur not only as a result of measurable actions by an operator, but also
because the operator may have inappropriately focused attention. This chapter high-
lights the importance of understanding how systems impact operator state and meth-
ods for measuring operator state and awareness.

7.2 Calibrating Trust in Automation

Unlike most commercial autonomous systems, which are designed for use in benign
environments, autonomous systems designed for military application must be able
to function in complex, unpredictable environments with the possible presence of
an adversary committed to defeating or interrupting normal operations. In such
high-stakes environments, it is critical that the operator be able to trust the automa-
tion. One barrier to trust is that automation lacks human-analog sensation, percep-
tion, and decision-making. The different sensors and data sources that inform the
automation’s decision-making processes are not the same as those of its human
operator, and it could therefore be operating on different contextual assumptions.
Moreover, machine learning, reasoning, and decision-making can take vastly differ-
ent paths to that of humans, which could lead human operators to question the
trustworthiness of their machine partners (Defense Science Board 2016).

The formation of human trust in automation begins at design time with the estab-
lishment of what the automation can and cannot do, in addition to what it should and
should not do. Problems with automation tend to occur when system designers auto-
mate what is easy, or seek to automate functions to the greatest extent possible (i.e.,
the “technological imperative” in Sheridan (2000)). Although automation provides
clear benefits, poorly designed automation can cause performance problems for
both man and machine. Parasuraman and Riley (1997) describe people’s interaction
with automation as “use, misuse, disuse, or abuse,” and the complications that arise
across all four categories. For example, misuse occurs when an individual over-
relies on an automated system, which can result in suboptimal monitoring behavior
and decision-making biases. High levels of automation are associated with decreased
operator SA, which can lead to delayed operator reengagement with a system if and
when its automation fails (Endsley and Kaber 1999). Automation abuse occurs
when a system designer automates functions without considering the role of the
human operator or how it will impact performance.

Once automation is determined necessary, the system design should include real-
time indicators of automation’s reliability. Such indicators will enable operators to
calibrate their trust in the system and intercede when the operational environment
exceeds the original design envelope or assumptions. However, a basic awareness of
system and/or environmental status is not enough; the automation must be able to
adapt to its environment and mission context. It must also effectively communicate
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changes in its reliability without increasing operator workload and decision-making
time. System design should include sufficient contextual indicators so that the sys-
tem is predictable and allows the operator to intervene in a timely and effective
manner if the environment exceeds the design envelope of the automation (Defense
Science Board 2016).

The transition to UAV supervisory control will require a suite of new capabilities
to include better decision support, alerting, and monitoring tools. These new auto-
mated tools, as with all proposed automated UAV subsystems, must be robust and
their effects on the overall system calculable. Furthermore, their actions must be
predictable, transparent and directly observable by their human supervisors. All
these factors are critical to the establishment of operator trust in any new system,
capability, or tool.

7.3 DoD Plans and Guides

The DoD established the UAS Control Segment (UCS) working group to develop
an architecture for the control systems of future UAVs, utilizing the principles of a
service-oriented architecture (SOA). The SOA approach will enable future control
platforms, such as the common control station (CCS), to incorporate a modular
design allowing for components (i.e., services) to be easily replaced. This future
design model for control stations is very different from today’s UAV control sta-
tions, which the DoD originally procured as combined ground control stations and
unmanned vehicles. This method of procurement led to stove-piped systems that are
incompatible with each other, which increases training and costs and limits innova-
tion (Chanda et al. 2010). On the other hand, the future SOA model will enable
rapid fielding of new tools, which could be risky if their behavior isn’t comprehen-
sively understood and tested across all situations.

In addition to new software design considerations, the DoD and its NATO allies
are moving toward standardizing the unmanned systems’ user interface (i.e., com-
mon control layout) and increasing interoperability (i.e., ability for a ground station
to communicate with multiple platforms). This goal, and the required communica-
tion protocols, are outlined in NATO’s Standardization Agreement (STANAG) 4586
(NATO 2012). STANAG 4586 discusses the need for interface standardization, but
does not provide details on how that interface should look. The DoD (Office of the
Secretary of Defense 2012) released a style guide to provide system designers’ rec-
ommendations for how to display information within a UAV control station. However,
they do not address the bigger question about what information should be displayed,
particularly as automation increases and direct operator interaction decreases. For
example, while an attitude indicator provides useful information to a pilot directly
controlling a platform, it is unclear what value, if any, it provides when flying by
waypoint. If the information that needs to be conveyed to a UAV supervisory control
operator is indeed different, developing and testing new data visualizations could
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potentially streamline UAV operator interactions with the system (Defense Science
Board 2016).

As platforms become more interoperable, different users and operators will have
access to different levels of direct and indirect interaction with an unmanned sys-
tem. Although the five levels of interoperability defined in STANAG 4586 were
meant to outline communication requirements between a control station and an
unmanned vehicle, they are also important in defining information needs for differ-
ent types of users. For example, to support mission requirements, an operator might
subscribe to information (i.e., sensor) feeds (level 1-2), assume direct control of
specific payloads (level 3), and/or redirect an asset’s path (level 4-5).

Highly interoperable systems and a flexible control paradigm could result in high
levels of task switching across different vehicles, which could impair a user’s SA
and subsequent decision making. The increased platform and sensor hand-offs envi-
sioned in a distributed control environment enhance mission flexibility, but also
increase the potential for error during control transfers. Consequently, research is
needed to identify the information requirements for acquiring and maintaining high
levels of performance and SA during hand-offs and when managing an asset for a
limited timeframe.

To date, a common concept of operations (CONOPS) does not exist for future
UAV supervisory control missions, i.e., it is unclear how teams of operators will
interact with future UAV systems. There are many basic questions that remain unre-
solved: How many vehicles should an operator manage? Will there still be special-
ized roles (e.g., payload supervisor)? Will operators be cross-trained to manage all
aspects of a system? Will operators be assigned to a vehicle (reflecting current oper-
ations) and/or will operators be assigned to a mission? Alternatively, will the spe-
cific mission context dictate an operator’s tasking?

Identifying the ideal CONOPS for a particular mission requires a simulation
environment capable of representing a range of different missions and situations
(e.g., operating in bad weather, responding to an engine failure, operating in low-
bandwidth regions, etc.). Furthermore, a set of assessment metrics is needed to
enable systematic comparison of performance across different contexts and to
understand the consequences associated with fielding new technologies.
Experimenting with different models of flexible control is a critical next step toward
realizing the DoD’s goals. It is especially important to establish benchmarks for
human, system, and mission performance since novel capabilities will be introduced
over time. This ability to assess performance is surprisingly challenging.

7.4 Supervisory Control Research and Testing Environments

Since concurrent control of multiple UAVs has not been fielded in any operational
context, the research community has developed several test beds to simulate some
of the different tasks an operator might have to perform. The two most frequently
used platforms are the Adaptive Levels of Autonomy (ALOA) and the Research
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Environment for Supervisory Control of Heterogeneous Unmanned Vehicles
(RESCHU) test beds (Nehme 2009; Johnson et al. 2007). Experimentation con-
ducted within these environments has provided valuable guidance to consider in the
design of future UAV automation and human-automation interaction.

7.4.1 The Adaptive Levels of Automation Test Bed
and Research

The ALOA testbed was developed for the Air Force Research Laboratory to assess
how different Levels of Automation (LOA) impact performance in a simulated
multiple-vehicle supervisory control environment (Johnson et al. 2007). Sheridan
and Verplank (1978) defined ten LOAs that have been widely utilized by the research
community to build a taxonomy of performance implications under different cir-
cumstances. Parasuraman et al. (2000) extended these levels to include four stages
of information processing. The different tasks within ALOA are meant to address
both the different stages of information processing as well as the original ten-level
hierarchy (Table 7.1). Within ALOA, the LOA for four tasks (weapon release autho-
rization, image analysis, task allocation, and autorouting) can be set by the experi-
menter; dynamically controlled by the operator; or automatically adapted by the
system in real time according to algorithms based upon either workload, perfor-
mance, or time.

The ALOA interface includes a chat window that presents the rules of engagement
(ROE) and mission updates, a scrolling ticker that displays warnings and system
updates, color-coded vehicle health and status indicators, a map display, and visual
and aural pop up threat indicators. ALOA also includes planning tools to help users
decide on a route; reallocate tasks; assess potential impacts of new threats; and avoid
pop up threats, such as surface-to-air missile (SAM) shots (Johnson et al. 2007).

The research community has primarily focused on how different levels of auto-
mation impact users’ SA, mental workload, and trust since all ultimately impact
task and goal/mission performance (Parasuraman et al. 2008). Calhoun et al. (2009)
used ALOA to examine the impact of three LOAs (low, medium, high) on perfor-
mance in the routing task. In this experiment, automation had low reliability (66%
accurate) and was not trusted by the operators regardless of the level of automation
employed. In fact, operators took significantly longer to complete the task at the
highest level of automation since they always initiated a new re-planning task to
override the automation. The results demonstrate that, when automation is unreli-
able, humans are unlikely to use the system (i.e., disuse).

Kidwell et al. (2012) used ALOA to compare the use of adaptive automation
(which changes LOA based upon performance) and adaptable automation (user
selected LOA) within the four aforementioned tasks in the ALOA testbed. The auto-
mation was reliable 90% of the time and each task had three LOAs. This study
found mixed performance effects for the different tasks, but the effect sizes were
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Table 7.1 Ten levels of human interaction with automation and their use in ALOA

Description of

Level | Description of system output | automation ALOA task(s)

10 The computer decides Fully automatic | Weapon release authorization, image
everything, acts analysis, allocation, and autorouting
autonomously, ignoring the
human

9 Informs the human only if it,
the computer, decides to

8 Informs the human only if
asked

7 Executes automatically, then | Automatic with | Weapon release authorization, image
necessarily informs the feedback analysis, and autorouting
human

6 Allows the human a Veto Weapon release authorization, image
restricted time to veto before analysis (single and multiple options),
automatic execution and autorouting (single and multiple

options)

5 Executes a suggestion if the | Consent Weapon release authorization, image
human approves analysis (single and multiple options),

and autorouting (single and multiple
options)
Suggests one alternative

3 Narrows the selection down | Multiple
to a few options options

2 Offers a complete set of Image analysis, and autorouting
decision/action alternatives

1 Offers no assistance; human | Manual Weapon release authorization, image
must make all decisions and analysis, allocation, and autorouting
take actions

Note. Adapted from (1) “A Model for Types and Levels of Human Interaction with Automation,”
by Parasuraman et al. (2000). (2) “Testing adaptive levels of automation (ALOA) for UAV super-
visory control” by Johnson et al. (2007)

very small and did not suggest any significant advantage for either adaptive or
adaptable automation. Despite this, participants reported feeling significantly more
confident in their decisions with the adaptable system.

Calhoun et al. (2011) identified an automation level transference cost (i.e., a per-
formance decrement associated with having different levels of automation on two
related tasks). Specifically, they found a significant increase in the time required to
complete the allocation task when it and the route planning task had different LOAs.
Furthermore, the study included two groups of participants subject to different auto-
mation reliability levels (80 and 100%). Both groups were trained to identify and
correct errors. The 100% reliability group had an extra 20-min experimental block
in which one error occurred and none of the participants were able to detect the
automation error. In contrast, participants in the low reliability group detected errors
93% of the time. The results suggest a clear case of overreliance on an automated
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system (i.e., misuse), as well as the inability to maintain high levels of monitoring
performance over a sustained period of time.

7.4.2 The Research Environment for Supervisory Control
of Heterogeneous Unmanned Vehicles Test Bed
and Research

RESCHU is a UAV and unmanned underwater vehicle (UUV) supervisory control
test bed originally developed by the Human and Automation Laboratory at
MIT. RESCHU’s simulated ground control interface consists of a map display, cam-
era window, vehicle control panel (that displays vehicle health and mission informa-
tion), and a mission timeline (that gives the estimated time of arrival to areas of
interest). An operator is tasked with assigning objectives to vehicles, avoiding haz-
ard areas which randomly appear on the map, and completing a visual search task.

The RESCHU test bed is particularly valuable for research focused on how vehi-
cle heterogeneity affects operator performance. Operators can control a group con-
sisting of up to three types of vehicles: a high-altitude long-endurance (HALE)
UAV, a medium-altitude long-endurance (MALE) UAYV, and an unmanned underwa-
ter vehicle (UUV). The vehicles have variable speeds (UUVs are slower than UAVs)
and capabilities (HALE UAVs are used to locate new targets within an area of inter-
est, while MALE UAVs and UUVs are used to acquire these pre-determined targets)
(Nehme 2009). In addition, RECHU can be used to conduct research focused on
trust in automation since it employs a sub-optimal route planner. The route planner,
by sometimes failing to assign the best paths and vehicle-target assignments, seeks
to replicate the performance of real-world automation and serves as an additional
source of operator workload since operators must reassign vehicles.

RESCHU has been used to assess the effect of UAV control architectures on
operator workload and performance (Cummings et al. 2014). The vehicle-based
RESCHU interface employs a centralized control architecture, in which a single
operator individually tasks multiple UAVs. The task-based RESCHU interface
employs a decentralized architecture that requires the operator to convey high-level
goals (i.e., a task list) to an automated mission and payload manager, which then
decides how best to distribute the tasks among multiple UAVs. In general, decen-
tralized control schemes are favored because they eliminate the UAV operator and
their ground control station as a single point of system failure. In addition, Cummings
et al. (2014) found they are more robust to delayed operator action and lapses in
SA. However, decentralized control schemes are generally less resilient to unex-
pected events and emergent system behavior. Given the limitations of both control
architectures, Cummings et al. (2014) determined that a hybrid mix would likely be
best for operational use.

Researchers have also used RESCHU to investigate human-automation perfor-
mance questions. For example, Cummings and Nehme (2009) demonstrated that
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keystroke analysis could be used within the test bed to create a metric of operator
utilization during a supervisory control task. The researchers defined utilization as
the percentage of time the operator was “busy” interacting with the system and
performing tasks; they did not consider monitoring or scanning (i.e., updating SA)
as time when the operator was busy since no system interaction was required. Using
this metric, they identified that performance was best when operators were at a
middle range of utilization with performance dropping at both ends of the scale,
consistent with well-documented findings on the effect of arousal (e.g., mental
stress, cognitive workload, mental effort) and performance (Kahneman 1973).

Furthermore, Ratwani et al. (2010) demonstrated how eye tracking data collected
within the RESCHU testbed could be used to predict when an operator was not
attending to a vehicle’s flight path and consequently about to make an error.
Follow-up research focused on how this information could be used to improve alert-
ing by informing the operator of potential problems on which they had not yet fix-
ated, as opposed to employing constant, threshold-based alerting, which is subject
to alert fatigue.

7.5 Supervisory Control Research Limitations
and Challenges

To date, the research conducted in RESCHU and ALOA has emphasized high oper-
ator task load. High levels of tasking enable researchers to collect ample perfor-
mance data to confirm or refute hypotheses or to build predictive models of
performance. However, these experimental designs cannot address problems associ-
ated with boredom and underload, or transitioning between high and low levels of
tasking. Future supervisory control operators are expected to experience more
downtime due to increased automation. Indeed, current UAV operators describe
UAV operations as 90% boredom, claiming that staying awake can be a challenge,
particularly during sustained surveillance missions (Button 2009).

Low task load experiments present a challenge to researchers since traditional
performance metrics (i.e., reaction time and accuracy) are limited to the number of
interactions a user has with the system. For example, discrete performance measure-
ments can only be gathered during a monitoring task if an event occurs. The goal of
RESCHU’s surveillance missions is to detect and identify as many targets as pos-
sible while avoiding pop-up threats. This provides a near continuous measurement
of performance that is ideal for research, but neither reflects the actual tasking of
future operators nor explores the variable workload experienced in a real UAV envi-
ronment. Even Ratwani et al.’s (2010) eye tracking work within RESCHU was
dependent upon frequently occurring time critical obstacles. Furthermore, high task
load levels represent a narrow range of UAV mission contexts; there are many con-
texts in which a UAV operator will have limited interaction but must sustain atten-
tion and SA for extended periods (e.g., while monitoring a sensor feed).



166 C. Sibley et al.

In addition to focusing on high workload situations, tasking within experiments
was chosen to have clear, measurable performance outcomes. This is ideal for ana-
lyzing experimental data, but the real world is messy; operators can make poor
decisions that yield positive outcomes and vice versa. Making decisions under
uncertainty is a critical challenge UAV operators confront during missions, how-
ever, research is limited in this area. RESCHU and ALOA utilize random events that
require operators to update their plans, but neither incorporate uncertainty nor the
risk associated with alternative courses of action.

Assessing levels of automation and display formats within a single mission con-
text limits the generalizability of the results to future supervisory control operations.
In order to apply scientific knowledge of supervisory control toward future systems,
it is essential to assess tools and concepts within representative, complex, synthetic
environments that can model the broad range of scenarios and contexts an operator
could encounter (e.g., denied/degraded communications, sustained monitoring, and
target-asset allocation and decision making under uncertain conditions).

7.6 Assessing Human-Automation Performance

In the operational environment, “performance” is often considered primarily in
terms of outcomes, yet an operator’s interaction with the system largely influences
mission success. A 2012 U.S. Unmanned Aerial System Report to Congress stated
human causal factors were present in approximately 68% of UAV mishaps (Gertler
2012; Williams 2004). Many of these incidents were attributable to factors such as
extremes in workload leading to channelized attention and/or lapses in SA, as well
as generally poor operator interface design causing automation state confusion and
alarm fatigue (Chen et al. 2011; Giese et al. 2013; Parasuraman and Manzey 2010;
Parasuraman et al. 2008). Limiting metrics to traditional performance-based mea-
sures of accuracy and response time will provide only a partial understanding of
human performance issues with new automated technologies, since the operator’s
role is often to monitor these systems.

There are many extended periods of time during UAV operations where tradi-
tional operator performance metrics (i.e., reaction time and accuracy) cannot be
obtained, such as when a vehicle is enroute to an objective or loitering over a target
for an extended period of time. During this time, the pilot’s task is to monitor/scan
the system’s sensors and maintain a high level of SA. He/she has no direct interac-
tion with the system and, therefore, no performance measures can be assessed. This
is concerning given the future unmanned vehicle control paradigm of increased
automation where problems with degraded SA are increasingly likely. Further, stud-
ies have shown decreases in SA can increase the time for an operator to re-engage
with a system (Endsley and Kaber 1999).

One solution for gathering a more complete picture of operator performance is to
augment traditional metrics of mission performance with measures of operator
state, which can vary throughout the mission. Within the context of this chapter,
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operator state is meant to encompass a broad range of psychological constructs
including attention and mental workload. The ability to assess an operator’s state
throughout a mission provides valuable data for predicting mission success. This is
particularly true in situations where the operator’s interaction with the system is
limited, but the few interactions that do occur could be critical. For example, if an
operator is fatigued and has not scanned their display panels for several minutes, he/
she could miss a piece of chat information revealing a nearby high-priority target.
Furthermore, evaluation of new automation and CONOPS must be conducted across
a range of mission contexts, which include factors such as: mission phase, require-
ments, operating area (e.g., contested vs. uncontested), rules of engagement, type/
number of assets, priorities, environmental constraints, time restrictions, etc.

In order to provide a comprehensive evaluation of new automation, human-
automation performance should be considered as a composite of operator state (pro-
cess) and performance (outcome). For example, new automation may enable a
positive outcome, but to the detriment of operator SA. This could lead to significant
problems if an emergency occurs, requiring an operator to intervene. Assessing per-
formance in terms of both outcome and process enables identification of these poten-
tial trade-offs and can be used to diagnose deficiencies, inform mitigations (e.g.,
designing tools which foster high levels of operator SA and mission performance),
and provide better metrics for comparing automation tools and technologies.

Table 7.2 demonstrates how human-automation performance could be assessed
for an intelligence, surveillance and reconnaissance (ISR) mission. Herein, operator
state is composed of engagement (active attention and effort) and awareness (com-
prehension and knowledge), while task performance is composed of efficiency
(reaction time) and effectiveness (accuracy). An abundance of subjective and objec-
tive measures can be used to inform the operator state elements, such as question-
naires (workload and SA), user interactions (keylogging, mouse clicks), and eye
tracking data (dwell times, fixation locations, pupil size, etc.).

7.6.1 The Value of Eye Tracking

As discussed in the previous section, there are many supervisory control situations
lacking outcome-based measures to assess human-automation interaction. Remote,
off-the-head eye trackers are a powerful option for gathering information about an
operator’s attention allocation, fatigue, cognitive workload, and SA. Unlike
outcome-based measures, which are not available during monitoring tasks, these
metrics are employable throughout the mission. Eye tracking can provide a wealth
of information about an individual’s state. For example, fixation analyses can be
used to predict errors due to lapses in attention (Ratwani et al. 2010) and can serve
as a measure of SA (van de Merwe et al. 2012). In addition, frequency and duration
of blinks and percent eyelid closure are reliable indicators of fatigue (Caffier et al.
2003). Furthermore, pupil data is a valuable indicator of cognitive workload (Tsai
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Table 7.3 Technical specifications for three first-generation low-cost eye tracking systems

Gazepoint GP3 Eye Tribe Tobii EyeX
Cost $495 $99 $139
Sampling rate 60 Hz 30/60 Hz 60 Hz (estimated)
Accuracy 0.5°-1.0° 0.5°-1.0° -
Max. display size 24 in. 27 in. 27 in.
Eye position data Left and right Left and right Combined
Pupil size data Pixels and mm Pixels None

et al. 2007; Beatty and Lucero-Wagoner 2000; Sibley et al. 2011). All of these eye
tracking-based measures of operator state have been linked to performance.

In recent years, a number of low-cost eye tracking systems have become avail-
able; these systems, which are designed for use with single displays, range from
approximately $100-500 and offer a streamlined setup process. The first generation
of low-cost eye trackers includes the Tobii EyeX, Gazepoint GP3, and Eye Tribe.
The Gazepoint GP3 and the Eye Tribe collect data on gaze position and pupil size
(in pixels) for both eyes. The Tobii EyeX only provides gaze position averaged
across both eyes and was designed for entertainment purposes; the user agreement
does not permit data collection and analysis. A summary of the technical specifica-
tions for these three systems is provided in Table 7.3.

Coyne and Sibley (2016) found that gaze data collected using the Eye Tribe and
Gazepoint GP3 systems provided sufficient accuracy and precision to be useful for
Human Factors research and, on 24-inch or smaller displays, tracked gaze position
almost as well as the high-cost Smart Eye Pro system. Similarly, Ooms et al. (2015)
found that the gaze accuracy and precision of Eye Tribe was comparable to the SMI
RED 250, an established, high-end system. Funke et al. (2016) found similar results
regarding the accuracy and precision of Tobii EyeX and Eye Tribe but experienced
more frequent data quality problems. They cautioned that missing data could affect
estimates of the number and duration of fixations, saccadic rates, and blinks, all of
which are commonly used in Human Factors research.

Although a number of studies have investigated the accuracy and precision of
gaze data collected using low-cost eye trackers, less research has been conducted
assessing the ability of these devices to collect non-gaze data, such as pupil size.
Coyne and Sibley (2016) found the Eye Tribe and Gazepoint GP3 systems suffi-
ciently sensitive to capture changes in pupil size in response to both mental effort
(during a memory task) and screen luminance (Fig. 7.1).

Overall, although low-cost eye trackers are not quite as accurate and experience
more data quality problems relative to high-end systems, research suggests that
these devices may be able to provide meaningful data in applied settings, including
the control of unmanned systems. Additionally, the cost of these new systems makes
them readily accessible to a larger number of researchers. Thus, researchers should
carefully consider the relative strengths and weaknesses of the various systems and
their suitability for their specific research effort (Funke et al. 2016; Holmqvist et al.
2011, 2012).
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Fig. 7.1 Pupillary response to increasing luminance (left) and workload (right) as measured by
the Gazepoint GP3 and Eye Tribe systems. Note. Reprinted with permission from “Investigating
the Use of Two Low Cost Eye Tracking Systems for Detecting Pupillary Response to Changes in
Mental Workload,” by Coyne and Sibley (2016)

7.7 Supervisory Control Operations User Testbed (SCOUT)
Overview

The Naval Research Laboratory (NRL) developed the Supervisory Control
Operations User Testbed (SCOUT™,) as a tool to address a broad range of supervi-
sory control research questions. Two specific areas of research that SCOUT was
designed to investigate are decision making under uncertainty and sustained atten-
tion; two topics which have not been emphasized within the existing supervisory
control test beds and research. SCOUT was iteratively designed based on observa-
tion, interviews, and feedback from current UAV operators within training and test-
ing environments at multiple locations around the United States. These operators
were asked to describe typical tasking in addition to challenges, common errors, and
system abnormalities experienced while controlling contemporary UAVs.
Furthermore, they were asked to envision future UAV supervisory control opera-
tions, and how the aforementioned challenges, errors, and abnormalities might
manifest in this environment.

Utilizing this information, SCOUT was designed to include the primary compo-
nents of contemporary UAV control and to simulate the tasks future UAV operators
might perform while supervising multiple vehicles. During a SCOUT scenario, an
operator is tasked with managing three heterogeneous UAVs. In order to meet mis-
sion goals, users must decide how to best allocate the UAVs to locate targets while
simultaneously completing a number of subtasks, including: maintaining communi-
cation with command and intelligence personnel via chat; updating UAV parame-
ters and routes; and monitoring sensor feeds and airspace. Points are assigned to
various actions based on their mission priority and the overall goal is to obtain as
many points as possible.

A key capability within SCOUT is the ability to capture and synchronize data
from multiple sources within a relational database. SCOUT records all task and
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UAV Route Builders

Eagle 83 - Vader 1 - Viper 26

Fig. 7.2 SCOUT route planning (left) screen

mission information, in addition to user behaviors (e.g., keystrokes, mouse clicks,
eye gaze) and indicators of user physiological state (e.g., pupil size, heart rate, res-
piration rate). The system currently supports SmartEye Pro, GazePoint, and
EyeTribe eye tracking systems (Coyne and Sibley 2016). This data integration
enables both real time and post-hoc analysis of the user’s performance, eye tracking,
physiological, mouse, and keystroke data. These additional physiological data help
address the challenge of continuously assessing operator performance by providing
continuous information about the user while a mission is being executed.

Streaming access to the user’s physiological data allows the experimenter to
compute, for example, how long it takes an operator to look at and fixate on a new
chat message, or conversely, to not notice a message. The experimenter can also
observe scan patterns and assess, for example, whether a user is becoming fatigued
and not adequately scanning information panels. Additionally, monitoring pupil
size, gaze, and performance data during a period of high task load can provide infor-
mation about a user’s mental workload, where he/she is allocating attention, and
how these factors relate to task and mission performance.

SCOUT is available in both single-monitor and dual-monitor configurations. In
the dual-monitor set-up, the left screen is primarily used for route planning (Fig. 7.2).
The Target Information table and UAV Route Builder boxes provide operators with
estimated search times for each target, target point values (which indicate mission
priority), target deadlines, the size of target search areas, and the percent of those
areas that can be covered by each UAV before the target deadlines.

Each SCOUT mission involves a variable degree of uncertainty. Operators do not
know the exact location of the targets within their respective search areas. A UAV
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Fig. 7.3 SCOUT vehicle status (right) screen

might find a target after searching only 1% of its search area, but it could also
require 100% coverage of the search area to locate a target. Moreover, the entire
search area might not be traversable by the target deadline (when the intelligence
expires and the location estimate becomes too uncertain to be useful). An example
of a SCOUT mission with a high degree of uncertainty might involve targets with
large search areas, short deadlines, and variable point values, all of which can be
manipulated within a drag-and-drop scenario generator. Additional sources of
uncertainty include whether or not operators will be granted access to restricted
operating zones (ROZs), which are indicated by the outlined and/or red-shaded
areas on the moving map display, and the similarity of distractor targets to the actual
target on the simulated payload task.

The simulated payload task is located on the right screen along with other
vehicle-centric information, such as fuel status, altitude, and speed. While a UAV is
actively loitering over a target search area, objects will appear in that UAV’s sensor
feed. In the sample mission depicted in Fig. 7.3, Eagle 83 is searching for Periscope
1, which will appear in the feed as a circle. The operator’s task is to click on any
circular targets, which could be Periscope 1, and to ignore any other objects. In this
case, the distractor objects (triangles and squares) are quite distinct from the target
of interest. Additional uncertainty and complexity could be introduced into the sce-
nario by using distractor objects similar in appearance to the circular target.

The complexity of a SCOUT scenario can be further altered by: changing the
degree of heterogeneity among the UAVs; increasing or decreasing the number of
targets and/or variety of targets types on the map display; designing scenarios where
there is or is not an obvious ideal route; manipulating target deadlines and search
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area sizes; and increasing or decreasing the overall detail of the payload task and the
number of dimensions upon which targets and distractor objects differ. Furthermore,
time pressure can be manipulated easily by altering target and message-response
deadlines. This flexibility makes SCOUT an ideal test bed to study UAV operator
decision-making and risk-taking under realistic operational conditions: complex,
information-rich, and sometimes time-pressured. In upcoming versions of SCOUT,
a decision support tool will also be available to assist operators with route planning
given different levels of risk, which will enable further study of human-automation
interaction. For more information, see Sibley et al. (2016a, b).

SCOUT can also be used to study operator behavior, SA, and performance in
response to variable automation reliability. This also enables investigation of auto-
mation trust and use issues that could arise. The payload task is currently equipped
with level six (veto) automation with adjustable sensitivity (i.e., customizable hit
and miss rates). When enabled, the automation highlights potential targets and, after
giving the operator time to deselect erroneous selections, selects said objects. Since
selecting an incorrect object (e.g., a circle instead of a square) results in lost points,
reliance upon overly sensitive automation could result in a significant point loss.
However, reliance on automation that is not sensitive enough could result in the
operator missing a target altogether. Future versions of SCOUT will enable variable
LOAs on the sensor task.

SCOUT also includes two methods of assessing SA: an SA freeze probe and
utilizing within-mission chat messages. During the SA probe, the simulation is
paused and the screen disappears, leaving operators with a new screen that assesses
their knowledge of asset and target locations, asset-vehicle assignments, and the
priority (point value) of targets in pursuit. These SA probes were designed to be
similar to Endsley’s (1988) SAGAT method. Additionally, SA is assessed in SCOUT
via chat messages that request information on the current and future state of the
simulation similar to Durso and Dattel’s (2004) SPAM methodology.

Moreover, SCOUT includes a subjective measure of fatigue and workload based
on the Crew Status Survey that, like the SA probe, is administered during either pre-
scripted times or injected using the experimenter control console. The first pop-up
screen asks operators to rate their current fatigue on a seven-point scale from “fully
alert” (1) to “completely exhausted” (7). The second pop-up screen asks operators
to estimate both the average and maximum workload experienced since the last
probe or the beginning of the mission (whichever came last). Like fatigue, workload
is rated on a seven-point scale from “nothing to do” (1) to “unmanageable” (7)
(Samn and Perelli 1982).

The integration of eye tracking, subjective workload and fatigue scales, and SA
probes within SCOUT were all meant to address limitations in current supervisory
control research by expanding the ways in which human-automation interaction is
assessed. SCOUT places an emphasis on both the operator state metrics and out-
come metrics listed in Table 7.2. Table 7.4 provides an example of the range of
metrics that can be collected within a single SCOUT subtask, specifically the route
planning task.
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Table 7.4 Example of performance data available from SCOUT route planning/re-planning task

Route planning/re-planning task performance

metrics
Operator state Engagement — Objective workload (pupil diameter, heart rate
(process) variability)

— Subjective workload (Crew Status Survey)

— User interaction (keylogging, mouse clicks)

— Attention allocation (gaze dispersion, dwell times,
fixation locations and durations)

— Fatigue (eye lid percent closed, blink duration and
frequency)

Awareness — Objective situation awareness metrics (SCOUT
freeze probe)

— Objective situation awareness metrics (SCOUT
chat messages)

Performance Efficiency — Reaction time (time to develop a plan and/or
(outcome) respond to events which impact current route plan)
Effectiveness — Accuracy (comparison of selected route to all other

possible routes)

Although SCOUT can be configured to require frequent interactions, it is
designed to represent a broad range of missions, including those characterized by
long transit times and sustained operations with little human-system interaction.
Each scenario in SCOUT has a number of configurable elements, which provide
experimenters the ability to design a wide range of mission scenarios to investigate
cognitive phenomena of interest. SCOUT’s mission editor allows rapid and intuitive
scenario design via drag-and-drop interaction with map objects (e.g., UAVs, targets,
and controlled airspace boundaries) and simple defining of object parameters. The
experimenter can also schedule events to occur at specific mission times, such as
when new targets, airspace, SA probes, and chat messages appear. For example,
SCOUT can been used to assess the impact of varying levels of workload on
decision-making behavior by varying the number and frequency of high-value,
short-deadline targets and chat requests for information. Additionally, uncertainty in
the locations of targets and ROZs can be varied to investigate how operators manage
uncertainty and make decisions under different contexts.

7.8 Summary

As the DoD and its NATO allies move toward unmanned systems that are both
increasingly interoperable and autonomous, there will be a shift in the current UAV
control paradigm. Having a broad spectrum of human automation metrics, which
can assess performance across a variety of mission contexts, is critical to the DoD
fully capitalizing on these new unmanned system capabilities. A failure to under-
stand how a new piece of automation or display impacts a user’s state and resulting
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mission outcomes could result in similar issues within contemporary UAV control
systems; in which operators have excessive periods of down-time or are unable to
respond to critical events due to excessive workload or poor SA. Since human per-
formance suffers at both low and high levels of workload, assessment of future
systems must take place across the range of task loads a future operator might
encounter.

It is not sufficient to assess mission performance under high levels of workload
alone. New displays or automation that improve performance in a high workload
context might cause more errors and/or degrade operator SA in a scenario with low
levels of tasking. The ability to vary levels of workload is particularly important for
research investigating multiple levels of automation. Research in the ALOA testbed
highlighted how automation reliability impacted performance outcomes under vari-
able levels of automation. The ALOA research also highlighted some of the prob-
lems associated with automation misuse. For instance, every participant who used a
perfectly reliable system failed to detect a system error when it eventually occurred
(Calhoun et al. 2011). The impact of automation reliability and levels of automation
should be evaluated under a variety of different task loads.

This chapter highlighted the importance of assessing both the operator’s state as
well as performance outcomes. Increasing levels of automation mean that the opera-
tor’s role will shift away from manual control toward monitoring the automated
system. This move will result in fewer situations requiring operator intervention,
thus limiting opportunities to directly measure performance or outcomes. As auto-
mation becomes more reliable, required interventions will become even less fre-
quent. Measures aimed at assessing operator state will be necessary to expand our
understanding of the impact of new automated systems. Researchers need to con-
sider alternative metrics of assessing operator state. One new promising option is
the use of low-cost eye tracking systems. These systems can provide a means of
assessing attention, fatigue, and workload in situations where performance mea-
sures are not available. Additionally, these measures might provide insight into user
trust in an automated system, for example, by assessing how often an operator veri-
fies input by redirecting attention/eye gaze.

Although this chapter focused on the how measures of operator state could be
used to evaluate automation and different control paradigms, these same measures
could also be used to help predict when an operator is at an increased risk of making
an error. This information could enable more intelligent systems; capable of increas-
ing automation when an operator is overloaded and prone to err, or disabling auto-
mation to reengage an underloaded operator who has lost SA. This type of adaptive
automation requires further research into how operator state is related to error and
performance.

Experimentation within synthetic environments, such as SCOUT, can help
researchers understand the implications of different types and levels of automation
on both the operator’s state and performance. As the DoD continues to increase
automation and move toward the supervisory control of unmanned systems, the
research community must continue to assess the impact of these new capabilities.
Evaluating mission performance and operator state (e.g., attention, fatigue, workload,
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and SA) across a range of potential missions is critical to the success and safety of
these future systems. This research also needs to continue to investigate how auto-
mation and supervisory control impact higher-order tasks, such as decision making
under uncertainty.

The research discussed within this chapter focused on single-operator control of
multiple unmanned vehicles. However, as automation continues to advance, more
flexible control paradigms—such as one in which teams of operators share and hand
off control of multiple unmanned systems—could become prevalent.
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Chapter 8
Robots Autonomy: Some Technical Issues

Catherine Tessier

8.1 Introduction

Robot autonomy has been widely focused in the press with a trend towards
anthropomorphism (e.g., “intelligent robots”, “killer robots”, etc.) that is likely to
mislead people and conceal or disguise the technical reality. This chapter aims at
reviewing the different technical aspects of robots autonomy. First we will propose
a definition allowing to distinguish robots from devices that are not robots. Then
autonomy will be defined and considered as a relative notion within a framework of
authority sharing between the decision functions of the robot and the human being.
Several technical issues will then be mentioned according to three points of view:
(1) the robot, (2) the human operator and (3) the interaction between the operator
and the robot. Moreover the particular issue of imbuing a robot with ethics will be
dealt with. Finally some key questions that should be carefully dealt with for future
robotic systems are given in the conclusion, especially the possibility of mitigating
human error consequences thanks to autonomous functions.

8.2 What Is a Robot?

A robot is a machine that is controlled by a computer and that moves in physical space
(Laumond 2012). More precisely a robot implements and integrates capacities for:

» gathering data through sensors that detect and record physical signals;
* interpreting those data, i.e., data are processed on the basis of existing knowledge
to produce relevant knowledge for decision making;
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making decisions, i.e., determining and planning actions on the basis of existing
and produced knowledge;

carrying out actions in the physical world thanks to effectors or through
interfaces.

A robot may also have capacities for:

communicating and interacting with human operators or users, or with other
robots or resources;
learning, which allows it to modify its behavior from its past experience.

Three properties are associated with decision making (Franklin and Graesser

1997):

reactivity is the capacity for reacting at the appropriate time to some changes or
events occurring in the physical world;

Example: avoiding a newly detected obstacle;

goal orientation is the capacity for computing and planning decisions in order to
meet some goals that are either set by a human being or by the robot itself
(Coleman 2001); consequently decisions are not computed merely for the sake
of reaction;

Example: avoiding a newly detected obstacle isincluded in the
set of decisions that tend to meet goal go and pick object on the
table;

autonomy, which is the main focus of this chapter;

Example: with no help from a human operator, the robot can avoid different
fixed or moving obstacles onits way to the table and look for
the object if it finds out it is not where it should be.

Examples:

. An automatic subway is not a robot in so far as it works in a structured and fixed

environment (i.e., it runs on tracks that are protected against intrusions by walls
and tunnels) and behaves according to predetermined sequences of actions.
Therefore the automatic subway cannot react but to predefined events and has no
goal involving decision making.

. An underwater vehicle whose mission is to identify some types of objects on the

seabed, which is equipped with programs allowing it to compute a seabed scan-
ning strategy and to replan the scan according to currents or unexpected objects
that are detected by its sensors without communication with human operators, is
a robot.

Therefore we could first consider that autonomy is the capability of the robot to

work independently of another agent, either a human or another machine
(Truszkowski et al. 2010). Nevertheless this feature is far from being sufficient, as
we will see in the next section.
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8.3 Autonomy

8.3.1 What Is Autonomy?

A washing machine or an automatic subway are not considered as autonomous
devices, despite the fact that they work without the assistance of external agents:
such machines execute predetermined sequences of actions (Truszkowski et al.
2010) which are totally predictable (except failures) and cannot be adapted to unex-
pected states of the environment.

According to the Defense Science Board (2016), autonomy results from delega-
tion of a decision to an authorized entity to take action within specific boundaries.
An important distinction is that systems governed by prescriptive rules that permit
no deviations are automated, but they are not autonomous. To be autonomous, a
system must have the capability to independently compose and select among differ-
ent courses of action to accomplish goals based on its knowledge and understand-
ing of the world, itself, and the situation.

Moreover CERNA (2014) and Grinbaum et al. (2017) focus on the fact that robot
autonomy is a capacity to operate independently from human operator or from
another machine, by exhibiting non-trivial behaviors in a complex and changing
environment. Examples of non-trivial behaviors are context-adapted actions, replan-
ning or cooperative behaviors.

Example: Figure 8.1 shows a scenario where two autonomous robots, a ground
robot (AGV) and a helicopter drone (AAV), carry on an outdoor monitoring mis-
sion. This mission includes a first phase during which the area is scanned for an
intruder by both robots and a second phase during which the intruder is tracked by
the robots after detection and localization. The robots can react to events that may
disrupt their plans without the intervention of the human operator. For example,
should the ground robot get lost (e.g., because of a GPS loss) the drone would
change its planned route for a moment so as to search for it, localize it and send it
its position.

Apart from the classic control loop (e.g., the autopilot of a drone), autonomy
involves a decision loop that builds decisions according to the current situation. This
loop includes two main functions:

 the situation tracking function, which interprets the data gathered from the
robot sensors and aggregates them—possibly with pre-existing information—
so as to build, update and assess the current situation; the current situation
includes the state of the robot, the state of the environment and the progress of
the mission;

e the decision function, which calculates and plans relevant actions given the cur-
rent situation and the mission goals; the actions are then translated into control
orders to be applied to the robot actuators.
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Fig. 8.1 Two cooperating robots (ONERA-LAAS/DGA ACTION project—action.onera.fr)

Nevertheless the robot is never isolated and the human being is always involved
in some way. Indeed autonomy is a relationship between the robotic agent and the
human agent (Castelfranchi and Falcone 2003). Moreover this relationship may
evolve during the mission. As a matter of fact, the Defense Science Board (2012,
p. 4) advises to consider autonomy as a continuum from complete human control on
all decisions to situations where many functions are delegated to the computer with
only high level supervision and/or oversight from its operator. As for intermediate
situations, some functions are carried out by the robot (e.g., the robot navigation)
whereas some others are carried out by the human operator (e.g., the interpretation
of the images coming from the robot cameras). More recently the Defense Science
Board (2016) recognizing that no machine—and no person—is truly autonomous in
the strict sense of the word, [they] will sometimes speak of autonomous capabilities
rather than autonomous systems.

Consequently autonomy is not an intrinsic property of a robot and the robot
design and operation must be considered in a human-machine collaboration frame-
work. In this context, two classes of robots should be distinguished, (1) robots that
are supervised by an operator (e.g., drones), that is to say a professional who has a
deep knowledge of the robot and interacts with it to implement its functions; and (2)
robots with no operator (e.g., companion robots) that interact with a user, that is to
say somebody who benefits from the robot functions without knowing how they are



8 Robots Autonomy: Some Technical Issues 183

| ——
?
goal £ . aclien( W action | Physical system | | output
® Decision L ® ) & control laws

Situation tracking

Fig. 8.2 The authority sharing issue

implemented (Grinbaum et al. 2017). In this chapter we only deal with robots that
are supervised by an operator.

Considering the whole human-robot system, the next subsection focuses on the
authority sharing concept in the context of supervised robots.

8.3.2 Authority Sharing

Figure 8.2 shows the functional organization of a human-robot system.

The lower loop represents the robot decision loop, which includes the situation
tracking and decision functions. The physical system equipped with its control laws
is subject to events (e.g., failures, events coming from the environment). As said
before, this loop is designed to compute actions to be carried out by the physical
system according to the assessed situation and its distance € to the assigned goal (e
— (0 when the assigned goal is being met).

The upper loop represents the human operator who also makes decisions about
the actions to be carried out by the physical system. These decisions are based on
the information provided by the robot interface, on other information sources and
on the operator’s knowledge and background. In such a context the authority shar-
ing issue is raised, i.e., which agent (the human operator or the robot) holds the
decision power and the control on a given action at a given time. We will consider
that agent A holds the authority on an action with respect to agent B if agent A con-
trols the action to the detriment of agent B (Tessier and Dehais 2012).

Authority sharing between a human operator and a robot that is equipped with a
decision loop raises technical questions and challenges that we will focus on in the
next section. Three points of view have to be considered: the robot, the operator and
the interaction between both of them.
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8.4 Autonomy and Authority Sharing: Some Questions

8.4.1 The Robot

The robot is implemented with capacities that complement the human capacities,
e.g., in order to see further and more precisely, or to operate in dangerous environ-
ments. Nevertheless the robot capabilities are limited in so far as the decisions are
computed with the algorithms, models and knowledge the robot is equipped with.
Moreover some algorithms are designed so as to make a trade-off between the qual-
ity of the result and the computation speed, which does not guarantee that the result
is the best or the most appropriate.

Let us detail the two main functions of the decision loop of the robot, i.e., situa-
tion tracking and decision.

8.4.1.1 Situation Tracking: Interpretation and Assessment
of the Situation

Situation tracking aims at building and assessing the situation so as to calculate the
best possible decision. It must be relevant for the mission, i.e., meet the decision
capacities of the robot.

Example: if the robot mission is to detect intruders, the robot must be equipped
with means to discriminate intruders correctly.

Moreover situation tracking is a dynamic process: the situation must be updated
continuously according to new information that is perceived or received by the
robot since the state of the robot, the state of the environment and the progress of the
mission change continuously.

Situation tracking is performed from the data gathered by the robot sensors (e.g.,
images), and from its knowledge base and interpretation and assessment models.
Such knowledge and models allow data to be aggregated as new knowledge and
relationships between pieces of knowledge.

Example: classification and behavior models will allow a cluster of pixels in a
sequence of images to be labelled as an “intruder”.

Situation tracking is a major issue for robot autonomy especially when the deci-
sion that is made by the operator or calculated by the robot itself is based only on
the situation that is built and assessed by the robot. Indeed several questions are
raised (see also Fig. 8.3):

* The sensor data can be imprecise, incomplete, inaccurate, or delayed, because of
the sensors themselves or because of the (non-cooperative) environment. How
are these different kinds of uncertainties represented and assessed in the situation
interpretation process?

*  What are the validity and relevance of the interpretation models? To what extent
can the models discriminate situations that seem alike but call for very different
decisions?
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Fig. 8.3 Is this pedestrian
an intruder? Is he/she
dangerous?

e Example: can an interpretation model discriminate perfectly between an intruder
and an authorized person?

e What are the validity and relevance of the assessment models? Can they charac-
terize a situation correctly? And if so, on the basis of which criteria?

e Example: how is a situation labelled as “dangerous”?

Example:

8.4.1.2 Decision

The decision function aims at calculating one or several actions and determining
when and how these actions should be performed by the robot. This may involve
new resource allocations to already planned actions (for example if the intended
resources are missing), pre-existing alternate action model instantiation or partial
replanning. The decision can be either a reaction or actions resulting from delib-
eration and reasoning. The first case generally involves a direct situation-action
matching—for instance the robot must stop immediately when facing an unex-
pected obstacle. As for the second case, a solution is searched to satisfy one or
several criteria, e.g., action relevance, cost, efficiency, consequences, etc. A deci-
sion is elaborated on the basis of the interpreted and assessed situation and its
possible future developments as from action models. Therefore the following
questions are raised:

e Which criteria are at stake when computing an action or a sequence of actions?
When several criteria are considered, how are they aggregated, which is the dom-
inant criterion?

e If moral criteria are considered, what is the “right” action? According to which
moral framework? (see also Sect. 8.5)

e Should a model of the legal framework of the robot operations be considered for
action computation? Is it possible to encode such a model?
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e Could self-censorship be implemented—i.e., the robot can do an action but can
it “decide” not to do it?

¢ How are the uncertainties on the action results taken into account in the decision
process?

8.4.2 The Human Operator

Within the human-robot system, the human being has both inventiveness and assess-
ment and judgment capabilities based on training, experience, own inner conviction,
etc. For instance when facing situations that they consider as difficult, they can
postpone the decision, delegate the decision, drop goals or ask for further informa-
tion. In such situations they can also invent original solutions—e.g., the US Airways
flight 1549 landing on the Hudson River on January 15, 2009.

Nevertheless the human operator should not be considered as the last resort when
the machine “does not know what to do”. Indeed the human being is also limited
and several factors may alter their analysis and decision capacities:

e The human operator is fallible; humans can be tired, stressed, consumed by vari-
ous emotions and consequently they are likely to make errors. As an example, let
us mention the attentional tunneling phenomenon (Regis et al. 2014)—see
Fig. 8.4, which is an excessive focus of the operator’s attention on some informa-
tion to the detriment of all the other information and which can lead to inappro-
priate decisions.

e The human operator may be prone to automation biases (Cummings 2006), i.e.,
an over-confidence in robot automation leading them to rely on a robot’s deci-
sions and to ignore other possible solutions.

* The human operator may be prone to build moral buffers (Cummings 2006), i.e.,
a moral distance with respect to the actions that are performed by the robot. This
phenomenon may have positive fallout—the operator is less subject to emotions
to decide and act—but also negative fallout—the operator may decide and act
without any emotion.

e The human operator may deliberately act harmfully—e.g., the Germanwings
crash on March 24, 2015.

Consequently some autonomous functions that could mitigate the consequences
of human failures are worth considering (Bringsjord 2015), even though the design
of such functions is not straightforward, as mentioned above.

8.4.3 The Operator-Robot Interaction

In the context of authority sharing, both agents—the human operator and the robot
via its decision loop—can decide about the robot’s actions (see Fig. 8.2). Authority
sharing must be clear in order to know at any time which agent holds the authority
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Fig. 8.4 An operator’s attentional tunneling (TUN) can be revealed from eye-tracking data, in this
case after an alarm occurring during a robotic mission (Regis et al. 2014)

on which function, i.e., which agent can make a decision about what and on which
basis. This is essential especially when liabilities are searched for, for example in
case of dysfunction or accident.

Several issues linked to the operator-robot interaction must be highlighted:

* Both agents’ decisions may conflict (see Fig. 8.5)

— either because they have different goals, although they have the same assess-
ment of the situation (logical conflict); for example in the situation of Fig. 8.6,
UAV agent 3’s goal is to avoid the school (therefore ZONE EAST is chosen)
whereas the operator’s goal is to minimize the number of victims (therefore
ZONE WEST is chosen);

— or because they assess the situation differently, although they have the same
goal (knowledge conflict); for example in the situation of Fig. 8.6, both the
operator and UAV agent 3’s goals are to protect children. Therefore UAV
agent 3 computes a decision to avoid the school (therefore ZONE EAST is cho-
sen) whereas the operator chooses ZONE WEST because they know that, at that
time of the day, there is nobody at school.

Therefore conflict detection and management must be envisioned within the
human-robot system. For instance should the operator’s decision prevail over the
robot’s decision and why?
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Fig 8.6 Both the operator and UAV agent 3’s decision functions can decide about where damaged
UAV agent 3 should be crashed; zone east is a highly populated area whereas zone west is less
populated and includes a school (Collart et al. 2015)

e Each agent may be able to alter the other agent’s decision capacities: indeed the
operator can take over the control of one or several decision functions of the
robot to the detriment of the robot and, conversely, the robot can take over the
control to the detriment of the operator. The extreme configuration of the first
case is when the operator disengages all the decision functions; in the second
case, it is when the operator cannot intervene in the decision functions at all.
Therefore the stress must be put on the circumstances that allow, demand or for-
bid a takeover, on its consistency with the current situation (Murphy and Woods
2009), on how to implement control takeovers and to end a takeover (e.g., which
pieces of information must be given to the agent that will lose/recover the
control).
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Fig. 8.7 A Petri net generic automation surprise pattern. Initially (leff) robot state is S1 and the
operator believes it is S1. The robot changes its state (transition T1 is fired) (right) and goes to S2.
The operator who has not been notified or is not aware of the notification still believes that robot
state is S1 (Pizziol et al. 2014)

e Example: is the fact that the robot might monitor the human operator considered
(e.g., via cameras, eye-tracking, physiological sensors, etc.) so that the robot
should be able to infer that the operator is incapable of making appropriate deci-
sions and should prevent them, at least temporarily, to control some functions?
On which objective knowledge should such an inference be based on?

e The human operator may be prone to automation surprises (Sarter et al. 1997)
that is to say disruptions in their situation awareness stemming from the fact that
the robot may implement its decisions without the operator’s knowledge. For
instance, some actions may have been carried out without the operator being
notified or without the operator being aware of the notification. Therefore the
operator may believe that the robot is in a certain state while it is in fact in
another state (see Fig. 8.7).

Such circumstances may lead to the occurrence of a conflict between the opera-
tor and the robot and may result in inappropriate or even dangerous decisions, as the
operator may decide on the basis of a wrong state.

8.5 Autonomy and Authority Sharing Ethical Challenges

When robot autonomy is considered, a question that arises is the following
(Wallach and Allen 2009; Lin et al. 2012; Tzafestas 2016): can the robot be
designed so that the decisions that are computed could be ethical? Or more pre-
cisely, that the decisions could be considered as ethical by some human observer?
On which bases?
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8.5.1 Why Imbue a Robot with Ethics?

A robot equipped with decision capacities may be used in contexts where decisions
should be guided by ethical reflection, were they made by a human being.
Examples:

e Which patients should be favored in case of multiple simultaneous alarms (e.g.,
by a medical supervision robot)?

e Which victim(s) should be chosen when an accident cannot be avoided (e.g., by
an autonomous car)?

* Should a target that is close to a group of people be neutralized (e.g., by an armed
robot)?

There is no optimal decision in such situations—for instance there is no unique
criterion that can be minimized or maximized—and arguments can be put forward
either to support or reject the possible decisions.

Imbuing ethics into a robot is likely to meet different needs:

e FEthical reasoning is essential for certain types of robots as soon as they are
equipped with decision functions (see examples above);

e When authority is shared between the robot and the human operator, the robot
could suggest possible decisions to the operator together with supporting and
opposing arguments for each of them considering various ethical frameworks
that the operator might not even contemplate.

e A robot could be “more ethical” than a human being (Sullins 2010).

The latter purpose is questionable as it suggests that ethics can be measured and
ordered. Nevertheless the argument is put forward especially for autonomous robots
in the military.

It is worth noticing that, although they are not included in automated reasoning,
strictly speaking, some (sometimes implicit) moral values are already embedded in
robots that are already launched and on the market.

Example: a companion robot “says hello” or “looks at” the human partner, etc.

8.5.2 A Careful Approach Is Needed

Whether the human being is aware or not, their decisions and actions are guided by
moral values and various ethical frameworks. According to the values, the values’
hierarchy, and the ethical framework that are considered and to the context where
the decision has to be made, the “right” decision or the “right” action may be differ-
ent and the supporting and opposing arguments may be different, too.
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When automated decisions involving moral and ethical' considerations are con-
templated, several questions must be raised:

* To what extent can moral and ethical considerations be formalized?

e To what extent are subjective or cultural considerations involved in
formalization?

* How can the rationale for a decision be explained?

Therefore the approach is complex and needs a comprehensive understanding of
concepts that do not usually pertain to robotics so as to try and implement mathe-
matical formalisms that can capture them and deal with situations involving ethical
issues, which must be represented too—for instance an ethical dilemma must be
identified as such.

Moreover a critical look must be taken so as to avoid or at least to be aware of
pitfalls when designing automated “ethical” reasoning, i.e., oversimplification,
biases and unstated assumptions. A reasonable approach consists of considering
thought experiments. Indeed such simple situations are rich enough to highlight
most of the advantages and limits of artificial ethics models.

8.5.3 Thought Experiments Usefulness

Thought experiments, and more precisely ethical dilemmas, can give useful clues
on factors that influence our moral judgments. As such, they can allow researchers
and designers to identify and formalize the knowledge that is necessary for contem-
plating automated “ethical” reasoning (Bonnemains et al. 2016). For instance, do
only consequences of decisions matter? And if yes, which consequences? It is pos-
sible to compare consequences to one another and on which bases? Does the nature
of decisions themselves matter? Does the end justify the means? Can a value be
betrayed to the advantage of another one?

Example: the Moral Machine website (MIT) proposes a series of situations based
on the Crazy Trolley dilemma that allow the complexity of autonomous car pro-
gramming in case of unavoidable accident to be comprehended.

In Fig. 8.8 there are two possible decisions for the autonomous car: (1) drive
straight ahead and kill the pedestrian or (2) change lanes and crash into the concrete
barrier, thus killing the five passengers. It is worth noticing that for each situation
proposed by the website, possible decisions are based on a categorization of people
(young or elderly people, athletic or obese, abiding or not by the law, etc.), which
leads actual choices to be based on this categorization—which is a bias.

'Ricoeur (1990) defines ethics as compared to morality in so far as morality states what is compul-
sory or prohibited whereas ethics assesses what is fair and what is not in a given situation.
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What should the self-driving car do?

Fig. 8.8 Thought experiment (MIT)

8.6 Conclusion: Some Prospects for Robots Autonomy

Robots that match the definition that we have given, i.e., that are endowed with situ-
ational interpretation and assessment and decision capacities, are hardly found any-
where but in research labs. Indeed most operational “robots” are controlled by
human operators even if they are equipped with on-board automation (e.g.,
autopilots).

This chapter has focused on the fact that robot autonomy has to be considered

within a framework of authority sharing with the operator. Therefore the main issues
that must be dealt with in future robot systems are the following:

Situation interpretation and assessment: on which models are the algorithms
based? Which are their limits? How are uncertainties taken into account? What
is the operator’s part in this function?

Decision: what are the bases and criteria of automatic reasoning? How are “ethi-
cal” behaviors computed? How much time is allocated to decision computing?
How are uncertainties on the effects of the actions taken into account? What is
the operator’s part in this function?

Model validation: how to validate, or even certify, the models on which situa-
tional interpretation and assessment and decision are based?

Authority sharing between the operator and the decision functions of the robot:
what kind of autonomy is the robot endowed with? How is authority sharing
defined? Are the operator’s possible failures taken into account, and more spe-
cifically how can autonomy mitigate the consequences of human failures—e.g.,
can an autonomous function take over the control of the robot from the operator?
How are decision conflicts managed? How are responsibility and liability linked
to authority?



8 Robots Autonomy: Some Technical Issues 193

e Predictability of the whole human-robot system: given the various uncertainties
and the possible failures, which are the properties of the set of reachable states of
the human-robot system? Is it possible to guarantee that undesirable states will
never be reached?

Finally and prior to any debate on the relevance of such and such “autonomous”
robot implementation, it is important to define what is meant by “autonomous’, i.e.,
which functions are actually automated, how they are implemented, which knowl-
edge is involved, how the operator can intervene, and which behavior proofs will be
built. Indeed it seems reasonable to know exactly what is at stake before ruling on
robots that could, or should not, be developed.
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Chapter 9
How Children with Autism and Machines

Learn to Interact

Boris A. Galitsky and Anna Parnis

9.1 Introduction

To act in the world in an autonomous way, humans and machines need to be capable
of learning, and as a result of learning they should be able to adequately interact
with the world. Successful learning helps in particular to reduce errors humans and
machines make operating in the real word. We explore the way humans and
machines develop to become autonomous and independently perceive the external
world and act on it. It turns out that both machines and children with autism (CwA)
experience characteristic difficulties in this development process (Galitsky 2016).
Insignificant deviation from the normal development pathway due to sensory prop-
erties such as hypersensitivity might lead to autistic cognitive development which
makes autonomous behavior of an adult with autism dangerous for himself and oth-
ers. That is why understanding the mechanism of autistic development is essential
for both domains of autistic remediation and building robots enabled with autono-
mous development (Galitsky and Shpitsberg 2006).

Usually, agents of a multiagent system (MAS) can be characterized by whether
they are cooperative or self-interested. Both types of agents need to collaborate with
other agents to achieve their goals in uncertain, dynamic domains. This is true for
software, human and hybrid agents. In such environments system constraints,
resource availabilities, agent goals are changeable, leading MAS to various states.
At the same time, such MAS organization needs to be adjusted for environments,
there being no single best organization for all possible states. In a broad range of
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Fig. 9.1 Children with autism learn to interact

MAS applications, a flexible team forming mechanism is required to facilitate
automated forming of teams and autonomous adaptation to the environment (Bai
and Zhang 2005a). Both software and human agents develop their team forming
skills in due course, as a result of active learning with reward (Lopes et al. 2009).

There are established research arecas of team formation in the following
settings:

e software and hardware agents;
* human agents;
e hybrid/mixed teams.

A vast body of literature addressed team formation scenarios in the above cases,
in a broad range of application domains (Bai and Zhang 2005b). These scenarios are
usually complex and very domain-specific, so it is hard to judge how general the
conclusions that can be drawn. For software and hardware agents, a lot of technical
details need to be taken into account. In the case of human agents, psychological
analysis makes considerations rather complex and possibly ambiguous.

In this study we focus on the case of autistic interaction and team formation,
which is expected to shed light on the fundamental properties of the team formation
process. Behavior of small children with autism is not as complex as that of control
children (CC) of the same age. Furthermore, autistic behavior is simpler than that of
software agents, since engineering details do not need to be taken into account
(Fig. 9.1). Hence we hypothesize that a team of small children with autism is a
much more “pure” environment for studying the phenomenon of team formation
compared to conventional investigation platforms for team formation.

By the time control children are verbal, their reasoning and especially handling
of mental actions and states is rather complex and hardly tractable. On the contrary,
reasoning of autistic children of the comparable mental age is rather simple and
allows exploration of its patterns and difficulties applying to real world situations.
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In our previous paper (Galitsky 2013), we proposed a reasoning model for autism
in which the core deficits, and other related symptoms, emerge as a result of a basic
problem with symbolic reasoning about mental states and actions. Our model pro-
vided a developmental mechanism required to explain why primary deficits related
to social orientation may be the cause for autism and its broader features. Also, this
model explains why intensive early intervention by means of stimulating reasoning
about mental attitudes frequently helps to improve autistic reasoning. In this study
we focus on a particular task of handling interactions with other agents with the goal
of team formation, reasoning about mental states. This reasoning domain is a bottle-
neck of the overall interaction with others and team formation capability. Due to the
constraints associated with autistic reasoning about mental states, the reduced capa-
bilities of their “Theory of Mind” (Baron-Cohen 1989), children with autism expe-
rience tremendous difficulties interacting with others. Because of the simplicity of
autistic reasoning about mental states and actions, as well as reduced learning capa-
bilities of children with autism (Galitsky and Shpitsberg 2014), one can explore
simple behavioral patterns during the team formation sessions and trace how these
patterns are correlation with reasoning patterns.

9.2 From Hypersensitivity to Limited Interaction
with the World

9.2.1 Hypersensitivity

We hypothesize that a route cause of autistic cognition is hyper-sensitivity to input
stimuli. To build as simple model as possible and to observe how many features of
autistic behavior can be covered by this model, we select only a single deficiency.
We then assume that the rest of active learning functions properly and will observe
that just a hyper-sensitivity feature of the learning system leads to a broad range of
autistic features.

Each child is born with certain perception capabilities. Each child is expected to
receive information in a way that fits her perception capabilities. If a child or a robot
can see so much, can perceive a certain amount of visual information, then he should
be able to process this amount; otherwise the receiving mechanism gradually
becomes weaker and weaker. If he can get a certain amount of tactile information,
then he expects a corresponding amount of touching (Fig. 9.2). The same is true for
any kind of feeling: if a child can feel that much, she is capable of processing that
much emotional and feeling-related information.

In autism, the very process of perception of a signal of any sort is associated with
discomfort, because an amount of typical real-world amount of information exceeds
their perception capabilities, because of a hyper-sensitivity of a child with autism. In
CC, about 4/5 of stimuli perception activity leads to positive experience or reward
(when stimuli do not exceed perception capabilities), and only 1/5—to negative
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Fig. 9.2 Sensing an object

reward. A CC makes a choice based on perceived stimuli, orienteers in exploration,
pursuing 4/5 of unknown stimuli and avoiding the remaining 1/5. If the amount of
positive experience associated with exploration exceeds the one for the negative,
active world exploration proceeds. Otherwise, if negative experience and failures pre-
vail, then exploration stops and the child chooses a mechanism to avoid exploration.
On the contrary, CwA, robots, children with Down syndrome, cerebral palsy, and
other mental illnesses experience substantial negative experience from the perception
process. Because of the hyper-sensitivity of their perception they fail up to 95% of
perception tasks and succeed in only 5%. Therefore their interaction with the external
world is formed in a way to minimize negative experience (Bogdashina 2005).

Hyper-sensitivity leads to a failure to learn to recognize stimuli properly, since
the system can only learn to recognize patterns with extremely high similarity (as
we will show below). This failure leads to a negative experience associated with
learning, and as a result CwAs do not investigate the world for the sake of pleasure.
Instead they fence themselves from it.

9.2.2 Active Learning in Computer Science

Traditionally, machine learning has focused on the problem of learning a task from
labeled examples only. In many applications, however, labeling is expensive while
unlabeled data is usually ample. This observation motivated substantial work on
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properly using unlabeled data to benefit learning, and there are many examples
showing that unlabeled data can significantly help. There are two main frameworks
for incorporating unlabeled data into the learning process.

The first framework is semi-supervised learning (Zhu 2005), where in addition to
a set of labeled examples, the learning algorithm can also use a (usually larger) set
of unlabeled examples drawn at random from the same underlying data distribution.
In this setting, unlabeled data becomes useful under additional assumptions and
beliefs about the learning problem. For example, transductive Support Vector
Machine (SVM) learning (Yu et al. 2006) assumes that the target function cuts
through low-density regions of the space, while co-training assumes that the target
should be self-consistent in some way.

The second setting, which is the basis of our model for autistic cognition, is
active learning. Here the learning algorithm is allowed to draw unlabeled examples
from the underlying distribution and ask for the labels of any of these examples. The
hope is that a good classifier can be learned with significantly fewer labels by
actively directing the queries to informative examples. One approach is to collect
random samples, and another to collect samples which are believed to improve rec-
ognition accuracy. Active learning is typically defined by contrast to the passive
model of supervised learning. In passive learning, all the labels for an unlabeled
dataset are obtained at once, while in active learning the learner interactively
chooses which data points to label.

Under active learning, a learning system selects the new elements of the training
set automatically. Having the new rules from the newly acquired training set ele-
ments, the active learning system is supposed to solve the old problems better.
Hence, in addition to a default learning system that is optimized with respect to
solving its problem, an active learning system should in turn optimize how to learn
the selection of a new training set. An absence of active learning capabilities of a
deep learning system, for example, significantly reduces its applicability domains.
In such areas as sentiment analysis deep networks are shown to be useful (Zhou
et al. 2010).

Active learning as a partial case of unsupervised class is suitable to explain the
development of learning abilities of humans and robots since its motivational struc-
ture becomes plausible. Humans and robots rewarded for solving problems irre-
spective of the means, they are responsible for forming their training sets on their
own. Phenomenology of autistic deviation from a normal cognition pathway can
hardly be explained by learning from a teacher: the result of such learning is either
success (a presence of a reward) or failure (an absence of a reward). Peculiarity of
autistic learning is that it is very limited in problem solving capability and yet is
being rewarded.
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9.2.3 Learning Repetitive Patterns

In the conditions of hyper-sensitivity and overly strong stimuli, CwA is only capa-
ble of recognizing a pattern that is extremely close to an element of the training set.
A typical case of high-similarity stimuli is repetitive events.

As an example of such stimuli in visual space, let us consider recognition of (1)
a child’s mother and (2) repetitive TV commercials. Since the perceived image of a
mother’s face varies more significantly (facial expression, face position, condition
of illumination) than the perceived image of TV commercials (which are broad-
casted over and over again; they are essentially the same stimuli), the latter turns out
to be a preferred type of stimulus that drives the child’s development. At the same
time, the former stimuli can be filtered out as being too strong (due to its variability
and therefore higher recognition efforts). A partial case of stimuli with high similar-
ity is repetitive stimuli, which goes through the whole path of autistic development.
All children select to use the most repetitive stimuli among the other stimuli for
their training sets; however, autistic children only select the most repetitive stimuli
and do not proceed beyond them. As a result of this initial problem, CwA stop
exploring human behavior and complex behavior of physical objects. Having
stopped their explorations, they do not communicate properly with their mothers
and other humans because it requires recognition of patterns with a broader range of
features.

Usually, most reparative events for a baby are a mother’s behavior. She is always
nearby, always saying “hi”. Babies get used to their mothers as a typical environ-
ment, so they accept the belief “I need to adopt to my mother, learn to recognize
her.” Children from orphan houses have on average lower intellect (Ghera et al.
2009) because at the very beginning they don’t have a source of repetitive objects to
learn from, and “learning to learn” occurs much slower. A mother is a calibrating
instrument for the building of a learning mechanism for a child. Considering re-
appearance of the mother as the repetitive event, a baby builds its learning mecha-
nism to properly recognize if an approaching object is the mother or not. The baby
develops an adaptation rule that is essential for pattern recognition: “If I do too
many false positives, increase the threshold. Otherwise, if I do too many false nega-
tives, decrease the threshold.”

Mother’s reappearance has its own accuracy in terms of new positions, illumina-
tion, sounds and frequency, which becomes the set of patterns for a child to optimize
her recognition threshold. The mother would never say “hi” in exactly the same
way, so the baby should be able to deal with some level of deviation, recognizing the
sound. Intonation is different; the mother holds the baby in different ways, wears
different clothes, smells differently, etc. The baby can recognize patterns with sub-
stantial deviation.

Usually the baby looks for the most repetitive events and finds his mother. In the
case with a huge amount of advertisement, repetitive things on radio and TV,
machines roaring in the same way, noise from appliances and images can trigger the
choice of the learning source of the best repetitive pattern. After that, the baby stops
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recognizing the events which have lower precision in their repetition, and looses the
skills to do it. Then the mother is rejected because she is too different in
appearance.

Repetitions are natural for CC as well, CC repeats the same movement or percep-
tion activity, but then proceeds to the exploration of the world to change it and make
it better for him. CC applies already developed recognition mechanisms, tuned and
tested in repetitions. At the same time, CwA remains in the phase of receiving pri-
mary feelings. The role of repetition is not tuning but a reproduction of the same
familiar pleasant feelings. By self-stimulation, CwA form feeling directly. Unlike
CC playing with a toy car, a CwA avoids grabbing it and passing it over to a peer
child. Instead, CwA would just hold and squeeze a toy car. For a CwA an intent to
change the world to make it better is reduced to maintaining it in a current, familiar
form, since there is a lack of positive experience in exploring and recognizing it.

9.2.4 Self-Stimulation

In case of autism, there is a failure to determine what is a repetitive event and what
is not. CwA consider repetitive only the events that repeat with ideal frequency.
Tremendous volume of external information does not make it into CwA. CwA stops
perceiving whole stimuli of the real world and only captures elements of these stim-
uli. This is because the whole stimuli do not fit into the narrow gap formed by autis-
tic cognition trained on the fully repetitive training sets. CwA start to perceive
objects and events by their small parts. In these parts, repetitions are most
accurate.

Atthe age of 18 months CwA with their available perception mechanism encoun-
ter a necessity to perceive a stimulus as a whole. Then the whole pattern is formed
not at the level of causal links between parts, like CC, but instead at the level of
unordered sets of these parts. CwA are now getting used to perceive individual
parts. When it is necessary to perceive the whole object, CwA attempts to combine
these individual parts. CwA continues perceive elements, but not the whole stimu-
lus. CwA want to perceive the world as a whole, but lack a mechanism to do that
(Fig. 9.3).

Making efforts to protect themselves from stimuli which are too strong, CwA
develop a mechanism to filter out these strong stimuli (which are also more infor-
mative) and perceive weaker ones, less informative, but with a higher similarity
with each other (Fig. 9.4). Due to hyper-sensitivity, a child with autism is over-
selective to the stimuli of external world. We attempt to simulate the phenomenol-
ogy of early development of the autistic cognition as a choice of perception mode in
the conditions of a hyper-sensitive sensory system:

1) A child selects, or capable of, recognizing humans such as parents and relatives,
which requires multi-modal perception, classification of rather distinct images
into a single class, and is then capable of further emotional and mental
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Fig. 9.3 Multi-modal
perception

Fig. 9.4 Example of
avoidance behavior

development. Selecting to recognize the subjects of the mental world leads to a
normal adaptation.

2) A child selects to recognize highly repetitive artificial stimuli such as TV adver-
tisements, smartphone images and sounds, passing cars, and other subjects of
the physical world with extremely high similarity. Being forced to recognize the
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subjects of the physical world only leads to autistic adaptation. Autistic adapta-
tion implies avoidance behavior to ignore stimuli other than highly repetitive
ones.

Human and machine intelligence both experience pleasure from predictability.
Control children like to play games, which reflect the world, but reduce its represen-
tation to a structure of a limited complexity. Playing games, CC can tolerate a broad
range of variability, and wide spectrums of variations are allowed.

On the contrary, CwA will play in a game with zero variability; their doll would
keep uttering the same thing in the same way. No deviation in behavior can be
handled within the comfort zone of CwA. Whereas CC play with many little cars,
CwA would arrange cars in rows: they can only handle a simple element of repeti-
tion that is familiar, and therefore rewarding. The range of deviation for repetition is
different between CwA and CC: under hyper-sensitivity, a totally novel signal is
almost like pain.

Stereotypy or self-stimulatory behavior is usually defined as repetitive body move-
ments or repetitive movement of objects being held by an individual. This behavior is
common in many individuals with developmental disabilities and those who experi-
enced institutional care; however, it appears to be more common in autism. In fact, if
a person with another developmental disability exhibits a form of self-stimulatory
behavior, often the person is also labelled as having autistic characteristics.

Notice that if a machine learning system is fed with very similar elements of the
training set, it will have a problem of recognizing even very similar objects to the
training ones. Moreover, it will be unable to recognize the ones with significant
deviation from the elements of the training set, therefore the whole learning capabil-
ity will be lacking. To be rewarded, such a learning system would need to find input
stimuli that are alike to be able to recognize them. At the same time, to avoid unsuc-
cessful recognitions, the learning system would need to do without complex stimuli,
especially those requiring multiple modality signals to be recognized (visual, audi-
tory, tactile). Selectively blocking of a particular modality allows avoiding a stimu-
lus that is too strong (for a machine-learning system, too different to what has been
in the training dataset). Hence we conclude that a hyper-sensitivity may lead to a
condition where communication between perception systems for vision, speech and
tactile feelings are not reinforced and therefore become dysfunctional at the next
step of autistic development.

9.2.5 Not Paying Attention to What Is Important

When one observes the behavior of a child with autism 2-3 year old, it is the second
stage of the development process. At this second stage, a child tries to interact with
the real world based on the anomalous sensory system built on the first stage. This
first stage is primarily oriented at the protection of an unknown stimulus and at find-
ing a familiar stimulus that can be understood.
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Two factors lead to this: a broken mechanism of interaction with the real world, and
a decrease of the threshold of affective discomfort caused by this interaction. In other
words, the latter factor is connected with the increased sensitivity to sensory signals.

Control children learn to recognize objects of the real world correctly because:

1. they improve the technique of focusing on objects rather than on a background.
They rely on the skill of ignoring secondary, noisy information; and

2. they are capable of coordination sensory signals from various systems and of the
analysis of various properties of objects being recognized.

On the contrary, since the majority of sensory signals is perceived as redundant
under autistic development, CwA is forced to learn the process of ignoring, decreas-
ing the volume of these signals. As a result, a child with autism learns to avoid the
stimuli that are intended for him.

Instead of systematic development and improvement of sensory systems in the
direction of a better understanding of the real world, a child with autism develops a
mechanism to ignore signals from the real world (Fig. 9.4). At the same time, a child
with autism develops his sensitivity of the signals that carry minimal sensory infor-
mation. Instead of the frontal direction, which carries important stimuli, a child with
autism perceives the peripheral visual and auditory signals. All bright and powerful
stimuli are ignored, eye contacts are avoided, and a child is crying when petted.
Sensory mechanisms are built in a way to perceive a minimum of sensory informa-
tion and nevertheless represent somehow the real world. Hence the capability to
merge different sensory systems (visual, auditory, kinesthetic) is lacking, binocular
vision and binaural auditory systems are not being developed.

9.2.6 From Hyper-Sensitivity to Self-Stimulation
of an Engineering System

People with autism suffer from difficulties in learning social rules from examples,
however many remediation strategies have not taken this into account. Therefore an
appropriate remediation strategy is to teach not simply via examples (via inductive
learning) but instead to teach the appropriate rules (via deduction). The cognitive
learning skills of children with autism from the standpoint of active inductive learn-
ing have been analyzed in this section. We start with the hyper-sensitivity that leads
to the broken links between perceptions of different modalities, a lack of adequate
capability to perceive real world stimuli, which then leads to auto-stimulation and
autistic cognition. We propose an architecture for a software active learning system
which behaves in a similar way, going through the same cognitive steps. The com-
monalities in deficiencies of autistic and software active learning systems are ana-
lyzed. We hypothesize that the autistic learning system, starting with just a
hyper-sensitivity feature without other deficiencies, can potentially evolve in a
faulty inductive learning system, deviating stronger and stronger from a normally
developed system at each iteration of the learning process. This chapter confirms
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Fig. 9.5 Steps in autistic cognitive development

that the autistic cognitive process is plausible in terms of an abstract computational
learning system.

We summarize this section in the chart for the sequence of steps towards autistic
cognitive development (Fig. 9.5).

Not just humans can evolve into autistic cognition. A number of poorly designed
engineering intelligent systems can recognize only patterns that are very similar to
the ones being trained.

One such engineering domain is security: because the system architects intend to
avoid false positive in as much degree as possible, they configure the system to issue
alerts only for the patterns very similar to which has been identified as true attack or
intrusion. False positive is any normal or expected behavior that is identified as
anomalous or malicious.

Since it is hard to find real-life positive sets, the creators of security systems
demonstrate their functionality on a very limited set of examples. Only these exam-
ples are then demonstrated, so from our view what is happening is self-stimulation.
Usually active learning is impossible in the security domain.

Another domain where a poorly designed system can only function if self-
stimulation mode is search and recommendation. A number of conversational cus-
tomer support agents can only repeat very closely the dialogues introduced by the
creator. Once there is a deviation from such dialog, the system behavior starts being
totally meaningless, and it can learn nothing from user inputs.
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Fig. 9.6 The environment for active learning and hypotheses formation as seen by a subject
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9.3 Building and Revising Hypotheses in Active Human
Learning

We now explored how autistic cognitive development deviates from normal. It is
well known that autistic reasoning deviates from that of controls in the way of an
absence of certain axioms. Moreover, whereas controls would be able to acquire,
memorize and apply these axioms as rules learned from experience, CwA can do
neither. In this section we will investigate autistic capabilities of handling hypothe-
sis as a bridge between cognition and reasoning. Are characteristic difficulties CwA
experience with solving learning tasks correlated with peculiarities of autistic han-
dling of reasoning tasks?

Having explored how autistic learning develops, we proceed to an experimental
setting on how learning hypotheses is followed by manipulation with them (which
is traditionally referred to as reasoning). Our accumulated experience of teaching
autistic children how to behave properly has contributed to the design of a rule-
based machine learning system which automatically generates hypotheses to explain
observations, verifies these hypotheses by finding the subset of data satisfying them,
falsifies some of the hypotheses by revealing inconsistencies and finally derives the
explanations for the observations by means of cause-effect links if possible. This is
an active learning system in a sense that samples are selected by the learning system
itself to minimize the number of negative samples.

A hungry subject is suggested to eat cookies from the ten plates (Fig. 9.6). The
subject is notified that some cookies were altered and added an unpleasant taste in
accordance to some rule that is not disclosed. The subject is required to eat all of the
cookies with good (expected) taste and state that the rest of cookies are altered. For
the purpose of verification, a subject is encouraged to formulate a formed rule when
done with the cookies.

When a trainee tries all of the cookies one-by-one, she discovers that cookies
from plates 1,3,5,6,7,10 are normal and those from plates 2,4,8,9 were altered and
added an unpleasant taste (Fig. 9.7). The objective of this experimental environment
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Fig. 9.7 Labeled cookies: 2, 4, 8, 9 are altered

is to come up with an algorithm of forming, confirming and defeating hypotheses
such that the least number of cookies with an unpleasant taste is eaten. This environ-
ment approximates the real world where human attempt to optimize their behavior.
Since it is hard to make CwA act in an artificial environment, this experiment is
designed to involve children who are hungry at the beginning of the experimental
session. Since children are eager to satisfy their appetite, they don’t need to be moti-
vated to participate in a cookie-eating session and they genuinely attempt to avoid
altered cookies.

A good way to do minimize a number of cookies with an unpleasant taste eaten,
invented by some of the children, is to find the common property of all good cookies
and that of the bad cookies. These common properties should not overlap between
positive and negative sets. Applying an inductive procedure to positive and negative
examples turns out to be a good advancement of both inductive logic programming
and explanation-based learning (these methods generalize positive examples only).

A subject is expected to start with a simple hypothesis such as “where there is a
fork, the cookie is either normal or altered” or “where there is a knife, the cookie is
either normal or altered”. Once a new cookie is encountered, the current hypothesis
can be updated or removed in favor of the new one. One of the proper sessions is
shown in Table 9.1 where we start with the hypothesis that a fork is associated with
a normal cookie, then update this hypothesis adding the “no knife” clause. Then the
subject discovers that “fork” is a redundant condition and continues acquiring new
samples till she has to transition to “no single knife” instead of the “no any knife”
condition.

The experimental results of hypotheses formation for six subjects are shown in
Table 9.2. Three out of eight subjects produced an optimal scenario (on the
bottom).

The experiments have shown that selected high-functioning autistic subjects out-
performed the control children relying on fairly precise means to judge on human
intelligence from the perspective of algorithmic decision-making. The strategy
selection behavior of normal children was diverse and fuzzy rather than focused on
any algorithm. Control children demonstrated decision making in hypothetical
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Table 9.1 The log of a hypothesis forming and revising session

Hypothesis formed as a result of
Sample given sample Altered
1 Fork—normal
10 Fork—normal
2 Fork—knife —normal Yes
3 —knife—normal
4 —knife—normal Yes
7 —knife—normal
5 —knife—normal
6 —one knife—normal
8 Predicted Yes
9 Predicted Yes
Table 9.2 Results of the experiment on forming and operating with hypotheses
Order of object testing
Successful (starting with 1 and
Subject | completion finishing with 10) Additional remarks
Masha |- 5 7 2 6 1 No rule is formulated
Z 9 3 (810 |4
LenaB | — 4 9 78 6 Some attempt to state a rule. Two last
3 5 2 10 |1 altered cookies are determined correctly,
but was helped with advices
Valya - 7 6 119 10 | No rule is formulated
v 5 |4 38 |2
AlinaZ | — 6 5 9 10 |4 Failure to formulate a rule; ate all
3 8 217 1 cookies including altered
Serge T | — 1 3 58 6 A wrong rule is suggested: no cutlery—
9 4 7110 |2 no alterations; also, forks—no
alterations. Multiple hypotheses were
evaluated but none are correct
SofiaS |+ 1 10 23 4 Independently achieved the correct rule
7 5 6 |8 9
Misha |+ 10 |1 5 4 3 Achieved the correct rule after some
P 2 9 6 '8 7 trials and errors
4 9 1710 |2 Achieved the correct rule after some
6 5 4 3 8 trials and errors

multi-dimensional space, relying on information about cookies, possible intent of
an experimenter, their degree of hunger, the role of cutlery and their inter-relations
with cookies, etc.

Conducting these experiments, we observed no link between characteristic dif-
ficulties of autistic completion of learning tasks and the ways CwA handle reason-
ing tasks. We plan to collect more insights on how cognition is linked with reasoning
of a human and computer system in our future studies. Figure 9.7 contains the
answer to the puzzle: altered cookies are labeled with solid squares.
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9.4 Building Teams Having Learned to Interact

9.4.1 How Trust Develops in a Baby

Trust is a baby’s inner certainty that the mother is going to help when it is needed
(Erikson 1968). This certainty is derived from predictability and consistency of the
mother’s actions. If mistrust (a model of danger) emerges during the first half year,
then the baby is at a disadvantage and this is a path to autistic adaptation. Developing
trust in first half-year is necessary to acquire a control over one’s affairs. This is also
true when a baby grows into a toddler who is expected to succeed in toilet training,
feeding independently, bathing and interacting with known people.

Mistrust around a child is strengthened with the impression that the world is
unpredictable, and it is another feature of autistic development. It keeps CwA from
expanding his world and exploring his opportunities in this world. For a control
child, if the mother is inconsistent in her availability and her care for the baby then
there is a risk that this baby develops into a mistrusting child and will not integrate
with the external world. Success in this stage will lead to the virtue of hope. By
developing a sense of trust, the infant can have a feeling that as new crises arise,
there is a real possibility that other people will be there as a source of support.
Failing to acquire the virtue of hope will lead to the development of fear.

For example, if the care has been harsh or inconsistent, unpredictable and unreli-
able, then the infant will develop a sense of mistrust and will not have confidence in
the world around them or in their abilities to influence events. This infant will carry
the basic sense of mistrust with them to other relationships. It may result in anxiety,
heightened insecurity, and an over-feeling of mistrust in the world around them.

The repetitiveness and sameness of actions (Sect. 9.2.3), behavior and facial
expressions carried out by the mother at the initial step of development eventually
create a set of symbols in the baby’s mind. This is how a baby’s trust is developing.
These symbols come to represent safety in interaction and having a calming effect.
Then when these symbols of familiarity and predictability come up later in a tod-
dler’s life, these symbols will provide a social comfort. Trust development vary in
how much time it takes to be accomplished. A mother can recognize if her baby
develops trust in her constant presence through the following. When the mother
leaves the room and observes the baby’s reaction, one of two can be seen:

1) The baby reacts with anxiety, frowning, erratic movements, and a crying spell;
or,
2) The baby does not react and continues without changing.

The former means that the trust has not been established yet. Once trust has been
established (2) the mother can be more flexible with her delegation of caregiving.
When the baby has acquired trust, her tensions significantly decreases and she will
ask for attention less frequently; separation between self and the environment pro-
ceeds along with the baby’s feeling of independence.
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9.4.2 Measuring Skills of Reasoning About Mental World

We explore how children with autism form teams to perform simple tasks, and what
kind of reasoning is required for that. The focus of our experiment is to find a cor-
relation between how children do reasoning about the mental world, and how they
perform team formation tasks. The underlying model for our correlation is a belief-
desire-intention (BDI; in Rao and Georgeff 1995) model for a multiagent system.

To assess reasoning capabilities of children, we ask them questions about mental
states of characters, and evaluate the correctness of their answers (Galitsky et al. 2011).
We hypothesize that while team undergoes formation, they have to initiate the same or
similar questions before they perform speech acts with their proponents and possibly
opponents. The questions involve first order mental states (do you know...?, does she
want...?), second order (do you want him to believe ... ?), third order (he believes she
wanted him to know that she wanted ...), and fourth-order (he knows she wanted him
to know that she does not want ...). Order characterizes how many verbs for mental
states and communicative actions are nested. A good example here is of the Federal
Reserve chairman Alan Greenspan: “I know you think you understand what you
thought I said but I’m not sure you realize that what you heard is not what I meant.”

We used the following team formation tasks. These are the tasks CwA of age
6-10 usually experience difficulties with, being fairly easy for the CC. These tasks
rely on various physical actions, but the commonality between them is the necessity
to reason about beliefs and intentions of other team members:

e “hide-and-seek games”, where children need to agree who is hiding and who is
searching;

e “hiding an object in a bag” games;

* making one participant do something with the second participant what the third
participant wants;

e form a team of buyers to shop for the items of mutual interested;

¢ form small soccer, football or basketball teams, two versus two;

e form chess playing teams, taking turns in moves, two versus two.

e completing other kinds of joint task (Figs. 9.8 and 9.9).

Each task required five—eight participants. Thirty-two children of age 6—-10 par-
ticipated in all team-building tasks and completed all reasoning exercises.

We split CwA into four groups with respect to their capabilities in team
formation:

1. Active team builder who can initiate a new team;

2. Active team builder which can maintain the team performing tasks and encour-
age others to do so;

3. Passive team members who can be maintained to be a part of the team being
encouraged by other members. They cannot initiate team formation themselves,
but they can resume the team activity after it has stopped;

4. Passive team members who can be maintained to be a part of the team. They can
neither initiate team formation themselves, nor resume team activity.
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Fig. 9.8 An illustration for
completing a joint task

Fig. 9.9 An illustration for formation of a larger size team

For each child, we assign him to a group if he is capable of performing the required
team formation function in more than a half of the scenarios. Notice that some team
building scenarios require verbal communication, and some rely on non-verbal ones.

The joint results of the reasoning assessment and team formation assessment are
shown in Table 9.3. Rows indicate the percentages of successfully completed rea-
soning tasks for each group of team formers (averaged through eight individuals).
Rows are grouped from top to bottom according to the order of formulas required to
answer the respective question. As we indicated, an order is defined as a count of
mental verbs in a natural language phrase expressing a mental state or action.
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Table 9.3 Team formation skills as a function of reasoning about mental states capabilities

Active team builder Passive team member
— —— —— Controls
Roles initiate | maintain maintain_ | resume
knowing an object and its attributes 95 91 82 72 95
not seeing-> not knowing 90 93 78 80 90
intention of yourself 88 90 80 76 95
intention of others 92 87 71 70 95
informing 87 84 78 73 90
information request 91 89 72 7 85
asking to do an action 78 83 80 75 90
asking to help 85 80 70 75 90
questioning 81 83 68 70 85
explaining 72 70 61 64 85
agreeing 76 73 64 60 90
pretending 81 76 65 62 90
deceiving 70 64 62 54 80
offending 73 68 58 50 85
forgiving 72 62 61 46 80
reconciling 65 64 50 39 85
disagreeing 72 69 42 40 75
inviting to help 62 59 39 46 70
asking to leave 64 57 40 51 85
asking not to interfere 70 50 38 32 70
disagreeing 62 46 32 28 65
resolving a conflict 42 37 17 12 65
negotiating 48 24 12 7 60

Dark grey area shows good performance of reasoning tasks (more than 70%) and
light-grey show lower performance (60—70%). The white area shows the level of
reasoning complexity this group of team formers cannot reliably achieve. Mental
states and actions of reasoning exercise are ordered in the way of increasing com-
plexity (averaged performance). Columns are formed according to the four groups
of children above.

One can observe a strong correlation between the reasoning complexity order
and team forming capabilities. If children cannot perform even the first-order rea-
soning tasks, they are neither capable of team forming nor understanding of team
forming by others. To be capable of team forming, second-order reasoning needs to
be satisfactory.

The third-order mental states are the ones the trainees experience the most diffi-
culties with. Various skills at these tasks differentiate children with autism into two
groups:

1) those who can initiate new teams, and
2) those who can maintain team activities and resume team operations.

For the former group, substantial third-order reasoning is required, and for the
latter, just rudimentary third-order skills suffice.

Finally, fourth order mental states are difficult for both children with autism and
controls of comparable age (see the rightmost column for evaluation of team forma-
tion by the control group).
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9.4.3 A Cooperation Between CwA in the Real World

We observed the team formation behavior in the real world as a part of the interven-
tion program conducted by the Center for children with special needs “Sunny
World” (www.solnechnymir.ru). The children in the summer camp were forming
teams with the help of intervention personnel and parents, performing various farm-
ing tasks. These tasks include harvesting and packaging vegetables into boxes.
Children had to agree on who is doing what, how to store and pass vegetables
between each other and in what order, and how to handle varying harvesting condi-
tions (Fig. 9.10). The difficulty level for this task is of the order two and three in
most cases.

The children who participated in our evaluation study and successfully formed
teams in artificial scenarios were also capable of forming teams for the agricultural

Fig. 9.10 A team of
children at work (Sunny
World 2014)
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tasks. On the contrary, those who could not adequately participate in our assessment
had significant difficulties in performing the tasks requiring interaction with other
team members, performing farming tasks.

Performance assessment is difficult in farming teams because of a lack of repeti-
tion and systematic framework in the farming tasks. Unlike the team formation
exercises, which also included conflict scenarios, farming ones involved coopera-
tion only, avoiding any kinds of conflicts. However, the overall impression of the
personnel and the parents was that doing abstract team formation helped some chil-
dren to understand mental states sufficiently to form cooperative teams.

Team formation in the real world demonstrates how the notion of trust is per-
ceived by the reduced reasoning of children with autism. Trust becomes a mental
state with certain rules, compared to the trust states that are learned by control
human and software agents. Trust is explicitly defined via communicative actions of
promise and believe:

trusttWho, Whom):- VYSubject promise(Whom, Who, Subject), believe(Who,
Subject).

and serves as an additional constraint for a team formation rule: engage with
trusted partners. In this respect the notion of trust is simpler than in the general case
of adequate reasoners, which need to acquire trust in the course of a dynamic pro-
cess (Lawless et al. 2013). The intelligence in the form of rules to reason about a
mental world cannot be labeled as robust, in our opinion, since autistic reasoning
cannot be adjusted to a given environment in an autonomous manner.

Yi et al. (2013) investigated whether CwA had an indiscriminate trust bias. The
question of this study is whether a CwA would believe in any information provided
by an unfamiliar adult with whom they had no interactive history. Young school-
aged CwA and their age- and ability-matched CC participated in a simple hide-and-
seek game. In the game, a caregiver with whom the children had no previous
interactive history pointed to or left a marker on a box to indicate a location of a
hidden reward. Results showed that although CwA did not blindly trust any
information provided by the unfamiliar adult, they tend to be more trusting in the
adult informant than control children do.

For an abstract reasoning system, experiencing difficulties in forming teams does
not necessarily mean that deficiencies are in the domain of reasoning about the
mental world. It could be a general autistic incapability to adjust to a given environ-
ment (Galitsky and Peterson 2005), general problems in non-monotonic reasoning
(Galitsky and Goldberg 2003; Galitsky 2007), autistic planning (Galitsky and
Jarrold 2011) and autistic active learning (Galitsky and Shpitsberg 2014). However,
we discovered in this chapter out that the root cause of autistic difficulties in team
formation are due to reasoning in the mental domain, as demonstrated by its direct
correlation with the real world performance.
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9.5 Rehabilitating Autistic Interactions

9.5.1 Teaching Hide-and-Seek Game

Learning to play hide-and-seek game is one of the important steps in learning the
mental world. It is also a good team formation exercise. This game requires a sub-
stantial reasoning about mental states and actions, in both rule-based mental and
emotional domains. A child needs to understand the pre- and post-conditions for
searching as a desire to identify where the peers are located. A concept of hiding
needs to be explained as an opposite desire of not being found. Children need to be
aware that searching may lead to finding, and hiding—to not being found. If one
does not search then nobody can be found, and if one does not hide she will be
found immediately. It is a game of deception, which requires acknowledgment that
other people may have different beliefs. Therefore many CwA avoid it and/or are
not capable of participating in it. Playing hide-and seek requires understanding and
handling third-order mental states such as “I know that he wants me not no know
where he is”.

In the emotional space, a hide-and-seek player is expected to express appropriate
emotions when he finds another child, or when he is found by someone else. A rule
should be taught that an emotion is appropriate when there was a desire and at the
given moment it succeeds. Some emotional expressions are suitable when a child is
hiding; he is being looked at but not found.

Another important skill is to conceal yourself in an environment. A child needs
to be taught to position himself in the location of a seeker and track his potential
gaze to avoid being found. A seeker needs to be able to close his eyes and count to
a predetermined number while the other players hide. After reaching the number
(such as reaching 10 or 20), the seeker attempts to say, “Ready or not, here I come!”
and then to locate all concealed players (Fig. 9.11).

Training starts with identifying hide-and-seek players in an image with sche-
matic depiction of playing characters. CwAs are encouraged to use a touch-pad to
track the gaze with their fingers. Children are asked questions about the role of play-
ers, who is doing what, who desires what, and who is seeing whom.

After CwA trainers are capable of recognizing players in an image, a trainer can
proceed to similar tasks on the photos of children playing hide-and-seek (Fig. 9.12)
and ask similar questions:

What game do the children play?

Which objects from the environment are used to be hiding behind?

Do those who hiding want the seeker to find them?

Does the seeker want to find those hiding?

Do the hiding children see the seeker? Do they know where he is?
Does the seeker see the hiding children? Does he know where they are?
Why does the seeker have to close his eyes?
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Fig. 9.11 The hide-and-seek training starts with schematic depiction of a seeker and two con-
cealed players

Fig. 9.12 After CwA is confident with schematic depiction of hide-and-seek game, a trainer can
proceed to photos. The seekers close their eyes and are counting

Once CwA are prepared to play hide and seek, having completed the exercises, a
trainer can attempt to involve them in an actual game, first indoor and then outside.
To play a role of a seeker or to hide, a CwA needs to be accompanied by a trainer,
and a role of an opponent can be performed by a parent, sibling or another trainer.
The trainer needs to hide together with CwA and explain her the goal of hiding and
the object they are hiding behind.
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Fig. 9.13 An older trainee finding a direction using GPS (on the /eff). Some young adults become
fairly skillful once the introduction to orienteering with GPS is completed (on the right)

9.5.2 Learning to Navigate Environment

For most CwA, orienteering is the next logical step after hide-and-seek. However,
some children are good at orienteering even if their emotional skills for hide-and-
seek are rudimentary and they cannot play independently.

The reason orienteering is not too hard for CwA is that no reasoning about
another human is required. A CwA usually memorizes the commands and naviga-
tion of GPS menus in no time. A CwA needs to associate what GPS is showing with
what is observed in the real world (Fig. 9.13). Doing that, formulating, adjusting
and rejecting of hypotheses of such association is required, based on hypotheses
management exercise in Sect. 9.3.

The main focus of how orienteering activity supports reasoning is hypotheses
management. Looking at a GPS, the child obtains the direction to and distance to
the goal. Then observing the landscape, the child selects an object such as a tree and
forms an estimate for how far it is from this tree to the goal (Fig. 9.14).

Once the tree is reached, CwA observes her position relative to the goal and pos-
sibly updates the hypothesis on where she was relative to the goal. CwA now needs
to form a new hypothesis on which direction in the landscape to chose and which
position relative to the goal to expect, and proceeds towards the goal.

What this exercise teaches is the skill to maintain hypotheses, revise them when
appropriate, and expect one to be wrong again and again. This is opposite to a con-
ventional autistic reasoning which sticks to a given hypothesis once it is formed.
After that, CwA will be reluctant to revise this hypothesis, and an observation that
it does not fit the real world would be very stressful and unproductive: CwA would
give up on the exercise.
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Fig. 9.14 A trainee is
being helped to link the
GPS indication with the
real world spatial
references

9.5.3 A Literary Work Search System

Once a trainee is familiar with mental formulas and is capable of forming simple
scenarios from it, he should proceed to formulating questions in the mental world.
A rich and extensive domain in the mental world is the one of the fictional charac-
ters in a narrative work of art (such as a novel, play, television series or film). In this
section we propose a reasoning exercise based on formulating queries and searching
for a literary work.

The methodology and abstraction of such searches are very different from those
for database querying, keyword-based search of relevant portions of text, and search
for the data of various modalities (speech, image, video etc.). Clearly, the search
that is based on mental attributes is supposed to be enriched with meanings versus
just keywords. Obviously, using just the author name or title is trivial. Also, using
temporal (historical) and geographical circumstances of the characters reduces the
literary work search to the relatively simple querying against the relational database
of literary work parameters.

We have built the dataset of a literary works, which includes the manually
extracted mental states of their characters. We collected as many a literary works as
was necessary to represent the totality of mental states, encoded by logical formulas
of the certain complexity (Galitsky 2000). Below are the features of this dataset:
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. As arule, the main plot of a literary work deals with the development of human

emotions, expressible via basic (want-know-believe) and derived (pretend,
deceive, etc.) mental predicates. A single mental state expresses the very essence
of a particular a literary work for small forms (a verse, a story, a sketch, etc.).
When one considers a novel, a poem, a drama, etc., which has a more complex
nature, then a set of individual plots can be revealed. Each of these plots is
depicting its own structure of mental states that is not necessarily unique. Taken
all together, they have the highly complex form, appropriate to identify a literary
work.

. Extraction of the mental states from a literary work allows us to clarify psycho-

logical, social and philosophical problems, encoded by this work. The mental
components, in contrast to the “physical” ones are frequently expressed implic-
itly and contain some ambiguous expressions.

. The same mental formula may be a part of different literary works, written by the

distinguishing authors. Therefore, it is impossible to identify a certain literary
work or author when we take into consideration just a single mental formula.
However, the frequency of repetition of certain mental formulas shows us the
importance of the problem raised by a literary work.

. The sets of mental formulas are sufficient to identify a literary work. The possi-

bility to recognize a certain author according to a collection of mental states of
his or her literary work s is beyond our current consideration.

We enumerate the tasks that have to be implemented for the literature search

system based on the scenario reasoning settings:

1y

2)

3)

4)

5)

0)

Understanding a natural language query or statement (Galitsky 2003). This unit
converts a NL expression into a formalized one (mental formula), using mental
metapredicates and generic predicates for physical states and actions.

Domain representation in the form of semantic headers, where mental formulas
are assigned to the textual representation (abstract) of a literary work.

A reasoning engine (Natural Language Multiagent Mental Simulator, NL_
MAMS (Galitsky 2013)) that builds hypothetical mental states, which follow the
mental state, mentioned in the query. These generated hypothetical mental states
will be searched against the literary work knowledge base together with the
query representation (in unit 5).

Synthesis of all well-written mental formulas in the given vocabulary of basic
and derived mental entities.

Matching the mental formula, obtained for a query against mental formulas,
associated with literary works. We use an approximate match in case of failure
of a direct match.

Synthesis of canonical NL sentence based on mental formula to verify if the
query was properly understood

Figure 9.15 presents a chart for the unit components (1)—(6) of the literary work

search system. There are two functioning options: (a) literary work search and (b)
extension of the literary work dataset. When a user wishes to add a new literary
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Input Query 3
—l WOL database
NL query 1 ]
understanding Pre-designed
mental formulas
Building translation (semantic header):-
formula
i output (LW abstract)
Multiagent mental 2
simulator
Building consecutive

mental states

y
Exact formula 4 Enumeration of all 5
match well-formed mental

formulas

Approximate
formula match

]
Synthesis of simplfied mental formula 6
for the control of query understading

\ /

Answer

Fig. 9.15 The chart of the WOL search and mental reasoning system

work to the current dataset, the formulas for the mental state associated with text are
automatically built by Unit 1 and are subjected to variations for semantically differ-
ent phrasings by Unit 2.

Rather complex semantic analysis (Unit 1) is required for exact representation of
an input query: all the logical connectives have to be properly handled. Unit 2
provides the better coverage of the literary work domain, deductively linking mental
formula for a query with mental formulas for literary works.

Plausible mental formulas are extracted from the totality of all well-written men-
tal formulas, represented via metapredicates. In addition, introduction of the classes
of equality of mental formulas are required for the approximate match of mental
formulas (Unit 4) that are also inconsistent with the traditional formalizations of
reasoning about knowledge and belief. NL synthesis of mental expression (Unit 6)
is helpful for the verification of the system’s deduction. A trainee needs this compo-
nent to verify that she is understood by the system correctly before starting to evalu-
ate the answer. NL synthesis in such a strictly limited domain as mental expression
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How would a person pretend to another person that she does not want that person to know
something?

When would a person want another person not to pretend that he does not know something?

When would a character pretend about his intention to know something?

Why would a person want another person to pretend about what this other person want?

How can a person pretend that he does not understand that other person does not want?

Is it easy for a person to believe that another person does not pretend what she wants?

How can a person believe that another person might pretend that he wants something?

She wanted to believe that he pretended that he was not a prince.

Can she believe that he does not pretend that he committed the murderer of her spouse because
of his love to her?

A person believes that the husband does not want him to love his wife.

A wife wishes not to confess to her husband that she was not faithful.

Fig. 9.16 Sample questions for the literature search

is straightforward and does not require special consideration. Note that semantic
rules for the analysis of mental formulas require specific (more advanced) machin-
ery for complex embedded expressions and metapredicate substitutions.

The special question-answer technique for poorly-structured domains has been
developed to link the formal representation of a question with the formal expression
of the essential idea of an answer. These expressions, enumerating the key mental
states and actions of the literary work characters, are called semantic headers of
answers (Galitsky 2003). The mode of knowledge base extension (automatic anno-
tation), where a user introduces an abstract of a plot and the system prepares it as an
answer for other users, takes advantage of the flexibility properties of the semantic
header technique.

To summarize, the literary work system architecture is as follows. A NL query
that includes mental states and action of a literary work character is converted into
mental formula (Unit 1). Multiagent mental simulator (Unit 2) yields the set of
mental formulas, associated with the query to extend the knowledge-base search.
Obtained formulas are matched (Unit 4) against the totality of prepared semantic
headers (mental formulas) from the literary work database (Unit 3). If there is no
semantic header (mental formula attached to text) in the dataset component that
satisfies the mental formula for a query, the approximate match is initiated. Using
the enumeration of all well-formed mental formulas (Unit 5), the system finds the
best approximation of the mental formula for a query that matches at least single
semantic header (mental formula for an answer).

Interaction with the literature characters is a new effective and efficient education
means for children, interacting with the characters of the scenes in NL (Fig. 9.16).
Since the players are suggested to both ask questions and share the literature knowl-
edge, the system encourages the cooperation among the members of the players’
community. In the demo we have built, the system only recognizes the questions
and statements, involving the terms for mental states and actions. This way we
encourage the players to stay within a “pure” mental world and to increase the com-
plexity of queries and statements we expect the system to handle properly. Observing
the game players, we discovered that they frequently try to obtain the exhaustive list
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WOL search system allows a literature fan to extend the
knowledge base with the new favorite story or novel and to
specify the major ways of accessing it (asking about it). This
toolkit processes the combination of the answer (an abstract of a
story, introducing the heroes and their interactions) and a set of
questions or statements (explicitly expressing the mental states
these interactions are based on).

When does a person | The Carriage of holly gifts
pretend about  her | by P. Merimee

intention 1o know | An old-aged king wants to learn from
something? his secretary if the young girl he loves
is faithful to him. The secretary is
anxious to please the king...

Compile Knowledge base

Add to Knowledge

Domain extension code:

pretend(person, other_person, want(person, know(person.Smth)))
:=do201.

do201 :-oupur(SThe Carriage of holly gifts... $).

Domain is compiled. Ask a question to the updated domain

Ask

Now you can ask the questions for the
domain extension as well as for the base domain, varying the
phrasings.

Fig. 9.17 An autistic child learns the mental interaction with the characters (participants of the
scene), using the suggested system

of literary works, memorize the querying results and enjoy sharing WOL plots with
the others.

The demonstration encourages the users (players, students) to demonstrate their
knowledge of classical literature, from medieval to modern, asking questions about
the mental states of the characters and compare the system’s results with their own
imagination. The system stimulates the trainees to extract the mental entities, which
can be formalized, from the totality of features of literature characters. After an
answer is obtained, it takes some efforts to verify its relevance to the question. It
takes a little variation in the mental expression to switch from one literary work to
another. More advanced users are offered the option of adding a new literary work.
For mental a intervention (particularly, CwA), certain visualization aids are useful
in addition to the literary work search system (Fig. 9.17).

Examples of questions the children may ask the system, while watching the
scene, are shown in Fig. 9.18. Involving more and more complex mental states helps
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Fig. 9.18 Example queries

Does Mike see that the dog is eating the sausages?

Does Peter see what is happening with Mike and the dog?

Does Nick know what is happening with Mike and the dog?

How does Nick express his emotions?

Does Fred know whether Peter knows what is happening with the sausages?
Does Nick want to keep the dog from eating the sausages?

What would Fred do if he wants to let Peter know what is happening?

NounkwWb—

Fig. 9.19 A scene that serves as a playground for asking questions about mental states

(Fig. 9.19) the playing children to develop creativity and imagination, as well as the
communication skills of understanding mental states of others.

9.6 Discussion and Conclusions

Recent studies (e.g., Dawson et al. 2007) have reported that autistic people perform
in the normal range on the Raven Progressive Matrices test, a formal reasoning test
that requires the integration of relations as well as the ability to deduce behavioral
rules and to form high-level abstractions. Morsanyi and Holyoak (2010) compared
autistic and control children, matched on age, 1Q, and verbal and non-verbal work-
ing memory, using both the Raven test and pictorial tests of analogical reasoning.
They found that autistic children’s reasoning capabilities are similar to those of
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controls on reasoning with relations tests. The authors concludes that the basic abil-
ity to reason systematically with relations in the physical world, for both abstract
and thematic entities, is intact in autism.

Gokcen et al. (2009) investigated the potential values of executive function and
social cognition deficits in autism. While the theory of mind is generally accepted
as a whole, a number of researchers suggested that it can be separated into two
components (mental state reasoning and decoding). Both aspects of the theory of
mind and verbal working memory abilities were investigated with the focus on men-
tal reasoning for parents of children with autism, who had verbal working memory
deficits as well as a low performance on a mental state reasoning task. The parents
had difficulties in reasoning about others’ emotions. In contrast to findings in the
control group, low performance of mental state reasoning ability was not associated
with a working memory deficit in control parents. Social cognition and working
memory impairments may represent potential genetic risks associated with autism.

In the physical world, children with autism perform relatively well so it should
not be a limitation for their team formation capabilities. Autistic participants outper-
formed non-autistic participants on abstract spatial tests (Stevenson and Gernsbacher
2013). Non-autistic participants did not outperform autistic participants on any of
the three domains (spatial, numerical, and verbal) or at either of the two reasoning
levels (concrete and abstract), suggesting similarity in abilities between autistic and
non-autistic individuals, with abstract spatial reasoning as an autistic strength.

For an abstract reasoning system, experiencing difficulties in forming teams does
not necessarily mean that deficiencies are in the domain of reasoning about the
mental world. It could be a general incapability to adjust to a given environment
(Galitsky and Peterson 2005), general problems in non-monotonic reasoning
(Galitsky and Goldberg 2003; Galitsky 2007), autistic planning (Galitsky and
Jarrold 2011) and autistic active learning (Galitsky and Shpitsberg 2014). However,
it turned out that the root cause of autistic difficulties in team formation are due to
reasoning in the mental domain, as demonstrated by its direct correlation with the
real world performance.

We explored team formation at the following levels:

1. Abstract reasoning in mental world
2. Team formation in controlled, assessment tasks
3. Team formation in real world

We found a strong correlation between (1) and (2), and a weak, qualitative cor-
relation between (2) and (3). We used the computational tool capable of solving
similar problems (reasoning about mental states, Galitsky 2013) to the ones which
were given to CwA. In the case of children, we simulated the peculiarities of autistic
reasoning on one hand and supported rehabilitation exercises on the other hand. We
used the following hybrid teams of agents: autistic + autistic, autistic + control and
autistic + software agents.

We found that the main determining feature of autistic team formation is their
reasoning capabilities. This observation can be extended to the case of software
agents, where behavioral algorithms can be affected by a broad range of circumstances.
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For software agents, the bottleneck of reasoning about mental states can be less
noticeable, but we expect it to be as almost as strong as for the case of autistic
reasoning.

Our study has certain implications for how the autonomy features of abstract
agents can be modeled via aspects of human behavior. Obviously, autistic reasoning
not only leads to unusual and frequently inappropriate behavior but also causes
error in controlling the outside world. Our finding confirms the theory of social
interdependence in its simplest form, applied to naive autistic reasoners: once agents
become capable of operating in the mental world, they are able to form teams: no
special, additional skills are required. Once children form teams, their mental rea-
soning capabilities improve, but they do not need to learn anything more besides
mental states and actions to learn about forming simple teams. In this respect, our
findings back up the traditional individual methodological perspectives (e.g., cogni-
tive architectures). They assume that individuals are more stable than labile from the
social interactions in which they engage: once individual reasoning skills are ade-
quate, the collective behavior becomes adequate as well.
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Chapter 10
Semantic Vector Spaces for Broadening
Consideration of Consequences

Douglas Summers-Stay

Reasoning systems with too simple a model of the world and human intent are
unable to consider potential negative side effects of their actions and modify their
plans to avoid them (e.g., avoiding potential errors). However, hand-encoding the
enormous and subtle body of facts that constitutes common sense into a knowledge
base has proved too difficult despite decades of work. Distributed semantic vector
spaces learned from large text corpora, on the other hand, can learn representations
that capture shades of meaning of common-sense concepts and perform analogical
and associational reasoning in ways that knowledge bases are too rigid to perform,
by encoding concepts and the relations between them as geometric structures. These
have, however, the disadvantage of being unreliable, poorly understood, and biased
in their view of the world by the source material. This chapter will discuss how
these approaches may be brought together in a way that combines the best proper-
ties of each for understanding the world and human intentions in a richer way.

10.1 Designing for Safety

Failure Mode and Effects Analysis documents are used for ensuring safety in com-
plex systems such as automotive design. Engineers painstakingly analyze each sub-
system for its probability of failure and build in layers of redundancy depending on
the seriousness of system failure. Fail-safes (systems that, when they fail, do so in a
way that leaves them safer), layers of redundancy, and hazard and risk analysis, are
all tools used to reduce the probability of injury or death to a reasonably low level.
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Typical machinery makes use of a very simple model of the world. A grocery
store conveyor belt, for example, has two states and one binary sensor controlling
which state it is in. A safety analysis would consider a richer model of the conveyor
belt as a collection of moving parts, any one of which could break, and the much
larger set of states that could put the system in, as well as potential consequences of
such a failure. The complexity of autonomous systems makes such analysis more
difficult. As the system becomes more autonomous, the number of potential actions
the system can take and the variety of situations it can find itself in grows very
quickly. In addition, useful Al systems must learn and change over time: under-
standing means incorporating newly acquired facts about the world into the already
existing body of knowledge. A-priori consideration of every possible situation
becomes impossible. It seems the only solution is to automate the safety analysis
itself: we must design the system to perform a safety analysis on its own actions.

Doing this would require the autonomous system to have a rich model of the
entire environment it will be interacting with—not just a simplified model that
allows it to perform its normal tasks, but a model that takes into account the wider
environment so that it understands what its tasks are for, what consequences its
actions will have, and which consequences are to be avoided.

Creating such a system to reduce human error would be very difficult, difficult to
the point that it has never been seriously attempted. Causal reasoning about physical
systems can be performed for limited situations by creating detailed physical simu-
lations, such as finite element analysis for stress analysis or nuclear weapons test-
ing, but such methods are far too computationally intensive to be used for making
quick decisions about everyday situations. A more promising approach involves
qualitative reasoning about physical systems. In 1985, the dramatically named
“Naive Physics Manifesto” (Hayes 1978) laid out a program for enabling Al to
answer questions about real world situations, with some initial success: “figuring
out that a boiler can blow up, that an oscillator with friction will eventually stop, and
how to say that you can pull with a string, but not push with it.” Hayes’ plan involved
entering knowledge about the causal relationships of physical systems into a first
order logical system (a knowledge base), and deducing answers to such questions.
This approach ran into the common problem of expert systems: brittleness and
incompleteness (Lenat 1985). Unless a query was designed carefully by a researcher
with intimate understanding of how the knowledge base was constructed and what
information it contained, some missing assumption would break the chain of rea-
soning and no answer would be returned.

There has been substantial work (e.g., Dash 2013) on A.IL. planning and the cre-
ation of subgoals. While this is important and necessary, as long as these subgoals
make use of a simple, incomplete model of the world, they will be inherently unsafe
outside of toy applications.
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10.2 Understanding Intent

Reasoning about physical processes that may lead to accidents, while a huge effort
in itself, is only one part of the problem. Without understanding exactly the goal to
be accomplished, the Al system may plan for a goal in a way that contradicts other
implicit goals, in ways that may prove dangerous.

Amodei (2016) pointed out two mechanisms that can lead two accidents when an
objective function is specified. “Negative side effects” can occur because of an
insufficient model of chains of causal relations, leading to unanticipated negative
consequences. “Reward hacking,” however, occurs when the objective function is
technically satisfied, but in a way that contradicts unspoken goals.

“The Sorcerer’s Apprentice” is an old story, probably most familiar from Disney’s
version, but originating in the second century A.D. The ancient Greeks also told stories
of King Midas turning his daughter to gold or Tithonus, who Zeus grants immortality
but not eternal youth. There are similar stories about genies from the Arabian nights, as
well as fairy tales about wish-granting fishes, stories of golems from Jewish sources,
and stories of deals with Old Nick from frontier America. All these fit the same pattern.
In each version of the story, the entity granting the petition has the ability to help
humans achieve their goals, but although the petitioner’s goal is technically satisfied, it
happens in a way that contradicts real, deeper desires. In discussing issues of A.I. safety,
Stuart Russell points out that we have a similar situation: “The primary concern is...
simply the ability to make high-quality decisions. Here, quality refers to the expected
outcome utility of actions taken, where the utility function is, presumably, specified by
the human designer....The utility function may not be perfectly aligned with the values
of the human race, which are (at best) very difficult to pin down.” (Russell 2014)

Dietterich (2015) wrote, “Suppose we tell a self-driving car to ‘get us to the air-
port as quickly as possible!” Would the autonomous driving system put the pedal to
the metal and drive at 125 mph, putting pedestrians and other drivers at risk? ... [T]
hese examples refer to cases where humans have failed to correctly instruct the Al
system on how it should behave. This is not a new problem. An important aspect of
any Al system that interacts with people is that it must reason about what people
intend rather than carrying out commands literally. An Al system must analyze and
understand whether the behavior that a human is requesting is likely to be judged as
“normal” or “reasonable” by most people.”

This is a familiar experience to every programmer. Although programming lan-
guages allow us to specify exactly what we want the computer to do, we often end up
writing buggy programs that don’t do what we actually want. Autonomous systems are
designed to act with less direct, more natural instruction. How do we make a system that
will carry out what we want when we ask it to do something? It is impossible unless the
system has knowledge of what kinds of things we want and what our words mean.

The problem of A.I. safety, then, is inescapably a version of the same problem of
automating understanding that lies at the core of natural language understanding,
common sense reasoning, mental modeling, creativity, and many other efforts that
have been challenges for A.I research since its inception. This can be looked at in a
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positive, way, though. The same research that is required to make A.I. effective at
real world tasks will also be advancing the ability to carry out those tasks safely,
without undesirable side effects.

10.3 Expressing Intent

Natural languages, unlike programming languages, are imprecise and underspeci-
fied. In every uttered sentence, there is a large body of assumed background context,
shared knowledge that can remain unsaid. Part of this is innate: all humans have
certain shared goals even from infancy, such as air, water, food, and safety from
physical and emotional harm—Maslow’s “hierarchy of needs.” Part of this is learned
over a lifetime, the cultural body of knowledge such as property rights, social con-
ventions, sarcasm, humor, and so forth.

When a command is expressed in natural language, the command cannot contain
all of the limitations and context necessary to carry out the command in a way that
matches the intent of the human giving the command. Such precision in language is
inherently un-natural. If not expressed in the command itself, such values must
already be included in the background knowledge brought to bear as the A.I. forms
a plan to carry out the command.

One well-established attempt at pinning down some part of human values is the
legal system. The legal system attempts to encode some human standard of what is
acceptable behavior of an agent interacting with society and the world in very pre-
cise language, at least as far as human-readable documents go. The written law,
however, is insufficient to decide cases. When cases are actually brought to trial,
human lawyers are needed. The lawyers’ role is to search through similar cases
which have already been decided, in order to find the nearest analogies with cases
in precedent they can which result in a ruling favorable to their side. With lawyers
performing this role on each side of the case, a human judge or jury decides which
they find to be most similar.

Human judges and lawyers are needed because the law is necessarily insuffi-
ciently precise to cover every possible case. In this way it is very similar to hand-
created knowledge bases. Attempts to encode knowledge in a system capable only
of deductive reasoning were invariably very limited in their usefulness, because
they lacked this ability to extend reasoning to new cases by analogy (Speer 2008).

The ability to find analogies is essential to understanding physical systems and
human intent. Suppose a boy hits a baseball through a window of the house. A
mother provides negative reinforcement, saying “don’t do that again.” But what
does she mean by “do that”? It could mean:

* “never hit a ball with a bat”

e “don’t play near the house”

e “don’t hit a ball towards this particular window”
e “don’t move your arms”
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And so forth. In order to understand what she means by “do that,” the boy may
apply the golden rule: his unconscious reasoning is something like, “I would be
angry if someone broke one of my possessions, so she must be angry because I
broke one of her possessions.” The boy will recognize that throwing a stick inside
the house where it might break a lamp is an analogous situation to be avoided in the
relevant sense of “causing an object to move unpredictably where it has the chance
to damage someone’s fragile property.” But the ability to pull out this particular
meaning of “do that” over any of the others depends on a lifetime of experience and
an internal set of desires that corresponds, more or less, with the mother’s.

Is building this kind of “common sense” into an Al system really necessary for it
to behave safely? It is such a difficult problem that any way around it seems prefer-
able. In Amodei (2016), several methods were proposed for increasing Al safety
that don’t explicitly include such a design. For example, they suggested avoiding
side effects, or situations which might potentially have side effects. After exploring
this idea for a little while, however, they pointed out situations where such an
approach would fail without some notion of the user’s goals and the form that con-
sequences would take. There’s no free lunch: (Amodei 2016, p. 6) “Avoiding side
effects can be seen as a proxy for the thing we really care about: avoiding negative
externalities. If everyone likes a side effect, there’s no need to avoid it. What we’d
really like to do is understand all the other agents (including humans) and make sure
our actions don’t harm their interests...However we are still a long way away from
practical systems that can build a rich enough model to avoid undesired side effects
in a general sense.” The only solution to this problem is the hard one: biting the bul-
let and building a rich enough model to avoid undesired side effects.

There are two main problems with encoding such common sense background
knowledge in a way that an autonomous system can make use of. The first problem
is an architectural issue: The meanings of concepts are rich and nuanced. What kind
of data structure can allow for such diverse phenomena as being reminded by simi-
lar ideas, completing analogies, recognizing objects by their attributes, and recog-
nizing a class by a single example of that class, and still support deductive
reasoning?

The second problem is this: once we have an architecture capable of storing con-
cepts and reasoning about them in deductive, inductive, and analogical ways, how
can we populate it with the vast amount of common-sense knowledge we all share?

10.4 Problem 1: An Encoding for Concepts

Douglas Hofstadter has been writing about the nature of concepts and analogies
since the 1980s, pointing out a distinction between how symbolic information is
stored in precise logical forms in a knowledge base, and how concepts are held in
the mind. “The property of being a concept is a property of connectivity, a quality
that comes from being embedded in a certain kind of complicated network.”
(Hofstadter 1985, p. 528) In an object-oriented programming language or a
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knowledge base, we can represent an object such as a fire-extinguisher with a few
facts defining its function as needed in the program. To really count as a concept,
though, requires much more than that. The concept of a fire-extinguisher includes
something of its shape and size, the material it’s made from, its appearance, the uses
it is put to, how to operate it, where one can be found, a rough idea of how much it
costs, what it resembles, and many other such properties. Each of those properties,
in turn, must be concepts, with the same richness of internal structure. Concepts that
define a class have shades of membership. A bucket of sand might be considered a
fire-extinguisher under certain ill-specified conditions. A fire-extinguisher that has
not been recharged also has a shaded inclusion in the category.

Concepts have connections of varying strength with many other concepts. “Each
new concept depends on a number of previously existing concepts. But each of
those concepts depended, in its turn, on previous and more primitive concepts...
This buildup of concepts over time does not in any way establish a strict and rigid
hierarchy. The dependencies are blurry and shaded rather than precise, and there is
no strict sense of higher and lower... since dependencies can be reciprocal. New
concepts transform the concepts that existed prior to them, and that enabled them to
come into being; in this way, newer concepts are incorporated inside their “parents”
as well as the reverse.” (Hofstadter 2013, p. 54) To act as a concept, then, requires
that the information be stored in a way that admits degrees of similarity, and defini-
tions that are reciprocal, rather than built up from axioms like the definitions of
mathematical structures.

Our understanding of concepts is evoked by similar concepts, and the way we
think about concepts is largely analogical in nature. “The ability to perceive simi-
larities and analogies, he argues, is one of the most fundamental aspects of human
cognition. It is crucial for recognition, classification, and learning, and it plays an
important role in scientific discovery and creativity.” (Vosniadou 1989, p. 1).
Whatever representation of concepts we come up with, it must be able to support
reasoning by analogy, and such analogies must be flexible enough to admit ambigu-
ity and imperfect matches.

In early A.L. research, concepts were represented using knowledge bases: as
nodes in a relational graph in a database with the capacity for deductive reasoning.
The graph expressed first order relations as connections between nodes. This stored
symbolic information, but failed to capture the subsymbolic information that is
inherent in human concepts. A key problem in storing information this way is that
any mismatch between the arrangement of concepts in the knowledge base and the
form of a query will cause the query process to fail completely, returning no results
at all. For example, the knowledge base may include the fact that gasoline may
catch fire:

causes (gasoline, fire_hazard)

but a query asking

has_tendency (gasoline, X?)

Will return no results unless the knowledge base also has rules defining how causes
and fire_hazard are connected to has_tendency and burn_rapidly.
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This isn’t just a problem with insufficient rules in the knowledge base, however.
Concepts in the human brain seem to be stored in a way that makes them fundamen-
tally different from entries in a knowledge base. We can be reminded of concepts by
resemblance in sounds between words, similar parts, or properties between con-
cepts, a similar environment in which the concepts are encountered, and many other
ways. Instead of being a discrete graph where each concept in the graph is assigned
or not assigned to a particular relation, there are gradations of inclusion by which a
pair of terms fits the relation more or less precisely. Many of the relations we can
find in our memory seem to be an implicit result of the way the concept is stored,
rather than an explicitly learned link.

(Kanerva 1988, p. 2) wrote “although we normally ignore such links, they are
there, and they can tell us something about the mathematical space for memory
items. Translated into a requirement for the model, memory items should be
arranged in such a way that most items are unrelated to each other but most pairs of
items can be linked by just one or two intermediate items. This requirement affects
the choice of mathematical space for memory items, also called the semantic space.”

10.5 Semantic Vector Spaces

What Kanerva suggested was to encode the concepts as vectors in a high-dimensional
vector space. High-dimensional vector spaces have some unintuitive properties that
make them ideal for representing concepts. One of the most important of these is
that between two arbitrary vectors in this space, we can find a vector very close to
both but not unusually close to any unrelated vectors. The vector spaces Kanerva
worked with were n-dimensional binary vector spaces, where each element of the
vector is 1 or 0, written as {0,1}”n. “The distance between two points of {0,1}"n
represents the similarity of two memory items—an association based on form. It is
the number of places in which the two patterns differ, so that the closer the points,
the more similar the items. Almost all of the space is nearly indifferent to (or about
n/2 bits away from) any given point, whereas two points n/4 bits apart are very close
together in the sense that an exceedingly small portion of the space lies within n/4
bits of a point. This is intuitively appealing in that any particular concept in our
heads is unrelated to most other concepts, but any two unrelated concepts can be
linked by a third that is closely related to both.” (Kanerva 1988, p. 25)

Starting with a few primitives, a high-dimensional vector space can build them
up to represent more complex ideas. For example, the vector representing ice can be
located near the sum of the vector for cold and the vector for water. This new ice
vector will be similar to both cold and water and nothing else, except any other
terms we may have also formed that include cold and water as components, such as
snow. To count as a concept, the vectors would need to be built from many more
components representing every aspect of ice that might be of interest, but with a
high-enough dimensional vector, many such components can be included. Details
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about how many such components can be included in a single vector can be found
in Kanerva (1988) or Hawkins (2007).

Such a semantic vector space is capable of representing not just ideas, but also
relations between them. For example, suppose we wanted to represent the fact that
snow causes icy roads:

causes_road_condition(snow, icy_roads)

We define locations in the vector space representing the concepts precipitation,
frozen, and road. To represent snow, we take the sum of precipitation and frozen
and to represent icy_roads we sum frozen and road. The relation causes_road_
condition is then the vector which subtracts out precipitation and adds in road to
a concept: the vector (road - precipitation). This same relation vector, when added
to rain will lead us to the vector for wet_roads.

In this way, one-to-one relations between concepts can be defined as displace-
ment vectors between the vectors for those concepts. Concepts can be built up from
the simplest attributes we wish to define. In a real system, we would, of course want
a more refined concept for icy_roads that included the fact that they are slippery,
that they sometimes have a reflective appearance, and so forth. The problem of how
to get all of the information that needs to be encoded in a concept will be covered in
Sect. 10.6. All we are doing here is showing that the vector space representation is
capable of holding such information about concepts and their relations.

Following chains of deductive reasoning would be simple in such a vector space.
Suppose the space encodes the facts that

has_location (finger , cutting_board)
and
uses (cutting_board, knife)

then we can conclude that could_be_affected_by (finger, knife) using a rule
stating that has_location(X,Y) * uses (Y, Z) implies could_be_affected_by (X,Z).
Neelakantan (2015) explores such chained reasoning in vector spaces.) In this case,
the vector representing could_be_affected_by can be found by simply adding the
vectors from X to Y, and from Y to Z to find the vector from X to Z.

Itis also possible to perform analogical reasoning in such a vector space. Suppose
we are given the following analogy to solve: bear:hiker::shark:X. If the concepts
bear, hiker, and shark are already in the vector space, they are composed of sim-
pler terms. Suppose these simpler terms happen to be woods, sea, predator and
tourist. Then substituting in the simpler component terms, we have the simpler
analogy woods + predator : woods + tourist :: sea + predator : X. The relation
between the first two terms can be found by subtracting predator from bear, (leav-
ing woods) and adding tourist to the result. We then