
New Variants of Hash-Division Algorithm
for Tolerant and Stratified Division

Noussaiba Benadjmi(B) and Khaled Walid Hidouci

Ecole Nationale Supérieure en Informatique(ESI),
BP 270, 160290 Oued-smar, Algiers, Algeria

{an benadjimi,hidouci}@esi.dz

Abstract. Works done in the context of the relational division for
DBMS led to several approaches. Among which, the Hash-Division algo-
rithm proved its superiority compared to the other approaches in the
most of the cases. Nowadays, current trends of division are been ori-
ented towards flexible queries and those involving preferences. However,
the emphasis was always on proposing new operators which provide
more flexibility and tolerance than the classical division operator. The
performance aspect has not been adequately addressed. The proposed
approaches in the literature suffer from a lack of performance, especially
in a large volume of data. In this paper, we attempt to address this
problem. Our idea consists in exploiting the advantages offered by the
classical Hash-Division algorithm to propose new variants tailored for
the flexible context. We paid a special attention to the improvement
of some extended tolerant operators. Furthermore, we introduce a par-
allel implementation of our proposed techniques. Experimental results
show the efficiency of our proposition. We obtained a very satisfactory
improvement in processing time (the gain exceeds a ratio of 20 in the
majority of cases) in both sequential and parallel implementation.

Keywords: Relational division · Preferences · Tolerant division ·
Stratified division · Hash-division algorithm

1 Introduction

Relational division is an interesting type of queries. They are very useful to
many applications, especially in business intelligence applications (on-line ana-
lytic processing OLAP, data mining ...), and in recommendation systems. In
relational algebra, the division is the most complex operator. That’s why several
researchers focus on their implementation, algorithms and optimisation [1].

1.1 The Division Operator

Relational division is used when an element that satisfies a whole set of require-
ments is sought for. In relational algebra, the division of relation r(X,Y), called
“dividend”; by relation s(Y), called “divisor”; is a new relation q(X) that
c© Springer International Publishing AG 2017
H. Christiansen et al. (Eds.): FQAS 2017, LNAI 10333, pp. 99–111, 2017.
DOI: 10.1007/978-3-319-59692-1 9

100 N. Benadjmi and K.W. Hidouci

includes some parts of projection(r,X) satisfying the following condition: x is in
q(X) iff x is in Project (r,X) and for all y in s(Y), r(X,Y) contain <x,y> [2].
More formally, the relational division is characterised by the formula (1):

Div(r, s,X, Y) = {x ∈ projection(r,X) | ∀a, (a ∈ s) ⇒ (〈x, a〉 ∈ r)} (1)

To illustrate the division operator, we use the example sketched in Fig. 1, repre-
senting data from a department of a university [2]. In the figure above, Bob is
the only resulting quotient because he is the unique student who is not missing
any of the courses of the divisor.

Fig. 1. Division operation representing the query: “Which students have taken all
Courses?”.

1.2 Related Works and Current Trends

Division operator has not a specific expression in SQL, because relational algebra
does not directly support the quantifier “all” [1]. That’s why, in literature, several
studies have been focused on how to efficiently implement division [2], including
those surveyed in [3] for the relational model, and [1] for the object-oriented
model.

However, the approach proposed and detailed in [3], called Hash-Division ,
has proven to be an effective algorithm. Hash-Division is based especially, as
indicated by its name, on the hashing mechanism. The experimental results
illustrated in the same paper demonstrate that the hash-division, in most cases,
is far better than the traditional algorithms in processing time.

On the other hand, the relational division often provides an empty answer.
This is a widely studied problem in the last two decades [4]. Flexible division (tol-
erant division and division dealing with users preferences), is the most desirable
technique to solve this problem and improve the DBMS answers quality, espe-
cially in the context of recommendation systems [5]. Flexible division consists
in the weakening of the universal quantifier all used in the traditional opera-
tor. In the literature, many research works, including [6,7] have suggested new
operators for the relational division, which are tailored for the flexible context.

New Variants of Hash-Division Algorithm 101

Similarly, there are many papers on preferences over simple queries such as
the selection operator, most of them are surveyed in [8]. However, there are only
few works on preferences over the division, on crisp and fuzzy databases [9].

1.3 Motivations and Main Contributions in This Paper

Researches done for the tolerant division, in literature, has concentrated on
improving the quality of systems answer, by introducing new operators that deal
with flexible division. Hence, an important, but largely overlooked aspect in these
researches, is the performance issue. In fact, all the proposed approaches suffer
from a lack of performance. Indeed, these approaches are mainly based on the
nested loop algorithm. Experimental results have shown that the response-time
is far from being acceptable and deteriorates significantly as data size increases.
Even for recent research, queries evaluations are performed with a reduced size of
data (dividend and divisor). This does not fit reality, especially with the advent
of the Big Data, and analysis treatments on extra-large databases.

In this paper, we attempt to address the previous problem. To the best
of our knowledge, processing flexible division, using Hash-Division is not yet
investigated. Thus, the main purpose of our work is to improve the performance
of the flexible division operator. Hereafter we summarise our contributions:

– Investigate performance enhancement of the flexible division essentially for
very large volumes of data.

– Extend the Hash-Division algorithm to the following approaches:
• Exception-based tolerant division.
• Division with ordinal layered preferences (Stratified division).

– Propose a new efficient processing to better discriminate and rank the results.
– Examinate the feasibility of the parallel implementation for the extended

approaches.

1.4 Outline of the Paper

The remainder of this paper is organised as follows. In Sect. 2, we present the clas-
sical Hash-Division algorithm. Section 3 gives an overview of the flexible division,
their categories and their semantics. In Sect. 4, our contribution is presented with
analytics and discussion of the experimental results obtained. Finally, Sect. 5
concludes the paper and suggests directions for future work.

2 Review of Hash-Division Algorithm

In this section, we give a brief description of the hash-division algorithm “HD”
(see [3] for further detail). It uses two hash tables, one for the divisor and the
other for the quotient. Thanks to these two structures, both dividend and divisor
tables are scanned exactly once, that makes the division operator faster. Hash-
Division algorithm is proceeding in three stages:

102 N. Benadjmi and K.W. Hidouci

Stage 01- Building the hash-divisor table: Here, we insert all divisor tuples
into hash buckets in the hash-divisor table. Each entry is stored together with
an integer called divisor number “Num div”. “Num div” is initialized to
zero, and incremented whenever a new insertion in the hash-divisor table has
occurred.

Stage 02- Building the hash-quotient table: For each dividend row that
corresponds to one of the divisor tuples, we insert a quotient candidate into
hash buckets in the hash-quotient table. Together with each inserted candidate,
a bitmap is kept with one bit for each divisor. Each bit set to 1, indicate that
the candidate is associated with the divisor corresponding to the bit position.

Stage 03- Finding result in the hash-quotient table: In this last stage,
during the scan of the constructed hash-quotient table, we select all quotient
candidates whose bitmaps contain only ones as valid quotients.

3 Review of Flexible Division

Tolerant (or flexible) division was essentially proposed in order to avoid the
empty result, which may occur mostly whenever we use “for all” quantifier
[4,7]. There are a plethora of suggestions, in literature, showing that original
relational division can be extended to different types of flexible queries. In this
paper, we are interested in the flexible division over crisp databases exclusively.
So, the approaches of flexible division being focused in our work are the following:

1. Exception-based tolerant division.
2. Flexible division over a stratified divisor (involving layered preferences).

3.1 Exception-Based Tolerant Division

In this category, the principle is to weak the universal quantifier all to the fuzzy
quantifier almost all. Hence, for this Gradual Division, a maximum number
of exceptions is allowed to be ignored (some elements, in the divisor set, are
allowed to be not associated with the quotient) [9,10]. Satisfaction-level (SL) of
a quotient is measured by the formula (2). A threshold is required for accepted
quotients.

SL =
Number of divisors associated with the quotient candidate

total number of divisors
(2)

3.2 Division Involving Layered Preferences

In the previous category, neither discrimination nor order is involved between
the elements inside the divisor. However, in this category, depending on the
users preferences, the divisor set is subdivided into layers Si; i = 1..n. Each
layer has a degree of importance, thereby an order between layers is guaranteed
S1 > S2 > ... > Sn. Elements into the same layer have equal importances. The

New Variants of Hash-Division Algorithm 103

layers are linked with the connectors “and if possible”, “or else”, or “and-
or”. Three queries (lets be Q1, Q2 and Q3) are defined (see [11,12] for further
detail):

– Conjunctive queries (Q1): we search to find the best elements associated
with S1 and if possible S2 and if possible ... and if possible Sn. Hence,
a quotient x must be associated with all values in S1, and it is more preferred
as it is connected with all values from S1 to Sp and p is high (ideally n).

– Disjunctive queries (Q2): the purpose is to find the best elements associ-
ated with all values in S1 or else S2 or else ... or else Sn. S1 is no longer
mandatory. An element is more preferred as it is connected with all values of
Sk and k is small (ideally 1).

– Full discrimination-based queries (Q3): we aim to find the best elements
associated with all values in S1 and-or S2 and-or ... and-or Sn. The idea
is to consider all layers for which a fully satisfaction occurs. An element is
more preferred as it is associated with multiple layers highly important.

4 Our Proposed Approaches

Different contributions have been achieved for the flexible division. Nevertheless,
the concerns were always on how to propose an efficient operator that supports
flexible context, and to theoretically demonstrate it. So, the performance issue
was not dealt with, whereas it is clearly a critical metric in information systems
today, especially with the advent of big data and analysis processing on extra-
large databases.

In the next section, we will address the tolerant and the stratified division,
mentioned in Sect. 3, from a performance point of view. More specifically, we
will present several proposing methods to improve the processing time of the
flexible division relying on classic Hash-division like algorithm. Moreover, we
propose new techniques to better discriminate quotients with no additional cost.
Hence our approaches have the merit to be an efficient processing of the flexible
division, in both processing time and answers quality.

4.1 Extend the Hash-Division for Gradual Tolerant Division
(G-H-D)

In order to apply the classic hash-division approach on the gradual tolerant
division, we have made some adaptations for the basic algorithm (described in
Sect. 2). These adaptations are made in the second and the third stage. The
first stage remains unchanged. In the second stage, we kept with each quotient-
candidate a counter of ones (bit = 1) in its bitmap. We called this counter
Nb ones. The latter is incremented at each bit switching (0 to 1) in the bitmap.
Hereafter is a pseudo-code of this stage with our proposed adaptations:

104 N. Benadjmi and K.W. Hidouci

Algorithm 1. Building of the hash-quotient table for G-H-D.
for each tuple t in the dividend table do

Compute the hash bucket Hdiv on the divisor attributes of the tuple t;
if the divisor value is contained in the bucket Hdiv of the hash-divisor table

then
rank ← num div of the matching divisor tuple;
Compute the hash bucket Hqot on the quotient attributes of the tuple t;
if the candidate (quotient value) is contained in the hash-quotient table at

the hash bucket Hqot then
if the rankth bit in the bitmap of the candidate is set to 0 then

Switch this bit to 1;
Nb ones← Nb ones +1; /*Increment the number of ones*/

end if
else{/*quotient candidate does not yet exist*/ }

Insert a new quotient candidate into the hash-quotient table at the
bucket Hqot, with a bitmap where all bits are set to zero except
the num divth bit;

Nb ones ← 1; /*Initialize the number of ones to 1*/
end if

end if
end for

In the tolerant division, quotients haven’t the same satisfaction level. Hence,
the final stage must discriminate these quotients. To this end, we have, radically,
changed the third stage of the basic approach (Sect. 2). To sort the accepted
quotients, according to their satisfaction levels, we propose an efficient technique
which involves no additional cost. We use an index table to improve the sorting
phase. During the scan of the final hash-quotient table, we proceed as follows:

– Each accepted candidate, whose satisfaction level is greater than the prede-
fined threshold, is stored in a bucket of index classd (class0 > class1 > ... >
classmax exception), where d is the number of zeros (Nb zeros) in the can-
didate bitmap, representing the number of the missing divisors (Nb zeros =
total number of divisors − Nb ones); and max exception is the maximum
number of exceptions allowed. The latter, chosen by the user, represent the
threshold.

– Candidates having zeros superior to max exception, are rejected.

K-top Answers. Introducing tolerance into the queries mostly returns an over-
abundant answer, especially for the very large sized dividend. Therefore, k-top
answer selection is paramount (k is chosen by the user) [13]. However, in the
classic approaches, k-top answers selection requires an additional sorting phase
which can be expensive for a big number of results. Whereas, in our approach,
no sort is needed. To select the k-top answers, we just have to browse through
the index table, constructed in the third stage, from the highest satisfaction level
quotients to the lowest ones; until k quotients are found. Thus, no additional
costs will be incurred.

New Variants of Hash-Division Algorithm 105

Implementation and Experimental Results. Hereafter, we consider, in all our
implementations, four sizes of the dividend relation: 3.104, 5.105, 3.106 and
5.108 tuples1 with a divisor of different cardinality (resp. 10, 20, 50, 100 tuples).
We run all experiments on a machine with an Intel i5 CPU and 8Gb RAM .

Figure 2 shows the run-times of our approach G-H-D, comparing with the
nested loop algorithm presented in [9,10]. We notice that our own performs
much faster than the classic one for the four sizes. So, the run-time is improved
by several orders of magnitude (a factor of 241 in the case of 5.108 dividend
tuples).

Fig. 2. Algorithm performance of G-H-D and Classic approach.

4.2 Extend Hash-Division for Stratified Division (S-H-D)

Here, for the stratified division involving layered preference, we have made some
changes in both data structure and proceeding of our basic hash-division.

Stage 01: In the three variants of stratified division (Q1, Q2 and Q3), the
first stage (Construction of the Hash-divisor table) is the same. As in the classic
approach, we store all divisor tuples in a hash table (see Sect. 2). Each divisor,
belonging to the layer Si, is stored into the hash-divisor table together with two
integers:

– offst strt: number of divisor tuples in all previous layers Sj j < i. This num-
ber indicates the offset of the layer inside the bitmap. Bits corresponding to
divisors in Si are located, in the bitmap, between offset(Si) and offset(Si+1).

– num div strt: the divisor number (rank), of the tuple, in its layer.

The data structure of a divisor in the hash-divisor table is shown in Fig. 3.

Fig. 3. Data structure of a hash-divisor tuple.

1 In the literature, up to now, the largest dividend used never exceed 30000 tuples.

106 N. Benadjmi and K.W. Hidouci

Hence, for each layer Si, we first calculate its offst strt . Then, we keep for
each one, its own divisors counter. All counter are initialized to 0. Whenever
we insert a new divisor, of the layer Si, into the hash-divisor table, the divisors
counter of Si will be incremented. The pseudo-code used is as follows:

Algorithm 2. Calculation of the offset of the layers for G-H-AD.
offst str = array [1: Nb layers] of integer;
offst str i← 0;
for i← 1 to Nb layers do

offst str [i] ← offst str i;
offst str i ← offst str i + |Si|; /*|Si| is the cardinality of the layer Si */

end for

As well, the pseudo-code of the hash-divisor table building is given hereafter:

Algorithm 3. Building of the hash-divisor table for S-H-D.
num divisor str = array [1 : Nb layers] of integer;
initialize all cells of num divisor str to zero;
for each tuple in the divisor relation do

compute its hash bucket (Hdiv) in the hash-divisor table;
Si ← layer number of the current divisor;
divisor.offst strt ← offst str [Si]; /*assign the layer offset to the current divi-

sor*/
divisor.num div strt ← num divisor str [Si];
num divisor str[Si] + +;
insert the divisor tuple into the corresponding hash bucket;

end for

Stage 02: In the 2nd stage, we proceed as in the classic hash-division (Sect. 2).
The only difference is how to update the bitmap. Hence, if a divisor is associated
to a quotient candidate, we set the bit to 1 whose position, in the bitmap, is
equal to “offst strt+num div”, stored with the matching divisor. The data
structure of the bitmap is shown in Fig. 4.

Fig. 4. Data structure for the bitmap for S-H-D.

New Variants of Hash-Division Algorithm 107

Stage 03: Here, we have to compute the satisfaction level for each quotient
candidate, in order to classify them thereafter. Hence, for the three queries (Q1,

Q2 and Q3), we describe how to calculate these satisfaction levels. Moreover, we
propose a fast mechanism to better discriminate the accepted candidates. Again,
our sorting technique involves no additional cost and maintains the quality of
answers.

Conjunctive Queries (Q1): We search to find the best k elements associated with
S1 and if possible S2 ... and if possible Sn (see Subsect. 3.2). Therefore, we
proceed as follows:

– Candidates having zeros in the first layer, in their bitmaps, are immediately
rejected.

– We check, in ascending order of layers, if the layer Si contains only ones in the
bitmap. If yes, we pass to the next layer. Otherwise, the candidate is labelled
by {i, Nb ones i} where:

• i, i ≥ 2 : index of the first layer not fully satisfied.
• Nb ones i, 0 ≤ Nb ones i ≤ |Si|: number of ones in the layer of index i.

This number is used to discriminate candidates having equal labels i. It is
worth noticing that in the classic approach presented in [11,12] this dis-
crimination does not occur. Thus, candidates having |S i| −1 ones, in Si,
and candidates with no ones; will be ranked with a similar satisfaction-
level. This we avoid in our technique, thanks to the label Nb ones i.

– If the layer Si is the last one, label i takes the value of the Sn index (last
layer), and Nb ones i takes the value of its cardinality (|Sn|).
To sort the accepted quotients, depending on their satisfaction levels, we use

an index table, as in G-H-D. Its size is “n (total number of divisors) −
|S1| +1”. Candidate labelled with {i,Nb ones i} are stored into the bucket
whose index is equal to “n − (offst strt (S i) + Nb ones i)”. Thereby, final
quotients will be, automatically, sorted in decreasing order according to their
satisfaction levels. The cell whose index is 0, points the most preferred quotients.

Disjunctive Queries (Q2): In the case of Q2, S1 is no longer an obligation. The
first check (whether S1 is fully satisfied) is no longer present. Therefore, we
proceed as follows:

– Starting by the first layer, we check if Si contains only ones. If not, we pass
to the next layer. Otherwise, the candidate is labelled by {i, Nb zeros ip}:

• i, i ≥ 1: the first layer fully satisfied.
• Nb zeros ip, 1 ≤ Nb zeros ip ≤ |Si−1|: number of zeros in the previous

layer Si−1 (the last layer that contains zeros). As for Q1, this number is
used to better discriminate candidates having equal labels i.

– Whenever Si is the first layer, we assign to i the value 1 and 0 to Nb zeros ip.

As in Q1, we store the accepted quotients in an index table whose size is
“n −|Sn|+1”. Candidate with label {i,Nb zeros ip} are stored into the bucket
of index equal to “offst strt (S i−1)+Nb zeros ip”. Idem, final quotients will
be sorted in decreasing order according to their satisfaction levels.

108 N. Benadjmi and K.W. Hidouci

Full Discrimination-Based Queries (Q3): Here we have to consider all layers that
are fully satisfied. Candidates are labelled by a procedure identical to that used in
Q2. Nevertheless, accepted quotients would not be totally sorted. Hence, for each
bucket in the index table, depending on the k-top value, we sort the candidates
depending on their satisfaction levels using a traditional sorting algorithm.

Experimentations: To examine the performance of our proposed approaches
for stratified division, we make experimental comparisons between ours own
and the classic approaches implemented in [11,12]. Queries Q1, Q2 and Q3 are
evaluated over a dividend relation having the four sizes previously mentioned
(3.104, 5.105, 3.106 and 5.108 tuples). The divisor relation has the cardinalities:
10, 20, 50 and 100 uniformly distributed over five layers. Figure 5 illustrates the
results obtained.

Fig. 5. Algorithm performance of S-H-D and the classic approach.

Analysis of the curves above leads to the following notices:

– Hash-division approach for the three queries (Q1, Q2 and Q3) proves its effi-
ciency in run-time, compared to the classical one, especially for the overly
large-sized dividend. The gain on time in this case was extremely high : for
the size 5.105 in Q1, the improvement was from 12,5 to 0,085 seconds; and
for the size 5.108 in Q2, the improvement was from 9213 to 56 s.

– In the classic approach, the cost of queries Q1 and Q2 are relatively close.
This is done thanks to the stop criteria used. However, Q3 is more expensive
as it has to examine all layers. Whereas, for our own, all three queries involve,
roughly, the same cost. Hence, it is totally independent on how to introduce
preferences. This makes our approaches very beneficial.

4.3 Parallel Implementation

Our objective behind the parallel experiments is to demonstrate the parallelism
feasibility of the proposed approaches (G-H-D and S-H-D). Parallel implemen-
tation is realized thanks to the PVM framework (Parallel Virtual Machine),

New Variants of Hash-Division Algorithm 109

on machines based on an Intel i5 CPU and 8Gb RAM . Experimentations were
performed over 2, 4 and 6 nodes. The parallelism strategy is as follows:

– The hash-divisor table is created only once on a single node called master .
– The master sends the hash-divisor table created to the other nodes.
– The dividend table is uniformly partitioned (horizontally) between all nodes.
– Each node builds its own hash-quotient table.
– The master collects the sub-tables, of the hash-quotient, constructed in the

nodes. Then, it merges all of them in one global table to select valid quotients.
The pseudo-code of this last step, is given hereafter:

Algorithm 4. Parallel implementation of S-H-D.
for each sub-hash-quotient table received from the slave nodes do

for each quotient-candidate in the sub-hash-quotient table do
Compute the hash bucket (Hqot) over the quotient value of the candidate;
if the candidate (quotient value) is contained in the hash-quotient table,

constructed in the master, at the bucket Hqot then
Update the candidate bitmap through performing a binary OR) operation

between the two bitmaps (the bitmap in the master and that’s in the
node);

else
Insert a new candidate into the hash-quotient table of the master at the

bucket Hqot, with a bitmap equal to that’s present in the candidate
received from the node;

end if
end for

end for

Hereafter, we restrict to describe the empirical results of Q1. Hence, Fig. 6
illustrates the speed-up behaviour of the parallel hash-division of Q1.

Fig. 6. Speed-up for parallel S-H-D algorithm of type Q1.

Although the parallelism of our approach involved an additional cost, but still
negligible, for a relatively small size of the dividend (3.104 and 5.105), it comes

110 N. Benadjmi and K.W. Hidouci

very close to linear speed-up in the case of large dividend (3.106 and 5.108).
Thus, experiments show that our approaches are more optimal when process-
ing tolerant and stratified division over a parallel framework. Our approach is
proved to be more efficient than some recent research, using highly-parallel new
techniques, namely MapReduce framework [14].

5 Conclusion and Perspectives

We have presented in this paper two new variants (G-H-D and S-H-D) of the
basic Hash Division algorithm for computing some tolerant division operators
(Quantitative tolerant division and Tolerant division involving layered prefer-
ences). We have conducted some experiments, particularly for large-sized rela-
tions, and compare execution time with the original approaches (nested loop
algorithms) proposed for the tolerant division operators studied. We presented
also a parallel approach of the new variants of hash-division algorithm for tol-
erant division. This parallel approach have a near-linear speed-up, especially
for large tables. As expected, the performance obtained, both for sequential
and parallel versions, are very interesting. We have been able to improve the
response time of some queries by several orders of magnitude. This opens up
many perspectives in some data analysis using universal quantification and han-
dling preferences over very large volumes of both usual and fuzzy data.

References

1. Habib, W.M., Mokhtar, H.M., El-Sharkawi, M.: Processing universal quantification
queries using mapreduce. In: International Conference on Big Data and Smart
Computing (BIGCOMP). IEEE (2014)

2. Rantzau, R., Shapiro, L., Mitschang, B., Wang, Q.: Universal quantification in
relational databases: a classification of data and algorithms. In: Jensen, C.S.,
Šaltenis, S., Jeffery, K.G., Pokorny, J., Bertino, E., Böhn, K., Jarke, M. (eds.)
EDBT 2002. LNCS, vol. 2287, pp. 445–463. Springer, Heidelberg (2002). doi:10.
1007/3-540-45876-X 29

3. Graefe, G.: Relational division: four algorithms and their performance. In: Fifth
International Conference on Data Engineering, Proceedings. IEEE (1989)

4. Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible
relational queries. Fuzzy Sets Syst. 159(12), 1450–1467 (2008)

5. Pigozzi, G., Tsoukiàs, A., Viappiani, P.: Preferences in artificial intelligence. Ann.
Math. Artif. Intell. 77(3–4), 361 (2016)

6. Galindo, J., et al.: Relaxing the universal quantifier of the division in fuzzy rela-
tional databases. Int. J. Intell. Syst. 16(6), 713–742 (2001)

7. Bosc, P., HadjAli, A., Pivert, O.: La notion de division tolèrante et son intèrêt pour
remédier aux réponses vides. Ingénierie des systèmes d’information 13(5), 131–154
(2008)

8. Kacprzyk, J., Zadrony, S., De Tre, G.: Fuzziness in database management systems:
half a century of developments and future prospects. Fuzzy Sets Syst. 281, 300–307
(2015)

http://dx.doi.org/10.1007/3-540-45876-X_29
http://dx.doi.org/10.1007/3-540-45876-X_29

New Variants of Hash-Division Algorithm 111

9. Bosc, P., Pivert, O., Rocacher, D.: About quotient and division of crisp and fuzzy
relations. J. Intell. Inform. Syst. 29(2), 185–210 (2007)

10. Bosc, P., Pivert, O., Rocacher, D.: A propos de la sémantique de divers opérateurs
de division de relations. In: INFORSID (2006)

11. Bosc, P., Pivert, O., Soufflet, O.: On three classes of division queries involving
ordinal preferences. J. Intell. Inform. Syst. 37(3), 315–331 (2011)

12. Bosc, P., Pivert, O.: On some uses of a stratified divisor in an ordinal framework.
In: Kacprzyk, J., Petry, F.E., Yazici, A. (eds.) Uncertainty Approaches for Spatial
Data Modeling and Processing. SCI, vol. 271, pp. 133–154. Springer, Heidelberg
(2010)

13. Wu, Y., Liu, G., Liu, Y.: Multi-user preferences based top-k query processing
algorithm. In: Tenth International Conference on Computational Intelligence and
Security (CIS). IEEE (2014)

14. Habib, W.M., Mokhtar, H.M., El-Sharkawi, M.: A new approach for scholars
matching using universal quantifier queries. In: IEEE World Congress on Services
(SERVICES). IEEE (2015)

	New Variants of Hash-Division Algorithm for Tolerant and Stratified Division
	1 Introduction
	1.1 The Division Operator
	1.2 Related Works and Current Trends
	1.3 Motivations and Main Contributions in This Paper
	1.4 Outline of the Paper

	2 Review of Hash-Division Algorithm
	3 Review of Flexible Division
	3.1 Exception-Based Tolerant Division
	3.2 Division Involving Layered Preferences

	4 Our Proposed Approaches
	4.1 Extend the Hash-Division for Gradual Tolerant Division (G-H-D)
	4.2 Extend Hash-Division for Stratified Division (S-H-D)
	4.3 Parallel Implementation

	5 Conclusion and Perspectives
	References

