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Abstract. A wide spectrum of methods for knowledge extraction have
been proposed up to date. These expensive algorithms become inexact
when new transactions are made into business data, an usual problem in
real-world applications. The incremental maintenance methods arise to
avoid reruns of those algorithms from scratch by reusing information that
is systematically maintained. This paper introduces a software tool: Data
Rules Incremental Maintenance System (DRIMS) which is a free tool
written in Java for incrementally maintain three types of rules: associa-
tion rules, approximate dependencies and fuzzy association rules. Several
algorithms have been implemented in this tool for relational databases
using their active resources. These algorithms are inspired in efficient
computation of changes and do not include any mining technique. We
operate on discovered rules in their final form and sustain measures of
rules up-to-date, ready for real-time decision support. Algorithms are
applied over a generic form of measures allowing the maintenance of a
wide rules’ metrics in an efficient way. DRIMS software tool do not dis-
cover new knowledge, it has been designed to efficiently maintain inter-
esting information previously extracted.

Keywords: Association rules · Approximate dependencies · Incremen-
tal maintenance · Active databases

1 Introduction

Association Rules (ARs), Approximate Dependencies (ADs) and Fuzzy Associ-
ation Rules (FARs) are ones of the best studied models for knowledge discovery
in the data mining research field. They represent associations or dependencies
among attributes’ values in a data repository [1]. Many algorithms have been pro-
posed to improve the mining process and create more efficient methods [4,22,35].
However, these proposed algorithms could become expensive when dealing with
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huge amounts of data, commonly stored in data warehouses or very large and
big databases.

The knowledge discovered by these methods is specific for the current stage
of the repository in which they were run. In real-world applications, a data
repository is not static and records are commonly inserted, updated or deleted,
following real activities in the universe of discourse. These continuous changes
can render the measures of rules inexact and eventually invalid [16]. The incre-
mental rule mining method arise to avoid re-run algorithms from scratch and
re-scan the whole data. This is specifically useful when real-time data information
is required. Example applications can be found in the field of data streams like
web click stream data, sensor networks data, and network traffic data [19,20,32].
Emerging research in big data offers similar issues in association with veloc-
ity and volume [27,34]. At this time, many research efforts are being made to
improve the performance [14,16,18].

In this work we describe a Data Rules Incremental Maintenance System
(DRIMS) tool that formally implements incremental maintenance algorithms into
relational databases using their active resources [24]. DRIMS is a free and open-
source tool completely written in Java available from the GitHub platform [25].
There are two main applications of the tool: (1) the tool safety manages a reposi-
tory of rules such as creating new rules, and (2) the tool can generate an SQL script
to maintain the rules measures up-to-date in an efficient way. We also present the
algorithms implemented in DRIMS, and the experimental results obtained from
active relational database with real educational data and repository datasets. A
common characteristic of algorithms implemented is the efficient maintenance of
existing rules, keeping their measures just-in-time available for real-time decision
support [29].

The remainder of this paper is organized as follows. Some related works
are reviewed in Sect. 2. The algorithms implemented in DRIMS are described
in Sect. 3. In Sect. 4 we briefly present the graphical user interface. Section 5
presents the experimental results of the proposed methods for the performance
evaluation. Finally, Sect. 6 concludes this paper summarizing the results of our
work.

2 Related Work

Association rules can formally be represented as an implication of itemsets (sets
of items) in transactional databases [1]. Let It = {It1, It2, . . . , Itm} be a non-
empty set of m distinct attributes. Let T be the transaction scheme that contains
a set of items such that It ⊆ T. An AR is an implication of the form X ⇒ Y
where X,Y ⊂ It such that X �= ∅, Y �= ∅ and X ∩ Y = ∅. In this statement X
and Y are called rule itemsets and they are the antecedent and consequent of
the rule, respectively. The ADs and FARs can be represented through an AR
perspective. We follow our research group’s results in ADs [28] and FARs [9].

Numerous algorithms for mining ARs have been proposed at this time based
on Apriori approach [1]. These Apriori-like algorithms generate the candidate
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itemsets level-by-level, which might cause multiple scans of the database and
high computational costs. In order to avoid re-scanning the whole data and
breaking Apriori bottlenecks, many algorithms have been proposed by using
tree-structures [14,30]. The frequent-pattern tree (FP-tree) proposed by [12] is
a milestone for the development of ARs based upon this method. The FP-tree is
used to compress a database into a tree structure which stores only large items.
After the FP-tree is constructed, a mining algorithm called FP-growth derives
all large itemsets in a second step [12].

In real-world applications, data repository is not static. Generally, data will
increase with time. Traditional batch mining algorithms solve this problem by re-
scanning the whole data when new transactions are inserted, deleted or modified.
This is clearly inefficient because all previous mined information is wasted. The
incremental mining defines this issue as an update problem and reduces it to find
the new set of large itemsets incrementally. Algorithm FUP (Fast UPdate) [8],
is the first algorithm for incremental mining of ARs when new data transactions
are added to a database.

Although the FUP approach improves a mining performance in dynamic
environments, the original database is still required to be re-scanned. Extended
tree structures are being designed for FP-tree to handle efficiently this problem
[14,16,18]. These proposals improve the pioneer tree-structure in different ways
but maintain the execution of FP-growth algorithm in a second step. Some
related researches are still in progress.

Unlike incremental mining methods, DRIMS handles the update problem by
maintaining the measures of previous discovered rules, just like we explain in
detail for ARs and ADs [26]. That does not lead to maintain itemsets infor-
mation, instead, existing rules measures are directly updated in an incremental
way. After the rules discovering process, DRIMS keeps only the extracted rules.
In Fig. 1 three scenarios are illustrated when a system decision-maker needs the
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Fig. 1. (a) Real-time measures by batch mining method, (b) incremental mining
method, and (c) DRIMS incremental maintenance proposal.
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real-time measures of previously discovered rules. That includes the batch min-
ing method, the incremental mining method, and DRIMS algorithms.

3 Data Rules Maintenance Proposals

ARs, ADs and FARs are different data relationships that share some similari-
ties [21]. These data dependencies are referred to as Data Rules (DRs) in the
remainder of this paper for a common reference. Many research activities pro-
pose measures of rules with different properties such as the certainty factor [3],
and their number is overwhelming [10,15]. Existing measures for DRs are usu-
ally defined by counting a total number of records that satisfy some condition.
These conditions are generally associated with the antecedent, consequent, rule
examples, and counterexamples among others [10,15].

In DRIMS algorithms, each DR measure value is considered a set of k dis-
tinct data rule measure-parts DRM = {Mp1, Mp2, . . ., Mpk} in which each
item represents a different part of the measure formula. Measure-parts must be
atomic, it means that they cannot be divided into smaller items and still bring
the same measure value. For example, confidence can be split into two parts:
count of antecedent and count of (antecedent ∪ consequent). On the other hand,
the certainty factor needs three parts: count of antecedent, count of consequent
and count of (antecedent ∪ consequent). In this way, it is possible to main-
tain efficiently several metrics at the same time because metrics shares some
measure-parts. For example, following [15] it is viable with only five distinct
measure-parts to maintain 20 interestingness measures simultaneously. The final
data rule measure value is a formula over DRM parts.

3.1 Immediate Incremental Maintenance Algorithm

An immediate approach in DRIMS is oriented to update the rule base immedi-
ately after the event takes place, in an active fashion. The primitive event type,
called a primitive structural event (PSE), is a single low-level event. A composite
type is a combination of multiple primitive or composite structural events (CSE).
This immediate approach verifies the specific rules that must be updated only
with the changes made by a PSE. It means that only one record can be checked
at a time. Incremental view maintenance algorithms offer multiple solutions.
Specifically, a counting algorithm for view maintenance [11] provides an inter-
esting perspective. The following Algorithm 1 presents the proposed immediate
incremental maintenance where rule measures are updated for data operations.

The measure-parts Mpk are constantly updated in the proposed algorithm.
However, the incrementing of measure-parts are quite different depending on the
DR type. For example, to obtain an AD measure each measure-part Mpk ∈ ADM
is calculated by aggregating the catt attribute in AEk [26]. For this immediate
proposal, rule base refreshing is made without access to the base relation.
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Algorithm 1. Immediate incremental maintenance for a DR
Input: A composite structural event CSE that modifies the attributes related

in list L, and measure-parts DRM of X ⇒ Y data rule.
Output: An updated measure-parts DRM.
Method:

1 foreach PSE ∈ CSE do
2 if (PSE = Δ t−+) then /* update event */

3 if (L ∩ {X ∪ Y } �= ∅) then
4 foreach Mpk ∈ DRM do
5 if (L ∩ {involved attributes in Mpk} �= ∅) then
6 update Mpk, increment with t−+

0 ;

7 update Mpk, decrement with t−+
1 ;

8 else if (PSE = Δ t+) then /* insert event */

9 foreach Mpk ∈ DRM do
10 update Mpk, increment with t+;

11 else /* delete event (PSE = Δt−) */

12 foreach Mpk ∈ DRM do
13 update Mpk, decrement with t−;

14 return DRM

3.2 Deferred Incremental Maintenance Method

A deferred approach efficiently maintains a fuzzy rule base up-to-date but not
for each data operation. This method computes modified instances in a data
transition and updates fuzzy rule base for these relevant instances. Principal
differences of immediate and deferred maintenance approaches are illustrated in
Fig. 1.

The deferred proposal is divided into two subproblems. The first subproblem
consists of computing the relevant affected instances of a database transition.
In this step, we build a relevant operations set at real-time, after each primitive
structural event takes place. A different approach would be to scan the original
operation set to reduce their number. The second one is related to incrementally
update the rule base with those relevant instances.

Affected transition instances computation must consider the relationships
among primitive events. These interactions are controlled by net effect poli-
cies [6,7,24]. For example, if a record is inserted and next deleted in the same
database transition, then these events do not provoke any variation to the final
database state and its measures of rules. In this approach, each database relation
related with any rule has two auxiliary relations: insert relation (I ) and delete
relation (D). The insert and delete auxiliary relations register the insert, update,
and delete events (t+ ∪ t−+

1 and t− ∪ t−+
0 respectively) according to net effect

considerations [26]. These relevant structural events are computed over relations
in real-time by the active Algorithm 2.
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Algorithm 2. Compute relevant instances that may modify DRs
Input: A composite structural event CSE, I and D the auxiliary relations of

base relation.
Output: Auxiliary relations I and D updated for a CSE.
Method:

1 foreach PSE ∈ CSE do
2 if (PSE = Δ t−+) then /* update event */

3 if ({t−+
0 ∩ I } = ∅) then

4 insert into I values t−+
1 ;

5 insert into D values t−+
0 ;

6 else
7 update u∈I set u=t−+

1 where u=t−+
0 ;

8 else if (PSE = Δ t+) then /* insert event */

9 insert into I values t+;

10 else /* delete event (PSE = Δt−) */

11 if ({t− ∩ I }= ∅) then
12 insert into D values t−;

13 else
14 delete u∈I where u = t−;

15 return I, D

This active process adds a minimum activity over regular data operations,
just the necessary ones to store relevant instances and to apply net effect poli-
cies. The behavior of the algorithm is similar when considering only insertion
and deletion events, but note the benefits of using update occurrences when a
record is already inserted or modified. The rule base is updated only with these
instances, by incrementing previous rules information. These rule base updates
could be made automatically with a decision-maker’s rule base access or sched-
uled. In this step, Algorithm3 is presented in order to update DRM.

Algorithm 3. Deferred incremental maintenance for relevant instances
Input: I, D auxiliary relations of Algorithm 2 output, and measure-parts DRM.
Output: An updated measure-parts DRM.
Method:

1 foreach Mpk ∈ DRM do
2 update Mpk, increment with I ;
3 update Mpk, decrement with D ;

4 empty I ;
5 empty D ;
6 return DRM
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This deferred proposal, like the immediate one, updates the rule base without
access to the base relation. This is an important feature in a huge amount of data
where the access to complete information is highly inefficient. Also, it entails the
benefits of having only two auxiliary relations against more.

4 A Graphical User Interface

To increase the usability of our algorithms, we have designed DRIMS, a simple
and friendly user interface Fig. 2 (left). It has a wizard-based interface, where
through a few steps, users can create their own rules. The tool has two main pos-
sible applications: manage a repository of rules (such as create new rules, delete
old rules or modify the existing ones) and the implementation of algorithms to
maintain rules measures up-to-date in an efficient way.

The tool has three main menus, two of them are intended for rule’s repository
management and a third for the implementation of those rules into a business
database. Creating rules in the repository is done through a multi-step wizard
where the antecedent and consequent are defined as shown in Fig. 2 (right).

Fig. 2. The graphical user interface of DRIMS at start-up (left) and rule creation
(right).

4.1 Prerequisites

As previously presented in the introduction, compilation and execution of
DRIMS requires an installed and configured Java environment. The Java Run-
time Environment (JRE) is a free software and may be obtained from ORA-
CLE’s web pages1. In the current version, DRIMS can implement algorithms in
two of the main opensource database managements systems: PostgreSQL2 and
MySQL3. However, the tool also allows to create rules without maintaining a
connection to the database.

1 Java Runtime Environment, https://www.java.com/en/download/.
2 PostgreSQL Global Development Group, http://www.postgresql.org.
3 MySQL Community Server, http://dev.mysql.com/downloads/mysql/.

https://www.java.com/en/download/
http://www.postgresql.org
http://dev.mysql.com/downloads/mysql/
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4.2 Rules Implementation

The data rules are stored through an XML repository. The tool validates that
repository using an XSD schema. For each rule, regardless of its type, the com-
mon attributes are stored. That includes the antecedent and consequent of the
rule, the type to which it belongs and the relationship to which it refers. Note
that in the case of FARs their linguistic labels are also stored for each existing
attribute in the rule. In the case of ARs the tool processes quantitative rules’
[31] as well as other more complex types of rules such as negative association
rules [33].

Finally, the rules stored in the repository can be implemented directly in the
business database as shown in Fig. 3 (left). The antecedent and consequent of
the rules are grammatically parsed by a small translator made with ANTLR v4
[23] grammar parser. With the use of ANTLR/StringTemplates the SQL script
that implements the incremental maintenance of the rule measure is generated.

The SQL script generated is composed primarily of active database resources
[24] such as triggers. Besides the triggers, DRIMS tool can creates in busi-
ness database catalog other objects such as views, functions and tables. These
resources are created according to the chosen method and the rule’s type to be
implemented. In the graphical interface as shown by Fig. 3 (right) we can to list
all resources of the generated script. This window also allows to run this script
in the business database and save it as a plain text.

Fig. 3. The graphical user interface for rule’s implementation (left) and script’s manip-
ulation (right).

5 Experimental Results

The experiments over DRIMS algorithms have been designed to observe the dif-
ferent behaviors of the proposed methods in order to consider their implementa-
tion in real applications. The experiments also compare the proposed algorithms
with those reported in the literature. These are being performed on real data
and real structural events obtained from SWAD, a web system for education
support at the University of Granada [5].
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Fig. 4. Proposals comparison for ARs and FARs maintenance on execution times (left)
and measures update times (right) in PostgreSQL.

Results illustrate the performance of proposed algorithms in order to main-
tain seven ARs, seven ADs and seven FARs. These rules were discovered using
the KEEL data mining software tool [2]. Maintenance is implemented using the
certainty factor metric from two open source database management systems:
PostgreSQL Server version 9.2.2 and MySQL Server version 5.6.13. Both man-
agement systems show similar results. The experiments were carried out on a
dedicated GNU/Linux server with eight processors i7-2600 at 3.4 GHz and 15 GB
of main memory.

The experiments have been designed to observe two approaches’ behavior:
active process execution time and measures update time. The former presents
consuming time when processing different numbers of primitive structural events
on studied dataset. The latter exposes the consuming time for the rule mea-
sures update, after the same primitive structural events take place. The prim-
itive structural events contain database insert, update, and delete operations
extracted from real database transitions. In Fig. 4 these results are presented for
ARs and FARs in PotsgreSQL.

The performance of proposed algorithms was also compared with traditional
and incremental algorithms for FARs maintenance. In Fig. 5 a total execution
time is presented for proposed algorithms, batch mining, and incremental min-
ing methods for different datasets. These datasets were obtained from the UCI
Machine Learning Repository [17]: the Diabetes 130-US hospitals for years 1999–
2008 (diabetes), the Color Texture and the Color Moments parts of Corel Image
Features. Details about these datasets can be found on the UCI Machine Learn-
ing website. For diabetes datasets nine attributes were selected. Seven FARs were
extracted using KEEL data mining software tool from each dataset in order to
be incrementally maintained by proposed algorithms.

Our proposal reflects the total time of executing 5 K data operations plus
updates measures of rules in order to maintain the fuzzy rule base up-to-date.
Batch and incremental mining methods reflect the mining execution time for the
same goal. The fuzzy Apriori algorithm stands for batch mining methods. For
incremental mining methods we only consider the fuzzy FP-growth [13] execution
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Fig. 5. Related and proposed algorithm comparison of total execution time for FARs
maintenance in different datasets.

time and depreciate the fuzzy FP-tree build time, assuming it was incrementally
maintained. This approach is referred to as incremental fuzzy FP-growth. For
fuzzy Apriori and fuzzy FP-growth algorithms, three fuzzy regions were defined
for numeric attributes. The minimum support threshold was set at 10% and
minimum confidence threshold at 80%. Both mining algorithm experiments were
developed using the KEEL data mining software tool.

6 Conclusion

In real-world applications, records are commonly inserted, updated or deleted
outdating the previous extracted knowledge as inexact and invalid. In some
scenarios, it is necessary to re-run traditional mining or incremental mining
algorithms only for updating previous discovered rules. It is possible, from
another perspective, to maintain the known rules incrementally by computing
data changes efficiently.

In this paper, DRIMS is presented as the free and open-source software tool
for incrementally maintaining previous discovered rules. It has a wizard-based
interface, where through a few steps users can create and manage their own
rules. This tool implements two algorithms for maintenance purpose of associa-
tion rules, approximate dependencies and fuzzy association rules. Experimental
results on real data and operations show that DRIMS maintenance proposals
achieve a better performance against the batch mining and incremental mining
approach. We believe this work represents a powerful enhancement to the incre-
mental maintenance of previous discovered data rules and their implementation
in business relational databases for real-time decision support.
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Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8055, pp. 118–128.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40285-2 12

23. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Dallas
(2013)

24. Paton, N.W., Dı́az, O.: Active database systems. ACM Comput. Surv. 31(1), 63–
103 (1999)
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