
Index Structures for Preference Database
Queries

Markus Endres(B) and Felix Weichmann

Institute for Computer Science,
University of Augsburg, Universitätsstr. 6a, 86159 Augsburg, Germany

endres@informatik.uni-augsburg.de,

felix.weichmann@student.uni-augsburg.de

http://www.dbis.informatik.uni-augsburg.de

Abstract. Preference queries enable satisfying search results by deliver-
ing best matches, even when no tuple in a dataset fulfills all preferences
perfectly. Several methods were developed for preference query process-
ing, such as window-based, distributed, divide-and-conquer, and index-
based algorithms. In particular, all index-based algorithms were designed
to evaluate Pareto preferences, where the participating preferences are
all equally important. In this paper we present index structures for base
preferences. Our comprehensive experiments show how indexing data for
preference database queries enable faster access of the data tuples and
therefore lead to performance advantages when evaluating preferences.

1 Introduction

Preferences are a well established framework to create personalized information
systems. Skyline queries [3] are the most prominent representatives of preference
queries. An implementation of preferences in database systems is PreferenceSQL
[7] and the commercial product EXASolution [9] as well as a prototype of the
Microsoft SQL Server [4]. Preferences in database systems are modeled as strict
partial orders and a preference query returns the maximal elements according to
this order, i.e., those tuples from the dataset which are not dominated w.r.t. the
given preference.

Example 1. Assume the sample dataset in Table 1 and the wish for a car with
highest power and a price between 34000 and 37000 USD, where both preferences
should be considered as equally important (a Pareto preference). Then this query
would identify the tuples with ID 4 and 5 as best objects. The tuple with ID 4
has a perfect match concerning the price, but the power of the tuple with ID 5
is higher. Therefore, both tuples are indifferent and form the result set.

Search efficiency is the most important performance criteria to preference
query processing. In addition, as preference queries have been considered as an
analytical tool in some commercial database systems [4,9], and the datasets to
be processed in real-world applications are of considerable size, there is defi-
nitely the need for improved query performance. Indexing data is one natural
c© Springer International Publishing AG 2017
H. Christiansen et al. (Eds.): FQAS 2017, LNAI 10333, pp. 137–149, 2017.
DOI: 10.1007/978-3-319-59692-1 12

138 M. Endres and F. Weichmann

Table 1. Sample dataset of cars.

Car id Make Color Power Price

1 BMW Green 180 35000

2 Audi Green 170 32000

3 Mercedes Blue 200 38000

4 BMW Blue 230 34000

5 Mercedes Black 250 20000

6 Mitsubishi Black 120 50000

7 Mitsubishi Black 140 53000

8 Audi Eed 150 37000

choice to achieve this performance improvement. The advantage of index-based
algorithms is that they need to access only a portion of the dataset to compute
the Skyline, while non-index-based algorithms have to visit the whole dataset at
least once. However, index-based algorithms have to incur additional time and
space costs for building and maintaining the indexes. In addition, unlike most
existing algorithms that require at least one pass over the dataset to return
the first interesting point, indexing data for preference queries can be used to
progressively return interesting points as they are identified.

For the evaluation of Pareto preference queries as in Example 1 there exist
several index structures, see [5] for an overview. However, all these index struc-
tures were exclusively designed for Skyline/Pareto queries. In this paper we
refer to indexing techniques for base preferences. We do not consider indexes for
Pareto preferences as in previous work, but offer indexing methods based on
common index structures for simple preference database queries and show how
they perform against state-of-the-art preference computation algorithms. To the
best of our knowledge there exist no other index structures for base preferences
as described in this paper. Hence, this is the first work on this topic and our
comprehensive experiments show the performance advantage in several synthetic
and real world use cases.

The rest of the paper is organized as follows: Sect. 2 introduces preferences
in database systems and presents common index data structures for database
queries. In Sect. 3 we discuss the applicability of the common index structures to
preference queries. Section 4 reports our comprehensive experiments, and Sect. 5
concludes with a summary and outlook.

2 Background

2.1 Preferences in Database Systems

Following [6], a preference P a strict partial order on the attribute list A. The
result of a preference is computed by the preference selection and is called Best-
Matching-Only (BMO) set. The BMO-set contains all tuples t from an input

Index Structures for Preference Database Queries 139

relation R which are not dominated w.r.t. the preference P : To specify a data-
base preference, a variety of intuitive constructors have been defined. Preferences
on single attributes are called base preferences. There are base preference con-
structors for discrete (categorical) and for continuous (numerical) domains.

Numerical Preferences. The interval preference BETWEENd(A, [low, up])
expresses the wish for a value between a lower and an upper bound. If this
is infeasible, values having the smallest distance to [low, up] are preferred, where
the distance is discretized by the discretization parameter d. In the case of d = 0
the distance describes how far the domain value v is away from the optimal value.
A d-parameter d > 0 represents a discretization of the distance to v, which is
used to group ranges of attribute values together. Choosing d > 0 effects that
attribute values inside d-intervals “left and right” of [low, up] become indifferent,
c.f. [6]. Specifying low = up (=: z) in BETWEENd we get the AROUNDd(A, z)
preference, where the desired value should be z. Furthermore, the constructors
LOWESTd(A, infA) and HIGHESTd(A, supA) prefer the minimal and maximal
values within the distance d, where infA and supA are the infimum and supremum
of the attribute values. In the preference ATLEASTd(A, z) the desired values
should be greater or equal to z. If this is infeasible, values within a distance of
d are acceptable. ATMOSTd(A, z) is its dual preference.

Categorical Preferences. A LAYEREDm(A, (L1, . . . , Lm)) preference on a
categorical domain expresses that a user has a set of preferred values given
by the disjoint sets Li. Thereby the values in L1 are the most preferred val-
ues, L2 are the second choice, and so on. There are several sub-constructors of
LAYEREDm. The positive preference POS(A,POS-set) for example is defined
as LAYERED2(A, (POS-set, dom(A)\POS-set)) and expresses that a user
has a set of preferred values given by the POS-set. The negative preference
NEG(A,NEG-set) is the counterpart to the POS preference. It is possible to
combine these preferences to POS/POS or POS/NEG.

Example 2. Consider Table 1. If we specify P1 := AROUND5(power, 130), the
result are the cars with ID 6 and 7, because both have the same distance to the
desired value and there does not exists a perfect match. The wish for an Audi or
BMW leads to P2 := POS(make, {Audi,BMW}). The result is ID ∈ {1, 2, 4, 8}.

It is possible to combine several base preferences into more complex prefer-
ences, where one has to decide the relative importance of the given preferences.
Equal importance is modeled by the Pareto preference, whereas for ordered
importance we use Prioritization. Both are not topic of this paper, but are
discussed elsewhere.

2.2 Index Data Structures

In this section we recapitulate well-known index structures for databases which
also can be applied to preference queries. Note that there are many other indexes,
but the mentioned structures are practical for preference queries as well.

140 M. Endres and F. Weichmann

Range Trees have been designed to answer range queries efficiently [8]. They
are similar to a B+-trees, where all values in the left child are less than or equal
to the value maintained at the node, while all values in the right child are greater.
In a range tree all the data is stored in the leaves. Thereby, (1) the leaves of the
tree are maintained in a sorted order, and (2) the leaves are linked to the next
and previous nodes. The combined effect is that the data points form a sorted
doubly linked list. A range tree is a balanced search tree and hence the search
time is in O(log(k)+ |S|), k the number of values in the tree and |S| the number
of tuples in the answer set.

Hash Index uses a hash function h(v) that takes a search key v and computes
an integer in the range 0 to B−1, where B is the number of buckets [2]. A bucket
directory holds the headers of B linked lists, one for each bucket of the array. If
a tuple has search key v, then we store the tuple by linking it to the bucket list
for the bucket numbered h(v). Hash functions complete searching for any key
in O(1) time, since one only has to lookup h(v) for a search key v. Thus, in a
database querying context, hash functions are desirable for exact match queries,
but cannot support range queries well.

Trie Index (from retrieval) is used to index strings and to support efficient
evaluation of categorical preferences. The root of a trie [2] (also known as Prefix
B-tree [1]) represents the empty string. Each edge defines the next character of
a string. The last character ends in a leaf node. Hence, every path from a root
to a leaf encodes a string. The complexity of a search in a trie is given as O(l),
where l is the length of the search string.

3 Indexes for Preference Queries

When considering indexing for base preferences, we have to keep in mind, that
until now the fastest method to evaluate such preferences is a linear scan over
the dataset and always store the temporarily best tuples in a set S. At the end
of the scan S contains the BMO objects. The runtime complexity is O(n), where
n is the size of the dataset. This linear scan is a modified version of the well-
known BNL algorithm [3], which was developed for Skylines. Keep in mind that
the costs for building and maintaining the index structures for preferences are
the same as in the original data structures.

3.1 An Index for Numerical Preferences

Since all numerical preferences are sub-constructors of BETWEENd, it is enough
to present an index structure for this preference and to discuss the search in the
special cases for all other preferences.

If the query is a range query like BETWEENd(A, [low, up]), index structures
like binary search trees, quadtrees, K-d-trees, and Hash index fail. For example,
for the range query in a binary search tree, at a node, both branches may need

Index Structures for Preference Database Queries 141

to be traversed. If the query is for all points greater than a value, then the search
degenerates to traversing all the branches and nodes of the tree, thereby suffering
a performance worse than that of linear scan. If we use hashing, then we get no
help for queries with large ranges. For example, if attribute A is restricted to
range a ≤ A ≤ b, then we must look in the buckets for every value between a and
b for possible values of A. There may easily be more values in this range than
there are buckets, meaning that we must look in all, or almost all, the buckets.
Hence, we need another data structure which is feasible for range queries.

Extended Range Trees. For numerical preferences we use a modified Range
tree. Our extended Range tree (cp. Fig. 1) consists of a B+-tree, where the leaves
build a doubly linked list in a sorted order. Additional references to the first and
the last element of the doubly linked list complete our modification.

35

32 38

20 34 37 50

20 32 34 35 37 38 50 53

Reference list
(references to the tuples)

Reference to the
leftmost leave

Reference to the
rightmost leave

Fig. 1. A one-dimensional Range tree for the price (in thousands) in Table 1.

Thus an evaluation for a BETWEENd preference consists of a lookup in the
tree, iteration over part of the doubly linked list and the return of the reference
list. Additionally the index holds references for the first and last element of
the doubly linked list such that a lookup in the index can be skipped for the
LOWESTd, HIGHESTd, ATMOSTd, and ATLEASTd preferences.

Index-Based Evaluation of Numerical Preference Queries. We now have
to discuss how the search does work in detail. The correctness of the search
procedure is guaranteed by the fact that the leaves are sorted.

BETWEENd(A, [low;up]): If we want to answer BETWEENd(A, [low;up])
preference queries, we search for all points that are ≥low and ≤up. The query pro-
ceeds by first searching for the leaf that has the largest value just less than or equal
to low. It then traverses all the leaves using the forward pointers until a leaf that
is just greater than up is reached. If no tuple in [low;up] is found, i.e., there is no
match in the dataset, two cases may occur:

– d = 0: d = 0 means that the tuples with the lowest distance to the interval
[low;up] are the preferred values. Consider the direct leaves left l and right r of
[low;up] and compute their distance dl(low, l) = low−l and dr(up, r) = r−up.
The index with the shortest distance corresponds to the preferred values.

142 M. Endres and F. Weichmann

– d > 0: the preferred values lie in [low − c ·d; low] ∪ [up;up+ c ·d] , c = 1, . . .,
until c · d reaches the infimum/supremum of the domain of A. The intervals
with the lowest c contain the best matches.

AROUNDd(A, z): In AROUNDd(A, z) the desired value should be z. If this
is infeasible, values within a distance of d are acceptable. Hence, we first search
for an exact match of z in the Range tree and if nothing is found, we continue
as with the BETWEENd preference.

ATLEASTd(A, z) and ATMOSTd(A, z): These preferences correspond to
a search in [z; +∞] and [−∞; z], respectively. For the ATLEASTd preference the
search proceeds by returning all leaves that can be traversed using the backward
pointers from the rightmost leave until an index entry ≤z is found. For this
we use the additional references to the doubly linked list. If z is not a node in
the tree structure, the ATLEASTd preference returns the values with the lowest
distance to z. Hence, we can proceed as above but have first to check if the
rightmost leave is less than z. ATMOSTd can be evaluated analogously. Note
that without the additional pointers to the leftmost and rightmost leaves in the
doubly linked list the search can be done similar to BETWEENd.

LOWESTd(A, infA) and HIGHESTd(A, supA): If d = 0 in LOWESTd

we just search for the minimum in the dataset, i.e., find the lowest value in the
Range tree. This can be done by the additional references to the doubly linked
list. For d > 0 we proceed as in AROUNDd. Analogously with HIGHESTd.

3.2 Indexes for Categorical Preferences

For the evaluation of categorical preferences we can use index structures which
support exact match queries, because we always search for a perfect match in
the index. All categorical preferences like POS, POS/NEG, etc., can be modeled
using the LAYEREDm(A, (L1, . . . , Lm)) constructor. Hence, it is sufficient to
consider indexing techniques for this preference.

Hash Index. If we want to evaluate a LAYEREDm(A, (L1, . . . , Lm)) prefer-
ence, the idea is to search for all objects t ∈ Li successively, i.e., we do an exact
match query for each t until we find a match. This can be seen in the following
example.

Example 3. Consider Table 1 and its attribute color which should be indexed.
We have 4 distinct colors and map them to the integers 0, 1, 2, 3 as in Fig. 2.
The buckets contains linked lists with pointers to the tuples in the dataset. If
we want to evaluate the preference P := LAYERED(color, (L1 := {blue, red},
L2 := {green})) we do a lookup for blue in the bucket directory (h(blue) = 1) and
follow the pointers to the two objects with ID 3 and 4. Afterwards we search for
red in the Hash index and find object 8. Since we already have perfect matches
we do not have to consider L2 anymore.

Index Structures for Preference Database Queries 143

0 (green)

1 (blue)

2 (black)

3 (red)

1

3
4

2

5
6
7
8

Bucket directory Buckets (Linked Lists) Dataset (Pages)

green 180 35000BMW
green 170 32000Audi
blue 200 38000Mercedes
blue 230 34000BMW
black 250 20000Mercedes
black 120 50000Mitsubishi
black 140 53000Mitsubishi
red 150 37000Audi

Fig. 2. Hash index. B = 4.

1

3

4

2

5

6

7

8

Dataset (Pages)

green 180 35000BMW

green 170 32000Audi

blue 200 38000Mercedes

blue 230 34000BMW

black 250 20000Mercedes

black 120 50000Mitsubishi

black 140 53000Mitsubishi

red 150 37000Audi

br

l
ack ue

ed

g

reen

Fig. 3. Compressed Trie index.

Since the evaluation of LAYEREDm is just to search the index for the values
in L1, and if none is found search for values in L2, and so on, we get a worst-case
search complexity of |⋃m

i=1 Li| · O(1) (all Li sets must be searched in the worst-
case). Note that in general we have |⋃m

i=1 Li| � n (n the size of the dataset)
and therefore we speed-up the evaluation of a LAYEREDm preference and all
its sub-constructors.

Trie Index. The biggest use of tries is in exact string retrieval and hence are
suitable for indexing data for LAYEREDm preference queries. When a string is
queried, the path from the root is traversed by looking up the characters in the
query successively. If any character is absent, the query returns no answer. If the
search ends in a final node (double circle in Fig. 3), the corresponding string is
returned. For a query string of length l, the search finishes in O(l) time [2].

For a dataset of k distinct strings, a binary search tree requires O(log2(k))
time to search a string. For large databases, l is much smaller than log2(k) and,
therefore, a trie searches more efficiently. The worst-case complexity to search
for LAYEREDm(A, (L1, . . . , Lm)) is given by |⋃m

i=1 Li| · O(l), since we have to
lookup each attribute value in all Li.

Example 4. We construct a trie for the attribute color in Table 1. Strings with
the same prefix such as “blue” and “black” share the same path up to the
common prefix “bl”. A space-saving version of the trie is given in Fig. 3, where
all the unary nodes of a trie on a path are compressed into a single node. The
edges are then labeled by substrings, and not necessarily single characters.

4 Experiments

In this section we show that our index approach outperforms a “linear scan”
(LinScan) algorithm, which is a modified BNL with linear runtime [3], by far.
In all our experiments the data tuples and index structures are held in main
memory. This reduction of I/O-operations should favor the LinScan algorithm.
Note that to the best of our knowledge our work is the first one on indexing base
preferences and therefore there are no other index structures as competitors.

We implemented a Java 7.0 prototype, which is available as open source
project on GitHub1. The experiments were performed on a common PC running
Linux on an Intel Core1 Duo CPU with 3.33 GHz and 4 GB main memory.
1 https://github.com/endresma/PreferenceIndex.git.

https://github.com/endresma/PreferenceIndex.git

144 M. Endres and F. Weichmann

For our synthetic datasets we used the data generator commonly used in
preference research [3]. For the experiments on real-world data, we used the well-
known Internet Movie Database (IMDb, http://www.imdb.com), which contains
information about movies. All our experiments were performed 100 times. From
these measurements we took the mid half of the sorted data and use the arith-
metic mean in our charts.

4.1 Numerical Index Structures

For numerical base preferences we used the Range tree index implementation
as described in Sect. 3.1. All measurements on the Range tree index have been
carried out with a BETWEENd preference as it can substitute all other numer-
ical preferences. In addition, since our implementation of the Range tree holds
references to the first and last element in the tree a lookup can be skipped for
LOWESTd, HIGHESTd, ATMOSTd, and ATLEASTd. Hence, we do not bench-
mark these preferences.

SyntheticData –GaussianDistribution. The following experiments use gen-
erated data on a Gaussian distribution. This is common in database experiments
and allows to carefully explore the behavior of index methods. Each set of data
contains a number of values between 0 and 1000 (the range of a data set).

Figure 4 shows the measured execution times in nanoseconds for
BETWEENd. We varied the data size (number of tuples) from 102 to 106, the d
parameter (d = 0, 10) and the interval borders low and up. Figure 4a and b model
a “real” BETWEENd preference, whereas Fig. 4c corresponds to an AROUNDd

preference. Note that we use a log scale for the y-axis. It is apparent, that the
time used to build the index is multiple times that needed to evaluate the pref-
erences with the LinScan algorithm. However, if the index is constructed, the
index based evaluation of the preferences is hardly noteworthy.

Fig. 4. Execution time (in ms) for the evaluation of BETWEENd(A; [low, up]).

Figure 5 shows the maximal relative difference w.r.t. the execution time
(exTime) of LinScan and the index-based evaluation of BETWEENd prefer-
ences with varying intervals [low;up] on d = 0 and d = 10. That means, we

http://www.imdb.com

Index Structures for Preference Database Queries 145

compute deltaTime := LinScan exTime - Index exTime and plot the ratio

γ1 := deltaTime/LinScan exTime (1)

on the y-axis. This shows that with increasing data size the difference between
the LinScan execution time and index execution time increases as well. Our
measurements suggest that the index is more than two times faster than the
LinScan even on small relations and as expected much faster for large data sets.

In Fig. 6 we present the ratio of the execution time of LinScan and the index-
based preference evaluation on different [low, up] intervals, i.e.,

γ2 := LinScan exTime/Index exTime (2)

Thereby, the first three measurements have the same low and up parameters,
simulating an AROUNDd preference. It is probable that these sets have been
the fastest because of the relatively smaller size of the BMO-set. In summary,
the index-based approach is hundreds to thousands of times faster on a dataset
with only 106 objects.

Fig. 5. γ1 for BETWEENd. Fig. 6. γ2 for BETWEENd.

Influence of the Number of Distinct Values. Both the trees height and
the size of the doubly linked list are determined by the number of distinct values
within the dataset. The ratio between the data size and the number of distinct
values is a significant factor for the effectiveness of an index. We use different
sets of generated data to measure the behavior of our index techniques. Each
set of data contains 106 objects with a varying number of distinct values from
1 to 106.

As the operation for inserting a value into the Range tree index is costly we
expected the index build time to rise proportionally to the number of distinct
values in the dataset. This has been measured and can be seen in Fig. 7. The
LinScan execution time is nearly constant because of the linear scan over 106

tuples each time. The index execution time is much better than LinScan even
for 106 distinct values. Again, a log scale is used for the y-axis.

146 M. Endres and F. Weichmann

Fig. 7. Runtime for
BETWEENd(A, [0, 106]).

Fig. 8. Execution time. Fig. 9. γ2

Similarly the index performs worse if there are only distinct values, cp. Fig. 8,
where we used 106 tuples, varied the d value and the number of distinct values.
Nevertheless, the index still performs better than the LinScan algorithm.

Two interesting observations can be made with Fig. 9. Firstly, the evaluation
of a BETWEENd preference that has a parameter d > 0 is more costly than
without. Thus the gain when using an index is greater as there are fewer evalua-
tions needed. Secondly, a puzzling dip in the graph can be observed once there is
only a single unique value. The LinScan might be relatively more efficient in this
instance, because it does not need to empty its list of BMO candidates during
the evaluation.

Real-World Data. The following measurements use a set of voting data from
IMDb as its basis. It contains 468097 tuples and 11295 distinct values.

Figure 10 shows that building the index is more costly than an evaluation
with LinScan. Again, once the index is constructed, the evaluation is much faster
than LinScan. In this experiment we used d = 0, 10, 50, varied the BETWEENd

preference, and plotted the execution time per object in ns.
Figure 11 presents the γ1 ratio (Eq. 1) and that the evaluation on the index

is much faster than with LinScan. We used different [low;up] intervals for the
BETWEENd preference and varied the d from 0 to 50.

In Fig. 12 we present γ2 (Eq. 2) and present the ratio of the LinScan execution
time to the index execution time with different [low;up] intervals and d values.
Again, the index-based evaluation is more costly for a d parameter d > 0, but
still better than LinScan.

In all our real world experiments the observations made earlier on synthetic
data were confirmed. Hence, our index-based evaluation of numerical base pref-
erences is also applicable for real data sets.

Index Structures for Preference Database Queries 147

Fig. 10. Execution times on the IMDb real world data set.

Fig. 11. γ1 Fig. 12. γ2

4.2 Categorical Index Structures

Our categorical preference LAYEREDm was analyzed on real-world data only,
because there is no useful and reasonable data generator for strings. The follow-
ing measurements use a set of genre data from IMDb as its basis. It contains
1580880 objects and 31 distinct values. In the measurements we used the pref-
erence LAYERED2(A, (L1, L2)), which is a POS preference, and varied the L1

set in its size w.r.t. the distinct values in the data set.

Fig. 13. γ2 w.r.t. different sizes of L1. Fig. 14. γ1 w.r.t. different sizes of L1.

148 M. Endres and F. Weichmann

Fig. 15. Hash index. Fig. 16. Trie index. Fig. 17. Memory usage.

We compared the Hash index and the Trie index to LinScan and to each
other. The Hash index implementation is based on the standard Java HashMap
containing a corresponding list of object references for each distinct value. The
Trie index implementation consists of a Prefix-Tree. Each node holds a list of
objects corresponding to a unique value and holds an array for child nodes. These
arrays facilitate a fast traversal of the tree.

In Fig. 13 we present the ratio of the execution time of LinScan and the
index-based evaluation, i.e., γ2 as in Eq. 2. We varied the size of the L1 set from
0 to 31 values in our LAYERED2(A, (L1, L2)) preference. Keep in mind, that we
have 31 distinct values in our dataset and hence we retrieve the complete dataset
in the case of |L1| = 31 and only a fraction of the set if |L1| → 0. We skipped
the results for |L1| = 0, 1, because the ratio is too high for a usable presentation
(actually it is about 8000). Our figure states that the index is extremely fast for
small L1 sets and still much better than LinScan if we have to check all values.

Figure 14 presents the γ1 ratio (Eq. 1), i.e., the maximal relative difference in
the execution time between LinScan and the index-based approaches. The x-axis
denotes how many of the distinct values are contained in layer L1. It shows that
the index performs best for small layers and is much better than LinScan even
for a layer containing all distinct values. The two index structures Hash index
and Trie index perform very similar.

Something more interesting can be observed for the Hash index in Fig. 15.
Depending on the layer L1 size, the index build time is less than the LinScan
execution time. In extreme cases even the combined time of building the index
structure and an evaluation on it, can be faster than LinScan. Again, the Trie
index performs very similar to the Hash index as can be seen in Fig. 16. In both
cases the index construction time is nearly the same for all sizes of L1.

Figure 17 represents the memory usage in the relationship to the data size of
the IMDb dataset. Since our implementation is based on Java 7.0, the memory
usage includes all information on all data structures, objects, references to the
objects, additional memory requirements for the Java engine, . . . 2 As one can
see, the Hash index needs much less memory than the Trie index, but both have
a similar execution time behavior.

2 We used the Java Runtime object with the methods totalMemory() and
freeMemory() to determine the total amount of used memory in the JVM.

Index Structures for Preference Database Queries 149

5 Conclusion and Future Work

In this paper we presented index structures for preference database queries. Our
indexing techniques rely on common database indexing approaches and therefore
do not require additional adaption of a database back-end engine. One advantage
of our approach is that we can provide the BMO points progressively, since index
structures support this in a natural way.

Our extensive performance study shows that the proposed index methods
provide quick response times compared to a linear scan when the index is build
once. Hence, as with all indexes, indexing make sense with quite static data. In
addition, since we rely on common index structures, building and maintaining
costs for our preference indexes remain unchanged.

For future work we plan to develop indexing methods for ordered impor-
tance of preferences, i.e., Prioritization as well as geo-spatial preferences and
preferences based on full text.

References

1. Bayer, R., Unterauer, K.: Prefix B-trees. ACM Trans. Database Syst. (TODS) 2(1),
11–26 (1977)

2. Bhattacharya, A.: Fundamentals of Database Indexing and Searching. CRC Press,
Chapman & Hall Book, Boca Raton (2015)

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
ICDE 2001, pp. 421–430. IEEE, Washington, DC (2001)

4. Chaudhuri, S., Dalvi, N., Kaushik, R.: Robust cardinality and cost estimation for
skyline operator. In: Proceedings of ICDE 2006, p. 64. IEEE Computer Society,
Washington, DC (2006)

5. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. In: Pro-
ceedings of SIGMOD 2013, vol. 42, no. 3, pp. 6–18 (2013)

6. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of
VLDB 2002, pp. 311–322. VLDB, Hong Kong, China (2002)

7. Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview.
Bull. Tech. Commitee Data Eng. 34(2), 11–18 (2011). IEEE Computer Society

8. Lueker, G.S.: A data structure for orthogonal range queries. In: Proceedings of
FOCS 1978, SFCS 1978, pp. 28–34. IEEE CS, Washington, DC (1978)

9. Mandl, S., Kozachuk, O., Endres, M., Kießling, W.: Preference analytics in EXAS-
olution. In: Proceedings of BTW 2015 (2015)

	Index Structures for Preference Database Queries
	1 Introduction
	2 Background
	2.1 Preferences in Database Systems
	2.2 Index Data Structures

	3 Indexes for Preference Queries
	3.1 An Index for Numerical Preferences
	3.2 Indexes for Categorical Preferences

	4 Experiments
	4.1 Numerical Index Structures
	4.2 Categorical Index Structures

	5 Conclusion and Future Work
	References

