
Plug-and-Play Queries for Temporal Data
Sockets

Curtis E. Dyreson1(B) and Sourav S. Bhowmick2

1 Department of Computer Science,
Utah State University, Logan, USA

Curtis.Dyreson@usu.edu
2 School of Computer Engineering,

Nanyang Technological University, Singapore, Singapore
assourav@ntu.edu.sg

Abstract. Plug-and-play queries are portable, reliable, and easier to
code. When a plug-and-play query is plugged into a data socket, the
socket transforms the data to the shape needed by the query. If data
is annotated with metadata, the semantics of the metadata potentially
impacts the transformation. In this paper we describe how to account
for the metadata in a transformation. We focus on temporal metadata
and show how a transformation can preserve temporal semantics. We
also show how the transformation can be driven by the metadata, for
instance, the temporal metadata could be used to create data versions.

1 Introduction

A plug-and-play query is akin to a plug-and-play device which can be plugged
into any kind of socket and used. Plug-and-play queries have a specification of
what kind of data they need in order to be evaluated. A data socket for a plug-
and-play query uses this specification to transform data to what is needed for
the query to evaluate. Hence, a query writer can code a plug-and-play query
for a simple, easy-to-understand schema, plug the query into a data socket, and
rely on the socket to automatically adapt the data to the schema needed by
the query. The data socket can inform the user whether the transformation is
possible or the data is insufficient for producing a reliable answer, and can give
precise information about what the data lacks. The benefits of plug-and-play
queries are that they are portable, you can take a plug-and-play query to any
data source and evaluate it, more reliable, the query checks the data environment
to determine if it can be safely and correctly evaluated, and easier to code for
complex data since a query writer can write the query with respect to a simple
view of the data, abstracting away the data’s real complexity.

We previously researched plug-and-play queries for hierarchical data sock-
ets [5–10,27]. Hierarchies are a popular way to model data. In the 1960s influ-
ential DBMSs, such as IBM’s IMS [21], managed hierarchical data. The rise of
XML in the 90s led to a renewed interest in hierarchichal models, c.f., [15],
which continues today with research in JSON, c.f., [19,26] and “nested” data,
c© Springer International Publishing AG 2017
H. Christiansen et al. (Eds.): FQAS 2017, LNAI 10333, pp. 124–136, 2017.
DOI: 10.1007/978-3-319-59692-1 11

Plug-and-Play Queries for Temporal Data Sockets 125

bibliography

[1-12]

publisher

[3-12]

publisher

[1-8]

p1p2 book

[1-5]

book

[3-12]

book

[3-8]

t1 a1 t1 a1t2a1

title

[3-12]

author

[3-12]

title

[1-5]

title

[3-8]

author

[1-5]

author

[3-8]

Fig. 1. Books within publishers

bibliography

[1-12]

book

[3-8]

title

[3-8]

publisher

[3-8]

t2 a1

author

[3-8]

p1

book

[1-12]

title

[1-12]

author

[1-12]

publisher

[3-12]

t1 p2p1a1

publisher

[1-8]

Fig. 2. An incorrect temporal transformation

c.f., [22]. In this paper we extend our previous research to cover temporal, hierar-
chical plug-and-play queries and data sockets. Data sits in a milieu of descriptive
and proscriptive metadata. Examples include a schema, character sets, privacy
annotations, and security restrictions. We focus in this paper on temporal data,
which is data annotated with time metadata. To plug a query into a temporal
data socket, the time metadata together with the data should be adapted to
what the temporal query needs. For a socket to correctly transform such data,
the transformation must ensure that the semantics of the annotating metadata
is observed, in particular sequenced semantics for temporal metadata [25].

Consider the following example. A common way to represent temporal hier-
archical data is as a tree in which each node has a timestamp [11,12,14]. Figure 1
shows a temporal version of some publisher data where the timestamp (shown
below an element) indicates the database lifetime of the node, i.e., the transac-
tion time [16]. For instance, the timestamp for publisher p1 in Fig. 1 indicates
that data about p1 was inserted at time 1 and is current until time 8. Suppose we
want to transform the data so that books are above publishers in the hierarchy.
A possible strategy is to first transform the timestamp-stripped source tree
(using, for example, our transformation language XMorph [10]) and then com-
pute the timestamp for each node in the target. The resulting tree is shown
in Fig. 2. Computing the timestamps for the target is straightforward. The
timestamp of a node in the target is the union of the timestamps of all the

126 C.E. Dyreson and S.S. Bhowmick

nodes in the source it corresponds to; for example, the timestamp of the t1 book
in Fig. 2 is [1-12], which is the union of [1-5] and [3-12]. When constrained by
its parent’s timestamp, a node’s timestamp may need to “shrink.” For example,
the p1 publisher in Fig. 2. has a timestamp of [3-8] even though the timestamp
of its counterpart in Fig. 1 is [1-8], because its lifetime is temporally constrained
by that of its parent’s, [3-8] [4].

But this simple approach is flawed, because the transformation is not tem-
poral information-preserving, in particular it fails to follow sequenced seman-
tics [2]. Sequenced semantics is pictured in Fig. 3, where the temporal transfor-
mation semantics is defined in terms or reduces to a non-temporal transformation
semantics. A temporal hierarchy can be thought of as a sequence of snapshots.
Each snapshot is the slice of temporal data current at an instant. Individually,
each snapshot can be transformed by a previously defined and well-known non-
temporal transformation. Sequenced semantics stipulates that the meaning of
a temporal transformation is snapshot-equivalent (or snapshot reducible [24] or
S-reducible [3]) to the (non-temporal) transformation of each slice. So if we per-
form a temporal transformation and then slice the data, the set of snapshots
should be the same as what we would obtain by first slicing the data and then
transforming each slice.

The transformation described above fails to observe sequenced semantics.
The p1 publisher and the t1 book are related only at time [1-5] in Fig. 1 but in
Fig. 2 we can see they are related at time [1-8]. A transformation that observes
sequenced semantics should relate them at time [1-5] exactly, not including
time [6-8]. The timestamps introduce additional semantic constraints that need
to be properly taken care of to ensure that the transformation is (temporal)
information-preserving.

Our motivating example illustrates that when hierarchical data is annotated
with metadata, special techniques are needed to ensure the preservation of the
metadata’s semantics in a transformation. The metadata can also explicitly influ-
ence the transformation. Consider for example a transformation that produces
“versions” of the data, where a version is defined as a change in the children of
a node. Different transformations will induce different versions; so the versions
must be constructed dynamically.

This paper makes the following contributions.

– We describe a reversible, temporal transformation technique for data sock-
ets and show how to detect information loss in the transformation, i.e., to
determine whether sequenced semantics is preserved.

– We show how the time metadata can drive a transformation.
– We describe how our technique extends to other kinds of metadata.

2 Background: Review of Plug-and-Play Queries

We previously investigated plug-and-play queries for hierarchical data. We intro-
duced the concept of a query guard, which turns an ordinary query into a plug-
and-play query [7]. A query guard is a lightweight reusable specification of the

Plug-and-Play Queries for Temporal Data Sockets 127

slice

non-temporal transformation of each slice

temporal

transformation

slice

temporal data
transformed

temporal data

… …

Fig. 3. Sequenced semantics

hierarchy that a query needs. It protects the query by testing whether the data
can be transformed (without losing information) to the hierarchy given in the
guard, and transforms the data if needed. A query guard focuses only on the
structure, not the semantics, of the data because semantic web technologies, e.g.,
ontologies, already address the orthogonal semantic matching problem.

A query guard allows the query to couple to any hierarchy that can be con-
verted, cast, or coerced to the type (hierarchy) needed by the query. The guard
protects the query by checking whether the data can be transformed, without
losing information, to the type (hierarchy) needed by the query. Some transfor-
mations lose information when the hierarchy is manipulated, but the guard can
alert the programmer to lossy transformations. The data could be physically [7]
or virtually transformed [8].

As an example of querying data with a query guard, assume that we want
to extract the book publishers using the XQuery query given below.

<data> {

for $b in doc("x.xml")//book

return <book>{$b/title} {$b/publisher}</book>

} </data>

Suppose that the query is applied to the hierarchy depicted in Fig. 1. The query
will fail to produce the desired result because the path expression in the query
do not match the shape of the data. The failure will not generate an error, rather
the query will run to completion and yield an empty or partial answer. On the
other hand, if the query is run on the data in Fig. 2 it will produce the desired
result.

We developed a language called XMorph to express query guards for plug-
and-play queries and data sockets [5,7,10]. A guard for the example XQuery
query is given below.

128 C.E. Dyreson and S.S. Bhowmick

MORPH bibilography [

(GROUP book [title]) [

title author publisher

]

]

The guard specifies that a <bibliography> has as children <book>s, and each
<book> is grouped by <title> and has <title>, <author>, and <publisher>
children, that is, it is the hierarchy of Fig. 2. With the guard the query can
now be run successfully on the data in Figs. 1 and 2, or other book mini-world
hierarchies since the socket will transform the data to what is needed for the
query to evaluate.

Some transformations potentially lose information. Consequently, it is impor-
tant for a query guard to identify and report a lossy transformation. It is not
readily apparent in the aforementioned example whether the guard is “good”
in the sense that it protects the query by neither manufacturing nor discarding
data. This issue is vital to a user. If the transformation specified by a guard
is lossy then the subsequent query evaluation will be similarly lossy and inac-
curate. Let’s introduce terminology to more precisely describe what we mean
by a good guard. This terminology is adapted from the vocabulary of type sys-
tems in programming languages since a guard plays a role similar to a data
type in a programming language, i.e., it defines how the data is structured or
encoded. A guard is narrowing if it ensures that data is not created, widening
if it ensures that no data is lost, strongly-typed if it both narrowing and widen-
ing, weakly-typed if it neither narrowing nor widening, or has a type mismatch
if the guard mentions a type that is absent from the source. A query guard can
provide detailed feedback about which part of a guard is lossy. A programmer
can use this feedback to add syntax to a query guard to indicate that the loss
is acceptable, e.g., most narrowing transformations will be fine, just as a C++
programmer might add a cast() to transform the result of an expression to a
suitable type.

3 A Temporal Hierarchical Model

A temporal hierarchy can be modeled as a labeled tree.

Definition 1 (Temporal Hierarchy). Let T be a set of chronons which forms
a discrete image of a continuous time-line. A temporal hierarchy is a tuple
(V,E,Σ,L, T, S), where

– V is a set of nodes,
– E : V × V is a tree edge set of the form (p, c), where p is the parent and c is

the child,
– Σ is an alphabet of labels and text values,
– L : V → Σ is a label/text value function that maps a node to a label/text

value,
– T is the chronon set, and

Plug-and-Play Queries for Temporal Data Sockets 129

– S : V → 2T is a timestamp function that maps a node to a timestamp (a set
of chronons).

The hierarchy is said to be temporally-consistent iff ∀p, c[(p, c) ∈ E ⇒ S(c)
⊂ S(p)].

For simplicity, we discuss a data model with only one time dimension. The
temporally-consistent property formally specifies that a child’s timestamp has
to be included in its parent’s timestamp. Note that each edge implicitly has the
same timestamp as that of the child node. This is because the two nodes are
related only when the child exists. The model ignores some features of XML’s
DOM such as sibling order, node types, e.g., attribute, processing instruction,
comment, element, and text nodes, and labels and values are used for element
names and text nodes, respectively. While these aspects could be modeled, the
simpler model is sufficient for our purposes.

For this paper, we assume that the labels are unambiguous, e.g., a <title>
element is the title of a book rather than an author. A method to disambiguate
labels is given elsewhere [10].

To support grouping in data transformations we extend the tree model to a
partial order by explicitly adding groups as defined below.

Definition 2 (Grouped Temporal Hierarchy). A grouped, temporal hierar-
chy is a tuple (G,VG, EG, Σ, L, T, SG,XG), constructed from a temporal hierar-
chy, (V,E,Σ,L, T, S), where

– G : V → VG is a group identity function, which maps a node to a group node
(there is a single group node for each group),

– VG: is a set of nodes, V
⋃ {root},

– EG : VG × VG is the edge set where EG = {(G(v), G(w)) | (v, w) ∈ E},
– SG : VG → 2T is a node timestamp function that maps a group node, v ∈ VG,

to a timestamp, which is which is computed as

SG(g) =
⋃

∀v[G(v)=g]

[S(v)]

and
– XG : EG → 2T is an edge timestamp function that maps an edge, (v, w) ∈ EG,

to a timestamp, which is computed as

XG((v, w)) =
⋃

{S(y) ∩ S(z) | G(y) = v ∧ G(z) = w ∧ (y, z) ∈ E}

As an example, consider Fig. 4 which is the grouped temporal hierarchy cor-
responding to the temporal hierarchy in Fig. 1. Each edge in the figure is
timestamped. There are groups for the book with title t1 and author a1, for
the author a1.

130 C.E. Dyreson and S.S. Bhowmick

bibliography

[1-12]

publisher

[3-12]

publisher

[1-8]

p1p2 book

[1-12]

book

[3-8]

t1 a1 t2

title

[3-12]

author

[3-12]

title

[3-8]

[1-8][3-12]

[3-12]

[3-12] [3-12]

[1-5] [3-8]

[3-8]

root

[-∞∞∞∞-∞∞∞∞]

[1-12]

Fig. 4. The grouped, temporal hierarchy for the data of Fig. 1

4 Transforming Temporal Data

A non-temporal transformation transforms data by finding relationships between
nodes. Our technique used closest relationships, which are nodes connected by
a path that is the shortest for all nodes of the node types at the start and
end of the path. A node type is the concatenation of label on a path from
the root to a node. For instance, the type of the <book> nodes in Fig. 4 is
bibliography.publisher.book. Suppose that our XMorph query guard makes
<publisher>s children of <book>s. Then the shortest path between <publisher>
and <book> types has length 1. The <book> with title t2 then is closest to only
the <publisher> p1 since the shortest path to that <publisher> is of length 1
but the shortest path to <publisher> p2 is 3.

4.1 Closest Lifetimes

Closest relationships have lifetimes.

Definition 3 (Closeness time). In a grouped, temporal hierarchy,
(G,VG, EG, Σ, L, T, SG,XG), let v, w ∈ VG be a pair of closest nodes, and P
be the set of shortest paths between v and w. Then v is closest to w at time t
where

t =
⋃

p∈P

[
⋂

e∈p

XG(e)]

The definition says that the lifetime of a closest relationship is the union of the
times of the paths between the nodes, where the time of a path is the intersection
of the times on the path’s edges. Consider the lifetime of the closest relationship
between the <author> a1 and <publisher> p1 in Fig. 4. There is one shortest
path through each <book> node. The leftmost path has a lifetime of [3-12]

⋂

[1-5] = [3-5] while the rightmost path’s lifetime is [3-8]
⋂

[3-8] = [3-8]. So the
lifetime is [3-5]

⋃
[3-8] = [3-8].

Plug-and-Play Queries for Temporal Data Sockets 131

4.2 Computing Closest Lifetimes

We now show how to compute the timestamp as data is transformed. The (non-
temporal) transformation determines how to place children beneath parents as
described elsewhere [7]. The lifetime of a node in the transformed data can be
computed as the child is created. Let v = {(v1, t1), . . . , (vn, tn)} where ti is the
time of node vi, and w = {(w1, s1), . . . , (wm, sm)} be a pair of closest, grouped
nodes where v is the parent and w is the child in the transformed data. Then
the time for w in the transformed data is

⋃
{ti ∩ sk | (vi, ti) ∈ v ∧ (wm, sm) ∈ w ∧ vi is closest to wk}

Because a temporal hierarchy is temporally-consistent (a child’s lifetime is a
subset of a parent’s lifetime), a shortest path always pases through a least com-
mon ancestor, and the lifetime along a path is computed by intersection, the
lifetimes for every edge in the path are not needed, but can be inferred from the
lifetime of the source and sink nodes. As an example, consider the task of placing
publisher p1 beneath the grouped book with title t1. There are two book nodes
in the group, {(b1, [3-2]), (b2 [1-5])} and one node in the publisher group {(p1,
[1-8])}. b1 is not closest to p1 (it is closer to publisher p2) so the lifetime is the
intersection of b2 and p1, which is [1-5].

To analyze the time cost of the lifetime computation, let N be the number
of nodes in a grouped node and c be the cost of determining if a pair is close,
then the time cost is O(cN2).

4.3 Information Loss

We can also compute information loss with low cost. Observe that a transforma-
tion may “shrink” the metadata (through temporal intersection) but will never
increase it (the lifetime of a grouped node will never be increased, rather the
temporal union just pieces together the grouped lifetime from the members of
the group). A reversible transformation retains information, and the ability to
reverse the transformation, while a narrowing transformation loses closest rela-
tionships present in the data.

Theorem 1. A temporal transformation is reversible if it is based on a reversible
non-temporal transformation, that is, if it preserves all of the non-temporal clos-
est relationships, and if all nodes in the transformed data (modulo grouping)
have the same lifetime as the node in the source data (modulo grouping).

Proof. Assume a temporal hierarchy, (V,E,Σ,L, T, S) which is transformed to
temporal hierarchy, (V ′, E′, Σ′, L′, T ′, S′). If the non-temporal part of the trans-
formation is reversible then we know that we can reverse the transformation to
obtain the original set of edges, nodes, label function, etc. (this proof is given
elsewhere [27]). So we need to show that we can obtain S from S′ Assume v ∈ S
and S(v) = t. We know that there exists v ∈ V ′ because the transformation is
(non-temporal) reversible. Assume S′(v) = t′. Then there are three cases.

132 C.E. Dyreson and S.S. Bhowmick

t ⊂ t′ - Information has been added. There exists at least one snapshot in the
transformed data that contains v which does not exist in the source. The
transformation, therefore, must be widening and is not necessarily reversible.

t′ ⊂ t - Information has been lost. There exists at least one snapshot in the source
data that contains v which does not exist in the source. The transformation
is narrowing.

t′ = t - The source and transformed data contain the same snapshots, hence no
information is lost.

So it is necessary for the lifetimes to be the same to guarantee that the trans-
formation preserves the timestamp function. �

The temporal information loss can be quantified as follows. For each edge,
(p, c), in the transformed data, compute the timestamp shrinkage, vI = S(c) −
S(p). Let VI =

⋃
vI for all v in the transformed data and let r be the root of

the hierarchy. Then the amount of information loss is how many snapshots are
lost vis-a-vis the number of snapshots in the document, |(S(r) − VI)|/|S(r)|.

4.4 Other Temporal Semantics

Other temporal semantics, such as earliest and latest semantics, have been
described [13], but as they generalize sequenced semantics, the techniques devel-
oped in this paper apply to those semantics.

A more interesting kind of transformation utilizes the metadata in the trans-
formation. In a version transformation each combination of children creates a
distinct version of a node. A versioned temporal hierarchy would help answer
queries such as “select the latest version of each book”.

Definition 4 (Versioned temporal hierarchy). Let D = (V,E,Σ,L, T, S)
be a temporal hierarchy. The versioned hierarchy of D, denoted DV =
(VV , EV , Σ, L, T, SV), is defined as follows.

– VV = V
⋃ {υ1, . . . , υm} where υi is a version node, there is one version

node for every change in the children of a node.
– EV = E1

⋃
E2 where

• E1 = {(v, υ) | (v, c) ∈ E ∧ υ is a version node ∧ SV (υ) ⊆ S(v)}, and
• E2 = {(υ, c) | (v, c) ∈ E ∧ υ is a version node ∧ SV (υ) ⊆ S(c)}

– SV = S
⋃

Υ where Υ is a function that maps a version node to a timestamp
that represents the lifetime of the version (maximal time when the children
remain the same).

As an example, Fig. 5 is the versioned hierarchy for the data in Fig. 1.
Versioning can be computed during a transformation by sorting the children

of a transformed node by their timestamps and chopping them into versions.
While this increases the runtime cost by O(N logN) + O(V) where N is the
number of transformed nodes and V is the number of versions. Since there can be
at most two versions per (interval) timestamp, since only the endpoints represent
a change in the existence of a child, O(V) = O(N), the overall worst-case time
cost is the cost of the sort.

Plug-and-Play Queries for Temporal Data Sockets 133

version

[1-2]

version

[3-12]

version

[3-5]

version

[9-12]

version

[3-8]

version

[1-2]

version

[6-8]

bibliography

[1-12]

publisher

[3-12]

publisher

[1-8]

p1 p2book

[1-5]

book

[3-12]

book

[3-8]

t1 a11a1t t2a1

title

[3-12]

author

[3-12]

title

[1-5]

title

[3-8]

author

[1-5]

author

[3-8]

version

[3-12]

version

[3-8]

version

[1-5]

version

[1-5]

version

[1-5]

version

[1-5]

version

[1-5]

version

[1-5]

version

[1-5]

Fig. 5. Versioned books within publishers

4.5 Other Kinds of Metadata

The techniques developed in this paper can be generalized to apply to other
kinds of metadata by using different functions to compute the metadata along
a path and combine metadata from paths in grouping, which for temporal data
are basically intersection and union, respectively. Consider Bayesian probabilis-
tic metadata, and assume probabilistic independence. Figure 6 shows the data of
Fig. 1 but with probabilities for metadata. Each node has two probabilities in the
figure. The top number is probability that the node is a child of the parent, that
is, the probability of the node’s existence, which we will call the existence prob-
ability. The bottom number is the conditional probability that the node exists,
computed as the conditional probability of its parent’s existence times the prob-
ability of its existence. So for example, the <book> for <publisher> p2 has an
existence probability of .1 (the top number), and a conditional probability of .09
(the bottom number) which is computed as its parent’s conditional probability,
.9, times its probability, .1. The probability along a path is computed using multi-
plication. Paths are combined using Bayesian addition (assuming independence).
The transformed data, with a Bayesian independence assumption, is shown in
Fig. 7. The leftmost <book> has as its existence probability the formula “1 - the
probability that neither <book> in the group exists”. The group has two <book>s,
which exist with probability .09 and .4, respectively (as computed in Fig. 6). So
the existence probability of the grouped <book> is 1 − (1 − .09) ∗ (1 − .4). Other
kinds of metadata, security, provenance, etc., will use other operations to enforce
a semantics.

134 C.E. Dyreson and S.S. Bhowmick

bibliography

1

1

publisher

.9

.9

publisher

.8

.8

p1p2 book

.5

.4

book

.1

.09

book

.2

.16

t1 a1 t1 a1t2a1

title

1

.09

author

1

.09

title

1

.4

title

1

.16

author

1

.4

author

1

.16

Fig. 6. Probabilistic books within publishers

bibliography

1

1

book

.09

.09

title

1

.09

publisher

.8

.072

t2 a1

author

1

.09

p1

book

1-((1-.09)*(1-.4))=.454

.454

title

1

.454

author

1

.4086

publisher

.9

.454

t1 p2p1a1

publisher

.8

.3632

Fig. 7. Transformed probabilistic data

5 Related Work

Previous hierarchy-related research in querying data with the wrong shape can be
broadly classified into several categories. Query relaxation/approximation
techniques loosen the tight coupling of path expressions to the hierarchy of data
is to relax the path expressions or approximately match them to the data by
exploring a space of hierarchies that are within a given edit distance, c.f., [1].
Hierarchical search engines de-couple queries from specific hierarchies, sim-
ilar to our aims, and can find data in differently-shaped hierarchies, c.f., [20])
Structure-independent querying techniques use a least common ancestor
to query data independent of its hierarchy, c.f., [18]. Finally, there is research
in declarative transformation languages [17,23]. We extend the final app-
roach in this paper and describe how to transform data annotated with metadata.
There is no previous research on working with data annotated with metadata in
any of the above categories.

6 Conclusion

Transforming data is an important part of query evaluation. When data is anno-
tated with metadata, the transformation has to preserve the semantics of the

Plug-and-Play Queries for Temporal Data Sockets 135

metadata, particularly when the data is grouped. In this paper we investigated
the transformation of data annotated with temporal metadata. We presented
a sequenced transformation technique, which restructures temporal data while
ensuring sequenced semantics. We also presented a versioning transformation
technique that reorganizes the data into versions. We are currently implementing
the transformation in XMorph. More on the project, including code, a tutorial,
and a demo, can be found at http://digital.cs.usu.edu/∼cdyreson/XMorph.

References

1. Amer-Yahia, S., Cho, S.R., Srivastava, D.: Tree pattern relaxation. In: Jensen, C.S.,
Šaltenis, S., Jeffery, K.G., Pokorny, J., Bertino, E., Böhn, K., Jarke, M. (eds.)
EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002). doi:10.
1007/3-540-45876-X 32

2. Böhlen, M.H., Jensen, C.S.: Sequenced semantics. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, pp. 2619–2621. Springer, Heidelberg (2009)

3. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Temporal statement modifiers. ACM
Trans. Database Syst. 25(4), 407–456 (2000)

4. Currim, F., Currim, S., Dyreson, C.E., Snodgrass, R.T., Thomas, S.W., Zhang,
R.: Adding temporal constraints to XML schema. IEEE Trans. Knowl. Data Eng.
24(8), 1361–1377 (2012)

5. Dyreson, C., Bhowmick, S., Jannu, A., Mallampalli, K., Zhang, S.: XMorph: a
shape-polymorphic, domain-specific XML data transformation language. In: ICDE,
pp. 844–847 (2010)

6. Dyreson, C., Zhang, S.: The benefits of utilizing closeness in XML. In: DEXA
Work, pp. 269–273 (2008)

7. Dyreson, C.E., Bhowmick, S.S.: Querying XML data: as you shape it. In: ICDE,
pp. 642–653 (2012)

8. Dyreson, C.E., Bhowmick, S.S., Grapp, R.: Querying virtual hierarchies using vir-
tual prefix-based numbers. In: International Conference on Management of Data
(SIGMOD 2014), Snowbird, UT, USA, 22–27 June 2014, pp. 791–802 (2014)

9. Dyreson, C.E., Bhowmick, S.S., Grapp, R.: Virtual eXist-db: liberating hierarchical
queries from the shackles of access path dependence. PVLDB 8(12), 1932–1943
(2015)

10. Dyreson, C.E., Bhowmick, S.S., Mallampalli, K.: Using XMorph to transform XML
data. PVLDB 3(2), 1541–1544 (2010)

11. Dyreson, C.E., Grandi, F.: Temporal XML. In: Liu, L., Özsu, M.T. (eds.) Ency-
clopedia of Database Systems, pp. 3032–3035. Springer, Heidelberg (2009)

12. Dyreson, C.E., Mekala, K.G.: Prefix-based node numbering for temporal XML. In:
Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp.
172–184. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24434-6 13

13. Dyreson, C.E., Rani, V.A., Shatnawi, A.: Unifying sequenced and non-sequenced
semantics. In: 22nd International Symposium on Temporal Representation and
Reasoning (TIME 2015), Kassel, Germany, 23–25 September 2015, pp. 38–46
(2015)

14. Dyreson, C., Snodgrass, R.T., Currim, F., Currim, S.: Schema-mediated exchange
of temporal XML data. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER
2006. LNCS, vol. 4215, pp. 212–227. Springer, Heidelberg (2006). doi:10.1007/
11901181 17

http://digital.cs.usu.edu/~cdyreson/XMorph
http://dx.doi.org/10.1007/3-540-45876-X_32
http://dx.doi.org/10.1007/3-540-45876-X_32
http://dx.doi.org/10.1007/978-3-642-24434-6_13
http://dx.doi.org/10.1007/11901181_17
http://dx.doi.org/10.1007/11901181_17

136 C.E. Dyreson and S.S. Bhowmick

15. Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A.,
Paparizos, S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.:
TIMBER: a native XML database. VLDB J. 11(4), 274–291 (2002)

16. Jensen, C.S., et al.: The consensus glossary of temporal database concepts — Feb-
ruary 1998 version. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Data-
bases: Research and Practice. LNCS, vol. 1399, pp. 367–405. Springer, Heidelberg
(1998). doi:10.1007/BFb0053710

17. Krishnamurthi, S., Gray, K.E., Graunke, P.T.: Transformation-by-example for
XML. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp.
249–262. Springer, Heidelberg (1999). doi:10.1007/3-540-46584-7 17

18. Li, Y., Yu, C., Jagadish, H.V.: Schema-free XQuery. In: VLDB, pp. 72–83 (2004)
19. Liu, Z.H., Hammerschmidt, B.C., McMahon, D.: JSON data management: support-

ing schema-less development in RDBMS. In: International Conference on Man-
agement of Data (SIGMOD 2014), Snowbird, UT, USA, 22–27 June 2014, pp.
1247–1258 (2014)

20. Liu, Z., Walker, J., Chen, Y.: XSeek: a semantic XML search engine using key-
words. In: VLDB, pp. 1330–1333 (2007)

21. McGee, W.C.: The information management system IMS/VS part i: general struc-
ture and operation. IBM Syst. J. 16(2), 84–95 (1977)

22. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassi-
lakis, T.: Dremel: interactive analysis of web-scale datasets. Commun. ACM 54(6),
114–123 (2011)

23. Pankowski, T.: A high-level language for specifying XML data transformations. In:
Benczúr, A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255,
pp. 159–172. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30204-9 11

24. Snodgrass, R.T.: The temporal query language TQuel. ACM Trans. Database Syst.
12(2), 247–298 (1987)

25. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Dordrecht
(1995)

26. Tahara, D., Diamond, T., Abadi, D.J.: Sinew: a SQL system for multi-structured
data. In: International Conference on Management of Data (SIGMOD 2014), Snow-
bird, UT, USA, 22–27 June 2014, pp. 815–826 (2014)

27. Zhang, S., Dyreson, C.E.: Symmetrically exploiting XML. In: WWW, pp. 103–111
(2006)

http://dx.doi.org/10.1007/BFb0053710
http://dx.doi.org/10.1007/3-540-46584-7_17
http://dx.doi.org/10.1007/978-3-540-30204-9_11

	Plug-and-Play Queries for Temporal Data Sockets
	1 Introduction
	2 Background: Review of Plug-and-Play Queries
	3 A Temporal Hierarchical Model
	4 Transforming Temporal Data
	4.1 Closest Lifetimes
	4.2 Computing Closest Lifetimes
	4.3 Information Loss
	4.4 Other Temporal Semantics
	4.5 Other Kinds of Metadata

	5 Related Work
	6 Conclusion
	References

