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Abstract This paper is concerned mainly with the macroscopic fractal behavior of
various random sets that arise in modern and classical probability theory. Among
other things, it is shown here that the macroscopic behavior of Boolean coverage
processes is analogous to the microscopic structure of the Mandelbrot fractal
percolation. Other, more technically challenging, results of this paper include:

(i) The computation of the macroscopic Minkowski dimension of the graph of a
large family of Lévy processes; and

(ii) The determination of the macroscopic monofractality of the extreme values of
symmetric stable processes.

As a consequence of (i), it will be shown that the macroscopic fractal dimension
of the graph of Brownian motion differs from its microscopic fractal dimension.
Thus, there can be no scaling argument that allows one to deduce the macroscopic
geometry from the microscopic. Item (ii) extends the recent work of Khoshnevisan
et al. (Ann Probab, to appear) on the extreme values of Brownian motion, using a
different method.
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1 Introduction

It has been known for some time that the curve of a Lévy process in R
d is typically

an interesting “random fractal.” For example, if B D fBtgt>0 is a standard Brownian
motion on R

d, then the image and graph of B have Hausdorff dimension d ^ 2 and
max.d ^ 2 ; 3=2/ respectively. If in addition d D 1, then the level sets of B also have
non-trivial Hausdorff dimension 1=2. See the survey papers of Taylor [21] and Xiao
[22] for historic accounts on these results and further developments.

The beginning student is often presented with some of these “random-fractal
facts” via simulation. The well-versed reader will see in Fig. 1 a typical example.
As a consequence of such a simulation, one is led to believe that one can
deduce from a simulation, such as that in Fig. 1, the fractal nature of the graph
[06t61f.t ;Bt/g of Brownian motion up to time 1.

Figure 1, and other such simulations, are produced by running a random walk
for a long time and then rescaling, using a central-limit scaling. The process is
usually explained by appealing to Donsker’s invariance principle. Unfortunately, the
actual statement of Donsker’s invariance principle is not sufficiently strong to ensure
that we can “see” the various fractal properties of Brownian motion in simulations.
Though Barlow and Taylor [1, 2] have introduced a theory of large-scale random
fractals which, among other things, provides a more rigorous justification.
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Fig. 1 The graph of one-dimensional Brownian motion
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One of the goals of this paper is to test the extent to which one can experimentally
deduce geometric facts about Brownian motion—and sometimes more general
Lévy processes—from simulation analysis. This is achieved by presenting several
examples in which one is able to compute the macroscopic fractal dimension of a
macroscopic random fractal. One of the surprising lessons of this exercise is that
our intuition is, at times, faulty. Yet, our instincts are correct at other times.

Here is an example in which our intuition is spot on: It is known that the level sets
of Brownian motion have dimension 1=2, both macroscopically and microscopically.
This statement has the pleasant consequence that we can “see” the fractal structure
of the level sets of Brownian motion from Fig. 1. As we shall soon see, however,
the same cannot be said of the graph of Brownian motion: The microscopic and
macroscopic fractal dimensions of the graph of Brownian motion do not agree!

In order to keep the technical level of the paper as low as possible, our choice
of “fractal dimension” is the macroscopic Minkowski dimension, which we will
present in the following section. There are more sophisticated notions which, we
however, will not present here; see Barlow and Taylor [1, 2] for examples of these
more sophisticated notions of macroscopic fractal dimension.

Throughout, we set jxj WD max16j6d jxjj and kxk WD .x2
1 C � � � C x2

d/
1=2 for all

x 2 R
d. Whenever we write “f .x/ . g.x/ [also f .x/ & g.x/] for all x 2 X” we mean

that there exists a finite constant K such that f .x/ 6 Kg.x/ uniformly for all x 2 X.
If f .x/ . g.x/ and g.x/ . f .x/ for all x 2 X, then we write “f .x/ � g.x/ for all
x 2 X.”

2 Minkowski Dimension

The macroscopic Minkowski dimension is an easy-to-compute “fractal dimension
number” that describes the large-scale fractal geometry of a set. In order to recall
the Minkowski dimension, we first need to introduce some notation.

For all x 2 R
d and r > 0 define

B.xI r/ WD Œx1 � r ; x1 C r/ � � � � � Œxd � r ; xd C r/;

and

Q.x/ WD Œx1 ; x1 C 1/ � � � � � Œxd ; xd C 1/: (1)

Of course, Q.x/ D B.yI 1
2
/ where yi WD xi C 1

2
. But it is convenient for Q.x/ to have

its own notation.
One can introduce a pixelization map which maps a set F � R

d to a set pix.F/ �
Z
d as follows:

pix.F/ WD ˚
x 2 Z

d W F \ Q.x/ ¤ ¿
�

;
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pix

Fig. 2 The effect of the pixelization map on an ellipse

for all F � R
d. It is clear that F D pix.F/ whenever F is a subset of the integer

lattice Zd. For example, it should be clear that pix.Rd/ D Z
d. Figure 2 below shows

how the pixelization map works in a different simple case.
The following describes the role of the pixelization map in this paper.

Definition 2.1 The macroscopic Minkowski dimension of a set F � R
d is

DimM.F/ WD lim sup
n!1

n�1Log C .jpix.F/ \ B.0I 2n/j/ ; (2)

where j � � � j denotes cardinality and Log C.y/ WD log2.max.y ; 2//.

Remark 2.2 The right-hand side of (2) coincides with the Barlow–Taylor [2] upper
mass dimension of the discrete set pix.F/ � Z

d.
The proof of the following elementary result is left to the interested reader.

Lemma 2.3 For every F � R
d,

DimM.F/ D lim sup
n!1

n�1Log C
ˇ
ˇ˚x 2 B.0I 2n/ \ Z

d W Q.x/ \ F ¤ ¿
�ˇ
ˇ ;

where Q.x/ was defined in (1).
Some of the elementary properties of DimM are listed below:

• If A � B then DimM.A/ 6 DimM.B/;
• If A is a bounded set, then DimM.A/ D 0;
• DimM.Rd/ D DimM.Zd/ D d.

The proof is omitted as it is easy to justify the preceding.
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We end this section with a property of DimM that is similar to the microscopic
Minkowski dimension (compare with [6], for example), which will be used in the
proof of Theorem 3.1 and in Example 3.16.

Lemma 2.4 DimM.F/ D DimM.F/ for every F � R
d, where F denotes the closure

of F.

Proof Let x1; : : : ; x2d denote the corners of B.0I r/, where r 2 .0 ; 1/, and let
xj C pix.F/ denote the translate of pix.F/ by xj for all 1 6 j 6 2d. We may note
that pix.F/ � [2d

jD1.xj C pix.F//. Since kxjk D r
p
d, it follows from the translation

invariance of counting measure that

ˇ
ˇpix.F/ \ B.0I 2n/

ˇ
ˇ 6

2dX

jD1

ˇ
ˇ
ˇfxj C pix.F/g \ B

�
xjI r

p
d C 2n

�ˇ
ˇ
ˇ

6 2d
ˇ
ˇ
ˇpix.F/ \ B

�
0I rpd C 2n

�ˇ
ˇ
ˇ :

Let r # 0 to deduce the second inequality in the following, the first being a
tautology:

jpix.F/ \ B.0I 2n/j 6
ˇ
ˇpix.F/ \ B.0I 2n/

ˇ
ˇ 6 2d jpix.F/ \ B.0I 2n/j :

The lemma follows from the above and (2). �

2.1 Enumeration in Shells

There is a slightly different method of computing the macroscopic Minkowski
dimension of a set. With this aim in mind, define

S0 WD B.0I 1/\Z
d; SnC1 WD

�
B.0I 2nC1/ n B.0I 2n/

�
\Z

d for every integer n > 0:

One can think of Sn as the nth shell in Z
d.

The following provides an alternative description of DimM.F/.

Proposition 2.5 For every F � R
d,

DimM.F/ WD lim sup
n!1

n�1Log C .jpix.F/ \ Snj/ :

Proposition 2.5 tells us that we can replace pix.F/ \ B.0I 2n/, in Definition 2.1,
by pix.F/ \ Sn without altering the formula for DimM.F/.
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Proof Our goal is to prove that DimM.F/ D ı.F/, where

ı.F/ WD lim sup
n!1

n�1Log C .jpix.F/ \ Snj/ :

Since Sn � B.0I 2n/, the bound ı.F/ 6 DimM.F/ is immediate. We will establish
the reverse inequality.

The definition of ı.F/ ensures that for every " 2 .0 ; 1/ there exists an integer
N."/ such that

jpix.F/ \ Skj 6 2kı.F/.1C"/ for all k > N."/:

In particular, all n > N."/,

jpix.F/ \ B.0I 2n/j D
nX

kD0

jpix.F/ \ Skj 6 K."/ C
nX

kDN."/

2kı.F/.1C"/;

D 2nı.F/.1Co.1// Œn ! 1�;

where K."/ WD P
06k<N."/ jSkj is finite and depends only on .d ; "/. It follows

from (2) that DimM.F/ 6 ı.F/=.1 � "/. This completes the proof since " 2 .0 ; 1/

can be made to be as small as one would like. �

2.2 Boolean Models

In addition to the method of Proposition 2.5, there is at least one other useful method
for computing the macroscopic Minkowski dimension of a set. In contrast with
the enumerative method of Sect. 2.1, the method of this subsection is intrinsically
probabilistic.

Let p WD fp.x/gx2Zd denote a collection of numbers in .0 ; 1/, and refer to the
collection p as coverage probabilities, in keeping with the literature on Boolean
coverage processes [7].

Let � WD f�.x/gx2Zd denote a field of totally independent random variables that
satisfy the following for all x 2 Z

d:

Pf�.x/ D 1g D p.x/ and Pf�.x/ D 0g D 1 � p.x/:

By a Boolean model in R
d with coverage probabilities p we mean the random set

B.p/ WD
[

x2ZdW
�.x/D1

Q.x/;

where Q.x/ was defined earlier in (1). Figure 3 depicts simulations of two Booelan
models.
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If A and B are two subsets of R
d, then we say that A is recurrent for B if

j pix.A \ B/j D 1. Equivalently, A is recurrent for B if pix.A \ B/ \ Sn ¤ ¿
for infinitely-many integers n > 0. Clearly, if A is recurrent for B, then B is also
recurrent for A. Therefore, set recurrence is a symmetric relation.

As the following result shows, it is not hard to decide whether or not a nonrandom
Borel set A � R

d is recurrent for B.p/.

Lemma 2.6 Let A � R
d be a nonrandom Borel set. Then,

P
˚ˇ̌

pix
�
A \ B.p/

�ˇ̌ D 1� D
(

1 if
P

x2pix.A/ p.x/ D 1;

0 if
P

x2pix.A/ p.x/ < 1:

Lemma 2.6 is basically a reformulation of the Borel–Cantelli lemma for inde-
pendent events. Therefore, we skip the proof. Instead, let us mention the following,
more geometric, result which almost characterizes recurrent sets in terms of their
macroscopic Minkowski dimension, in some cases.

Proposition 2.7 Suppose p has an index,

Ind.p/ WD � lim
jxj!1

log p.x/

log jxj : (3)

Then for every nonrandom Borel set A � R
d,

P
˚ˇ
ˇ pix

�
A \ B.p/

�ˇˇ D 1� D
(

1 if DimM.A/ > Ind.p/;

0 if DimM.A/ < Ind.p/:

We can compare this result to a similar result of Hawkes [8] about the hitting
probabilities of the Mandelbrot fractal percolation. This comparison suggests
that the Boolean models of this paper play an analogous role in the theory of
macroscopic fractals as does fractal percolation in the better-studied theory of
microscopic fractals.

Open Problem Is there a macroscopic analogue of the microscopic capacity theory
of Peres [17, 18]?

Proof of Proposition 2.7 Let us consider the process N0;N1;N2; : : :, defined as

Nn WD ˇ
ˇ pix

�
A \ B.p/

� \ Sn

ˇ
ˇ D

X

x2pix.A/\Sn

�.x/ Œn > 0�:

Owing to (3) and the definition of DimM , we can verify that

lim sup
n!1

n�1Log CE.Nn/ D DimM.A/ � Ind.p/: (4)



186 D. Khoshnevisan and Y. Xiao

Suppose first that DimM.A/ < Ind.p/. We may combine (4) and Markov’s
inequality in order to see that

P1
nD1 PfNn > 0g 6

P1
nD1 E.Nn/ < 1: The

Borel–Cantelli lemma then implies that with probability one Nn D 0 for all but
finitely-many integers n. That is,

ˇ̌
pix

�
A \ B.p/

�ˇ̌
< 1 a.s. if DimM.A/ < Ind.p/.

This proves half of the proposition.
For the remaining half let us assume that DimM.A/ > Ind.p/, and notice that

Var.Nn/ D P
x2pix.A/\Sn

p.x/.1 � p.x// 6 E.Nn/: Therefore,

P
˚
Nn 6 1

2
E.Nn/

�
6 P

˚jNn � ENnj > 1
2
E.Nn/

�
6 4 Var.Nn/

jE.Nn/j2 6 4

E.Nn/
; (5)

thanks to the Chebyshev’s inequality. Because of (4) there exists an infinite
collection N of positive integers such that

n�1Log CE.Nn/ ! DimM.A/ � Ind.p/ > 0 as n approaches infinity in N :

This fact, and (5), together imply that
P

n2N PfNn 6 1
2
E.Nn/g < 1, and hence

DimM.B.p/\A/ D lim sup
n!1

n�1Log CNn > lim
n!1W
n2N

n�1Log CNn > DimM .A/�Ind.p/ > 0;

almost surely. This completes the proof. �
Remark 2.8 A quick glance at the proof shows that the independence of the �’s was
needed only to show that

Var.Nn/ D O.E.Nn// as n ! 1: (6)

Because Var.Nn/ D P
x;y2pix.A/\Sn

Pf�.x/ D �.y/ D 1g, (6) continues to hold if the
independence of the �’s is relaxed to a condition such as the following: There exists
finite and positive constants c and K such that

PŒ�.x/ D 1 j �.y/ D 1� 6 cPf�.x/ D 1g whenever kxk ^ kyk > K:

We highlight the power of Proposition 2.7 by using it to give a quick computation
of DimM.A \ B.p//.

Corollary 2.9 If A � R
d denotes a nonrandom Borel set, then

DimM .A \ B.p// D DimM.A/ � Ind.p/ a.s.

Because DimM.Rd/ D d, the following is an immediate consequence of
Corollary 2.9.

Corollary 2.10 DimM.B.p// D d � Ind.p/ a.s.
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(b) (a) 

Fig. 3 A simulation of two Boolean models. Corollary 2.10 ensures that the Minkowski dimen-
sions of the two figures are respectively 1:7 (a) and 1:3 (b). (a) Ind.p/ D 0:3, DimM .B.p// D 1:7.
(b) Ind.p/ D 0:7, DimM .B.p// D 1:3

Therefore, it remains to establish Corollary 2.9. The proof uses a variation of
an elegant “replica argument” that was introduced by Peres [18] in the context of
[microscopic] Hausdorff dimension of fractal percolation processes.

Proof of Corollary 2.9 Let B0.p0/ be an independent Boolean model with coverage
probabilities p0 D fp0.x/gx2Zd that have an index Ind.p0/. Define q.x/ WD p.x/�p0.x/
for all x 2 Z

d. It is then easy to see that C.q/ WD B0.p0/ \ B.p/ is a Boolean model
with coverage probabilities q D fq.x/gx2Zd . Since Ind.q/ D Ind.p/ C Ind.p0/,
Proposition 2.7 implies that

P
˚ˇ
ˇ pix

�
A \ C.q/

�ˇˇ D 1� D
(

1 if Ind.p/ C Ind.p0/ < DimM.A/;

0 if Ind.p/ C Ind.p0/ > DimM.A/:

At the same time, one can apply Proposition 2.7 conditionally in order to see that
almost surely,

P
˚ˇ̌

pix
�
A \ C.q/

�ˇ̌ D 1 j B.p/
� D P

˚ˇ̌
pix

�
A \ B.p/ \ B0.p0/

�ˇ̌ D 1 j B.p/
�

D
(

1 if DimM .A \ B.p// > Ind.p0/;
0 if DimM .A \ B.p// < Ind.p0/:

A comparison of the preceding two displays yields the following almost sure
assertions:

1. If Ind.p/ C Ind.p0/ < DimM.A/, then DimM .A \ B.p// > Ind.p0/ a.s.; and
2. If Ind.p/ C Ind.p0/ > DimM.A/, then DimM .A \ B.p// 6 Ind.p0/ a.s.

Since p0 can have any arbitrary index Ind.p0/ > 0 that one wishes, the corollary
follows. �
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3 Transient Lévy Processes

Let X WD fXtgt>0 be a Lévy process on R
d. That is, X is a strong Markov process that

has càdlàg paths, takes values in R
d, X0 D 0, and X has stationary and independent

increments. See, for example, Bertoin [3] for a pedagogic account. In this section
we assume that X is transient and compute the macroscopic Minkowski dimension
of the range RX of X, where we recall the range is the following random set:

RX WD
[

t>0

fXtg:

3.1 The Potential Measure

Let UX denote the potential measure of X; that is,

UX .A/ WD
Z 1

0

PfXt 2 Ag dt D E
Z 1

0

1A.Xt/ dt: (7)

Throughout we assume that X is transient; equivalently, UX is a Radon measure.
The following shows that the macroscopic Minkowski dimension of the range of X
is linked intimately to the potential measure of X.

Theorem 3.1 With probability one,

DimM.RX / D inf

�
˛ > 0 W

Z

Rd

UX .dx/

1 C jxj˛ < 1
�

:

Theorem 3.9 below contains an alternative formula for DimM.RX /, in terms of the
Lévy exponent of X, which is reminiscent of an old formula of Pruitt [20] for the
[microscopic] Hausdorff dimension of RX . We refer to Ref.’s [11–13] for more
recent developments on microscopic fractal properties of Lévy processes, based on
potential theory of additive Lévy processes.

Example 3.2 Consider the case that X WD fXtgt>0 is a symmetric ˇ-stable process
on R

d for some 0 < ˇ 6 2. Transience is equivalent to the condition ˇ < d. This
condition is known to imply that UX .dx/=dx / kxk�dCˇ for all x 2 R

d n f0g [3, 19].
Therefore,

R
Rd.1 C jxj˛/�1 UX .dx/ < 1 iff

R
jxj>1

jxj�˛�dCˇ dx < 1 iff ˛ > ˇ.
Theorem 3.1 then implies that DimM.RX / D ˇ a.s. This fact is essentially due to
Barlow and Taylor [2].
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Remark 3.3 Recall that the measure UX is finite because X is transient. As a result,R
Rd.1 Cjxj˛/�1 UX .dx/ converges iff

R
jxj>1

jxj�˛ UX .dx/ < 1. One can then deduce
from this fact, from the definition (7) of UX , and from Theorem 3.1 that

DimM.RX / D inf

�
˛ > 0 W

Z 1

0

E .jXtj�˛I jXtj > 1/ dt < 1
�

a.s.

This is the macroscopic analogue of a result of Pruitt [20, p. 374].

Open Problem It is natural to ask if there is a nice formula for DimM.A \ RX /

when A � R
d is Borel and nonrandom. We do not have an answer to this question

when A is not “macroscopically self-similar.”
The proof of Theorem 3.1 hinges on a few prefatory technical results. The first is

a more-or-less well-known set of bounds on the potential measure of a ball.

Lemma 3.4 For every x 2 R
d and r > 0,

UX .B.xI r// 6 UX .B.0I 2r// � P
˚
RX \ B.xI r/ ¤ ¿

�
:

Proof Let inf ¿ WD 1, and consider the stopping time

T.xI r/ WD infft > 0 W Xt 2 B.xI r/g: (8)

We can write UX .B.xI r// in the following equivalent form:

E

	Z 1

0

1B.x�XT.xIr/;r/
�
XtCT.xIr/ � XT.xIr/

�
dt � 1fT.xIr/<1g



: (9)

Since jXT.xIr/�xj 6 r a.s. on the event fT.xI r/ < 1g, the triangle inequality implies
that B.x � XT.xIr/ ; r/ � B.0I 2r/ a.s. on fT.xI r/ < 1g, and hence

UX .B.xI r// 6 UX .B.0I 2r// � PfT.xI r/ < 1g:

This is another way to state the lemma. �
The next result is a standard upper bound on the hitting probability of a ball.

Lemma 3.5 For every x 2 R
d and r > 0,

UX .B.xI 2r// > UX .B.0I r// � P
˚
RX \ B.xI r/ ¤ ¿

�
:

Proof Similarly to (9), we see that UX .B.xI 2r// is bounded from below by

E

	Z 1

0

1B.x�XT.xIr/;2r/
�
XtCT.xIr/ � XT.xIr/

�
dt � 1fT.xIr/<1g



;
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where T.xI r/ was defined in (8). By the triangle inequality, B.x � XT.xIr/ ; 2r/ �
B.0I r/ almost surely on the event fT.xI r/ < 1g. Therefore, we apply the strong
Markov property in order to see that

UX .B.xI 2r// > UX .B.0I r// � PfT.xI r/ < 1g:

This is another way to write the lemma. �
The following is a “weak unimodality” result for the potential measure.

Lemma 3.6 UX .B.xI r// 6 4dUX .B.0I r// for all x 2 R
d and r > 0.

Proof The proof will use the following elementary covering property of Euclidean
spaces: For every x 2 R

d and r > 0 there exist points y1; : : : ; y4d 2 B.xI r/ such that
B.xI r/ D [16i64dB.yi ; r=2/: This leads to the following “volume-doubling” bound:
For all r > 0 and x 2 R

d,

UX .B.xI r// 6 4d sup
y2B.x;r/

UX .B.yI r=2//: (10)

This inequality yields the lemma since UX .B.yI r=2// 6 UX .B.0I r// for all y 2 R
d

and r > 0, thanks to Lemma 3.4. �
The next result presents bounds for the probability that the pixelization of the

range of X hits singletons. Naturally, both bounds are in terms of the potential
measure of X.

Lemma 3.7 There exist finite constants c2 > 1 > c1 > 0 such that, for all x 2 Z
d,

c1UX .Q.x// 6 P
˚
x 2 pix

�
RX

��
6 c2UX .B.xI 2//:

Proof For x 2 Z
d, let yi WD xi C 1

2
for 1 6 i 6 d and recall that Q.x/ D B.yI 1=2/

in order to deduce from Lemmas 3.4 and 3.5 that

UX .Q.x//

UX .B.0I 1//
D UX .B.yI 1=2//

UX .B.0I 1//
6 P

˚
x 2 pix

�
RX

��
6 UX .B.yI 1//

UX .B.0I 1=2//
: (11)

The denominators are strictly positive because X is càdlàg and B.0I 1=2/ contains
an open ball in R

d; and they are finite because of the transience of X. Because
B.yI 1/ � B.xI 2/, (11) completes the proof. �

The following lemma is the final technical result of this section. It presents an
upper bound for the probability that the range of X simultaneously intersects two
given balls.
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Lemma 3.8 For all x; y 2 R
d and r > 0,

P
˚
RX \ B.xI r/ ¤ ¿ ;RX \ B.yI r/ ¤ ¿

�

6 UX .B.xI 2r//

UX .B.0I r// � UX .B.y � xI 4r//

UX .B.0I 2r//
C UX .B.yI 2r//

UX .B.0I r// � UX .B.x � yI 4r//

UX .B.0I 2r//
:

Proof Let us recall the stopping time T.xI r/ from (8). First one notices that

P fT.xI r/ 6 T.yI r/ < 1g D P
˚
T.xI r/ < 1; 9s > 0 W XsCT.xIr/ � XT.xIr/ 2 B.y � XT.xIr/I r/

�

6 PfT.xI r/ < 1g � PfT.y � xI 2r/ < 1g
D P

˚RX \ B.xI r/ ¤ ¿
� � P

˚RX \ B.y � xI 2r/ ¤ ¿
�

;

owing to the strong Markov property and the fact that B.y � XT.xIr/I r/ � B.y �
xI 2r/ a.s. on fT.xI r/ < 1g [the triangle inequality]. By exchanging the roles of x
and y and appealing to the subadditivity of probabilities, one can deduce from the
preceding that

P
˚
RX \ B.xI r/ ¤ ¿ ;RX \ B.yI r/ ¤ ¿

�

6 P
˚
RX \ B.xI r/ ¤ ¿

� � P
˚
RX \ B.y � xI 2r/ ¤ ¿

�

C P
˚
RX \ B.yI r/ ¤ ¿

� � P
˚
RX \ B.x � yI 2r/ ¤ ¿

�
:

An appeal to Lemma 3.5 completes the proof. �
With the requisite material for the proof of Theorem 3.1 under way, we are ready

for the following.

Proof of Theorem 3.1 Because of Lemma 2.4, it is sufficient to to verify that
DimM.RX / D ˛c a.s., where

˛c WD inf

�
˛ > 0 W

Z

Rd

UX .dx/

1 C jxj˛ < 1
�

:

Let us begin by making some real-variable observations. First, let us note that
because UX is a finite measure [by transience],

1X

nD1

2�n˛UX .Sn/ D
1X

nD1

2�n˛

Z

Sn

UX .dx/ �
Z

jxj>1

UX .dx/

jxj˛ �
Z

Rd

UX .dx/

1 C jxj˛ :

Therefore,

˛c D inf

(

˛ > 0 W
1X

nD1

2�n˛UX .Sn/ < 1
)

:
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By the definition of ˛c, if 0 < ˛ < ˛c, then
P

n 2�n˛UX .Sn/ D 1; as a result,

lim sup
n!1

2�ˇnUX .B.0I 2n// > lim sup
n!1

2�ˇnUX .Sn/ D 1;

whenever 0 < ˇ < ˛. On the other hand, if ˇ > ˛c, then limn!1 2�ˇnUX .Sn/ D 0,
and hence

UX .B.0I 2n// D
nX

kD0

UX .Sk/ D O.2ˇn/ as n ! 1:

These remarks together show the following alternative representation of ˛c:

˛c D lim sup
n!1

n�1Log CUX .B.0I 2n// D lim sup
n!1

n�1Log CUX .Sn/: (12)

Now we begin the bulk of the proof. Lemma 3.7 and (12) together imply that for
all n > 2,

E
ˇ̌
pix

�
RX

� \ B.0I 2n/
ˇ̌

.
X

x2B.0I2n/
UX .B.xI 2// . UX .B.0I 2nC1// 6 2n.1Co.1//˛c;

as n ! 1. Therefore, the Chebyshev inequality implies that

1X

nD1

P
˚ˇ̌

pix
�
RX

� \ B.0I 2n/
ˇ̌

> 2n�
�

< 1 for all � > ˛c:

An application of the Borel–Cantelli lemma yields DimM.RX / 6 ˛c a.s., which
implies a part of the assertion of the theorem.

For the next part, let us begin with the following consequence of Lemma 3.7:

E
ˇ
ˇpix

�
RX

� \ B.0I 2n/
ˇ
ˇ &

X

x2B.0I2n/
UX .Q.x// � UX .B.0I 2n//: (13)

Next, we estimate the second moment of the same random variable as follows:

E
�ˇ
ˇpix

�RX

� \ B.0I 2n/
ˇ
ˇ2

�
6

X

x;y2B.0I2n/

P
˚RX \ B.xI 1/ ¤ ¿ ;RX \ B.yI 1/ ¤ ¿

�

6
X

x;y2B.0I2n/

UX .B.xI 2//

UX .B.0I 1//
� UX .B.y � xI 4//

UX .B.0I 2//

C
X

x;y2B.0I2n/

UX .B.yI 2//

UX .B.0I 1//
� UX .B.x � yI 4//

UX .B.0I 2//
I
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see Lemma 3.8 for the final inequality. Since for all x; y 2 B.0I 2n/, we have
x � y; y � x 2 B.0 ; 2nC1/, it follows that

E
�ˇ
ˇpix

�
RX

� \ B.0I 2n/
ˇ
ˇ2

�
6 2

X

x2B.0I2n/

UX .B.xI 2//

UX .B.0I 1//
�

X

w2B.0I2nC1/

UX .B.wI 4//

UX .B.0I 2//

6 KUX .B.0I 2nC1// � UX .B.0I 2nC2/

6 43dKŒUX .B.0I 2n//�2;

where K WD 2ŒUX .B.0I 1//UX.B.0I 2//��1 and the last line follows from (10).
Therefore, the Paley–Zygmund inequality and (13) together imply that

P

�ˇ
ˇpix

�
RX

� \ B.0I 2n/
ˇ
ˇ >

1

2
UX .B.0I 2n//

�
>

�
E

ˇ
ˇpix

�
RX

� \ B.0I 2n/
ˇ
ˇ�2

4E
�ˇ
ˇpix

�
RX

� \ B.0I 2n/
ˇ
ˇ2

�

& 1;

uniformly in n. The preceding and (12) together imply that PfDimM.RX / > ˛cg > 0

and hence PfDimM.RX / > ˛cg > 0 thanks to Lemma 2.4. Since the event
fDimM.RX / > ˛cg is a tail event for the Lévy process X, the Kolmogorov 0–1 law
implies that DimM.RX / > ˛c a.s. This verifies the theorem since the other bound
was verified earlier in the proof. �

3.2 Fourier Analysis

It is well-known that the law of X is determined by a socalled characteristic
exponent ‰X W Rd ! C, which can be defined via E exp.iz � Xt/ D exp.�t‰X .z//
for all t > 0 and z 2 R

d. In particular, one can prove from this that ‰X .z/ ¤ 0 for
almost all z 2 R

d. This fact is used tacitly in the sequel.
We frequently use the well-known fact that Re‰X .z/ > 0 for all z 2 R

d. To see
this fact, let X0 be an independent copy of X and note that t 7! Xt � X0

t is a Lévy
process with characteristic exponent 2Re‰X . Since X1 � X0

1 is a symmetric random
variable, one can conclude the mentioned fact that Re‰X > 0.

Port and Stone [19] have proved, among other things, that the transience of X is
equivalent to the convergence of the integral

I.‰X / WD
Z

kzk61

Re

	
1

‰X.z/



dzI

see also [3]. The following shows that the macroscopic dimension of the range of X
is determined by the strength by which the Port–Stone integral I.‰X / converges.



194 D. Khoshnevisan and Y. Xiao

Theorem 3.9 With probability one,

DimM.RX / D inf

�
˛ > 0 W

Z

kzk61

Re

	
1

‰X .z/



dz

kzkd�˛
< 1

�
:

The proof of Theorem 3.9 hinges on a calculation from classical Fourier analysis.
From now on, bh denotes the Fourier transform of a locally integrable function h W
R

d ! R, normalized so that

bh.z/ D
Z

Rd
eiz�xh.x/ dx for all z 2 R

d and h 2 L1.Rd/:

As is done customarily, we let K� denote the modified Bessel function [Macdonald
function] of the second kind.

Lemma 3.10 Choose and fix ˛ > 0 and define f .x/ WD .1 C kxk2/�˛=2 for all
x 2 R

d. Then, the Fourier transform of f is

bf .z/ D cd;˛ � K.d�˛/=2.kzk/

kzk.d�˛/=2
Œz 2 R

d�;

where 0 < cd;˛ < 1 depends only on .d ; ˛/.

Proof This is undoubtedly well known; the proof hinges on a simple abelian trick
that can be included with little added effort.

For all x 2 R
d and � > 0,

Z 1

0

e�t.1Ckxk2/t��1 dt D �.�/

.1 C kxk2/�
:

Therefore, for every rapidly decreasing test function ' W Rd ! R,

Z

Rd

'.x/

.1 C kxk2/�
dx D 1

�.�/

Z

Rd
'.x/ dx

Z 1

0

dt e�t.1Ckxk2/t��1

D 1

�.�/

Z 1

0

e�tt��1 dt
Z

Rd
'.x/e�tkxk2

dx:

Since

Z

Rd
'.x/e�tkxk2

dx D .4�t/�d=2

Z

Rd
b'.z/ exp

	
�kzk2

4t



dz;
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it follows that

Z

Rd

'.x/

.1 C kxk2/�
dx D 1

b

Z

Rd
b'.z/ dz

Z 1

0

dt

t.d=2/��C1
exp

	
�t � kzk2

4t



dz

D 1

c

Z

Rd
b'.z/

K.d=2/�� .kzk/

kzk.d=2/��
dz;

where b WD .4�/d=2�.�/ and c WD .4�/d=2�.�/2�1�.d=2/C� . This proves the result,
after we set � WD ˛=2. �

Proof of Theorem 3.9 It is not hard to check (see, for example, Port and Stone
[19]) that bUX .z/ D 1=‰X.z/ for almost all z 2 R

d. Because Re.1=‰X.z// D
Re‰X .z/=j‰X.z/j2 > 0 a.e., Lemma 3.10 and a suitable form of the Plancherel’s
theorem together imply that

Z

Rd

UX .dx/

1 C jxj˛ �
Z

Rd

UX .dx/

.1 C jxj2/˛=2
/

Z

Rd
Re

	
1

‰X .z/



K.d�˛/=2.kzk/

kzk.d�˛/=2
dz WD T1CT2;

where T1 denotes the preceding integral with domain of integration restricted to
fz 2 R

d W j‰X .z/j < 1g and T2 is the same integral over fz 2 R
d W j‰X .z/j > 1g.

A standard application of Laplace’s method shows that for all R > 0 there exists
a finite A > 1 such that

e�w

A
p
w

6 K�.w/ 6 Ae�w

p
w

;

whenever w > R. And one can check directly that for all R > 0 we can find a finite
B > 1 such that

B�1w�� 6 K�.w/ 6 Bw�� whenever 0 < w < R:

Since ‰X W Rd ! C is a continuous function that vanishes at the origin, fz 2 R
d W

j‰X.z/j > 1g does not intersect a certain ball about the origin of Rd. Therefore, the
inequality Re.1=‰X.z// 6 j‰X .z/j�1, valid for all z 2 R

d, implies that

T1 �
Z

j‰X .z/j<1

Re

	
1

‰X .z/



dz

kzkd�˛
;

and

T2 �
Z

j‰X .z/j>1

Re

	
1

‰X .z/



e�kzk

kzk.d�˛C1/=2
dz 6

Z

j‰X .z/j>1

e�kzk

kzk.d�˛C1/=2
dz < 1:
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This verifies that
Z

Rd

UX .dx/

1 C jxj˛ < 1 ” T1 < 1;

which completes the theorem in light of Theorem 3.1 and a real-variable argument
that implies that T1 < 1 iff

R
kzk61

Re.1=‰X.z//kzk�dC˛ dz < 1. �

3.3 The Graph of a Lévy Process

Let X WD fXtgt>0 denote an arbitrary Lévy process on R
d, not necessarily transient.

It is easy to check that

Yt WD .t ;Xt/ Œt > 0�

is a transient Lévy process in R
dC1. Moreover,

GX WD RY

is the graph of the original Lévy processX. The literature on Lévy processes contains
several results about the microscopic structure of GX . Perhaps the most noteworthy
result of this type is the fact that

dimH .GX / D 3=2 a.s., (14)

when X denotes a one-dimensional Brownian motion. In this section we compute
the macroscopic Minkowski dimension of the same random set; in fact, we plan
to compute the macroscopic Minkowski dimension of the graph of a large class of
Lévy processes X.

The potential measure of the space-time process Y is, in general,

UY .A � B/ WD E

�Z 1

0

1A�B.s ;Xs/ ds

�
D

Z

A
Ps.B/ ds;

for all Borel sets A � RC and B � R
d, where

Ps.B/ WD PfXs 2 Bg:

Therefore, Theorem 3.1 implies that

DimMGX D inf

�
˛ > 0 W

Z 1

0

ds
Z

Rd

Ps.dx/

1 C s˛ C jxj˛ < 1
�

a.s.

In order to understand what this formula says, let us first prove the following result.
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Lemma 3.11 If X is an arbitrary Lévy process on Rd, then

0 6 DimM.GX / 6 1 a.s.

Proof Since

Z 1

0

ds
Z

Rd

Ps.dx/

1 C s˛ C jxj˛ 6
Z 1

0

ds
Z

Rd
Ps.dx/ D 1;

it follows that

DimMGX D inf

�
˛ > 0 W

Z 1

1

ds
Z

Rd

Ps.dx/

s˛ C jxj˛ < 1
�

a.s.

The proposition follows because

Z 1

1

ds
Z

Rd

Ps.dx/

s˛ C jxj˛ 6
Z 1

1

ds

s˛
< 1;

whenever ˛ > 1. �
It is possible to also show that, in a large number of cases, the graph of a Lévy

process has macroscopic Minkowski dimension one, viz.,

Proposition 3.12 Let X be a Lévy process on R
d such that X1 2 L1.P/ and

E.X1/ D 0. Then, DimM.GX / D 1 a.s.
Therefore, we can see from Lemma 3.12 that the graph of one-dimensional
Brownian motion has macroscopic Minkowski dimension 1, yet it has microscopic
Hausdorff dimension 3=2; compare with (14).

Proof Lemma 3.11 implies that

DimM.GX / D inf

�
0 < ˛ 6 1 W

Z 1

1

ds
Z

Rd

Ps.dx/

s˛ C jxj˛ < 1
�

a.s., (15)

where inf ¿ WD 1. If 0 < ˛ < 1, then

Z 1

1

ds
Z

Rd

Ps.dx/

s˛ C jxj˛ >
Z 1

1

ds
Z

jxj6s

Ps.dx/

s˛ C jxj˛ > 2�˛

Z 1

1

PfjXsj 6 sg ds

s˛
:

Because E.X1/ D 0, the law of large numbers for Lévy processes (see, for example,
Bertoin [3, pp. 40–41]) implies that PfjXsj 6 sg ! 1 as s ! 1. This shows that

Z 1

1

PfjXsj 6 sg ds

s˛
D 1 for every ˛ 2 .0 ; 1/;

and proves the lemma. �
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Remark 3.13 The assumption X1 2 L1.P/ in Proposition 3.12 can be weakened.
From the last part of the proof, we see that the conclusion of Proposition 3.12 still
holds if there is a constant c > 0 such that PfjXsj 6 sg > c for all s > 1. This is the
case, for example, when X is a symmetric Cauchy process.

Finally, let us prove that the preceding result is unimprovable in the following
sense: For every number q 2 .0 ; 1/, there exist a Lévy process X on R

d the
macroscopic dimension of whose graph is q.

Theorem 3.14 If X be a symmetric ˇ-stable Lévy process on R
d for some

0 < ˇ 6 2, then

DimM.GX / D ˇ ^ 1 a.s.

The preceding is a large-scale analogue of a result due to McKean [15].
McKean’s theorem asserts that with probability one, the (microscopic) Hausdorff
dimension of the range (not graph!) of a real-valued, symmetric ˇ-stable Lévy
process is ˇ ^ 1.

Proof If ˇ > 1, then the result follows from Proposition 3.12. When ˇ D 1, the
process X is a symmetric Cauchy process and the result follows from Remark 3.13.
In the remainder of the proof we assume that 0 < ˇ < 1.

Let us observe the elementary estimate,

Z 1

1

ds
Z

Rd

Ps.dx/

s˛ C jxj˛ �
Z 1

1

ds
Z

jxj<s

Ps.dx/

s˛
C

Z 1

1

ds
Z

jxj>s

Ps.dx/

jxj˛
DW T1 C T2:

(16)

For all 0 < ˛ < 1,

T1 D
Z 1

1

PfjXsj < sg ds

s˛
D

Z 1

1

P
˚jX1j < s�.1�ˇ/=ˇ

� ds

s˛
;

by scaling. It is well known that X1 has a bounded, continuous, and strictly positive
density function on R

d. This shows that PfjX1j < s�.1�ˇ/=ˇg is bounded above and
below by constant multiples of s�.1�ˇ/=ˇ , uniformly for all s > 1. In particular,

T1 < 1 iff 1 > ˛ > 2 � ˇ�1: (17)

Next we note that if 0 < ˛ < 1, then

T2 D
Z 1

1

E
�jX1j�˛I jX1j > s1�.1=ˇ/

� ds

s˛=ˇ
;
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by scaling. Because X1 has a strictly positive and bounded density in R
d, the

inequalities

E .jX1j�˛I jX1j > 1/ 6 E
�jX1j�˛I jX1j > s1�.1=ˇ/

�
6 E .jX1j�˛/

imply that

T2 < 1 iff ˇ < ˛: (18)

Hence, we have shown that T1 C T2 < 1 iff ˇ < ˛. The theorem follows from (15)
to (18). �

3.4 Application to Subordinators

Let us now consider the special case that the Lévy process X is a subordinator. To
be concrete, by the latter we mean that X is a Lévy process on R such that X0 D 0

and the sample function t 7! Xt is a.s. nondecreasing. If we assume further that
PfX1 > 0g > 0, then it follows readily that limt!1 Xt D 1 a.s. and hence X
is transient. As is customary, one prefers to study subordinators via their Laplace
exponent ˆX W RC ! RC. The Laplace exponent of X is defined via the identity

E exp.��Xt/ D exp.�tˆX .�//;

valid for all t; � > 0. It is easy to see that ˆX .�/ D ‰X .i�/, where ‰X now denotes
[the analytic continuation, from R to iR, of] the characteristic exponent of X.

Theorem 3.15 If ˆX W RC ! RC denote the Laplace exponent of a subordinator
X on RC, then

DimM.RX / D inf

�
0 < ˛ < 1 W

Z 1

0

dy

y1�˛ ˆX .y/
< 1

�
a.s.;

where inf ¿ WD 1.
Theorem 3.15 is the macroscopic analogue of a theorem of Horowitz [9] (see also

[4] for more results) which gave a formula for the microscopic Hausdorff dimension
of the range of a subordinator. The following highlights a standard application of
subordinators to the study of level sets of Markov process; see Bertoin [4] for much
more on this connection.

Example 3.16 Let X be a symmetric, ˇ-stable process on R where 1 < ˇ 6 2. It is
well known that X�1f0g WD fs > 0 W Xs D 0g is a.s. nonempty, and coincides with
the closure of the range of a stable subordinator T WD fTtgt>0 of index 1 � ˇ�1.
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It follows from Lemma 2.4 and Theorem 3.15 that

DimM

�
X�1f0g� D inf

�
0 < ˛ < 1 W

Z 1

0

dt

y1�˛C1�.1=ˇ/
< 1

�
D 1 � 1

ˇ
a.s.

(19)
Notice that (19) is analogous to the microscopic fractal dimension result for the zero
set X�1f0g. This is due to the fact that the Laplace exponent of the corresponding
stable subordinator is a homogeneous function, which has the same asymptotic
behavior at the origin and the infinity. For a Lévy process whose characteristic
exponent has different asymptotic behaviors at the origin and the infinity, the
macroscopic and microscopic fractal dimensions of the zero set may be different.

Proof of Theorem 3.15 The proof uses as its basis an old idea which is basically
a “change of variables for subordinators,” and is loosely connected to Bochner’s
method of subordination [5]. Before we get to that, let us observe first that
Theorem 3.1 readily implies that

DimM.RX / D inf

�
0 < ˛ < 1 W

Z 1

0

x�˛UX .dx/ < 1
�

a.s.

Now let us choose and fix some ˛ 2 .0 ; 1/, and let Y WD fYsgs>0 be an
independent ˛-stable subordinator, normalized to satisfy ˆY .x/ D x˛ for every
x > 0. Since x�˛ D R 1

0 exp.�sx˛/ ds D R 1
0 E exp.�xYs/ ds, a few back-to-back

appeals to the Tonelli theorem yield the following probabilistic change-of-variables
formula1:

Z 1

0

x�˛UX .dx/ D E

�Z 1

0

UX .dx/
Z 1

0

ds e�xYs

�
D E

�Z 1

0

dt
Z 1

0

ds e�XtYs

�

D
Z 1

0

dt
Z 1

0

ds E

e�tˆX .Ys/

� D E

�Z 1

0

ds

ˆX .Ys/

�
D

Z 1

0

UY .dy/

ˆX .y/
:

It is well-known that UY .dy/ 	 dy (or one can verify this directly using transition
density or characteristic function of Y), and the Radon–Nikodym density uY .y/ WD
UY .dy/=dy—this is the socalled potential density of Y—is given by uY .y/ D cy�1C˛

for all y > 0, where c D c.˛/ is a positive and finite constant [this follows from the
scaling properties of Y]. Consequently, we see that

R 1
0 x�˛ UX .dx/ < 1 for some

0 < ˛ < 1 if and only if
R 1

0 y�1C˛ dy=ˆX .y/ < 1 for the same ˛. The theorem
follows from this. �

1The same argument shows that if X and Y are independent subordinators, then we have the change-
of-variables formula,

Z 1

0

UX .dx/

ˆY .x/
D

Z 1

0

UY .dy/

ˆX .y/
:
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4 Tall Peaks of Symmetric Stable Processes

Let B D fBtgt>0 be a standard Brownian motion. For every ˛ > 0, let us consider
the set

HB.˛/ WD
n
t > e W Bt > ˛

p
2 log log t

o
; (20)

where “log” denotes the natural logarithm. In the terminology of Khoshnevisan et
al. [14], the random set HB.˛/ denotes the collection of the tall peaks of B in length
scale ˛.

Theorem 4.1 below follows from the law of the iterated logarithm for Brownian
motion for ˛ ¤ 1. The critical case of ˛ D 1 follows from Motoo [16, Example 2].

Theorem 4.1 HB.˛/ is a.s. unbounded if 0 < ˛ 6 1 and is a.s. bounded if ˛ > 1.
Recently, Khoshnevisan et al. [14] showed that the macroscopic Hausdorff

dimension of HB.˛/ is 1 almost surely if ˛ 6 1. Since the macroscopic Hausdorff
dimension never exceeds the Minkowski dimension (see Barlow and Taylor [2])
Theorem 4.1 implies the following.

Theorem 4.2 DimM.HB.˛// D 1 a.s. for every 0 < ˛ 6 1.
Together, Theorems 4.1 and 4.2 imply that the tall peaks of Brownian motion
are macroscopic monofractals in the sense that either DimM.HB.˛// D 1 or
DimM.HB.˛// D 0. In this section we extend the above results to facts about all
symmetric stable Lévy processes. However, we are quick to point out that the proofs,
in the stable case, are substantially more delicate than those in the Brownian case.

Let X D fXtgt>0 be a real-valued, symmetric ˇ-stable Lévy process for some
ˇ 2 .0 ; 2/. We have ruled out the case ˇ D 2 since X is Brownian motion in that
case, and there is nothing new to be said about X in that case. To be concrete, the
process X will be scaled so that it satisfies

E exp.izXt/ D exp.�tjzjˇ/ for every t > 0 and z 2 R: (21)

In analogy with (20), for every ˛ > 0, let us consider the following set

HX .˛/ WD ˚
t > e W Xt > t1=ˇ.log t/˛

�

of tall peaks of X, parametrized by a “scale factor” ˛ > 0. The following is a re-
interpretation of a classical result of Khintchine [10].

Theorem 4.3 HX .˛/ is a.s. unbounded if 0 < ˛ 6 1=ˇ, and it is a.s. bounded if
˛ > 1=ˇ.

We include a proof for the sake of completeness.
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Proof It suffices to study only the case that ˛ > 1=ˇ. The other case follows from
the stronger Theorem 4.4 below.

Recall from [3, p. 221] that

% WD lim
�!1 �ˇPfX1 > �g (22)

exists and is in .0 ; 1/. Consequently,

PfXt > t1=ˇ�g � ��ˇ for all � > 1 and t > 0: (23)

Let

X�
t WD sup

06s6t
Xs for all t > 0:

The standard argument that yields the classical reflection principle also yields

P
˚
X�
t > �

�
6 2P fXt > �g for all t; � > 0:

Therefore, (23) implies that

P
˚
X�
t > "t1=ˇ.log t/˛

�
6 2P

˚
Xt > "t1=ˇ.log t/˛

� � .log t/�˛ˇ;

for all t > e and " > 0. This and the Borel–Cantelli lemma together show that, if
˛ > 1=ˇ, then Xt D o.t1=ˇ.log t/˛/ as t ! 1, a.s. In other words, HX .˛/ is a.s.
bounded if ˛ > 1=ˇ. This completes the proof. �

Theorem 4.3 reduces the analysis of the peaks of X to the case where ˛ 2
.0 ; 1=ˇ�. That case is described by the following theorem, which is the promised
extension of Theorem 4.2 to the stable case.

Theorem 4.4 If 0 < ˛ 6 1=ˇ, then DimM.HX .˛// D 1 a.s.

Proof It suffices to prove that

DimM.HX .˛// > 1 a.s. (24)

Throughout the proof, we choose and fix a constant 	 2 .0 ; 1/: Let us define an
increasing sequence T1;T2; : : : ; where

Tj WD 22ˇj	 =	 D exp

	
ˇ log.4/j	

	



:

Let us also introduce a collection of intervals I.1/; I.2/; : : : ; defined as follows:

I. j/ WD
h
T1=ˇ
j .logTj/˛ ; 2T1=ˇ

j .logTj/˛
�

:
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Finally, let us introduce events E1;E2; : : :, where

Ej WD ˚
! 2 
 W XTj.!/ 2 I. j/

�
:

According to (22),

P.Ej/ D P
n
XTj > T1=ˇ

j .logTj/˛
o

� P
n
XTj > 2T1=ˇ

j .logTj/˛
o


 %
�
1 � 2�ˇ

�

.logTj/˛ˇ
Œas j ! 1�

D %
�
1 � 2�ˇ

�

j˛	ˇ
:

For every integer n > 1, let us define

Wn WD
2n�1X

jD2n�1

1Ej :

It follows from the preceding that there exists an integer n0 > 1 such that

E.Wn/ & 2n.1�˛ˇ	/ uniformly for all n > n0: (25)

Next, we estimate E.W2
n /, which may be written in the following form:

E.W2
n / D E.Wn/ C 2

X X

2n�16j<k<2n

P.Ej \ Ek/: (26)

Henceforth, suppose k > j are two integers between 2n�1 and 2n � 1.
Because X has stationary independent increments,

P.Ej \ Ek/ 6 Pj � Pj;k; (27)

where

Pj D P
n
XTj > T1=ˇ

j .logTj/
˛
o

;

Pj;k D P
n
XTk�Tj > T1=ˇ

k .logTk/˛ � 2T1=ˇ
j .logTj/˛

o
:

In accord with (23),

Pj D P.Ej/ � j�˛ˇ	 : (28)
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The analysis of Pj;k is somewhat mode complicated.
First, one might observe that

Pj;k D P
n
XTk�Tj > .logTk/

˛

T1=ˇ
k � 2T1=ˇ

j

�o

D P

(

X1 > k˛	
T1=ˇ
k � 2T1=ˇ

j

.Tk � Tj/1=ˇ

)

Œby scaling�

6 P

(

X1 > k˛	

�
1 � 2

	
Tj
Tk


1=ˇ �)

:

(29)

[The final inequality holds simply because .Tk � Tj/1=ˇ 6 T1=ˇ
k .]

If j and k are integers in Œ2n�1 ; 2n/ that satisfy j 6 k � k1�	 , then

k	 � j	 D k	

�
1 �

	
j

k


	�
> k	


1 � .1 � k�	 /

	
�

> 	:

The preceding is justified by the following elementary inequality: .1 � x/	 6 1 � 	x
for all x 2 .0; 1/. As a result, we are led to the following bound:

1 � 2

	
Tj
Tk


1=ˇ

D 1 � 2 exp

	
�2 log 2

	
Œk	 � j	 �



> 1

2
;

valid uniformly for all integers j and k that satisfy k > j > k� k1�	 and are between
2n�1 and 2n � 1. Therefore, (23) and (29) together imply that

Pj;k 6 P fX1 > k˛	 g . k�˛ˇ	 ;

uniformly for all integers k > j that are in Œ2n�1 ; 2n � 1/ and satisfy j 6 k � k1�	 ,
and uniformly for every integer n > n0. It follows from this bound, (27), and (28)
that

X X

2n�16j<k<2n

j6k�k1�	

P.Ej \ Ek/ .
X X

2n�16j<k<2n

j6k�k1�	

. jk/�˛ˇ	 . 4n.1�˛ˇ	/; (30)

uniformly for all integers n > n0.
On the other hand,

X X

2n�16j<k<2n

j>k�k1�	

P.Ej \ Ek/ 6
X X

2n�16j<k<2n

j>k�k1�	

P.Ek/ .
X X

2n�16j<k<2n

j>k�k1�	

k�˛ˇ	 [by (28)]
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.
2n�1X

kD2n�1

k1�	�˛ˇ	 . 2n.2�	�˛ˇ	/

6 4n.1�˛ˇ	/;

since ˛ˇ 6 1. Therefore, (30) implies that

X X

2n�16j<k<2n

P.Ej \ Ek/ . 4n.1�˛ˇ	/:

This and (26) together imply that

E.W2
n / 6 E.Wn/ C .EŒWn�/

2 ; (31)

uniformly for all n > n0. Because of (25) and the condition ˛ˇ 6 1, it follows that
E.Wn/ & 1, uniformly for all n > 1. Therefore, there exists a finite and positive
constant c such that

E.W2
n / 6 c .EŒWn�/

2 for all n > n0:

An appeal to the Paley–Zygmund inequality then yields the following: Uniformly
for all integers n > n0,

inf
n>n0

P
˚
Wn > 1

2
E.Wn/

�
> .4c/�1:

From this and (25) it immediately follows that

P

�
lim sup
n!1

n�1Log CWn > 1 � ˛ˇ	

�
> .4c/�1 > 0:

The event in the preceding event is a tail event for the Lévy process X. Therefore,
the Kolmogorov 0–1 law implies that

lim sup
n!1

n�1Log CWn > 1 � ˛ˇ	 a.s.

Because 	 2 .0 ; 1/ was arbitrary, this proves that lim supn!1 n�1Log C
Wn > 1 a.s., and (24) follows since DimM.HX .˛// > lim supn!1 n�1Log CWn.
This completes the proof of the theorem. �
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