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Abstract We study the stochastic processes that are images of Brownian motions
on Heisenberg group H2nC1 under conformal maps. In particular, we obtain that
Cayley transform maps Brownian paths in H2nC1 to a time changed Brownian
motion on CR sphere S

2nC1 conditioned to be at its south pole at a random time.
We also obtain that the inversion of Brownian motion on H2nC1 started from x 6D 0,
is up to time change, a Brownian bridge on H2nC1 conditioned to be at the origin.

Keywords Brownian bridge • Cayley transform • Doob’s h-process • Heisenberg
group • Kelvin transform

1 Introduction

The Brownian motions on sub-Riemannian model spaces has been widely studied in
recent years. Due to strong symmetries of the model spaces, explicit computations
analysis can be conducted (see [1–4, 7]). In this paper we focus on the relationships
between Brownian motion on Heisenberg group and its images under certain
conformal maps, namely Cayley transform and Kelvin transform.

Let H2nC1 be a 2n C 1 dimensional Heisenberg group that lives in C
n � R with

coordinates .z; t/ D .z1; : : : ; zn; t/ where zj D xj C iyj. It has the group law

.z; t/.z0; t0/ D .z C z0; t C t0 C Imz Nz0/:

It is a flat model space of sub-Riemannian manifolds. There is a canonical sub-
Laplacian on H2nC1:
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The Brownian motion on H2nC1 issued from x0 2 H2nC1 is the strong Markov
process that is generated by 1

2
NLH2nC1 .

Cayley transform is known to be a bi-holomorphic map between the Siegel
domain �nC1 and a unit ball in C

nC1. The restriction of Cayley transform on its
boundary therefore provides a conformal map between H2nC1 and the unit sphere
S
2nC1 in C

nC1. If we consider the image of a Brownian path on H2nC1 under Cayley
transform, it then turns out to be a S

2nC1-valued process. In particular, it is a time
changed version of a Brownian path on S

2nC1 conditioned to be at the south pole at
a random time. Below we state our main result.

Theorem 1.1 The Brownian motion on H2nC1 issued from x0 is mapped by Cayley
transform C1 to a time-changed Brownian motion on S

2nC1 issued from x D C1.x0/
and conditioned to be at the south pole �en at time T, where T is an independent
random variable with distribution

P
h
x ŒT > t� D

R C1
t e�n2sps.�en; x/ds
R C1
0

e�n2tpt.�en; x/dt
: (1.1)

Here pt.x; y/ denotes the subelliptic heat kernel on S2nC1.
This result extends the result by Carne in [5], where he proved that the Stereographic
projection from R

n to Sn maps Brownian paths in R
n to the paths of conditioned

Brownian motion on Sn.
Another object of our study is to probabilistically interpret the relation between

the Brownian motion on H2nC1 started from any x0 6D 0 and its image under the
inversion map, namely the Kelvin transform. This type of question was first posed
by Schwartz (see [10]), who asked how Brownian motion in R

n can be interpreted as
a Brownian bridge conditioned to be at the “ideal point at infinity”. A probabilistic
approach was provided by Yor in [11]. In the present paper, we obtain the result in
a setting of a flat sub-Riemannian manifold. The inversion of Brownian motion on
H2nC1 issued from x 6D 0 turns out to be a Brownian bridge conditioned to be at the
origin up to time change.

Theorem 1.2 The Brownian motion on H2nC1 generated by 1
2
LH2nC1 and issued

from x0 6D 0 is mapped by Kelvin transform to a time-changed H2nC1-valued
Brownian motion conditioned to be at the origin at t D 1.

The approaches to both results follow the idea of Carne. By analyzing the radial
part of the corresponding conformal sub-Laplacians on S

2nC1 and on H2nC1, we
are able to obtain the relationship between Markov processes that are generated by
1
2
LS2nC1 and 1

2
LH2nC1 respectively through an argument of Doob’s h-processes.

In the next section, we deduce Theorem 1.1 after a detailed discussion of Cayley
transform and radial process or Brownian motions on S

2nC1 and H2nC1. In Sect. 3
we focus on the inverse transform on H2nC1 and the proof of Theorem 1.2.
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2 Cayley Transformation and Doob’s h-Process

2.1 Cayley Transform on CR Model Spaces

Cayley transforms on CR model spaces are natural analogues of stereographic
projections on Riemannian models. Let BnC1 D f� 2 C

nC1 W j�j < 1g be the
unit ball in C

nC1 and�2nC1 D f.z;w/ 2 C
n � C; Im.w/ > jzj2g the Siegel domain.

The Cayley transform C W B2nC1 ! �nC1 is a biholomorphic map such that (see [6])

C W .�1; : : : ; �nC1/ !
�

�1

1C �nC1
; : : : ;

�n

1C �nC1
; i
1 � �nC1
1C �nC1

�
; �nC1 6D �1:

Let S2nC1 D f� 2 C
nC1; j�j D 1g be the unit sphere in C

nC1. It also appears
as a model space of CR manifolds. The restriction of C to the CR sphere S

2nC1
minus a point gives a CR diffeomorphism to the boundary of the Siegel domain
@�2nC1, which may be identified with the Heisenberg group H2nC1 through the CR
isomorphism ' W H2nC1 ! @�2nC1. For any .z; t/ 2 H2nC1,

'.z; t/ D .z; 2t C ijzj2/: (2.2)

We denote the north pole of S
2nC1 by en D f0; : : : ; 0; 1g and denote the south

pole by �en. Now we consider the CR equivalence between Heisenberg group and
CR sphere minus the south pole C1 W H2nC1 ! S

2nC1nf�eng. It is then given by
C1 D C�1 ı '. In local coordinates we have for any .z; t/ D .z1; : : : ; zn; t/ 2 H2nC1,

C1 W .z; t/ !
�

2z1
.1C jzj2/� 2it

; : : : ;
2zn

.1C jzj2/� 2it
;
1 � jzj2 C 2it

1C jzj2 � 2it

�
: (2.3)

It is a conformal map with inverse C�1
1 W S2nC1nf�eng ! H2nC1,

C�1
1 W .�1; � � � �nC1/ !

 
�1

1C �nC1
; : : : ;

�n

1C �nC1
;
i

2

�nC1 � �nC1
j1C �nC1j2

!
: (2.4)

Since S
2nC1 is a model space of sub-Riemannian manifold with the Hopf fibration

S
1 ! S

2nC1 ! CP
n, it is more convenient for us to use the so-called cylindrical

coordinates that carries the structural information and are given by

.w; �/ ! ei�
p
1C jwj2 .w; 1/ ;

where � 2 R=2�Z, and w D �=�nC1 2 CP
n. Here w D .w1; � � � ;wn/ parametrizes

the complex lines passing through the origin, and � determines a point on the line
that is of unit distance from the north pole. Let jwj D tan rS, rS 2 Œ0; �=2/, then we
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have C�1
1 in cylindrical coordinates given by

C�1
1 W

 
ei�p
1C jwj2 .w; 1/

!

!
�

ei� cos rS C cos2 rS
1C cos2 rS C 2 cos rS cos �

w;
cos rS sin �

1C cos2 rS C 2 cos rS cos �

�
:

Let  S W S2nC1 ! Œ0; �=2/� R=2�Z be such that

 S

 
ei�p
1C jwj2 .w; 1/

!
D .rS; �/

and  H W H2nC1 ! R�0 � R be such that

 H .z; t/ D .rH ; t/;

where rH D
qPn

jD1 jzjj2. We define a map R�0 � R ! Œ0; �=2/ � R=2�Z by the

chart below, and by abusing of notation we denote it by C1:

We easily compute that

C1 W .rH ; t/

!

0

B@arcsin

0

B@
2rHq

.1C r2H/
2 C 4t2

1

CA ; arcsin

0

B@
4tq

.1C r2H/
2 C 4t2

q
.1 � r2H/

2 C 4t2

1

CA

1

CA

and

C�1
1 W .rS; �/ !

 
sin rSp

1C cos2 rS C 2 cos rS cos �
;

cos rS sin �

1C cos2 rS C 2 cos rS cos �

!
:
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2.2 Brownian Motion and Doob’s h-Process

Now we consider the Markov processes that are generated by sub-Laplacians
NLH2nC1 and NLS2nC1 , which are referred to as Brownian motions on H2nC1 and S

2nC1
respectively throughout this paper. Due to the radial symmetries of these diffusion
processes, it is sufficient for us to consider only the radial part of the sub-Laplacians.

We denote by LH2nC1 the radial part of the sub-Laplacian on H2nC1 in coordinates
(rH, t), it is defined on the space DH D f f 2 C1.R�0 � R;R/;

@f
@rH

jrHD0 D 0g.

Let L
S2nC1 be the radial part of NL

S2nC1 in cylindric coordinates (rS, �), with domain
DS D f f 2 C1.Œ0; �

2
/ � R=2�Z;R/;

@f
@rS

jrSD0 D 0g. Then for any f 2 DH and
g 2 DS, we have

NLH2nC1 . f ı  H/ D .LH2nC1 f / ı  H ; NLS2nC1 .g ı  S/ D .LS2nC1g/ ı  S:

It is known that LS2nC1 is essentially self-adjoint with respect to the volume measure
d�S2nC1 D 2�n

�.n/ .sin rS/2n�1 cos rSdrSd� on S
2nC1, and LH2nC1 is essentially self-

adjoint with respect to the volume measure d�H2nC1 D 2�n

�.n/ r
2n�1
H drHdt on H2nC1.

Moreover, we have explicitly

LH2nC1 D @2

@r2H
C 2n � 1

rH

@

@rH
C r2H

@2

@t2
(2.5)

and (see [1, 2], also [8])

L
S2nC1 D @2

@r2S
C ..2n � 1/ cot rS � tan rS/

@

@rS
C tan2 rS

@2

@�2
: (2.6)

Let us consider Green function of the conformal sub-Laplacian �LS2nC1 C n2 with
pole .0; 0/ (the north pole of S2nC1) and denote it by GS2nC1 . From [2] we have

GS2nC1 ..0; 0/; .rS; �// D �
�
n
2

�2

8�nC1.1 � 2 cos rS cos � C cos2 rS/n=2
: (2.7)

On the other hand the Green function of �LH2nC1 with respect to d�H2nC1 is given by

GH2nC1 ..0; 0/; .rH; t// D �
�
n
2

�2

8�nC1.r4H C 4t2/n=2
(2.8)

We consider h 2 DS, such that for any .rS; �/ 2 Œ0; �
2
/ � R=2�Z,

h.rS; �/ D 1C 2 cos rS cos � C cos2 rS; (2.9)
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and H 2 DH , such that for any .rH ; t/ 2 R�0 � R,

H.rH; t/ D 4

.1C r2H/
2 C 4t2

: (2.10)

It is an easy fact that h and H are harmonic functions with poles .0; �/ and .0; 0/
respectively. Moreover, we have

H D C�
1 h D h ı C1:

From (2.7) and (2.8) we can easily observe that

GS2nC1 ..0; 0/; .rS; �//.1C2 cos rS cos �Ccos2 rS/
n
2 D .C�1�

1 GH2nC1 /..0; 0/; .rS; �//:

In fact, for any x; y 2 Œ0; �
2
/ � R=2�Z we have

GS2nC1 .x; y/ D .C�1�
1 GH2nC1 /.x; y/h.x/�

n
2 h.y/� n

2 : (2.11)

From this we can then deduce the relation between LH2nC1 and LS2nC1 � n2.

Theorem 2.1 For any function f 2 DS, the relation of LH2nC1 and LS2nC1 � n2 via
Cayley transform is given by

h.
n
2C1/.�LS2nC1 C n2/

�
h� n

2 f
�

D �.C1�LH2nC1 /f (2.12)

where h is as in (2.9).

Proof For any f 2 DS, let F 2 DH be such that F D .C1/�f D f ı C1. We assume
for some 	1; 	2 2 DS it holds that for any x 2 Œ0; �

2
/ � R=2�Z,

.�LS2nC1 C n2/ .	1f / jx D �	2 .LH2nC1 / .C�
1 f /jC�1

1 .x/:

It then amounts to find 	1; 	2. Let g D �LH2nC1F, then F D .�LH2nC1 /�1g. The
above equation is equivalent to

	1 � �.�LH2nC1 /�1g
� ı C�1

1 D .�LS2nC1 C n2/�1.	2.g ı C�1
1 //: (2.13)

Therefore, for all x 2 Œ0; �
2
/ � R=2�Z, we have

Z
GH2nC1.C�1

1 .x/; v/g.v/d�H2nC1 v D 	�1
1 .x/

Z
GS2nC1.x; y/	2.y/g.C�1

1 .y//d�S2nC1y

(2.14)
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where GS2nC1 and GH2nC1 are Green functions as in (2.7) and (2.8). Moreover by
changing variable y D C1.v/, the right hand side of the above equation writes

	�1
1 .x/

Z
GS2nC1 .x; C1.v//	2.C1.v//g.v/jJC1 .v/jd�H2nC1v; (2.15)

where jJC1 .v/j is the Jacobi determinant. We can easily compute that

jJC1 .v/j D HnC1.v/;

where H is given as in (2.10). Therefore (2.15) becomes

	�1
1 .x/

Z
G

S2nC1 .x; C1.v//	2.C1.v//g.v/HnC1.v/d�H2nC1v:

By plugging in (2.11) and comparing to (2.14), we obtain for all x; y 2 S
2nC1

(
	1.x/ D h� n

2 .x/

	2.y/ D h�.1C n
2 /.y/;

ut
hence the conclusion.

Corollary 2.2 For any function f 2 DS, we have that

.C1�LH2nC1 /f D h

 
LS2nC1 f C 2�S2nC1 .h� n

2 ; f /

h� n
2

!
(2.16)

where �S2nC1 . f ; g/ D 1
2
.LS2nC1 . fg/� fLS2nC1g � gLS2nC1 f / for any f ; g 2 DS.

Proof Notice that

.LS2nC1 � n2/.h� n
2 / D 0:

hence

h
n
2 .LS2nC1 � n2/.h� n

2 f / D LS2nC1 f C 2h
n
2 �S2nC1 .h� n

2 ; f /:

ut
Now we are ready to prove the main result.

Proof of Theorem 1.1 The proof follows two steps.



172 J. Wang

Step 1 Notice that h� n
2 is the Green function of the conformal sub-Laplacian

LS2nC1 � n2 with pole .�=2; 0/ (the south pole �en of S2nC1). For any f 2 DS we let

Lhf WD LS2nC1 f C 2�S2nC1 .h� n
2 ; f /

h� n
2

D LS2nC1 .h� n
2 f /

h� n
2

� n2f : (2.17)

Let Xh
t and Xt be Markov processes generated by 1

2
Lh and 1

2
LS2nC1 , issued from

x 2 S
2nC1. We first prove that Xh

t is Xt conditioned to be at the south pole �en at
time T, where T is a random time with distribution (1.1).

It is sufficient to prove that for any f 2 DS,

Ex
�
f .Xh

t /
	 D Ex Œ f .Xt/1t<T jXT D �en� (2.18)

Let Ph
t and Pt be the heat semigroups generated by Lh and LS2nC1 respectively, then

by iterating (2.17) it is not hard to obtain for any x 2 S
2nC1,

Ph
t . f .x// D h.x/

n
2 e�tn2Pt.h

� n
2 .x/f .x//;

that is

Ex
�
f .Xh

t /
	 D 1

h� n
2 .x/

e�tn2
Ex

h
h� n

2 .Xt/f .Xt/
i

D Ex

"
e�tn2h� n

2 .Xt/

h� n
2 .x/

f .Xt/

#
:

Proving (2.18) is then equivalent to proving

Ex Œ f .Xt/1t<T jXT D �en� D Ex

"
e�tn2h� n

2 .Xt/

h� n
2 .x/

f .Xt/

#
: (2.19)

Note that

Ex Œ f .Xt/1t<T jXT D �en� D Ex Œ f .Xt/1t<T1XTD�en �

Ex ŒXT D �en�
:

Assume T is an exponential random variable with parameter �n2 under the original
probability measure, we have

Ex Œ f .Xt/1t<T1XTD�en � D Ex

h
e�tn2h� n

2 .Xt/f .Xt/
i

and

Ex ŒXT D �en� D
Z C1

0

pt.x;�en/e
�n2tdt D h� n

2 .x/:
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Thus (2.19) holds when T is an exponential random variable under the original
probability measure. Switching to the conditioned probability measure, T then has
the distribution

P
h
x ŒT > t� D e�n2tEx

�
h� n

2 .Xt/
	

h� n
2 .x/

D
R C1
t e�n2sps.�en; x/ds
R C1
0 e�n2 tpt.�en; x/dt

:

Step 2 Next we prove the time change. Let Yt be the Markov process generated by
1
2
LH2nC1 and issued from C�1

1 .x/, we claim that Yt is mapped by Cayley transform to
a time-changed version of Xh, i.e.,

Xh
At

D C1.Yt/ (2.20)

where the time change is given by At D R t
0
H.Ys/�1ds. To see this, we consider for

any F D f ı C1 2 DH , the associated martingale MF
t that is given by

MF
t D F.Yt/ � 1

2

Z t

0

LH2nC1F.Ys/ds:

By plugging in (2.20), (2.16) and (2.17) we have

MF
t D f .Xh

At
/ � 1

2

Z t

0

.LH2nC1F/ ı C�1
1 .Xh

As
/ds D f .Xh

At
/ � 1

2

Z t

0

H.Ys/L
hf .Xh

As
/ds:

Let 	t be the hitting time such that 	t D inffu;Au > tg, then clearly A	t D t D 	At .
By changing variable s D 	u we obtain

MF
t D f .Xh

At
/� 1

2

Z 	At

0

H.Ys/L
hf .Xh

As
/ds D f .Xh

t / � 1

2

Z At

0

H.Y	u/L
hf .Xh

u/	
0
udu:

Note for any u > 0 we have u D A	u D R 	u
0 H.Ys/ds. This implies that

1 D H.Y	u/	
0
u:

Therefore

MF
t D f .Xh

t /� 1

2

Z At

0

Lhf .Xh
u/du;

and it completes the proof.
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3 Inversion of Brownian Motions on Heisenberg Group

In this section we consider the inversion of Brownian motion on Heisenberg group.
First we construct the inverse map by composing two Cayley transforms C1 and C2,
between H2nC1 and S

2nC1 minus a point (�en and en respectively). We have already
discussed C1 in the previous section. Now let us consider C2 W H2nC1 ! S

2nC1nfeng
where en is the north pole on S

2nC1. We have

C2 W .z; t/ !
�

2z1
1C jzj2 C 2it

; : : : ;
2zn

1C jzj2 C 2it
;� 1 � jzj2 � 2it

1C jzj2 C 2it

�
:

and

C�1
2 W f�1; � � � �nC1g !



�1

1 � �nC1
; : : : ;

i

2

�nC1 � �nC1
j1 � �nC1j2

�
:

Let K W H2nC1nf0g �! H2nC1nf0g be such that K D C�1
2 ı C1, then

K W .z1; � � � zn; t/ !
�

z1
jzj2 � 2it

; : : : ;
zn

jzj2 � 2it
;

t

jzj4 C 4t2

�
:

Clearly K is an involution on H2nC1nf0g and preserve the Korányi ball f.z; t/ 2
H2nC1; jzj4 C 4t2 D 1g. Indeed it is the Kelvin transform generalized to Heisenberg
group (see [9]).

For any .rH ; t/ 2 R�0 � R and .rS; �/ 2 Œ0; �
2
/ � R=2�Z, we let Qh.rS; �/ D 1C

cos2 rS � 2 cos rS cos � and QH.rH ; t/ D 4.r4HC4t2/
.1Cr2H/C4t2 , then K�H D .C2 ı C�1

1 /�H D QH.

Moreover, simple calculations show that

Qh D .C�1
2 /�H; h D .C�1

2 /� QH; Qh D .C�1
1 /� QH:

Let N.rH ; t/ D r4H C4t2. By comparing the conformal Laplacians induced by C1 and
C2, we obtain the following relation.

Theorem 3.1 For any function F 2 DH,

.K�LH2nC1 /F D N
n
2C1LH2nC1 .N�n=2F/:

Proof First we notice that for all f 2 DS,

Qh n
2C1.�LS2nC1 C n2/

�Qh� n
2 f
�

D �.C2�LH2nC1 /f :

Together with (2.12) we obtain

h�. n2C1/.C1�LH2nC1 /.h
n
2 f / D Qh�. n2C1/.C2�LH2nC1 /.Qh n

2 f /:
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Thus

.C1�LH2nC1 /f D n�. n2C1/.C2�LH2nC1 /
�
n

n
2 f
�
;

where n D Qh
h . Note that .C2/�n D N�1, we have for any F D C�

2 f ,

.K�LH2nC1 /F D N
n
2C1LH2nC1 .N� n

2F/:

ut
Now we are ready to prove the relation between the inversion of Brownian

motion on H2nC1 and the time changed Brownian bridge on H2nC1.

Proof of Theorem 1.2 Note that N� n
2 is the Green function of the sub-Laplacian

LH2nC1 with pole .0; 0/. We let

LNF WD LH2nC1F C 2N
n
2 �H2nC1 .N� n

2 ;F/; (3.21)

where �H2nC1 .F;G/ D 1
2
.LH2nC1 .FG/ � fLH2nC1G � GLH2nC1F/ for any F;G 2 DH .

From the previous theorem we have

K�LH2nC1 D NLN :

Let XN
t and Xt be Markov processes generated by 1

2
LN and 1

2
LH2nC1 . We first

prove that XN
t is Xt conditioned to be at the origin.

It suffices to prove that for any F 2 DH ,

Ex
�
F.XN

t /
	 D Ex ŒF.Xt/1t<T jX1 D .0; 0/� (3.22)

Let PN
t and Pt be the heat semigroups generated by LN and LH2nC1 respectively, then

by iterating (3.21) it is not hard to obtain

PN
t .F.x// D N.x/�

n
2Pt.N.x/

� n
2F.x//;

that is

Ex
�
F.XN

t /
	 D 1

N.x/� n
2

Ex

h
N.Xt/

� n
2F.Xt/

i
D Ex

"
N.Xt/

� n
2

N.x/� n
2

F.Xt/

#
:

From (3.22), we just need to show that

Ex ŒF.Xt/jX1 D 0� D Ex

"
N.Xt/

� n
2

N� n
2 .x/

F.Xt/

#
:
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This is an easy consequence of Ex ŒX1 D 0� D N� n
2 .x/ and

Ex ŒF.Xt/1X1D0� D Ex ŒF.Xt/ExŒ1X1D0jFt�� D Ex

h
N.Xt/

� n
2F.Xt/

i
:

Next we prove the time change. Consider the Markov process generated by
1
2
K�.LH2nC1 /. It is the image of Xt under Kelvin transform, namely K.Xt/. We claim

K.Xt/ D XN
At

(3.23)

where At D R t
0
N.Xs/ds is the time-change of XN . For any F 2 DH, we consider the

associated martingale

MF
t WD F.Xt/� 1

2

Z t

0

LH2nC1F.Xs/ds:

Denote QF D .K/�F. By plugging in (3.23), we obtain

MF
t D QF.XN

At
/� 1
2

Z t

0

.LH2nC1F/ıK�1.Xh
As
/ds D QF.XN

At
/� 1
2

Z t

0

N.Xs/L
N QF.XN

As
/ds:

Let 	t be the hitting time such that 	t D inffu;Au > tg, then clearly A	t D t D 	At .
By changing variable s D 	u we have

MF
t D QF.XN

At
/�1
2

Z 	At

0

N.Xs/L
N QF.XN

As
/ds D QF.XN

t /�
1

2

Z At

0

N.X	u/L
N QF.XN

u /	
0
udu:

Note for any u > 0 we have u D A	u D R 	u
0

N.Xs/ds. By differentiating both sides
with respect to u we obtain

1 D N.X	u/	
0
u:

Hence

MF
t D QF.XN

t / � 1

2

Z At

0

LN QF.XN
u /du;

and we have the conclusion.
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