Decomposition and Limit Theorems for a Class
of Self-Similar Gaussian Processes
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Abstract We introduce a new class of self-similar Gaussian stochastic processes,
where the covariance is defined in terms of a fractional Brownian motion and
another Gaussian process. A special case is the solution in time to the fractional-
colored stochastic heat equation described in Tudor (Analysis of variations for
self-similar processes: a stochastic calculus approach. Springer, Berlin, 2013). We
prove that the process can be decomposed into a fractional Brownian motion (with
a different parameter than the one that defines the covariance), and a Gaussian
process first described in Lei and Nualart (Stat Probab Lett 79:619-624, 2009). The
component processes can be expressed as stochastic integrals with respect to the
Brownian sheet. We then prove a central limit theorem about the Hermite variations
of the process.
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1 Introduction

The purpose of this paper is to introduce a new class of Gaussian self-similar
stochastic processes related to stochastic partial differential equations, and to
establish a decomposition in law and a central limit theorem for the Hermite
variations of the increments of such processes.
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Consider the d-dimensional stochastic heat equation

ou

1 .
= Au+W, >0, xeR? 1.1
ot 2 ut =0 (.1

with zero initial condition, where W is a zero mean Gaussian field with a covariance
of the form

E [WH(t,x)WH(s,y)] =y(—s)A(x—y), st>0, x,yeR%

We are interested in the process U = {U,,t > 0}, where U, = u(t,0).

Suppose that W is white in time, that is, yo = 6y and the spatial covariance
is the Riesz kernel, that is, A(x) = cgplx|™, with B < min(d,2) and c;5 =
7=4228=4T(B/2)/ T'((d — B)/2). Then U has the covariance (see [14])

EUU) =D ((+9'™" —lt—s'""), s1=0, (1.2)

for some constant

D= @m)~(1 — p/2)"! /Rd L |;f_ﬁ. (1.3)

Up to a constant, the covariance (1.2) is the covariance of the bifractional Brownian
motion with parameters H = é and K =1 — g We recall that, given constants

H € (0,1) and K € (0, 1), the bifractional Brownian motion BX = {B"X t > 0},
introduced in [4], is a centered Gaussian process with covariance

1
Ruk(s,1) = oK (7 + 2K — |t — 5Ky, s,6>0.

When K = 1, the process B = B! is simply the fractional Brownian motion
(fBm) with Hurst parameter H € (0, 1), with covariance Ry(s,t) = Rpy.1(s,?). In
[5], Lei and Nualart obtained the following decomposition in law for the bifractional
Brownian motion

BHK — ClBHK + CzYtIz(H,

where BK is a fBm with Hurst parameter HK, the process YX is given by
o0
ﬁZ/ v = eaw,, (1.4)
0

with W = {W,,y > 0} a standard Brownian motion independent of B#X, and

Cy, C, are constants given by C; = 25" and C, = \/ -

F(21—K)‘ The process YX
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has trajectories which are infinitely differentiable on (0, co) and Holder continuous
of order HK — ¢ in any interval [0, 7] for any € > 0. In particular, this leads to
a decomposition in law of the process U with covariance (1.2) as the sum of a
fractional Brownian motion with Hurst parameter é - g plus a regular process.

The classical one-dimensional space-time white noise can also be considered as
an extension of the covariance (1.2) if we take § = 1. In this case the covariance
corresponds, up to a constant, to that of a bifractional Brownian motion with
parameters H = K = é

The case where the noise term W is a fractional Brownian motion with Hurst
parameter H € (é, 1) in time and a spatial covariance given by the Riesz kernel,
that is,

E W1, x) W (5,y)] = ancapls — " 2x —y| P,

where 0 < 8 < min(d, 2) and g = H(2H — 1), has been considered by Tudor and
Xiao in [14]. In this case the corresponding process U has the covariance

t s
E[U,U,] = DaH/ / lu— v 72t + 5 — u— v) 7V dudv, (1.5)
0 JO

where D is givenin (1.3) and y = d;ﬁ . This process is self-similar with parameter
H — )2' and it has been studied in a series of papers [1, 8, 12—-14]. In particular, in
[14] it is proved that the process U can be decomposed into the sum of a scaled fBm
with parameter H — g, and a Gaussian process V with continuously differentiable
trajectories. This decomposition is based on the stochastic heat equation. As a
consequence, one can derive the exact uniform and local moduli of continuity and
Chung-type laws of the iterated logarithm for this process. In [12], assuming that
d = 1,2 or 3, a central limit theorem is obtained for the renormalized quadratic
variation

n—1
1
Vo = 27772 Y L (Usnyryn = Uiryn)* = E[Ugnum — Uirn)*]}
j=0
assuming ; < H< i, extending well-known results for fBm (see for example [6,

Theorem 7.4.1]).

The purpose of this paper is to establish a decomposition in law, similar to that
obtained by Lei and Nualart in [5] for the bifractional Brownian motion, and a
central limit theorem for the Hermite variations of the increments, for a class of self-
similar processes that includes the covariance (1.5). Consider a centered Gaussian
process {X;, t > 0} with covariance

R(s,t) = E[X,X,] = E [(/tz,_,dBf) (/SZX_,dBf’):| , (1.6)
0 0
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where

() B = {B! t > 0} is a fBm with Hurst parameter H € (0, 1).
(ii) Z = {Z;,t > 0} is a zero-mean Gaussian process, independent of BH | with
covariance

E[ZZ] = (s +1)7, (1.7)

where 0 < y < 2H.

In other words, X is a Gaussian process with the same covariance as the process
{ fot Z,—,dB" ¢t > 0}, which is not Gaussian.

When H € (é, 1), the covariance (1.6) coincides with (1.5) with D = 1.
However, we allow the range of parameters 0 < H < l and 0 < y < 2H. In
other words, up to a constant, X has the law of the solution in time of the stochastic
heat equation (1.1), when H € (0,1),d > 1 and 8 = d —2y. Also of interest is that
X can be constructed as a sum of stochastic integrals with respect to the Brownian
sheet (see the proof of Theorem 1).

1.1 Decomposition of the Process X

Our first result is the following decomposition in law of the process X as the sum of
a fractional Brownian motion with Hurst parameter § = H — ’2' plus a process with
regular trajectories.

Theorem 1 The process X has the same law as {JKB? + Y;, t > 0}, where here
and in what follows, « = 2H — y,

1 [e9) Zy—l
K = dz. 18
F(y)/o 142 % (18)

B? is a fBm with Hurst parameter ©, and Y (up to a constant) has the same law as
the process Yk defined in (1.4), with K = 20 + 1, that is, Y is a centered Gaussian
process with covariance given by

E[Y,Y] = A / y_“_l(l —e (1 —e™) dy,
0

where

4 oo ., 1-2H
Al = T . / 1 d?’]
I'(y)T(2H + 1)sin(wH) Jo 1+ n?

The proof of this theorem is given in Sect. 3.
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1.2 Hermite Variations of the Process

For each integer ¢ > 0, the gth Hermite polynomial is given by

g 2 di 2
Hy(x) = (=1)%e2 dxqe 2,

See [6, Sect. 1.4] for a discussion of properties of these polynomials. In particular,
it is well known that the family {jq,Hq, g > 0} constitutes an orthonormal basis of

the space L>(R, y), where y is the N(0, 1) measure.

Suppose {Z,,n > 1} is a stationary, Gaussian sequence, where each Z,
follows the N(0, 1) distribution with covariance function p(k) = E[Z,Z,]. If
Z,fil |p(k)|? < o0, it is well known that as n tends to infinity, the Hermite variation

1 n
= ;Hq(zf) (1.9)

converges in distribution to a Gaussian random variable with mean zero and variance
given by 02 = ¢! > 72, p(k)?. This result was proved by Breuer and Major in [3].
In particular, if B is a fBm, then the sequence {Z;,,0 < j < n — 1} defined by

Zin = n'! (BI;I+1 - B?)

n

is a stationary sequence with unit variance. As a consequence, if H < 1 — (11 we

have that
1 n—1
on 2 (1))
j=0 n n

converges to a normal law with variance given by

q!
o2 = 9 D (Im A 1P = 20m P 4 jm — 1) (1.10)
meZ

See [3] and Theorem 7.4.1 of [6].
The above Breuer-Major theorem can not be applied to our process because X is
not necessarily stationary. However, we have a comparable result.

Theorem 2 Let g > 2 be an integer and fix a real T > 0. Suppose that o < 2 — [11,
where a is defined in Theorem 1. Fort € [0, T), define,

1 |nt]—1 AX;
Fyty=n"> > H, " ,
5o
L2()

n
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where H,(x) denotes the qth Hermite polynomial. Then as n — oo, the stochastic
process {Fy(t),t € [0,T]} converges in law in the Skorohod space D([0,T]), to
a scaled Brownian motion {oB;,t € [0,T|}, where {B;,t € [0,T]} is a standard
Brownian motion and o = /o2 is given by

!
o2 = gq2(|m+1|“—2|m|“+|m—1|°')q. (1.11)

meZ

The proof of this theorem is given in Sect. 4.

2 Preliminaries

2.1 Analysis on the Wiener Space

The reader may refer to [6, 7] for a detailed coverage of this topic. Let Z =
{Z(h), h € H} be an isonormal Gaussian process on a probability space (2, F, P),
indexed by a real separable Hilbert space H. This means that Z is a family of
Gaussian random variables such that E[Z(k)] = 0 and E[Z(h)Z(g)] = (h.g)y
forall h,g € H.

For integers ¢ > 1, let H®4 denote the gth tensor product of H, and HO4 denote
the subspace of symmetric elements of H®9.

Let {e,,n > 1} be a complete orthonormal system in 7{. For elements f, g € H 4
andp € {0, ..., g}, we define the pth-order contraction of f and g as that element of
H®24P) given by

oo

f®g= Z (f’eil ®'”®e"p)7—t®1’ ®(g’eil ®"'®eip)’}—t®p’ 2.1)

where f®0g = f®g. Note that, if f, g € H®, thenf®,8 = (f, g)»oq. In particular,
if f, g are real-valued functions in H®? = L?(R?, B2, u?) for a non-atomic measure
M, then we have

F@g= /1; Fls.10)g(s. 1) pe(ds). 22)

Let H, be the gth Wiener chaos of Z, that is, the closed linear subspace of L?(£2)
generated by the random variables {H,(Z(h)),h € H,|hllx = 1}, where H,(x)
is the gth Hermite polynomial. It can be shown (see [6, Proposition 2.2.1]) that if
Z,Y ~ N(0, 1) are jointly Gaussian, then

pHE[ZY])Y ifp=gq

E[H,(Z)H,(Y)] = otherwise

2.3)
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For ¢ > 1, it is known that the map
1,(h®) = H,(Z(h)) 24)

provides a linear isometry between #®? (equipped with the modified norm /q!| -
l2;®4) and H,, where I,(:) is the generalized Wiener-Ito stochastic integral (see [6,
Theorem 2.7.7]). By convention, Hy = R and Iy(x) = x.

We use the following integral multiplication theorem from [7, Proposition 1.1.3].
Suppose f € HO and g € H®9. Then

PAq
NGUGEDNE (’; ) (f) Ipto2r(rg). @5)

r=0

where f®,g denotes the symmetrization of f ®, g. For a product of more than two
integrals, see Peccati and Taqqu [9].

2.2 Stochastic Integration and fBm

We refer to the ‘time domain’ and ‘spectral domain’ representations of fBm. The
reader may refer to [10, 11] for details. Let £ denote the set of real-valued step
functions on R. Let B” denote fBm with Hurst parameter H. For this case, we view
B as an isonormal Gaussian process on the Hilbert space §), which is the closure of
& with respect to the inner product (f, g)s = E[I(f)I(g)]. Consider also the inner
product space

Ry = {f:fe L(®), /R FFEIE M dE < ool |

where Ff = fR f(x)e*dx is the Fourier transform, and the inner product of Ay is
given by

1
U-8)iu = o /R FF&)Fe(®))e] 2 de, 2.6)

1
where Cy = (F(ZH ﬁ;’sin(ﬂ H)) ® Ttis known (see [10, Theorem 3.1]) that the space

/~\H is isometric to a subspace of £, and /~\H contains £ as a dense subset. This inner
product (2.6) is known as the ‘spectral measure’ of fBm. In the case H € (é, 1),
there is another isometry from the space

An] = {f:/o [0 )| )| — v dv < 00



106 D. Harnett and D. Nualart
to a subspace of §3, where the inner product is defined as
o0 o0
e = HCH =D [ [ el o duay,
o Jo

see [10] or [7, Sect.5.1].

3 Proof of Theorem 1

For any y > 0 and A > 0, we can write

1 i 1 A
A7V = r=lemM gy,
T'(y) /0 yoeow

where I' is the Gamma function defined by I'(y) = fooo YW le™dy. As a
consequence, the covariance (1.7) can be written as

|
E[Z,Z] = ) /0 Yyl gy (3.1

Notice that this representation implies the covariance (1.7) is positive definite.
Taking first the expectation with respect to the process Z, and using formula (3.1),
we obtain

1 o t s
R(s,1) = / E [(/ ede;I) (/ EdeBZI):| yy—le—(t+s)ydy
L) Jo 0 0
1 o0 |
= Fo) /0 (10,9 (u), €10 (v))yJ Yl Fy gy,
Using the isometry between /~\H and a subspace of 5 (see Sect. 2.2), we can write

(1), @1 g (v)), = C5 /R €' (F1p.0e”) (Flgev) dE

— C;Z |‘§>:|1_2H (eyt-i—ifr _ 1) (eys—ifs _ 1) dév
R Y+ &
>
where (F1jpe*) denotes the Fourier transform and Cy = ( roH ﬁ;’sin(n H)) . This

allows us to write, making the change of variable & = ny,

1|§:|1 - Lgt Pl —ifs _ —ys
RGs.1) = F(V)CZ/ / L ") (e — ™) d dy
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= conee [T [ I ey ) anay
r(ci Jo Jr 1+n?

3.2)

where @ = 2H — y. By Euler’s identity, adding and subtracting 1 to compensate the
singularity of y~*~! at the origin, we can write

M — ™" = (cos(nyt) — 1 + isin(nyt)) + (1 —e™"). (3.3)

Substituting (3.3) into (3.2) and taking into account that the integral of the imaginary
part vanishes because it is an odd function, we obtain

—2H
R(s.1) = r(V)cz [7 [T 2 (1= cos(mn) 1 = costaye)

+ sin(y?) sin(nys) + (cos(nys) — (1 —e™") + (cos(nyr) — 1)(1 —e*)
F(1— e (1 — e—”)) dy dy.
Let BY = {BY(n,7),n > 0,1 > 0}, j = 1,2 denote two independent Brownian
sheets. That is, forj = 1, 2, BWY is a continuous Gaussian field with mean zero and
covariance given by

E[BY (n,)BY (£, 5)] = min(n., §) x min(z, s).

We define the following stochastic processes:

—2H
v \/F(y)c/ / 1+ , (cos(pyn) = ) BV (dn.dy).  (3.4)
H
1-2H
\/F()/)C / / \/ - , (sin(nyn) B (dn. dy), (3.5)
H

1 2H
\/F()/)C / / 1+7;2 (1—e™") B (dn, dy), (3.6)
H

where the integrals are Wiener-Itd integrals with respect to the Brownian sheet. We
then define the stochastic process X = {X,,t > 0} by X, = U, + V, + Y,, and
we have E [X,X;] = R(s,t) as given in (3.2). These processes have the following
properties:
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(I The process W, = U,+V, is a fractional Brownian motion with Hurst parameter
‘; scaled with the constant /. In fact, the covariance of this process is

E[W,W,] = F(y)C2 / / —ol 77 - ((cos(nyt) — 1)(cos(nys) — 1)

+ sin(nyr) sin(nys))d ndy

l|g|1 —2H lé't —ZES‘
F(y)CZ/ / . z+§2 1) (e 1)d&dy.

Integrating in the variable y we finally obtain

o« (€ —1)(e7® — 1)
HWWI= r e, L e

where ¢; = fo dz = kT'(y). Taking into account the Fourier transform

1+ 2
representation of fBm (see [11, p. 328]), this implies « ~2W is a fractional
Brownian motion with Hurst parameter 3

(IT) The process Y coincides, up to a constant, with the process YX introduced in
(1.4) with K = 2« 4 1. In fact, the covariance of this process is given by

_ 262 OO —a—1 0t R
B = o /0 V(1 — (1 — e )dy, 3.7)

where

e’} r’l—ZH
= dn.
2 /(; 1+772 n

Notice that the process X is self-similar with exponent 9. This concludes the
proof of Theorem 1.

4 Proof of Theorem 2

Along the proof, the symbol C denotes a generic, positive constant, which may
change from line to line. The value of C will depend on parameters of the process
and on 7', but not on the increment width n~!

For integers n > 1, define a partition of [0, 00) composed of the intervals
{[/ /+1) J = 0}. For the process X and related processes U, V, W, Y defined in
Sect. 3, we introduce the notation

AX]- =Xj+1 — X and AX() =X
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with corresponding notation for U, V, W, Y. We start the proof of Theorem 2 with
two technical results about the components of the increments.

4.1 Preliminary Lemmas

Lemma 3 Using above notation with integers n > 2 and j, k > 0, we have

(a) E[AW,W-AW;;] = e (| k— 1% =2 j— k| + | — k— 1]%), where K is
defined in (1.8).
(b) Forj+k=>1,

‘IE [AY,- Ayk] < Cn (i + k)2

for a constant C > 0 that is independent of j, k and n.

Proof Property (a) is well-known for fractional Brownian motion. For (b), we have
from (3.7):

E[AY,AY: ]| = 2 / Ty (7 D) (kD) gy
n n F(V)CHna 0

2 e’} 1 1
_ 2 / y—a+l/ / YU gy dy.
L(y)Cin® Jo o Jo

Note that the above integral is nonnegative, and we can bound this with

‘E [Ayi AYﬁ]

00
< Cn—a/ y—a+le—y(j+k) dy
0

o0
=Cn(j+ k)2 / u e dy
0

<Cn7(j + k)2

Lemma 4 Forn > 2 fixed and integers j, k > 1,

)E [Awi AYi] < Cn e P2

for a constant C > 0 that is independent of j, k and n.

Proof From (3.4)—(3.6) in the proof of Theorem 1, observe that

E [AW_’,-[AYi] —E [(AUZ- + AV_I,-I)AYi] ) [AUiAYﬁ] .
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Assume s,¢t > 0. By self-similarity we can define the covariance function { by
E[U,Y,] = s"E [UysY1] = s*¥(t/s), where, using the change-of-variable 6 = 1x,

oo 0O 1-2H
v = [ [Tyt T ostmg 1 (1 =) dndy

(o] — . e8] 91_2Hx2H
:/O y (1-—e y)/o s (cos(yf) — 1) dO dy.

2
Then using the fact that

91—2H 2H
T =167 @.1)

x2 4+ 02

we see that [ (x)| < Cx*#~!, and

2H—1

, o) — . [e8) 91—2Hx
v () :2H/0 e 1 —e >)/0 o g (008~ 1) a8 dy
oo i N oo 91—2Hx2H+1
_ 2/0 y (1—e >)/0 (2 + 02 (cos(yf) — 1) db dy.
Using (4.1) and similarly

91_2HX2H+1

w4y | = |67 x*72, (4.2)

we can write

o0 o0
ly' ()| < #7220 —2|/0 y ol - e—>')/0 6072 (cos(yf) — 1) df dy < Cx*H72.

By continuing the computation, we can find that | (x)| < Cx**3. We have for
ja k 2 1’

| o 3 J+1Y J
i j+1 J
-k (1/’( k )_w(k))
. @ kY J+1 - /
=n"((k+1) k)(W(HI) ‘”(k+1))

e () 1) () 0 (0):
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With the above bounds on ¥ and its derivatives, the first term is bounded by

J+1 J
Ip(k+1)_w(k+1)‘
<om_‘"/l(k—i—u)‘)‘_ldu/lerl W( J +v)

j 2H-2
< Cn—otkol—2 (k) < C}’l_ak—ysz_z,

n~ |k + DY — k|

dv

and
el (Y Yo (7 Yow (P Y 4y (7
k+1 k+1 k k
1 1
_ k+1 J k J
— Otkol / d _ / d
oo [ () e [y () a
1 . 1 j
- k ] k1 [k ”
<n aka/ w( +u) du+/ / |w (u+v)| dv du
k-‘:—l k 0 k-{-l
j 2H-2 j 2H-3
< Cn—aka—z (k) + Cn—ockoc—Sj (k) < Cn_“k_ijH_z_
This concludes the proof of the lemma. O

4.2 Proof of Theorem 2

We will make use of the notation f;, = H AX;

n

. We have for integer j > 1,
L2(R)

2 —E [AW?:| +E [AY?:| +2E [Awﬁ» AYﬁ] = k(1 + 6;,),
where
kn0;, = E [AY%} +2E[AW, AY, |.
It follows from Lemmas 3 and 4 that |6;,,| < Cj*~2 for some constant C > 0. Notice
that, in the definition of F,(f), it suffices to consider the sum for j > ny for a fixed

no. Then, we can choose ng in such a way that Cn‘())‘_2 < ;, which implies

>, = kn” (1= Cj*7?) 4.3)
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for any j > ny.
By (2.4),

‘ H, (13];11 AX;’) = Iff ((1[£,/’-ﬁ’1—1))®q) ,

where Iff denotes the multiple stochastic integral of order g with respect to the
process X. Thus, we can write

I_m‘J 1
Fo(t) =n~ Z B (1ﬁ‘fﬁl)).
_nO n’ n

The decomposition X = W + Y leads to

(1) =2 () (1) - (i)

We are going to show that the terms with » = 0, ..., g — 1 do not contribute to the
limit. Define

|_ntJ 1
G,(t) =n" Z ,3] qIW (lﬁq/ﬂ))
] no
and
|nt]—1
Gty =n~ : Z N ||L2(Q) 1 <1ﬁq;+1)) :
] no

Consider the decomposition
Fu(t) = (Fut) = Gu(1)) + (Ga(1) = Gu(1)) + G0

Notice that all these processes vanish at# = 0. We claim that forany0 <s <t < T,
we have

n ns §
EIIF,0) — Gu() ~ (Fy(s) — Gu(pP) = L0~ 1) “44)

and

~ ~ §
BIIGy ()~ Golt) — (Gul9) ~ Goten ) = ("0~ 107 “5)
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where 0 < § < 1. By Lemma 3,
consequence, using (2.4) we can also write

j/n ”iZ(Q) = kn~® for every j. As a

|nt]—1
an(t) =n2 Z H, (K‘éngAWi) .

J=no

Since k2 W is a fractional Brownian motion, the Breuer-Major theorem implies that
the process G converges in D([0, T]) to a scaled Brownian motion {0 B, t € [0, T]},
where 02 is given in (1.11). By the fact that all the p-norms are equivalent on a fixed
Wiener chaos, the estimates (4.4) and (4.5) lead to

2] < (Lnt] — Lns])*

nP

EHFn(t) - Gn(t) - (Fn(s) - Gn(s)) (46)

and

" - nt| — |ns|)%
EIIGH ()~ Golt) — (Gots) ~ Gu(opp) = L0~ DT,

4.7)
for all p > 1. Letting n tend to infinity, we deduce from (4.6) and (4.7) that for any
t € [0, T the sequences F,(f) — G,(¢) and G,(r) — G, (¢) converge to zero in L% ($2)
for any p > 1. This implies that the finite dimensional distributions of the processes
F,—G,and G, — 5,1 converge to zero in law. Moreover, by Billingsley [2, Theorem
13.5], (4.6) and (4.7) also imply that the sequences F,, — G, and G,, — 5n are tight in
D([0, T]). Therefore, these sequences converge to zero in the topology of D([0, 7).

Proof of (4.4) We can write

q—1
E [|Fa(t) = Ga(t) = (Fa(s) = Gu(s)"] < €D _E[®7,],

r=0
where
Lnt)—1
2 (i) (i)

We have, using (4.3),

E[®],] < n~ 't

e (170 (0 ) (e () |

|nt]—1

<

jk=lns]vno
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Using a diagram method for the expectation of four stochastic integrals (see [9]),
we find that, for any j, k, the above expectation consists of a sum of terms of the
form

(E[aw,aw])" (e[av avi])” (B[aw, arv )" (&[ay, aw ])",

where the a; are nonnegative integers such thata; +ax+az+as = ¢, a1 <r < g—1,
and a, < g — r. First, consider the case with as = a4 = 0, so that we have the sum

o1+ WZ_I (efaw,am )" ([ar,an])"".

Jk=Lns|Vno

where 0 < a; < g — 1. Applying Lemma 3, we can control each of the terms in the
above sum by

W =k 1 = 20— K = k= 1[G e,
which gives
|nt]—1
e 3 B [aw, awi]

Jk=Lns|Vno

q—ai

“ ‘E[AY]AYk]

|nt]—1 |nt]—1
cort [ S e S ke e
J=lnslvno Jsk=lns|Vnoj#k
|nt]—1
< Cn—l Z (l-ot—Z +J-q(a—2)+1)

j=lns]vno

<Cn! (LntJ — |ns]) @ DVO 4 (|ne] — LnsJ)[‘I(O‘_zHZ]VO). (4.8)

Next, we consider the case where asz + a4 > 1. By Lemma 3, we have that, up to
a constant C,

3

}E [av,av]

n n

< C}E[AwiAWﬁ]

so we may assume a, = 0, and have to handle the term

|nt]—1
e 30 ‘E [AW,- Awk]

jk=lns]vno

q—az—ay asz as

‘E [AW{;AYi]

E[AY;-AWQ]

4.9)
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for all allowable values of as, a4 with az 4+ a4 > 1. Consider the decomposition

Lnt]—1
q—a3—ay az ay
it 3 E[aw, awy] E[aw, avi]|" [e[ar, aw, ]
k= Lns]Vno ! ! !
Lnt]—1 q—az—ay a34-as
= pte—! Z ]E|:AW2,i| E[AWJAY/Y]
j=Lnslvng b

Lnt]—1 j—1

D DY ‘E[AwiAwlk’]

Jj=lnslVvng k=|ns]vngy

as

q—az—ay
‘IE [AW,- ING ]

n

" [efar,aw]

Lnz]—1 k—1
et Y [E[aw, aw, |

k=|ns]vng j=|ns]Vvng

aq

q—az—ay
‘E [AW, ING ]

’ ‘IE [Ay, Awk]

We have,by Lemmas 3 and 4,

—14 Ll 1 q—az—ay a3 a4
it S B [aw aw] [aw, av ][ [E[ay, aw ]
J.k=L|ns]vng " ! !
Lnt]—1
< cn! Z j(ﬂs +as)(@—2)
Jj=Llns]vng

Lnt]—1 Jj—1

+ Cn! Z Jug(ZH—Z)—tx4y Z v tai2H=2) l] — K (g—az—as)(@—2)

Jj=Llnslvno k=\|ns|Vvno

Lnt]—1 k—1

+ Cn—l Z k—agy-‘raq(ZH—Z) Z J-a3(2H—2)—a4y |k _jl(z/—a3—a4)(oz—2)

k=|ns]Vngy j=Llnslvno

< cn ' ((Lnt] — Lns Y@ Fa@=2F1V0 L (| ps| — | ps])la@=2+2V0

+(|_}’llJ _ I-nsJ)[a3(2H—2)—a4y+l]\/0 + (I_ntJ _ LnSJ)[a4(2H—2)—a3y+1]\/0) .
(4.10)

Then (4.8) and (4.10) imply (4.4) because o < 2 — {l].

Proof of (4.5) We have
|nt]—1
4 IW 1@([
@)\

GG =S (52— Jav,

J=no

and we can write, using (4.3) for any j > no,

= (/(_lna)g

o j . -1 _ -1 aa—2 1
Jon _HAWﬂ 12(2) I+ 6.2 1‘§C(K n®j )2,




116

D. Harnett and D. Nualart

This leads to the estimate

E[[Ga() = Go) = (Guls) = Go(5))|] = Cn™!

Lnt] =1 |nt]—1
« Z ja—2 + Z |j— qu(a—Z)
J=lns]vno Jk=|ns]vnoj#k

< Ot (L] = ns]) @00 4 (e — [ms ]l D F20)

which implies (4.5).

This concludes the proof of Theorem 2.
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