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Abstract We present results concerning the representation of the solution of the
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of the solution of an associated Dirichlet problem. We show that the representation
holds in the case of integrable boundary data, thus providing an explicit solution of
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Keywords Dirichlet problem • Dirichlet-to-Neumann operator • Infinite-
dimensional Laplace operator • Laplace operator • Neumann problem

1991 Mathematics Subject Classification 31B05, 31B10, 42B37, 35J05, 35J25

L. Beznea (�)
Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 2, P.O.
Box 1-764, RO-014700 Bucharest, Romania

Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, Romania

Centre Francophone en Mathématique de Bucarest, Bucarest, Romania
e-mail: lucian.beznea@imar.ro

M.N. Pascu
Department of Mathematics and Computer Science, Transilvania University of Braşov, Str. Iuliu
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1 Introduction

The classical Dirichlet and Neumann problems on a smooth bounded domain D �
R

n (n � 1) are the problem of finding u 2 C2.D/ \ C.D/ which solves
�

�u D 0 in D
u D ' on @D

; (1)

respectively U 2 C2.D/ \ C1.D/ which solves

�
�U D 0 in D
@U
@�

D � on @D
; (2)

where � is the outward unit normal to the boundary of D.
As it is known, for continuous boundary data, the Dirichlet problem (1) has a

unique solution and the Neumann problem (2) has a solution, unique up to additive
constants, if we require in addition the condition

R
@D � .z/ � .dz/ D 0. Note that this

is a necessary condition for the existence of a solution, since by Green’s first identity
we have

Z
@D

� .z/ � .dz/ D
Z

@D
1

@U

@�
.z/ � .dz/ D

Z
D

1�U .z/ C r1 � rU .z/ dz D 0:

In this paper, we present explicit relations between the solutions of (1) and
(2), which appeared recently in [4]. This shows that the Dirichlet and Neumann
problems are “equally hard”, in the sense that solving one of them leads to
the solution of the other one. The central results for continuous boundary data
(Theorem 1, and its extensions given in Theorems 2 and 5) provide an explicit
relation between the solution(s) of (2) and (1), in the sense that the normalized
solution of (2) can be found as a weighted average of the solution of (1).

The link between the solution of the Dirichlet problem and the Neumann problem
is provided by the operator defined by (3). What is interesting here is that the same
operator also provides a relationship between the solution of Dirichlet and Neumann
problem in the infinite-dimensional setting of generalized Laplacian on an abstract
Wiener space (see [4], Sect. 3). In Sect. 3 we show that the same operator can be used
in order to construct a generalized solution of the Neumann boundary problem in the
case of the unit ball in R

n (n � 1) for integrable boundary data. While the existence
of such a generalized solution for the Dirichlet boundary problem for integrable
boundary data is known (the Perron-Wiener-Brelot theory [1, 9], or alternately the
method of controlled convergence introduced by Cornea [5, 6]), in the case of the
Neumann problem this is a new result, and it is the main result of the present paper,
given in Theorem 12.

In Sect. 2, we consider the case of continuous boundary data for the Dirichlet and
Neumann problems. This section is based on the recent results on the subject from
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[4]. The main result giving the connection between the Dirichlet and the Neumann
problem in the case of the unit ball is given in Theorem 1. The result can be extended
to other operators besides the Laplacian, and in Theorem 2 we present such an
extension.

As an application, in Theorem 4 we give an explicit representation of the inverse
of the Dirichlet-to-Neumann operator (a particular case of the Poincaré-Steklov
operator, which encapsulates the boundary response of a system modeled by a
certain partial differential equation).

By using conformal mapping arguments (in the 2-dimensional case), the main
result obtained in the case of the unit disk is extended (Theorem 5) to the general
case of smooth bounded simply connected domains.

In what follows, we will identify as usual the complex plane C with R
2, that

is we identify the vector .x; y/ 2 R
2 with the complex number z D x C iy 2 C.

In particular, the dot product of two vectors a; b 2 R
2 will be written in terms of

multiplication of complex numbers as a � b D Re
�
ab

�
, and for a complex number

z 2 C we denote the real part and the imaginary part of z by Re.z/, respectively
Im.z/. Also, for a function u defined on a subset D of R

2 (or C), we will write
equivalently u .x; y/ or u .z/, where z D x C iy 2 D.

For a smooth bounded domain we will be denote by �.�/ and �0.�/ the surface
measure on its boundary, respectively the surface measure normalized to have total
mass 1.

2 The Case of Continuous Boundary Data

We start by recalling some recent results [4] concerning the equivalence between
the Dirichlet and the Neumann problem for the Laplace operator in the case of
continuous boundary data.

Heuristic arguments from Complex analysis (in the 2-dimensional case) led us
to consider the operator which associates to a continuous function u W D� R

n ! R

with u .0/ D 0 the function U W D� R
n ! R defined by

U .z/ D
Z 1

0

u .�z/

�
d�; z 2 D; (3)

where D � R
n is a smooth bounded subset, starlike with respect to the origin (i.e.

�z 2 D for any z 2 D and � 2 Œ0; 1�).
A first result concerning the operator defined above is that in the case of the

n-dimensional unit ball D D U D fz 2 R
n W jzj < 1g, the relation (3) provides an

explicit solution of the Neumann problem (2) in terms of the Dirichlet problem (1)
with the boundary condition ' D �. Conversely, since for a harmonic function the
Laplacian and the partial derivatives commute, one can see that it is possible to solve
the Dirichlet problem by solving an appropriate Neumann problem. The result is the
following.
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Theorem 1 ([4]) The following assertions hold.

(i) Assume � W @U ! R is continuous and satisfies
R

@U
� .z/ �0 .dz/ D 0. If u is the

solution of the Dirichlet problem (1) with boundary condition ' D � on @U,
then

U .z/ D
Z 1

0

u .�z/

�
d�; z 2 U; (4)

is the solution to the Neumann problem (2) with U .0/ D 0.
(ii) Assume ' W @U ! R is continuous. If U is the solution of the Neumann problem

(2) with boundary condition � D ' � R
@U

' .�/ �0 .d�/, then

u .z/ D z � rU.z/ C
Z

@U

' .�/ �0 .d�/ ; z 2 U; (5)

is the solution to the Dirichlet problem (1).

As shown in [4], the previous result can also be applied to other operators besides
the Laplacian. For example, considering the operator L defined by

L f .z/ D
nX

i;jD1

aij .z/
@2f

@zi@zj
.z/ C

nX
iD1

ai .z/
@f

@zi
.z/ ; (6)

where the coefficients aij are smooth and homogeneous of degree k 2 Œ0; 1�, i.e.

aij .�z/ D �kaij .z/ ; 0 � � � 1; z 2 U; 1 � i; j � n; (7)

and the coefficients ai are also smooth and homogeneous of degree k � 1, i.e.

ai .�z/ D �k�1aij .z/ ; 0 � � � 1; z 2 U; 1 � i � n; (8)

if u (with u.0/ D 0) and U are related by (4), then

LU .z/ D
Z 1

0

�1�kL u .�z/ d�; z 2 U;

and

@U

@�
.z/ D u .z/ ; z 2 @U:

The previous observation leads to the following more general result.
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Theorem 2 ([4]) Assume � W @U ! R is continuous. If u is the solution of the
Dirichlet problem

�
L u D 0 in U
u D � on @U

(9)

where L is the operator given by (6) which satisfies (7) and (8), and if u.0/ D 0,
then

U .z/ D
Z 1

0

u .�z/

�
d�; z 2 U; (10)

is the solution to the Neumann problem

�
LU D 0 in U

@U
@�

D � on @U
; (11)

with U .0/ D 0.

Remark 3 The above result was stated in [4], Theorem 2, under the conditionR
@U

� .z/ �0 .dz/ D 0 instead of u.0/ D 0. If L D �, then these two conditions
are equivalent, due to the Poisson formula.

As an application of the correspondence between the solutions of the Dirichlet
and Neumann problems given above, we obtained an explicit representation of the
inverse of the Dirichlet-to-Neumann operator ƒn in the case of the unit ball U � R

n,
n � 2. See for example [10, Sect. 5.0], or [4] for details on the Dirichlet-to-Neumann
operator ƒn and its inverse.

Theorem 4 Assume � W @U ! R is continuous and satisfies
R

@U
� .�/ � .d�/ D 0.

We have

ƒ�1
n .�/ .z/ D

Z
@U

� .�/ kn.z; �/�0.d�/; z 2 @U; (12)

where kn.z; 	/ D
Z 1

0

1

�

�
1 � �2

j�z � �jn � 1

�
d�, z; � 2 @U.

Explicitly, k2.z; �/ D �2 ln jz � �j, k3.z; �/ D 2
jz��j � 2 C ln 2 �

ln
� jz��j2

2
C jz � �j

�
, and for n > 4 the kernel kn.z; �/ can be computed using

the recurrence formulae

kn .z; �/ D kn�2 .z; �/C
2

�
1 � jz � �jn�2

�
.n � 2/ jz � �jn�2

� 1 � jz � �jn�4

.n � 4/ jz � �jn�4
C

�
1 � jz � �j2

2

�
Jn�2 .z; �/ ;

(13)
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where Jn .z; �/ D
Z 1

0

1

j�z � �jn d� satisfies

Jn .z; �/ D 4 .n � 3/ Jn�2 .z; �/

.n � 2/
�
4 � jz � �j2

�
jz � �j2

C
2

�
1 C 4 jz � �jn�4 � jz � �jn�2

�

.n � 2/
�
4 � jz � �j2

�
jz � �jn�2

:

(14)
Using conformal mapping arguments (in the 2-dimensional case), the result

in Theorem 1 can be extended to the general case of a smooth bounded simply
connected domain D � C (C1;˛ boundary with 0 < ˛ < 1 will suffice). The result
is the following.

Theorem 5 ([4]) Let D � C be a smooth bounded simply connected domain (C1;˛

boundary with 0 < ˛ < 1 will suffice), and for an arbitrarily fixed w0 2 D let
f W U ! D be the conformal map of the unit disk U onto D with f .0/ D w0,
arg f 0 .0/ D 0, and let g D f�1 W D ! U be its inverse.

Assume � W @D ! R is continuous and satisfies
R

@D � .w/ � .dw/ D 0. If u is the
solution of the Dirichlet problem (1) with boundary condition

' .w/ D 1

jg0 .w/j� .w/ ; w 2 @D; (15)

then

U .w/ D
Z 1

0

u . f .�g .w///

�
d�; w 2 D; (16)

is the solution to the Neumann problem (2) with U .w0/ D 0.
The result in Theorem 1 can also be extended to the case of Dirichlet and

Neumann problems for the infinite-dimensional ball on an abstract Wiener space,
in the setup stated in [7, 8], and [3]; for details see Sect. 3 from [4].

3 The Case of Integrable Boundary Data

In order to extend the result in Theorem 1 to a correspondence between the
solutions of the Dirichlet problem and the Neumann problem for the unit ball in the
general case of integrable boundary data, we will use Cornea’s notion of controlled
convergence [5, 6]. Even in the case of the unit ball U � R

n (n � 2) which we
consider here this is a new result, and it provides an explicit solution to the general
Neumann problem for the Laplace operator.

It can be shown that in the case of the unit ball Cornea’s approach is equivalent
to the Perron-Wiener-Brelot approach for the generalized solution of the Dirichlet
problem. More precisely, it can be shown that for integrable boundary data, both
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methods indicate that the generalized solution of the Dirichlet problem is given by
the stochastic solution Hf

U
defined by (18) below (see [5], Corollary 2, [6], Corollary

2.13, [1], Theorem 6.4.6, and [3], Theorem 4.5).
We will first recall the notion of controlled convergence introduced in [5, 6].

Definition 6 (Controlled convergence (A. Cornea, [5, 6])) Let D � R
d be a

bounded open set, @D � � � D, f W @D ! R and h; k W D ! R, k � 0.

The function h converges to f controlled by k (we write h
k! f ) if the following

conditions hold:
For any set A � D and any point z0 2 A \ � we have

(*) If lim supA3z!z0 k .z/ < C1, then f .z0/ 2 R and limA3z!z0 h .z/ D f .z/.

(**) If limA3z!z0 k .z/ D C1, then limA3z!z0
h.z/

1Ck.z/ D 0.

The function k will be called a control function for f.

Remark 7 It can be shown (see [6], Theorem 1.5, or [5], Theorem 1) that h
converges to f controlled by k, in the sense of the above definition if and only if
for any z0 2 @D the following equivalent conditions are satisfied:

(a) If lim infD3z!z0 k .z/ < C1, then f .z0/ 2 R and limD3z!z0
h.z/�f .z/
1Ck.z/ D 0.

(b) If limD3z!z0 k .z/ D C1, then limD3z!z0
h.z/

1Ck.z/ D 0.

Using the above definition, Cornea [5, 6] introduced the notion of generalized
solution of the Dirichlet problem (1) as follows.

Definition 8 ([5, 6]) A generalized solution of the Dirichlet problem (1) is a
harmonic function u W D ! R which satisfies

lim
z!z0

u .z/ D ' .z/ ; z0 2 @D; (17)

controlled by a continuous, non-negative (super)harmonic function k W D ! RC.
A function ' W @D ! R for which the Dirichlet problem has a generalized

solution is called resolutive. We denote by R .D/ the set of resolutive functions
' W @D ! R.

In the same spirit, we propose the following definition for the generalized
solution of the Neumann problem (2).

Definition 9 Let D � R
d be a bounded open set, @D � � � D, h; k W D ! R,

k � 0. We say that the function h has a continuous extension to D controlled by k if
the following conditions hold:

For any set A � D and any point z0 2 A \ � we have:

(i) If lim supA3z!z0 k .z/ < C1, we have h .z0/ WD limA3z!z0 h .z/ 2 R.

(ii) If limA3z!z0 k .z/ D C1, then limA3z!z0
h.z/

1Ck.z/ D 0.

Remark 10 The previous remark shows that h has a continuous extension to D iff
the equivalent conditions (a)–(b) above are satisfied.
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If h has a continuous extension to D controlled by k, then the function
h can be extended by continuity at the set of points z0 belonging to the set˚
z0 2 @D W lim supD3z!z0 k .z/ < C1	

. On the set, E D ˚
z0 2 @D W lim supD3z!z0

k .z/ D C1	
, the limit limD3z!z0 h .z/ may not exist, and the function h may fail to

be continuous (this set of points is “controlled” by the function k).

Definition 11 A generalized solution of the Neumann problem (2) is a harmonic
function U W D ! R which has a continuous extension to @D, controlled by a
non-negative harmonic function k W D ! RC, and for any z0 2 @D for which
lim supŒ0;z0�3z!z0 k .z/ < C1 we have

lim
"%0

U.z0 C "�.z0// � U.z0/

"
D � .z0/ ;

where � .z/ denotes the outward unit normal to the boundary of D at z 2 @D.
In [5], the author showed that in the case of the unit ball D D U � R

n, every
function f 2 L1 .@U; �0/ is resolutive for the Dirichlet problem. Moreover, by
Beznea [2], the generalized solution coincides in fact with the stochastic solution,
that is

u .z/ D Hf
U

.z/ D Ezf .B
 / ; (18)

where .Bt/t�0 is a n-dimensional Brownian motion starting at z 2 U and 
 D 
@U D
inf ft � 0 W Bt 2 @Ug is the hitting time of the boundary of U, and the controlled
convergence to the boundary data f holds outside an exceptional (polar) set. It is
also known (see [2], Corollary 4.3) that the generalized solution of the Dirichlet
problem is unique.

With this preparation, we can now prove the main result, as follows.

Theorem 12 Assume � W @U ! R is integrable and satisfies
R

@U � .z/ �0 .dz/ D 0.
If u is the generalized solution of the Dirichlet problem (1) with boundary condition
' D � on @U, then

U .z/ D
Z 1

0

u .�z/

�
d�; z 2 U; (19)

is a generalized solution to the Neumann problem (2) with U .0/ D 0.

Proof Before proceeding with the proof, note that by symmetry, the exit distribution
from U of the Brownian motion starting at the origin is the (normalized) surface
measure �0 on @U, and using the hypothesis we obtain

u .0/ D E0� .B
U/ D
Z

@U

� .z/ �0 .dz/ D 0: (20)
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Using this, we have

lim
�&0

u .�z/

�
D lim

�&0
z
u .�z/ � u .0/

�z � 0
D z � ru .0/ ; z 2 U; (21)

which shows that the integrand in (19) can be extended by continuity at � D 0, so U
is well defined for all z 2 U. Note that the relation (20) also shows that U .0/ D 0.

Next, we show that under the given hypotheses the function U has a continuous
extension (controlled by k) to the boundary @U, and it has the appropriate normal
derivative. To be precise, for an arbitrary z0 2 @U we’ll show the following:

a) if lim infU3z!z0 k .z/ < 1 then there exists U .z0/ 2 R such that
limU3z!z0

U.z/�U.z0/

1Ck.z/ D 0. Moreover, if lim supŒ0;z0�3z!z0 k .z/ < 1, then

lim"%0
U.z0C"�.z0//�U.z0/

"
D � .z0/.

b) if limU3z!z0 k .z/ D 1, then limU3z!z0
U.z/

1Ck.z/ D 0

Consider z0 2 @U and assume that lim infz!z0 k .z/ < 1. Since u ! � controlled
by k, we have limz!z0

u.z/�u.z0/

1Ck.z/ D 0. Since u is continuous in U, it follows that the

function .�; z/ 7! u.�z/�u.�z0/

1Ck.z/ is bounded on the set

f.�; z/ 2 Œ0; 1� � U W j�z � z0j < ıg ;

for some ı > 0. Since u and k are also bounded (being continuous) on the compact
cone

Cı D
�

�z W � 2 Œ0; 1� ; z 2 U s.t. jz � z0j D ı

2



\ fz 2 U W jz � z0j � ıg � U;

(see Fig. 1), it follows that u.�z/�u.�z0/

1Ck.z/ is bounded on Œ0; 1��fz 2 U W jz � z0j < ı=2g.
Using the bounded convergence theorem and the above, we obtain

lim
z!z0

U .z/ � U .z0/

1 C k .z/
D lim

z!z0

Z 1

0

u .�z/ � u .�z0/

1 C k .z/
d� D

Z 1

0
lim
z!z0

u .�z/ � u .�z0/

1 C k .z/
d� D 0:

Suppose now that z0 2 @U is such that limz!z0 k .z/ D 1. In order to show that
limz!z0

U.z/
1Ck.z/ D 0, we will first show that for �0 2 .0; 1/ arbitrarily fixed we have

lim
z!z0

1

1 C k .z/

Z �0

0

u .�z/

�
d� D 0:
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Fig. 1 The cone Cı in the
proof of Theorem 12

0

U
z0

Cδ

δ/2

δ

Since u 2 C1 .U/, and using the substitution w D �z we obtain

lim
�&0

u .�z/

�z
D lim

w!0

u .w/

w
D ru .0/ ;

uniformly with respect to z 2 U. It follows that

ˇ̌
ˇ̌ u .�z/

.1 C k .z// �

ˇ̌
ˇ̌ � 1 C jz � ru .0/j � 1 C jru .0/j

is bounded for � < �1 sufficiently small, uniformly with respect to z 2 U. For
� 2 Œ�1; �0�, we have

ˇ̌
ˇ̌ u .�z/

.1 C k .z// �

ˇ̌
ˇ̌ � 1

�1

max
jwj��0

ju .w/j ;

and combining with the above we conclude that u.�z/
.1Ck.z//� is bounded for � 2 Œ0; �0�,

uniformly with respect to z 2 U. Using the bounded convergence theorem and
limz!z0 k .z/ D 1, we conclude

lim
z!z0

1

1 C k .z/

Z �0

0

u .�z/

�
d� D

Z �0

0

lim
z!z0

u .�z/

.1 C k .z// �
d� D 0; (22)
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thus proving the claim. In order to prove that limz!z0
U.z/

1Ck.z/ D 0, it remains to show
that

lim
z!z0

1

1 C k .z/

Z 1

�0

u .�z/

�
d� D 0;

for an arbitrarily fixed �0 2 .0; 1/.
For " > 0 arbitrarily fixed, consider n0 2 N such that n0 � 1

"
, and let �0 D

1
n0

Pn0

iD1 fi. We have

u .z/ C "k .z/ � u .z/ C 1

n0

k .z/ D HU

� .z/ C 1

n0

HUP
n�1. fn�gn/ .z/

� HU

� .z/ C 1

n0

HUPn0
nD1. fn�gn/

.z/

D HU

�0
.z/ C 1

n0

HUPn0
nD1. f�gn/

.z/

� HU

�0
.z/ ;

for any z 2 U.
Since by construction the functions fn are lower bounded, there exists M > 0

such �0 � M, and therefore HU

�0
.z/ � M for any z 2 U. We obtain

1

1 C k .z/

Z 1

�0

u .�z/

�
d� D 1

1 C k .z/

Z 1

�0

�
u .�z/ C "k .�z/

�
� "

k .�z/

�

�
d�

� 1

1 C k .z/

Z 1

�0

�
M

�
� "

k .�z/

�

�
d�

� �M ln �0

1 C k .z/
� "

�0 .1 C k .z//

Z 1

�0

k .�z/ d�

An argument similar to the one in the beginning of the proof shows that k.�z/
1Ck.z/

is bounded for � 2 Œ�0; 1� and z in a neighborhood of z0. Passing to the limit in
the above inequality, and using limz!z0 k .z/ D 1 (which in particular implies
limz!z0

k.�z/
1Ck.z/ D 0 for any � 2 Œ�0; 1/, and limz!z0

k.z/
1Ck.z/ D 1), we obtain

lim inf
z!z0

1

1 C k .z/

Z 1

�0

u .�z/

�
d� � lim inf

z!z0

�M ln �0

1 C k .z/
� "

�0

Z 1

�0

lim sup
z!z0

k .�z/

1 C k .z/

� d� � � "

�0

.1 � �0/ :
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Since " > 0 was arbitrary chosen and �0 2 .0; 1/, the above shows that

lim inf
z!z0

1

1 C k .z/

Z 1

�0

u .�z/

�
d� � 0:

Repeating the proof above with Q� D �� in place of � (for which the
corresponding functions are Qu D �u, Qk D k, and QU D �U), we also have

lim sup
z!z0

1

1 C k .z/

Z 1

�0

u .�z/

�
d� � 0;

and therefore

lim
z!z0

1

1 C k .z/

Z 1

�0

u .�z/

�
d� D 0:

This, combined with (22) shows that

lim
z!z0

1

1 C k .z/

Z 1

0

u .�z/

�
d� D 0;

concluding the proof of part b) of claim.
To see that U has the prescribed normal derivative on @U (recall that we are

using the outward normal �.z0/ D z0 to the boundary of @U), fix z0 2 @U such
that lim supŒ0;z0�3z!z0 k .z/ < 1. Since u ! � controlled by k, choosing the
particular set A D Œ0; z0� in the Definition 6 of controlled convergence, we have
that lim�%1 u .�z0/ D � .z0/ 2 R.

Using a change of variables and the mean value theorem, we obtain

lim
"%0

U.z0 C "�.z0// � U.z0/

"
D lim

"%0

1

"

� Z 1C"

0

u .�z0/

�
d� �

Z 1

0

u .�z0/

�
d�

�

D lim
"%0

1

"

Z 1C"

1

u .�z0/

�
d� D lim

"%0

u .��z0/

�� D � .z0/ ;

where we denoted by �� 2 .1 C "; 1/ the intermediate point given by the mean value
theorem. This shows that the directional derivative of the function U in the direction
of the normal to the boundary of U has the appropriate value @U

@�
.z0/ D � .z0/ at z0,

thus concluding the proof. ut
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