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Abstract The multiplicative functional for the heat equation on k-forms with
absolute boundary condition is constructed and a probabilistic representation of the
solution is obtained. As an application, we prove a heat kernel domination that was
previously discussed by Donnelly and Li, and Shigekawa.
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1 Introduction

Throughout this paper, we assume that M is an n-dimensional compact Riemannian
manifold with boundary @M. Denote by � the Hodge-de Rham Laplacian. Let �0

be a differential k-form on M and consider the following initial boundary valued
problem on M:

8
<

:

@�
@t D 1

2
��;

�.�; 0/ D �0;

�norm D 0; .d�/norm D 0:

(1.1)

The well known Weitzenböck formula shows that the difference between the
Hodge-de Rham Laplacian and the covariant Laplacian for the differential forms
on a Riemannian manifold M is a linear transformation at each x 2 M. So the
heat equation for differential forms is naturally associated with a matrix-valued
Feynman-Kac multiplicative functional determined by the curvature tensor. The
boundary condition

�norm D 0; and .d�/norm D 0;
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is called the absolute boundary condition. The significance of the absolute boundary
condition stems from the well-know work [7]. Since it is Dirichlet in the normal
direction and Neumann in the tangential directions, the associated multiplicative
functional is discontinuous and therefore difficult to handle. Ikeda and Watanabe
[5, 6] have dealt with this situation by using an excursion theory. Later, Hsu
[3] constructed the discontinuous multiplicative functional Mt for 1-forms by an
approximating argument inspired by Ariault [1]. Following a similar idea, the same
multiplicative functional Mt has been constructed for non-compact manifolds with
boundary by Wang [9]. The solution to Eq. (1.1) for 1-forms thus can be represented
in terms of Mt as

�.x; t/ D u0ExfMtu
�1
t �0.xt/g; (1.2)

where fxtg is a reflecting Brownian motion on M, and futg its horizontal lift process
to the orthonormal fame bundle O.M/ starting from a frame u0 W Rn ! TxM, which
we will use to identify TxM with R

n. As a direct consequence, a gradient estimate

jrPt f .x/j � Ex

�

jrf .xt/j exp

�

� 1

2

Z t

0

�.xs/ds �
Z t

0

h.xs/dls

��

was obtained. Here l is the boundary local time for fxtg, �.x/ the lower bound of the
Ricci curvature at x 2 M, and h.x/ the lower bound of the second fundamental form
at x 2 @M.

The present paper extends Hsu’s work [3] to multiplicative functional on the full
exterior algebra ^�M. We lift the absolute boundary condition onto the frame bundle
O.M/ and clarify the action of second fundamental form on k-forms in the absolute
boundary condition. Then the multiplicative functionalMt for the heat equation (1.1)
is constructed. With this Mt, the representation (1.2) still holds for k-forms, and we
have the following estimate

jMtj2;2 � exp

�
1

2

Z t

0

�.xs/ds �
Z t

0

�k.xs/dls

�

: (1.3)

Here

�.x/ D sup
�2^k

xM;h�;�iD1

hD�R.x/�; �i; (1.4)

with D�R � the curvature tensor acting on � as the Lie algebra action, and �k.x/;
k D 1; 2; : : : ; n being combinations of eigenvalues of the second fundamental form
at x 2 @M, which we will specify later. It follows immediately with (1.2) and (1.3)
our generalized gradient inequality

jdPt�.x/j � Ex

�
ˇ
ˇd�

ˇ
ˇ exp

�
1

2

Z t

0

�.xs/ds �
Z t

0

�kC1.xs/dls

��

:
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Let N� D supx2@M �.x/; we also prove the heat kernel domination

jpkM.t; x; y/j2;2 � e
1
2

N�tpM.t; x; y/Exfe� R t
0 �k.xs/dls jxt D yg:

Here pk.t; x; y/ is the heat kernel on k-forms with absolute boundary condition and
pM.t; x; y/ is the heat kernel on functions with Neumann boundary condition. Note
that when �k � 0; the above inequality reduces to

jpkM.t; x; y/j2;2 � e
1
2

N�tpM.t; x; y/: (1.5)

This special case was proved by Donnelly and Li [2]. We remark that the heat kernel
domination was also discussed in Shigekawa [8] by an approach using theory of
Dirichlet form. Inequality (1.5) was obtained as an example for 1-forms in [8].

Finally, we would like to remark that although the present work focuses on
compact manifolds, we believe similar results can be obtained for non-compact
manifolds (under suitable conditions on curvatures and second fundamental forms)
by using the treatment discussed in Wang [9, Chap. 3].

The rest of the paper is organized as follows. In Sect. 2, we briefly recall the
Weitzenböck formula and corresponding actions on differential forms. In Sect. 3,
we give an explicit expression for the absolute boundary condition. The reflecting
Brownian motion with Neumann boundary condition is briefly introduced in Sect. 4.
Then, we focus on the construction of the multiplicative functional on k-forms for
heat equation (1.1) in Sect. 5. Finally we provide some applications in Sect. 6.

2 Weitzenböck Formula on Orthonormal Frame Bundle

For our purpose, it is more convenient to lift equation (1.1) onto the orthonormal
frame bundle O.M/. In this section, we give a brief review of Weitzenböck formula
and it’s lift on the frame bundle O.M/. More detailed discussion can be found in [4].

Let 4 D tracer2 be the Laplace-Beltrami operator and � D �.dd� C d�d/ the
Hodge-de Rham Laplacian. They are related by the Weitzenböck formula

� D 4 C D�R:

We first explain the action of the curvature tensor R on differential forms in the
above formula. Suppose that T W TxM ! TxM is a linear transformation and T� W
^1
xM ! ^1

xM its dual. The linear map T� on ^1
xM can be extended to the full

exterior algebra ^�
x M D Pn

kD0

L ^k
xM as a Lie algebra action (derivation) D�T by

D�T.�1 ^ �2/ D D�T�1 ^ �2 C �1 ^ D�T�2:
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Let End(TxM) be the space of linear maps from TxM to itself. We define a
bilinear map

D� W End.TxM/ ˝ End.TxM/ ! End.^�
x M/

by

D�.T1 ˝ T2/ D D�T1 ı D�T2:

From elementary algebra we know that End(TxM)=.TxM/� ˝TxM. By the definition
of the curvature tensor R and using the isometry .TxM/� ! TxM induced by the
inner product, we can identify R as an element in End.TxM/ ˝ End.TxM/: Thus by
the above definition, we obtain a linear map

D�R W ^�
x M ! ^�

x M;

which, by the Weiztenböck formula, is the difference between the covariance
Laplacian and the Hodge-de Rham Laplacian.

A frame u 2 O.M/ is an isometry u W R
n ! TxM, where x D �u and � W

O.M/ ! M is the canonical projection. A curve futg in O.M/ is horizontal if, for
any e 2 R

n, the vector field futeg is parallel along the curve f�utg. A vector onO.M/

is horizontal if it is the tangent vector of a horizontal curve. For each v 2 TxM and
a frame u 2 O.M/ such that �u D x, there is a unique horizontal vector V , called
the horizontal lift of v, such that ��V D v. For each i D 1; : : : ; n; let Hi.u/ be
the horizontal lift of uei 2 TxM. Each Hi is a horizontal vector field on O.M/, and
H1; : : : ;Hn are called the fundamental horizontal vector fields on O.M/.

On the orthonormal frame bundle O.M/, a k-form � is lifted to its scalarization
Q� defined by

Q�.u/ D u�1�.�u/:

Here a frame u W Rn ! TxM is assumed to be extended canonically to an isometry
u W ^�

R
n ! ^�

x M. By definition, Q� is a function onO.M/ taking values in the vector
space ^k

R
n and is O.n/-invariant in the sense that Q�.gu/ D g Q�.u/ for g 2 O.n/.

We remark that through the isometry u W ^�
R

n ! ^�
x M, a linear transformation

T.x/ W ^�
x M ! ^�

x M can also be lifted onto O.M/ as a linear map

QT.u/ D u�1H.�u/u W ^�
R

n ! ^�
R

n:

To simplify the notation, whenever feasible, we still use T for the more precise QT
throughout our discussion.
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Bochner’s horizontal Laplacian on the frame bundle O.M/ is defined to be
4O.M/ D Pn

iD1 H
2
i : It is the lift of the Laplace-Beltrami operator 4 in the sense that

4O.M/
Q�.u/ D A4�.x/; �u D x:

To write the Weitzenbök formula on the frame bundle, we lift D�R W ^�
x M !

^�
x M to the frame bundle O.M/, which will be denoted by D��, and let

�O.M/ D 4O.M/ C D��: (2.1)

Then �O.M/ is the lift of the Hodged-de Rham Laplacian in the sense that

�O.M/
Q�.u/ D A��.x/; where �u D x. The identity (2.1) is the lifted Weiztenböck

formula on the orthonormal frame bundle O.M/.

3 Absolute Boundary Condition

The purpose of this section is to give an explicit expression for the absolute
boundary condition on forms. Once the boundary condition is identified, the
multiplicative functional Mt could be constructed accordingly.

Fix an x 2 @M, we let n.x/ be the inward unit normal vector at x. For a k-form � ,
we may decompose � into its tangential and normal component, � D �tanCn.x/^ˇ,
with �tan 2 ^k

x@M and ˇ 2 ^k�1
x @M. We denote �norm D � � �tan. The form � is said

to satisfy the absolute boundary condition if

�norm D 0 and .d�/norm D 0:

Let Q.x/ W ^�
x M ! ^�

x M be the orthogonal projection to the tangential
component, i.e., Q.x/� D �tan. We extend Q (indeed QQ) to a smooth, projection
linear map on the whole bundleO.M/ and let P.x/ D I�Q.x/. P.x/ is the orthogonal
projection to the normal component.

Recall that the second fundamental form H W Tx@M ˝R Tx@M ! R is defined by

H.x/.X;Y/ D hrXY; n.x/i; X;Y 2 Tx@M:

By duality, H.x/ can also be regarded as a linear map H.x/ W Tx@M ! Tx@M via
the relation

hHX;Yi D HhX;Yi:

It is clear that H.x/ is symmetric on Tx@M. We extend H to the whole tangent space
TxM by letting H.x/n.x/ D 0, and denote the dual of H still by H W ^1

xM ! ^1
xM:
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The following lemma gives an explicit expression for the absolute boundary
condition on differential forms. Let

@O.M/ D fu 2 O.M/ W �u 2 @Mg:

Lemma 3.1 For any k-form � on M, it satisfies the absolute boundary condition if
and only if

QŒN � H� Q� � P Q� D 0 on @O.M/:

Note that Q� is the scalarization of � , and N is the horizontal lift of n along the
boundary @M.

Before we proceed to the proof of the above lemma, let us explain the various
actions that appear in the above expression. Recall that N is a vector field on @O.M/

and Q� is a ^k
R

n-valued function on O.M/, thus N Q� is naturally understood as the
vector field acting on functions. The action H Q� is more important. We know that
H is a linear transformation on ^1

xM for x 2 @M. For � 2 ^k
xM, the action H� is

the extension of H to ^�M as the Lie-algebra action(derivation) specified in Sect. 2.
More specifically,

H.�1 ^ : : : ^ �k/ D
kX

iD1

�1 ^ : : : ^ H�i ^ : : : ^ �k;

where �i are 1-forms. Now H Q� is simply QH Q� .

Proof It is enough to show that

�norm D 0 , P Q� D 0

and that, if �norm D 0, then

.d�/norm D 0 , QŒN � H� Q� D 0:

Fix any x 2 @M. Let fEig be a frame in a neighborhood of x with E1 D n, the
inward pointing unit normal vector field along the boundary and all other Ei’s being
tangent to the boundary. Furthermore we can choose the frame such thatfEig are
orthonormal at x and rE1Ei D 0 for all i D 2; : : : ; n in a small neighborhood of x in
M. To illustrate, we only prove the case when � is a 2-form. The proof for k-forms
will be clear, and actually identical when we understand what happens to 2-forms.

Let � D �ijEi ^ Ej be any 2-form, where fEig is the dual of fEig. It’s easy to see
that �norm D 0 is equivalent to �1j D �i1 D 0 for all i; j, i.e., P Q� D 0.
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Now we assume P Q� D 0 (i.e., �1j D �i1 D 0 for all i; j). To see what .d�/norm
means, we compute

d� D Ek ^ rEk.�ijE
i ^ Ej/

D Ek�ijE
k ^ Ei ^ Ej C �ijE

k ^ rEk.E
i ^ Ej/

D I1 C I2:

Apparently

.I1/norm D E1�ijE
1 ^ Ei ^ Ej; (3.1)

since �1j D �i1 D 0. On the other hand, we have

I2 D �ijE
k ^ .rEkE

i ^ Ej/ C �ijE
k ^ .Ei ^ rEkE

j/

D J1 C J2:

Note that at x,

.rEkE
i/.El/ D �Ei.rEkEl/ D �hrEkEl;Eii;

we therefore have

rEkE
i D �hrEkEl;EiiEl:

Hence at x,

J1 D �hrEkEl;Eii�ijEk ^ El ^ Ej:

Keeping in mind that �1j D �i1 D 0 and rE1Ei D 0 for i 6D 1, we obtain

.J1/norm D �hrEkE1;Eii�ijEk ^ E1 ^ Ej:

Re-indexing it we have

.J1/norm D hrEiE1;Eki�kjE1 ^ Ei ^ Ej: (3.2)

Similarly

.J2/norm D hrEjE1;Eki�ikE1 ^ Ei ^ Ej: (3.3)
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Note that here �hrEiE1;Eji is the matrix of second fundamental form on 1-forms.
So we conclude that, by (3.1)–(3.3), when �norm D 0, .d�/norm D 0 is equivalent to

.E1�ij C hrEiE1;Eki�kj C hrEjE1;Eki�ik/E1 ^ Ei ^ Ej D 0;

i.e., Q.N � H/ Q� D 0. The proof is completed. ut
Remark 3.2 Lemma 3.1 gives us a clear picture of the role the second fundamental
form plays in the absolute boundary condition. Together with the discussion in
Sect. 2, the initial boundary valued problem (1.1) can be lifted onto O.M/ as

8

<̂

:̂

@ Q�
@t D 1

2
Œ4O.M/ C D��� Q�;

Q�.�; 0/ D Q�0;

QŒN � H� Q� � P Q� D 0:

(3.4)

Finally, we state an easy corollary of Lemma 3.1, which will be needed later.
For each x 2 @M, by the way we extended H to a linear map on TxM, 	1 D 0 is
an eigenvalue of H associated to the eigenvector n.x/. Suppose that 	2.x/; : : : ; 	n.x/
are other eigenvalues of H on Tx@M. We may define a real-valued function �k on
@M by (see Donnelly-Li [2]),

�k.x/ D min
I

�
	i1 .x/ C 	i2 .x/ C : : : C 	ik .x/

�
; (3.5)

where I D f.i1; : : : ; ik/g is the collection of multi-indices .i1; : : : ; ik/ such that is ¤ il
if s ¤ l; s; l D 2; 3; : : : ; k. Apparently, �k.x/ is a combination of eigenvalues of the
second fundamental form H on Tx@M.

Corollary 3.3 For any x 2 @M we have

�k.x/ D inf
�2^k@M;j� jD1

hH.x/�; �i;

where h�; �i is the canonical inner product on forms and j� j2 WD h�; �i.
Proof Fix x 2 @M, let fE2; : : : ;Eng be a the set of orthonormal eigenvectors
corresponding to the eigenvalues f	2; : : : ; 	ng, and fEig its dual. We first prove for
any k-form � with j� j D 1 we have

�k.x/ � hH.x/�; �i: (3.6)

Let � D �i1;:::;ikE
i1 ^ : : : ^ Eik with j� j2 D P

�2
i1;:::;ik

D 1. By the previous lemma
we have

H.x/� D .	i1 C : : : C 	ik/�i1;:::;ikE
i1 ^ : : : ^ Eik :
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Hence

hH.x/�; �i D
X

.	i1 C : : : C 	ik/�
2
i1;:::;ik � �k.x/

X
�2
i1;:::;ik D �k.x/;

which proves (3.6). On the other hand, it’s not hard to see that the equality can be
achieved. The proof is completed. ut

4 Reflecting Brownian Motion

Let ! D f!tg be an n-dimensional Euclidean Brownian motion. Recall the definition
of N in the previous section, and consider the following stochastic differential
equation on the fame bundle O.M/

dut D
nX

iD1

Hi.ut/ ı d!i
t C N.ut/dlt: (4.1)

The solution futg is a horizontal reflecting Brownian motion starting at an initial
frame u0. Let xt D �ut. Then fxtg is a reflecting Brownian motion on M, with its
transition density the Neumann heat kernel pM.t; x; y/. The nondecreasing process
lt is the boundary local time, which increases only when xt 2 @M.

Now suppose that we have two smooth functions

R W O.M/ ! End.^�
R

n/; A W @O.M/ ! End.^�
R

n/:

Define the End.^�
R

n/-valued, continuous multiplicative functional fMtg by

dMt C Mtf�1

2
R.ut/dt C A.ut/dltg D 0; M0 D I:

Since Mt takes values in End.^k
R

n/, it is also helpful to think fMtg as a matrix-
valued process.

Lemma 4.1 Let L D @
@s � 1

2
Œ4O.M/ C R� and F W O.M/ � RC ! ^�

R
n be a

solution to

� LF D 0 u 2 O.M/=@O.M/

.N � A/F D 0 u 2 @O.M/;
(4.2)

we have

MtF.ut;T � t/ DF.u0;T/ C
Z t

0

hMsrHF.us;T � s/; d!i;
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where rHF D fH1F;H2F; : : : ;HnFg is the horizontal gradient of a function F on
O.M/. In this case, we say that fMtg is the multiplicative functional associated with
the operator L with the boundary condition .N � A/F D 0:

Proof Apply Itô’s formula to MtF.ut;T � t/. ut

5 Discontinuous Multiplicative Functional

We have shown that the heat equation on k-forms with absolute boundary condition
is equivalent to the following heat equation on O.n/-invariant functions F: O.M/ �
RC ! ^k

R
n W

8
<

:

@F
@t D 1

2
Œ4O.M/ C D���F;

F.�; 0/ D f ;
QNF � .H C P/F D 0:

(5.1)

Compared with the boundary condition in (4.2),QN�.HCP/ is degenerate, because
Q is a projection (hence is not of full rank as a linear map). Thus Lemma 4.1 cannot
be applied directly. In this section we follow closely the idea of Hsu [3] to construct
the End(^k

R
n)-valued multiplicative functional associated to (5.1).

Observe that the boundary condition in (5.1) consists of two orthogonal
components:

QŒN � H�F D 0; PF D 0: (5.2)

We replace PF above by .�"PN C P/F and rewrite the boundary condition as

�

N � H � P

"

�

F D 0:

According to Lemma 4.1, the multiplicative functional for this approximate bound-
ary condition is given by

dM"
t C M"

t

�

�1

2
D��.ut/dt C

�
1

"
P.ut/ C H.ut/

�

dlt

�

D 0: (5.3)

In the rest of this section, we show that fM"
t g converges to a discontinuous

multiplicative functional fMtg which turns out to be the right one for the boundary
condition (5.2).

Recall the definition of �k in (3.5) and let

�.x/ D sup
�2^k

xM;h�;�iD1

hD�R.x/�; �i: (5.4)
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When k D 1, it is well known that D�R.x/ D �Ric.x/, where Ric.x/ is the Ricci
transformation at x (see Hsu [4], for example), hence �.x/ is the negative lower
bound of the Ricci transform at x.

Proposition 5.1 Let j � j2;2 be the norm of a linear transform on ^k
R

n with the
standard Euclidean norm. Then for all positive " such that "�1 � minx2@M �k.x/,
we have

jM"
t j2;2 � exp

�
1

2

Z t

0

�.xs/ds �
Z t

0

�k.xs/dls

�

:

Proof We only outline the proof here, the technical details being mostly the same
as that in [3]. Instead of considering M"

t , we prove for the adjoint (transpose, if we
think M"

t as a matrix-valued process) of M"
t , namely .M"

t /
T . Let f .t/ D j.M"

t /
T Q� j2 D

h.M"
t /

T Q�; .M"
t /

T Q�i: Differentiate f with respect to t. By (5.3), our assumption on "

and standard estimate we have

df .t/ � f .t/f�.xt/dt � 2�k.xt/dltg;

which gives us the desired result. ut
The integrability of M"

t is given by the following lemma.

Lemma 5.2 For any positive constant C, there is a constant C1 depending on C but
independent of x such that

Exe
Clt � C1e

C1t:

Proof This can be obtained by a heat kernel upper bound and the strong Markov
property of reflecting Brownian motion. See [3, Lemma 3.2] for a detailed proof.

ut
If we formally let " # 0 in (5.3), one should expect M"

t P.ut/ ! 0 for all t such
that ut 2 @O.M/: The next lemma shows it is indeed the case. Define

T@M D inffs � 0 W xs 2 @Mg D the first hitting time of @M:

A point t � T@M such that lt � lt�ı > 0 for all positive ı � t is called a left support
point of the boundary local time l.

Proposition 5.3 When " # 0, M"
t P.ut/ ! 0 for all left support points t � T@M.

Proof The proof is almost identical to the one for 1-forms in [3]. For the conve-
nience of the reader, we still provide some details here. We drop the superscript "

for simplicity. Let � 2 ^kM be a k-form and define

f .s/ D hMT
s

Q�;P.ut/M
T
s

Q�i D h Q�;MsP.ut/M
T
s

Q�i:
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Differentiating f with respect to s, by (5.3) we have df .s/ D � 2
"
f .s/ C dNs; which

gives us

f .t/ D e�2.lt�lt�ı /="f .t � ı/ C
Z t

t�ı

e�2.lt�ls/="dNs: (5.5)

Here dNs is equal to

1

"
h Q�;Ms.2P.ut/ � P.us/P.ut/ � P.ut/P.us//M

T
s

Q�idls

C h Q�;
1

2
Ms.D

��.us/P.ut/ C P.ut/.D
��.us//

T/MT
s

Q�ids

� h Q�;Ms.H.us/P.ut/ C P.ut/H.us//M
T
s

Q�idls:

In the above we used the fact that HT D H and PT D P. By continuity of P and
Proposition 5.1, for any 
 > 0 there exists a ı > 0 such that, for all s 2 Œt � ı; t�
with xs 2 @M,

h Q�;Ms.2P.ut/ � P.us/P.ut/ � P.ut/P.us//M
T
s

Q�i � 
j Q� j2:

Also by Proposition 5.1, there is a constant C such that, for all s 2 Œt � ı; t� with
xs 2 @M,

h Q�;
1

2
Ms.D

��.us/P.ut/ C P.ut/.D
��.us//

T/MT
s

Q�i � Cj Q� j2

and

h Q�;Ms.H.us/P.ut/ C P.ut/H.us//M
T
s

Q�i � Cj Q� j2:

It follows that

jdNsj � j Q� j2
h�


"
C C

	
dls C Cds

i
:

Substituting in (5.5), we obtain

jMtP.ut/j22;2 �e�2.lt�lt�ı /="jMt�ıj22;2 C 
 C C"

2
f1 � e�2.lt�lt�ı /="g (5.6)

C C
Z t

t�ı

e�2.lt�lt�ı /="ds:

Because t is a left support point, lt � ls > 0 for all s < t. We first let " # 0 and then

 ! 0 in (5.6), we have MtP.ut/ ! 0. ut
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We now come to the main result of this section, namely, the limit lim"!0 M"
t D

Mt exists. From the definition of M"
t , if t is such that xt 62 @M we have

dM"
t � 1

2
M"

t D
��.ut/dt D 0:

Let fe.s; t/; t � sg be the solution of

d

dt
e.s; t/ � 1

2
e.s; t/D��.ut/ D 0; e.s; s/ D I:

Then, for t � T@M we have M"
t D M"

t
�

e.t�; t/: Here for each t � T@M , t� is defined
to be the last exit time from @M, more precisely, t� D supfs � t W xs 2 @Mg:

Define

Y"
t D M"

t P.ut/; Z"
t D M"

t Q.ut/:

Since when t � T@M we have M"
t D e.0; t/; and when t � T@M we have

M"
t D M"

t
�

e.t�; t/ D fZ"
t
�

C Y"
t
�

ge.t�; t/;

we can write

Y"
t D Ift�T@MgM"

t P.ut/ C Ift>T@MgM"
t P.ut/ (5.7)

D Ift�T@Mge.0; t/P.ut/ C Ift>T@MgZ"
t
�

e.t�; t/P.ut/ C ˛"
t ;

where

˛"
t D Ift>T@MgY"

t
�

e.t�; t/P.ut/: (5.8)

If t > T@M; then t� is a left support point of l. By Proposition 5.3, Y"
t
�

! 0 as " # 0;
hence ˛"

t ! 0. On the other hand, by Eq. (5.3) for M"
t we have

Z"
t D Q.u0/ C

Z t

0

dM"
sQ.us/ C

Z t

0

M"
s dQ.us/ (5.9)

D Q.u0/ C
Z t

0

ŒY"
s C Z"

s �d�s;

where

d�s D �H.us/dls C 1

2
D��.us/Q.us/ds C dQ.us/:
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Formally letting " # 0 in (5.7) and (5.9) above, we expect that the limit .Yt;Zt/
satisfies following equations:

�
Yt D Ift�T@Mge.0; t/P.ut/ C Ift>T@MgZt

�

e.t�; t/P.ut/;
Zt D Q.u0/ C R t

0
.Ys C Zs/d�s:

(5.10)

Substituting the first equation into the second, we obtain an equation for Z itself
in the form

Zt D Q.u0/ C
Z t

0

ˆ.Z/sd�s; (5.11)

where

ˆ.Z/s D Zs C Ifs�T@Mge.0; s/P.us/ C Ifs>T@MgZs
�

e.s�; s/P.us/:

Now we can state the main result in this section. For an End(^k
R

n)-valued
stochastic process M D fMtg, we define

jMjt D sup
0�s�t

jMsj2;2:

Theorem 5.4 We have

(1) Equation (5.11) has a unique solution Z. Define Y by the first equation in
(5.10) and let Mt D Yt C Zt. Then fMtg is right continuous with left limits
and MtP.ut/ D 0 whenever xt 2 @M.

(2) For each fixed t,

EjZ" � Zjt ! 0; EjY"
t � Ytj22;2 ! 0; as " # 0:

Hence EjM"
t � Mtj22;2 ! 0 as " # 0.

Proof The proof of the stated results follow the lines of proofs of Theorem 3.4 and
Theorem 3.5 of [3]. ut
Corollary 5.5 For the limit process fMtg we have

jMtj2;2 � exp

�
1

2

Z t

0

�.xs/ds �
Z t

0

�k.xs/dls

�

:

Proof Letting " # 0 in Lemma 5.1, the result follows immediately. ut
Corollary 5.6 The End(^k

R
n)-valued process Mt is the multiplicative functional

associated to Eq. (5.1).
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Proof Since F is a solution to (5.1), from Lemma 4.1 with L D @
@s � 1

2
Œ4O.M/ C

D���, we have

M"
t F.ut;T � t/ DF.u0;T/ C

Z t

0

hM"
srHF.us;T � s/; d!si

C
Z t

0

M"
s

�

N � 1

"
P � H

�

F.us;T � s/dls:

The terms involving 1=" vanish because, by the assumption on F, P.us/F.us;T �
s/ D 0 for us 2 @O.M/: Using the previous theorem, we let " # 0 and note that
QŒN � H�F D ŒN � H�F and Ms D MQ.us/ when us 2 @O.M/ (by Theorem 5.4),
we obtain the desired equality. ut

6 Heart Kernel Representation and Applications

With the multiplicative functional Mt constructed in the previous section, we have
the following probabilistic representation of the solution to (1.1).

Theorem 6.1 Let � 2 ^kM be the solution of the initial boundary value problem
(1.1). Then

Q�.u; t/ D EufMt
Q�0.ut/g: (6.1)

Hence � is given by

�.x; t/ D uExfMtu
�1
t �0.xt/g (6.2)

for any u 2 O.M/ such that �u D x.

Proof By Corollary 5.6, fMs
Q�.us; t � s/; 0 � s � tg is a martingale. Equating

the expected values at s D 0 and s D t gives us (6.1). The second equality is a
restatement of the first one on the manifold M. ut

There are several application with the above representation. We will examine two
of them below. Let

p�
M.t; x; y/ W ^�

y M ! ^�
x M

be the heat kernel on differential forms with absolute boundary condition. By the
above theorem we have

uExfMtu
�1
t �.xt/g D

Z

M
p�
M.t; x; y/�. y/dy; �u D x: (6.3)
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On the other hand, we can also write

uExfMtu
�1
t �.xt/g D uExExfMtu

�1
t �.xt/jxt D yg (6.4)

D
Z

M
pM.t; x; y/uExfMtu

�1
t �.xt/jxt D ygdy:

Here pM.t; x; y/ is the heat kernel on functions with Neumann boundary condition,
i.e., the transition probability of fxtg. From (6.3) and (6.4) the heat kernel on
differential forms can be written as

p�
M.t; x; y/ D pM.t; x; y/uExfMtu

�1
t jxt D yg: (6.5)

Recall that

�k D min
I

	i1 C 	i2 C : : : C 	ik ;

where 	2; : : : ; 	n are eigenvalues of the second fundamental form of @M, and I D
f.i1; : : : ; ik/g is the collection of multi-indices .i1; : : : ; ik/ with is D 2; 3; : : : ; k and
is D il if s ¤ l; and that

�.x/ D sup
�2^k

xM;h�;�iD1

hD�R.x/�; �i: (6.6)

We have the following heat kernel domination.

Theorem 6.2 Let pkM.t; x; y/ be the heat kernel on k-forms. Define

N�k D inf
x2@M

�k and N� D sup
x2@M

�.x/:

We have

jpkM.t; x; y/j2;2 � e
1
2

N�t�N�klt pM.t; x; y/;

where lt is the Brownian motion boundary local time.

Proof This is a direct application of representation (6.5) and Proposition 5.1. ut
Remark 6.3 When N�k � 0 then we have

jpkM.t; x; y/j2;2 � e
1
2

N�tpM.t; x; y/:

This special case was proved by Donnelly and Li [2], and Shigekawa [8].
For � 2 ^kM, let Pt�.x/ D R

M p�.t; x; y/�. y/dy. Then we have the following
generalized gradient inequality.



Multiplicative Functional for the Heat Equation on Manifolds with Boundary 83

Theorem 6.4 Keep all the notation above, we have

jdPt�.x/j � Ex

�

jd� j exp

�
1

2

Z t

0

�.xs/ds �
Z t

0

�kC1.xs/dls

��

:

Proof Let 
.x; t/ D dPt�.x/. Then 
 is a kC1-form satisfying the absolute boundary
condition, since d
 D d.dPt�/ D 0 and .
/norm D .dPt�/norm D 0. On the other
hand, because d commute with the Hodge-de Rham Laplacian, we have

@


@t
D d



@Pt�

@t

�

D 1

2
d �Pt� D 1

2
� dPt� D 1

2
�
:

So 
 is a solution to the heat equation (1.1). The rest of the proof is thus again an
easy application of (6.2) and Proposition 5.1. ut
Remark 6.5 When � is a 0-form, i.e., a function on M, denoted as f . Then the above
inequality reduces to

jrPt f .x/j � Ex

�

jrf .xt/j exp

�
1

2

Z t

0

�.xt/ds �
Z t

0

�1.xs/dls

��

;

where �1 is just the smallest eigenvalue of the second fundamental form at x and ��

is the low bound of Ricci curvature( since in one dimension D�R D �Ricci). This
special case was proved by Hsu [3]. In the case when M is a non-compact manifold,
similar bound was obtained in [9, Chap. 3].
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