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Abstract We discuss spin models on complete graphs in the mean-field (infinite-
vertex) limit, especially the classical XY model, the Toy model of the Higgs sector,
and related generalizations. We present a number of results coming from the theory
of large deviations and Stein’s method, in particular, Cramér and Sanov-type results,
limit theorems with rates of convergence, and phase transition behavior for these
models.
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1 Introduction

We use mean-field theory to approximate a challenging problem and to study a
many-body problem by converting it into a one-body problem. We survey a number
of results obtained recently using the theory of large deviations along with Stein’s
method-type limit theorems to describe the asymptotic behavior of the O.N/ spin
models such as the N D 1 Curie-Weiss model, the N D 2 model called the XY
model, the N D 3 Heisenberg model, and the N D 4 Toy model of the Higgs
sector [5, 12, 13]. We present these results mostly without proofs. In this section,
we describe the mean-field XY model and the history, including the 2D XY model
(which is currently intractable). In the next section we describe the asymptotic
behavior of the XY model; in the last section, the behavior of its generalizations
to N-dimensional spins.

The XY model on a complete graph Kn with n vertices in the absence of an
external field is defined as follows: there is a circular spin �i 2 S

1 at each site
i 2 1; 2; : : : ; n. The configuration space of the XY model is �n D .S1/n where each
microstate is � D .�1; �2; : : : ; �n/. For the higher O.N/ spin models, we simply
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replace S1 by SN�1, and in all cases the Hamiltonian energy is defined by

Hn.�/ D �
X

i;j

Ji;j
˝
�i; �j

˛
:

The mean-field interaction for the XY and O.N/ models on the complete graph is
defined by Ji;j D 1

2n for all i; j.
The simplest spin model is the Ising model, with one-dimensional ˙1 spins,

a model that is used extensively in statistical mechanics, invented by Ernest Ising
while working with his advisor Wilhelm Lenz [4, 11]. The one-dimensional Ising
model has no phase transition, but there is a phase transition on an infinite two-
dimensional lattice. The mean-field Ising model, or Curie-Weiss model, describes
the Ising model well for higher dimensions, and the magnetization (average spin)
in this model has a Gaussian law away from the critical temperature and a non-
Gaussian law at the critical temperature [7]. Recently, Chatterjee and Shao [5]
proved that the total spin in the Curie-Weiss model at the critical temperature
satisfies a Berry–Esseen type error bound in this non-Gaussian limit.

The XY model, with two-dimensional circular spins, models superconductors
and is interesting but challenging to study its phase transition rigorously [3]. On
a lattice of two spatial dimensions, such a continuous circular symmetry cannot be
broken at any finite temperature [16]. Thus the 2DXYmodel cannot have an ordered
phase at low temperature quite like the Ising model, and it has a phase transition that
is quite different from the Ising model [17, 18]. Instead, the 2D XY model exhibits
the peculiar Kosterlitz-Thouless (KT) transition, a phase transition of infinite order
and the subject of a Nobel prize. Above the transition temperature TKT correlations
between spins decay exponentially. At low temperatures, the system does not have
any long-range order as the ground state is unstable, but there is a low-temperature
quasi-ordered phase with a correlation function that decreases with the distance like
a power, which depends on the temperature [14].

Because the 2D XY model is so challenging, we study the mean-field classical
XY model instead, which can be viewed as the large-dimensional (d ! 1) limit
of the nearest-neighbor model on Z

d, with spins in S
1, and with critical inverse

temperature ˇc D 2 [1]. Furthermore, the large-dimensional limit approximates
high-dimensional models nicely since below the critical temperature, the average
spin goes to zero for all d, and above the critical temperature, the total spin has a
non-zero limit as d ! 1.

In the next section we will examine the XY model in detail, while Sect. 3 deals
with extensions to higher spin dimensions.

2 The Mean-Field XY Model and Asymptotic Results

We consider the isotropic mean-field classical XY model on a finite complete graph
Kn with n vertices. That is, at each site i 2 Kn of the graph is a spin living in
� D S

1, so the state space is �n D .S1/n. See Fig. 1 for a picture of the XY model



Critical Behavior of Mean-Field XY and Related Models 209

σ1

σ2

σ3

σ4

σ5

σ2

σ1σ3

σ4
σ5

Fig. 1 Left: The classical mean-field XY Model on the complete graph K5 with five sample spin
vectors. Right: The projection of the same spin vectors from K5 onto S1

on 5 vertices. The corresponding mean-field Hamiltonian energy Hn W �n ! R is
given by:

Hn.�/ WD � 1

2n

nX

i; jD1

˝
�i; �j

˛ D � 1

2n

X

i; j

cos.�i � �j/;

where �i is the angle that the i-th spin makes with respect to some axis. The
corresponding Gibbs measure is the probability measure Pn;ˇ on �n with density
function:

f .�/ WD 1

Z.ˇ/
e�ˇHn.�/: (1)

where Z is the normalizing constant, also known as the partition function, which
encodes the statistical properties of the model such as free energy and magnetiza-
tion. Note that Gibbs measure here is a normalization of the Boltzmann distribution,
and that the inverse temperature ˇ is equal to .kBT/�1, where kB is the Boltzmann
constant and T is the temperature of the system. We can understand the structural
behavior of the spin vectors’ distribution by studying extreme cases for the inverse
temperature ˇ as follows:

• At high temperature, from Eq. (1) we can predict that the Gibbs measure is
uniform.

• At low temperature, again from Eq. (1) we can predict that the Gibbs measure
decays quickly, and the spin vector distribution prefers the lowest-energy ground
state.

The most likely physical system states corresponding to the Gibbs measure are
called the canonical macrostates. We will consider the randommeasure of the spins
f�ig; defined by �n;� WD 1

n

Pn
iD1 ı�i on S

1 and study the total empirical spin,
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defined by

Sn.�/ WD
nX

iD1

�i:

The relative entropy of a probability measure � on S1, with respect to the uniform
probability measure � is defined by

H.� j �/ WD
( R

S1 f log. f /d� if f WD d�
d�

existsI
1 otherwise:

(2)

2.1 LDPs, Free Energy, and Macrostates for the XY Model

Let M1.S
1/ represent the probability measures on S

1 with the weak-� topology.
We are interested in analyzing the total spin, Sn WD Pn

iD1 �i, as a function of
the inverse temperature ˇ in the Gibbs measures. This leads us to consider large
deviation principles (LDPs) for the �n;� , and then we can rewrite the free energy
more explicitly to describe the phase transition at ˇ D 2. Part of Theorem 1 (ˇ D 0)
is a special case of Sanov’s theorem, while the other cases (ˇ > 0) follow from an
abstract result of Ellis, Haven, and Turkington [10, Theorem 2.5].

Theorem 1 If Pn is the n-fold product of uniform measure on S
1 and �n;� is the

random measure as defined above. For � � M1.S
1/, the �n;� satisfy an LDP with

rate function

Iˇ.�/ WD H.� j �/ � ˇ

2

ˇ̌
ˇ̌
Z

S1

xd�.x/

ˇ̌
ˇ̌
2

� '.ˇ/; (3)

where the free energy is given by

'.ˇ/ D inf
�2M1.S1/

"
H.� j �/ � ˇ

2

ˇ̌
ˇ̌
Z

S1

xd�.x/

ˇ̌
ˇ̌
2
#

: (4)

For fixed ˇ � 0, every subsequence of Pn;ˇ Œ�n;� 2 �� converges weakly to a
probability measure on M1.S

1/ concentrated on the canonical macrostates Eˇ WD
f� W Iˇ.�/ D 0g, i.e., the zeros of the rate function.

For ˇ D 0, the relative entropy H.� j �/ achieves its minima of 0 only for the
uniformmeasure �, implying that the canonical macrostate is disordered. For ˇ > 0;

canonical macrostates are defined abstractly through zeros of the rate function (3),
and later Theorem 5 will describe the macrostates explicitly.

The free energy given by (4) can be transformed into the following more explicit
form.



Critical Behavior of Mean-Field XY and Related Models 211

Theorem 2 (Kirkpatrick-Nawaz [13]) The free energy ' has the formula:

'.ˇ/ D
(

0; if ˇ < 2;

ˆˇ.g�1.ˇ//; if ˇ � 2;

where Ii below are modified Bessel functions of first kind and ˆˇ is the functional
defined by:

ˆˇ.r/ WD r
I1.r/

I0.r/
� log ŒI0.r/� � ˇ

2

�
I1.r/

I0.r/

�2

; (5)

and

g.r/ WD r
I0.r/

I1.r/
:

Here the phase transition is continuous as the function ' and its derivative ' 0 are
continuous at the critical threshold ˇ D ˇc D 2.

The magnetization for the classical XY model can be obtained by differentiating
the partition function:

jmj D
ˇ̌
ˇ̌
ˇE
"

1

n

X

i

�i

#ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌E
�

1

n
Sn

�ˇ̌
ˇ̌ D I1.r/

I0.r/

From the free energy we can precisely explain the phase transition at ˇ D 2. For
0 � ˇ � 2, we have a unique global minimum for the free energy at the origin with
a zero magnetization. For ˇ � 2, we have a unique global minimum for a positive
radius.

Let f�igniD1 be i.i.d. uniform random points on S
1 � R

2. We have the following
Cramér-type LDP for the average spin.

Theorem 3 (Kirkpatrick-Nawaz [13]) Let Pn;ˇ be the Gibbs measure defined
above (1). Then for ˇ � 0, the average spin Mn D Mn.�/ WD 1

n

Pn
iD1 �i satisfies an

LDP with rate function Iˇ.x/ D ˆˇ.r/:

Pn;ˇ .Mn ' x/ ' e�nˆˇ.r/;

where ˆˇ is given by (5) and r D jxj.
For an explicit representation of Eˇ, we note from (2) that the relative entropy

depends only on the distribution of f . By Fubini’s theorem

Z
f log. f /d� D

Z 1

0

�
�
f log. f / > t

�
dt �

Z 1

0

�
�
f log. f / < �t

�
dt:

This implies that for a fixed f , the quantity
ˇ̌R

xd�.x/
ˇ̌
is maximized for correspond-

ing densities which are symmetric about a fixed pole and decreasing as the distance
from the pole increases. Using this reasoning, consider a density f that is symmetric
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about the north pole and decreasing away from the pole i.e., �f is the measure with
density f .x; y/ D f .y/ which is increasing in y. Then

H.�f j �/ D 1

2	

Z

S1

f .x; y/ logŒ f .x; y/�dxdy

D 1

	

Z 2	

0

Z 	

0

f .cos.�// logŒ f .cos.�//�d�d'

D 1

	

Z 1

�1

f .y/ logŒ f .y/�p
1 � y2

dy:

Similarly,

Z

S1

xd�f .x/ D 1

	

�
0

1

� Z 1

�1

yf .y/
p

1 � y2
dy:

Therefore, our minimization problem is reduced to minimizing the following
functional

1

	

Z 1

�1

f .y/ logŒ f .y/�p
1 � y2

dy � ˇ

2

 
1

	

Z 1

�1

yf .y/p
1 � y2

dy

!2

over f W Œ�1; 1� ! RC such that f is increasing and 1
	

R 1

�1
f .y/p
1�y2

dy D 1. We can

rewrite the first term of the last expression to see that it involves the usual entropy
S. f / D R

f log. f /:

1

	

Z 1

�1

f .y/ logŒ f .y/�
p

1 � y2
dy D 1

	

Z 1

�1

f .y/
p

1 � y2
log

�
f .y/

	

�
dy C log.	/ D �S

�
f

	

�
C log.	/:

Now for
ˇ̌R

xd�.x/
ˇ̌ D c 2 Œ0; 1�, using constrained entropy maximization (see

Theorem 12.1.1 from [6]), we will minimize 1
	

R 1

�1
yf .y/p

1�y2
dy, that is, maximize

S. f=	/, over the � 2 M1.S1/ corresponding to this c.

Proposition 4 (Kirkpatrick-Nawaz [13]) Consider a set of functions f W
Œ�1; 1� ! RC, with weight function w.y/ D 1p

1�y2
, such that

R 1

�1
f .y/w.y/dy D 1,

and
ˇ̌
ˇ
R 1

�1 yf .y/w.y/dy
ˇ̌
ˇ D c: i.e., weighted integral of f is 1 while first weighted

moment is bounded. Then the exponential function f �.y/ D 	aeby uniquely
maximizes S. f=	/ over the densities satisfying these conditions.
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For c 2 Œ0; 1�, observe that f � increasing gives all b 2 Œ0; 1/. Now for
b 2 Œ0; 1/, our functional minimization reduces to the following one dimensional
function:

1

	

Z 1

�1

f .y/ logŒ f .y/�p
1 � y2

dy � ˇ

2
c2 D b

I1.b/

I0.b/
� log ŒI0.b/� � ˇ

2

�
I1.b/

I0.b/

�2

DW ˆˇ.b/: (6)

The following theorem, a special case proved using the calculus of variations in
[13], describes the canonical macrostates:

Theorem 5 (Kirkpatrick-Nawaz [13])

(a) For ˇ � 2, infb�0

˚
ˆˇ.b/

� D 0 is achieved for b D 0 and the corresponding
a D 1, so that the minimizing function f � D 1 and therefore the only canonical
macrostate is the uniform distribution �.

(b) For ˇ > 2, infb�0

˚
ˆˇ.b/

� D ˆˇ.g�1.ˇ//, where b D g�1.ˇ/ is the unique
strictly positive solution to g.b/ D ˇ where

g.b/ D b
I0.b/

I1.b/
;

a D 1
	I0.b/

and limˇ#2 infb�0

˚
ˆˇ.b/

� D 0. In this case, the canonical
macrostates are given by Eˇ D f�f ;xgx2S1 ; where �f ;x is the measure that is
the rotation of �f from north pole to x-direction, which is symmetric about the
north pole with density f W Œ�1; 1� ! R given by f .y/ D 	aeby with a and b as
above.

We can also visualize the Gibbs measure corresponding to subcritical or super-
critical cases as shown in Fig. 2.

2.2 Limit Theorems for the Total Spin in the XY Model

Next we understand the asymptotics for the total spin of the mean-field XYmodel, in
different regimes across the phase transition, describing the central and non-central
limit theorems for each phase.

In the high temperature regime .0 � ˇ < 2/, the average spin (magnetization)
of the system goes to zero with increasing number of spins n ! 1, and we have
a multivariate central limit theorem with a rate of convergence in Theorem 6. The
main idea is to use Stein’s method [12, 15, 19] with the exchangeable pair .Wn;W 0

n/

from the Gibbs sampling approach: our random variable representing the rescaled
total spin of the original configuration is

Wn WD
r

2 � ˇ

n

nX

iD1

�i;
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Fig. 2 Cross-sections of two canonical macrostates: For ˇ � 2 (the disordered regime), we have
the uniform distribution f .y/ D 1 as the dotted line; for ˇ D 5 > ˇc D 2 (the ordered regime), we
have plotted the cross-section of the distribution �f , given by f .x; y/ D f .y/ D eby

I0.y/ , showing that
the spins point predominantly near the north-pole direction

while the random variable representing the rescaled total spin of the new configura-
tion, with I 2 f1; : : : ; ng chosen uniformly at random, is

W 0
n WD Wn.�

0/ D Wn �
r

2 � ˇ

n
�I C

r
2 � ˇ

n
� 0
I :

Theorem 6 (Kirkpatrick-Nawaz [13]) In the high temperature regime 0 < ˇ < 2,
if Wn is defined as above, Z is a standard normal random variable in R

2, cˇ is a
function depending on ˇ only, L.g/ is the modulus of uniform continuity of g, and
M.g/ is the maximum operator norm of the Hessian of g, then we have:

sup
gWL.g/;M.g/�1

jEg.Wn/ � Eg.Z/j � cˇp
n

The proof of Theorem 6 proceeds in several steps, as a special case of [13]:
first we use the fact that the density of the Gibbs measure is rotationally invariant to
conclude that each spin has a uniformmarginal distribution. We obtain the complete
asymptotic behavior of the total spin using the rotational invariance of the total
spin, a strategy adapted from [12]. We calculate the variance of the total spin to
arrive at the proper scaling for defining the exchangeable pair and use the pair to
derive expressions and bounds for the linear factor ƒ appearing in the conditional
expectation and the remainder terms R and R0 [12, 13, 15]. The rest follows from a
theorem of Meckes [15].
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As the temperature decreases to zero, the spins start aligning. For smaller values
of ˇ > 2, the spins vectors are aligned weakly, while for larger ˇ, this alignment
is strong. For any ˇ > 2, because of the large deviation principle in Theorem 3,
we have that jP�jj is close to bn=ˇ with high probability, if b is the minimizer
in ˆˇ. And due to the circular symmetry, all points on the circle of radius bn=ˇ

are equally likely. With this reasoning, similar to [12], it is natural to consider the
random variable representing the fluctuations of squared-length of total spin, i.e.,

Wn WD p
n

2
64

ˇ2

n2b2

ˇ̌
ˇ̌
ˇ̌

nX

jD1

�j

ˇ̌
ˇ̌
ˇ̌

2

� 1

3
75 : (7)

Our multivariate central limit theorem in the low temperature (ordered) regime is as
follows:

Theorem 7 (Kirkpatrick-Nawaz [13]) If ˇ > 2 and b is the solution of b D
ˇf .b/ WD ˇ

I1.b/

I0.b/
; and Wn is as defined above in (7), and if Z is a centered normal

random variable with variance V, where

V D 4ˇ2

.1 � ˇf 0.b// b2

"
1 � 1

b

I1.b/

I0.b/
�
�
I1.b/

I0.b/

�2
#

;

then there exists cˇ , depending only on ˇ, such that then

dBL.Wn;Z/ � cˇ

�
log.n/

n

�1=4

:

where dBL.X;Y/ is the bounded Lipschitz distance between random variables X
and Y.
Again the proof of Theorem 7 follows from a univariate analogue of the abstract
normal approximation of Stein [19], and relies on conditional moment bounds.
The fact that the variance is positive was proved by Amos [2] while deriving the
improved bounds on the ratio of Bessel functions.

At the critical temperature ˇc D 2, we will consider the random variable

Wn WD c

n3=2

nX

i;jD1

˝
�i; �j

˛
; (8)

and make an exchangeable pair .Wn;W 0
n/ using Glauber dynamics. Using symmetry

of the total spin and Stein’s method similar to [5, 12], we will obtain critical limiting
density function p as defined below.
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Theorem 8 (Kirkpatrick-Nawaz [13]) For the critical inverse temperature ˇ D
2, if Wn is as defined above in (8), and X is the random variable with the density

p.t/ D
(

1
Z e

�t2=64 t � 0;

0 t < 0;

where Z is normalizing constant, then there exists a universal constant C such that

sup
khk1�1; kh0k1�1

kh00k1�1

ˇ̌
Eh.Wn/ � Eh.X/

ˇ̌ � C log.n/p
n

:

The proof of the limit theorem for the critical temperature is essentially via the
“density approach” to Stein’s method introduced by Stein, Diaconis, Holmes, and
Reinert [20]. Recently, also Chatterjee and Shao [5] have applied this approach to
the total spin of the mean-field Ising model, i.e., the Curie-Weiss model.

We note that these limit theorems with explicit rates of convergence can be
generalized to high-dimensional spins, but we will omit those technicalities in the
following section.

3 High-Dimensional Spin O.N/ Models

We can use similar methods to extend our results for two-dimensional spin classical
XY model to classical O.N/ models, or N-vector models. In this general case, with
spins in SN�1 � R

N , the critical inverse temperature is ˇc D N [1, 13]. TheN-vector
models on a complete graph Kn have the Hamiltonian:

Hn.�/ WD � 1

2n

nX

i;jD1

˝
�i; �j

˛
: (9)

We present results about the magnetization, free energy, and critical behavior in the
O.N/ models. It is important to note that we divide our asymptotic analysis into
two cases: if N an even positive integer, we have modified Bessel functions of first
kind with order � D N=2 and � � 1, while for N odd, we have hyperbolic functions
arising from the half-integer order Bessel functions.

3.1 The Magnetization in O.N/ Models

Similar to the classical XY model, we can calculate the magnetization of the
classical N-vector unit hyperspherical model using the conditional density, from the
conditional expectations, and it turns out to be a ratio of modified Bessel function
of first kind:
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Fig. 3 Graph of magnetization limits jMN j for N-vector models, 1 � N � 4: For the mean-
field Ising model, M1 D tanh.x/, for the mean-field XY model jM2j D I1.r/

I0.r/ , for the mean-field

Heisenberg model jM3j D coth.r/ � 1
r , and for the mean-field Toy model of the Higgs sector,

jM4j D I2.r/
I1.r/ . Here r and ˇ are related by the formula gN .r/ WD r

I N
2 �1

.r/

I N
2

.r/ D ˇ

Theorem 9 (Kirkpatrick-Nawaz [13]) Consider the O.N/ model with the above
Hamiltonian (9), with N representing the dimension of the spin �i 2 S

N�1. Then on
the complete graph Kn the O.N/ magnetization MN;n D Pn

iD1 �i has the following
mean-field limit:

jMN j D
I N

2
.r/

I N
2 �1.r/

From Fig. 3, we can observe that low-dimensional spin models can be magne-
tized easier in some sense, and as the spin gets higher dimensional, it takes more
energy to magnetize the physical system.

3.2 The Rate Function and Free Energy in O.N/ Models

Next we will present rate functions for large deviation principles similar to
Theorems 1 and 3, the first of which is the relative entropy for the N-vector model
given by an abstract formula similar to before:

Iˇ;N.�/ WD H.� j �/ � ˇ

2

ˇ̌
ˇ̌
Z

SN�1

xd�.x/

ˇ̌
ˇ̌
2

� '.ˇ/
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Fig. 4 Graph of the rate function Iˇ;N.x/ D ˆˇ;N.r/ in the supercritical regime (ˇ D N C 1) for
2 � N � 4, which has minimum at radius g�1

N .ˇ/ D r

where H.� j �/ is the relative entropy (2) and 'N is the free energy defined
abstractly as before:

'N.ˇ/ D inf
�2M1.SN�1/

"
H.� j �/ � ˇ

2

ˇ̌
ˇ̌
Z

SN�1

xd�.x/

ˇ̌
ˇ̌
2
#

: (10)

We can calculate the minima in the expression of this rate function and verify that in
the subcritical regime (ˇ < N) there is a unique minimum, while in the supercritical
regime there is a family of minima parametrized by SN�1. The free energy given by
(10) can be written in the following more explicit form using a method like the one
in the previous section. In particular, we have a Cramér-type LDP for the average
spin Mn WD 1

n

Pn
iD1 �i 2 R

N , with rate function Iˇ;N.x/ D ˆˇ;N.r/, defined below
for ˇ � 0 and r D jxj (Fig. 4).
Theorem 10 (Kirkpatrick-Nawaz [13]) For dimension N, the free energy ' has
the formula:

'N.ˇ/ D
(

0; if ˇ < N;

ˆˇ;N.g�1.ˇ//; if ˇ � N;

where g�1.ˇ/ D r with

g.r/ D gN.r/ WD r
I N

2 �1.r/

I N
2
.r/

;
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and

ˆˇ;N.r/ D r
I N

2
.r/

I N
2 �1.r/

C log

"
AN

AN�1

r
N
2 �1

BN	I N
2 �1.r/

#
� ˇ

2

 
I N

2
.r/

I N
2 �1.r/

!2

;

with

AN WD 2	
N
2

�
	
N
2




and

BN D

8
ˆ̂̂
<

ˆ̂̂
:

Q N
2 �1

kD0 j2k � 1j; if N even;

2
N
2 �1�. N�1

2 /p
	

; if N odd:

In particular, ' and ' 0 are continuous at the critical threshold ˇ D N, implying that
the phase transition is second-order or continuous.

3.3 The Critical Density Function in O.N/ Models

The limiting density for the critical case uses the (hyper-)spherical symmetry of the
total spin for O.N/ models, giving the following non-normal limit theorem (Fig. 5).

Theorem 11 (Kirkpatrick-Nawaz [13]) At the critical temperature ˇ D N, the

random variable Wn D cN jSnj2
n3=2 has as its limit as n ! 1 the random variable X

with density

pN.t/ D
(

1
Z t

N�2
2 e�kt2 ; if t � 0;

0; if t < 0;

where k D 1
N2.4NC8/

and Z is the normalizing constant. To be precise about the rate
of convergence, there exists a universal constant C such that

sup
khk1�1; kh0k1�1

kh00k1�1

ˇ̌
Eh.Wn/ � Eh.X/

ˇ̌ � C log.n/p
n

:

The proof of this theorem is in [13] and includes methods from [8, 9, 12].
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Fig. 5 Mean-field critical density functions pN for 2 � N � 4 and t � 0. For the XY model

p2.t/ D e�t2=64

4
p

	
, for the Heisenberg model p3.t/ D

p

te�t2=180

53=4
p

54�Œ3=4�
, and for the Toy model of the

Higgs sector, p4.t/ D te�t2=384
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