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Abstract We consider a class of homogeneous partial differential operators on a
finite-dimensional vector space and study their associated heat kernels. The heat
kernels for this general class of operators are seen to arise naturally as the limiting
objects of the convolution powers of complex-valued functions on the square lattice
in the way that the classical heat kernel arises in the (local) central limit theorem.
These so-called positive-homogeneous operators generalize the class of semi-
elliptic operators in the sense that the definition is coordinate-free. More generally,
we introduce a class of variable-coefficient operators, each of which is uniformly
comparable to a positive-homogeneous operator, and we study the corresponding
Cauchy problem for the heat equation. Under the assumption that such an operator
has Hölder continuous coefficients, we construct a fundamental solution to its heat
equation by the method of Levi, adapted to parabolic systems by Friedman and
Eidelman. Though our results in this direction are implied by the long-known
results of Eidelman for 2Eb-parabolic systems, our focus is to highlight the role
played by the Legendre-Fenchel transform in heat kernel estimates. Specifically,
we show that the fundamental solution satisfies an off-diagonal estimate, i.e., a heat
kernel estimate, written in terms of the Legendre-Fenchel transform of the operator’s
principal symbol—an estimate which is seen to be sharp in many cases.
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1 Introduction

In this article, we consider a class of homogeneous partial differential operators
on a finite dimensional vector space and study their associated heat kernels.
These operators, which we call nondegenerate-homogeneous operators, are seen to
generalize the well-studied classes of semi-elliptic operators introduced by Browder
[13], also known as quasi-elliptic operators [53], and a special “positive” subclass of
semi-elliptic operators which appear as the spatial part of Eidelman’s 2Eb-parabolic
operators [26]. In particular, this class of operators contains all integer powers of the
Laplacian.

1.1 Semi-Elliptic Operators

To motivate the definition of nondegenerate-homogeneous operators, given in the
next section, we first introduce the class of semi-elliptic operators. Semi-elliptic
operators are seen to be prototypical examples of nondegenerate-homogeneous
operators; in fact, the definition of nondegenerate-homogeneous operators is given
to formulate the following construction in a basis-independent way. Given d-
tuple of positive integers n D .n1; n2; : : : ; nd/ 2 N

dC and a multi-index ˇ D
.ˇ1; ˇ2; : : : ; ˇd/ 2 N

d, set jˇ W nj D Pd
kD1 ˇk=nk. Consider the constant coefficient

partial differential operator

ƒ D
X

jˇWnj�1

aˇDˇ

with principal part (relative to n)

ƒp D
X

jˇWnjD1

aˇDˇ;

where aˇ 2 C and Dˇ D .i@x1 /
ˇ1.i@x2 /

ˇ2 � � � .i@xd /ˇd for each multi-index ˇ 2 N
d.

Such an operator ƒ is said to be semi-elliptic if the symbol of ƒp, defined by
Pp.�/ D P

jˇWnjD1 aˇ�ˇ for � 2 R
d, is non-vanishing away from the origin.

If ƒ satisfies the stronger condition that RePp.�/ is strictly positive away from
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the origin, we say that it is positive-semi-elliptic. What seems to be the most
important property of semi-elliptic operators is that their principal part ƒp is
homogeneous in the following sense: If given any smooth function f we put
ıt. f /.x/ D f .t1=n1 x1; t1=n2 x2; : : : ; t1=nd xd/ for all t > 0 and x D .x1; x2; : : : ; xd/ 2 R

d,
then

tƒ D ı1=t ı ƒp ı ıt

for all t > 0. This homogeneous structure was used explicitly in the work of
Browder and Hörmander and, in this article, we generalize this notion. We note that
our definition for the differential operators Dˇ is given to ensure a straightforward
relationship between operators and symbols under our convention for the Fourier
transform (defined in Sect. 1.3); this definition differs only slightly from the standard
references [36, 37, 46, 48] in which i is replaced by 1=i. In both conventions,
the symbol of the operator ƒ D �� D �Pd

kD1 @2
xk

is the positive polynomial

� 7! j�j2 D Pd
kD1 �2

k . In fact, the principal symbols of all positive-semi-elliptic
operators agree in both conventions.

As mentioned above, the class of semi-elliptic operators was introduced by
Browder in [13] who studied spectral asymptotics for a related class of variable-
coefficient operators (operators of constant strength). Semi-elliptic operators
appeared later in Hörmander’s text [36] as model examples of hypoelliptic operators
on R

d beyond the class of elliptic operators. Around the same time, Volevich [53]
independently introduced the same class of operators but instead called them “quasi-
elliptic”. Since then, the theory of semi-elliptic operators, and hence quasi-elliptic
operators, has reached a high level of sophistication and we refer the reader to the
articles [1–5, 13, 34–38, 49, 51], which use the term semi-elliptic, and the articles
[10–12, 14, 17–24, 31, 41, 43, 50, 52, 53], which use the term quasi-elliptic, for
an account of this theory. We would also like to point to the 1971 paper of Troisi
[50] which gives a more complete list of references (pertaining to quasi-elliptic
operators).

Shortly after Browder’s paper [13] appeared, Eidelman considered a subclass of
semi-elliptic operators on RdC1 D R ˚ R

d (and systems thereof) of the form

@t C
X

jˇW2mj�1

aˇDˇ D @t C
X

jˇWmj�2

aˇDˇ; (1)

where m 2 N
dC and the coefficients aˇ are functions of x and t. Such an operator is

said to be 2m-parabolic if its spatial part,
P

jˇW2mj�1 aˇDˇ , is (uniformly) positive-
semi-elliptic. We note however that Eidelman’s work and the existing literature
refer exclusively to 2Eb-parabolic operators, i.e., where m D Eb, and for consistency
we write 2Eb-parabolic henceforth [26, 28]. The relationship between positive-
semi-elliptic operators and 2Eb-parabolic operators is analogous to the relationship
between the Laplacian and the heat operator and, in the context of this article,
the relationship between nondegenerate-homogeneous and positive-homogeneous
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operators described by Proposition 2.4. The theory of 2Eb-parabolic operators, which
generalizes the theory of parabolic partial differential equations (and systems), has
seen significant advancement by a number of mathematicians since Eidelman’s
original work. We encourage the reader to see the recent text [28] which provides
an account of this theory and an exhaustive list of references. It should be noted
however that the literature encompassing semi-elliptic operators and quasi-elliptic
operators, as far as we can tell, has very few cross-references to the literature on
2Eb-parabolic operators beyond the 1960s. We suspect that the absence of cross-
references is due to the distinctness of vocabulary.

1.2 Motivation: Convolution Powers of Complex-Valued
Functions on Z

d

We motivate the study of homogeneous operators by first demonstrating the natural
appearance of their heat kernels in the study of convolution powers of complex-
valued functions. To this end, consider a finitely supported function � W Zd ! C

and define its convolution powers iteratively by

�.n/.x/ D
X

y2Zd

�.n�1/.x � y/�.y/

for x 2 Z
d where �.1/ D �. In the special case that � is a probability distribution,

i.e., � is non-negative and has unit mass, � drives a random walk on Z
d whose

nth-step transition kernels are given by kn.x; y/ D �.n/.y � x/. Under certain mild
conditions on the random walk, �.n/ is well-approximated by a single Gaussian
density; this is the classical local limit theorem. Specifically, for a symmetric,
aperiodic and irreducible random walk, the theorem states that

�.n/.x/ D n�d=2G�.x=
p

n/ C o.n�d=2/ (2)

uniformly for x 2 Z
d, where G� is the generalized Gaussian density

G�.x/ D 1

.2�/d

Z

Rd
exp

��� �C��
�
e�ix�� d� D 1

.2�/d=2
p
detC�

exp

 

�x � C�
�1x

2

!

I
(3)

here, C� is the positive definite covariance matrix associated to � and � denotes
the dot product [39, 44, 47]. The canonical example is that in which C� D I (e.g.
Simple Random Walk) and in this case �.n/ is approximated by the so-called heat
kernel K.��/ W .0; 1/ � R

d ! .0; 1/ defined by

Kt
.��/.x/ D .2�t/�d=2 exp

�

�jxj2
2t

�
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for t > 0 and x 2 R
d. Indeed, we observe that n�d=2G�.x=

p
n/ D Kn

.�ƒ/.x/ for

each positive integer n and x 2 Z
d and so the local limit theorem (2) is written

equivalently as

�.n/.x/ D Kn
.��/.x/ C o.n�d=2/

uniformly for x 2 Z
d. In addition to its natural appearance as the attractor in the

local limit theorem above, Kt
.��/.x/ is a fundamental solution to the heat equation

@t C .��/ D 0

on .0; 1/ � R
d. In fact, this connection to random walk underlies the heat equa-

tion’s probabilistic/diffusive interpretation. Beyond the probabilistic setting, this
link between convolution powers and fundamental solutions to partial differential
equations persists as can be seen in the examples below. In what follows, the heat
kernels .t; x/ 7! Kt

ƒ.x/ are fundamental solutions to the corresponding heat-type
equations of the form

@t C ƒ D 0:

The appearance of Kƒ in local limit theorems (for �.n/) is then found by evaluating
Kt

ƒ.x/ at integer time t D n and lattice point x 2 Z
d.

Example 1.1 Consider � W Z2 ! C defined by

�.x1; x2/ D 1

22 C 2
p

3
�

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

8 .x1; x2/ D .0; 0/

5 C p
3 .x1; x2/ D .˙1; 0/

�2 .x1; x2/ D .˙2; 0/

i.
p

3 � 1/ .x1; x2/ D .˙1; �1/

�i.
p

3 � 1/ .x1; x2/ D .˙1; 1/

2 � 2i .x1; x2/ D .0; ˙1/

0 otherwise:

Analogous to the probabilistic setting, the large n behavior of �.n/ is described by
a generalized local limit theorem in which the attractor is a fundamental solution to
a heat-type equation. Specifically, the following local limit theorem holds (see [44]
for details):

�.n/.x1; x2/ D e�i�x2=3Kn
ƒ.x1; x2/ C o.n�3=4/
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uniformly for .x1; x2/ 2 Z
2 where .t; x/ 7! Kt

ƒ.x/ is the “heat” kernel for the heat-
type equation @t C ƒ D 0 where

ƒ D 1

22 C 2
p

3

�
2@4

x1
� i.

p
3 � 1/@2

x1
@x2 � 4@2

x2

�
:

This local limit theorem is illustrated in Fig. 1 which shows Re.�.n// and the
approximation Re.e�i�x2=3Kn

ƒ/ when n D 100.
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Fig. 1 The graphs of Re.�.n// and Re.e�i�x2=3Kn
ƒ/ for n D 100. (a) Re.�.n// for n D 100.

(b) Re.e�i�x2=3Kn
ƒ/ for n D 100
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Example 1.2 Consider � W Z2 ! R defined by � D .�1 C �2/=512, where

�1.x1; x2/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

326 .x1; x2/ D .0; 0/

20 .x1; x2/ D .˙2; 0/

1 .x1; x2/ D .˙4; 0/

64 .x1; x2/ D .0; ˙1/

�16 .x1; x2/ D .0; ˙2/

0 otherwise

and �2.x1; x2/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

76 .x1; x2/ D .1; 0/

52 .x1; x2/ D .�1; 0/

�4 .x1; x2/ D .˙3; 0/

�6 .x1; x2/ D .˙1; 1/

�6 .x1; x2/ D .˙1; �1/

˙2 .x1; x2/ D .˙3; 1/

˙2 .x1; x2/ D .˙3; �1/

0 otherwise:

In this example, the following local limit theorem, which is illustrated by Fig. 2,
describes the limiting behavior of �.n/. We have

�.n/.x1; x2/ D Kn
ƒ.x1; x2/ C o.n�5=12/

uniformly for .x1; x2/ 2 Z
2 where Kƒ is again a fundamental solution to @t Cƒ D 0

where, in this case,

ƒ D 1

64

��@6
x1

C 2@4
x2

C 2@3
x1

@2
x2

�
:

Example 1.3 Consider � W Z2 ! R defined by

�.x; y/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

3=8 .x1; x2/ D .0; 0/

1=8 .x1; x2/ D ˙.1; 1/

1=4 .x1; x2/ D ˙.1; �1/

�1=16 .x1; x2/ D ˙.2; �2/

0 otherwise:

Here, the following local limit theorem is valid:

�.n/.x1; x2/ D �
1 C ei�.x1Cx2/

�
Kn

ƒ.x1; x2/ C o.n�3=4/

uniformly for .x1; x2/ 2 Z
2. Here again, the attractor Kƒ is the fundamental solution

to @t C ƒ D 0 where

ƒ D �1

8
@2

x1
C 23

384
@4

x1
� 1

4
@x1@x2 � 25

96
@3

x1
@x2 � 1

8
@2

x2
C 23

64
@2

x1
@2

x2
� 25

96
@x1@

3
x2

C 23

384
@4

x2
:
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(b)

(a)

Fig. 2 The graphs of �.n/ and Kn
ƒ for n D 10;000. (a) �.n/ for n D 10;000. (b) Kn

ƒ for n D 10;000

Looking back at preceding examples, we note that the operators appearing in
Examples 1.1 and 1.2 are both positive-semi-elliptic and consist only of their
principal parts. This is easily verified, for n D .4; 2/ D 2.2; 1/ in Example 1.1
and n D .6; 4/ D 2.3; 2/ in Example 1.2. In contrast to Examples 1.1 and 1.2,
the operator ƒ which appears in Example 1.3 is not semi-elliptic in the given
coordinate system. After careful study, the ƒ appearing in Example 1.3 can be
written equivalently as

ƒ D �1

8
@2

v1
C 23

384
@4

v2
(4)
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where @v1 is the directional derivative in the v1 D .1; 1/ direction and @v2 is the
directional derivative in the v2 D .1; �1/ direction. In this way, ƒ is seen to be
semi-elliptic with respect to some basis fv1; v2g ofR2 and, with respect to this basis,
we have n D .2; 4/ D 2.1; 2/. For this reason, our formulation of nondegenerate-
homogeneous operators (and positive-homogeneous operators), given in the next
section, is made in a basis-independent way.

All of the operators appearing in Examples 1.1, 1.2 and 1.3 share two important
properties: homogeneity and positivity (in the sense of symbols). While we make
these notions precise in the next section, loosely speaking, homogeneity is the
property that ƒ “plays well” with some dilation structure on R

d, though this
structure is different in each example. Further, homogeneity for ƒ is reflected
by an analogous one for the corresponding heat kernel Kƒ; in fact, the specific
dilation structure is, in some sense, selected by �.n/ as n ! 1 and leads to the
corresponding local limit theorem. In further discussion of these examples, a very
natural question arises: Given � W Zd ! C, how does one compute the operator ƒ

whose heat kernel Kƒ appears as the attractor in the local limit theorem for �.n/?
In the examples we have looked at, one studies the Taylor expansion of the Fourier
transform O� of � near its local extrema and, here, the symbol of the relevant operator
ƒ appears as certain scaled limit of this Taylor expansion. In general, however,
this is a very delicate business and, at present, there is no known algorithm to
determine these operators. In fact, it is possible that multiple (distinct) operators
can appear by looking at the Taylor expansions about distinct local extrema of O�
(when they exist) and, in such cases, the corresponding local limit theorems involve
sums of heat kernels—each corresponding to a distinct ƒ. This study is carried
out in the article [44] wherein local limit theorems involve the heat kernels of
the positive-homogeneous operators studied in the present article. We note that the
theory presented in [44] is not complete, for there are cases in which the associated
Taylor approximations yield symbols corresponding to operators ƒ which fail to be
positive-homogeneous (and hence fail to be positive-semi-elliptic) and further, the
heat kernels of these (degenerate) operators appear as limits of oscillatory integrals
which correspond to the presence of “odd” terms in ƒ, e.g., the Airy function. In
one dimension, a complete theory of local limit theorems is known for the class of
finitely supported functions � W Z ! C. Beyond one dimension, a theory for local
limit theorems of complex-valued functions, in which the results of [44] will fit,
remains open.

The subject of this paper is an account of positive-homogeneous operators and
their corresponding heat equations. In Sect. 2, we introduce positive-homogeneous
operators and study their basic properties; therein, we show that each positive-
homogeneous operator is semi-elliptic in some coordinate system. Section 3
develops the necessary background to introduce the class of variable-coefficient
operators studied in this article; this is the class of .2m; v/-positive-semi-elliptic
operators introduced in Sect. 4—each of which is comparable to a constant-
coefficient positive-homogeneous operator. In Sect. 5, we study the heat equations
corresponding to uniformly .2m; v/-positive-semi-elliptic operators with Hölder
continuous coefficients. Specifically, we use the famous method of Levi, adapted to
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parabolic systems by Friedman and Eidelman, to construct a fundamental solution
to the corresponding heat equation. Our results in this direction are captured by
those of Eidelman [26] and the works of his collaborators, notably Ivasyshen and
Kochubei [28], concerning 2Eb-parabolic systems. Our focus in this presentation is to
highlight the essential role played by the Legendre-Fenchel transform in heat kernel
estimates which, to our knowledge, has not been pointed out in the context of semi-
elliptic operators. In a forthcoming work, we study an analogous class of operators,
written in divergence form, with measurable-coefficients and their corresponding
heat kernels. This class of measurable-coefficient operators does not appear to have
been previously studied. The results presented here, using the Legendre-Fenchel
transform, provides the background and context for our work there.

1.3 Preliminaries

Fourier Analysis Our setting is a real d-dimensional vector spaceV equipped with
Haar (Lebesgue) measure dx and the standard smooth structure; we do not affix V

with a norm or basis. The dual space of V is denoted by V
� and the dual pairing

is denoted by �.x/ for x 2 V and � 2 V
�. Let d� be the Haar measure on V

�
which we take to be normalized so that our convention for the Fourier transform and
inverse Fourier transform, given below, makes each unitary. Throughout this article,
all functions onV andV� are understood to be complex-valued. The usual Lebesgue
spaces are denoted by Lp.V/ D Lp.V; dx/ and equipped with their usual norms k �kp

for 1 � p � 1. In the case that p D 2, the corresponding inner product on L2.V/

is denoted by h�; �i. Of course, we will also work with L2.V�/ WD L2.V�; d�/; here
the L2-norm and inner product will be denoted by k � k2� and h�; �i� respectively.
The Fourier transform F W L2.V/ ! L2.V�/ and inverse Fourier transform F�1 W
L2.V�/ ! L2.V/ are initially defined for Schwartz functions f 2 S.V/ and g 2
S.V�/ by

F. f /.�/ D Of .�/ D
Z

V

ei�.x/f .x/ dx and F�1.g/.x/ D Lg.x/ D
Z

V�

e�i�.x/g.�/ d�

for � 2 V
� and x 2 V respectively.

For the remainder of this article (mainly when duality isn’t of interest), W stands
for any real d-dimensional vector space (and so is interchangeable with V or V�).
For a non-empty open set � � W, we denote by C.�/ and Cb.�/ the set of
continuous functions on � and bounded continuous functions on �, respectively.
The set of smooth functions on � is denoted by C1.�/ and the set of compactly
supported smooth functions on � is denoted by C1

0 .�/. We denote by D0.�/ the
space of distributions on �; this is dual to the space C1

0 .�/ equipped with its usual
topology given by seminorms. A partial differential operator H on W is said to be
hypoelliptic if it satisfies the following property: Given any open set � � W and any
distribution u 2 D0.�/ which satisfies Hu D 0 in �, then necessarily u 2 C1.�/.
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Dilation Structure Denote by End.W/ and Gl.W/ the set of endomorphisms
and isomorphisms of W respectively. Given E 2 End.W/, we consider the one-
parameter group ftEgt>0 � Gl.W/ defined by

tE D exp..log t/E/ D
1X

kD0

.log t/k

kŠ
Ek

for t > 0. These one-parameter subgroups of Gl.W/ allow us to define continuous
one-parameter groups of operators on the space of distributions as follows: Given
E 2 End.W/ and t > 0, first define ıE

t . f / for f 2 C1
0 .W/ by ıE

t . f /.x/ D f .tEx/

for x 2 W. Extending this to the space of distribution on W in the usual way, the
collection fıE

t gt>0 is a continuous one-parameter group of operators on D0.W/; it
will allow us to define homogeneity for partial differential operators in the next
section.

Linear Algebra, Polynomials and the Rest Given a basis w D fw1; w2; : : : ; wdg
of W, we define the map �w W W ! R

d by setting �w.w/ D .x1; x2; : : : ; xd/

whenever w D Pd
lD1 xlwl. This map defines a global coordinate system on W; any

such coordinate system is said to be a linear coordinate system on W. By definition,
a polynomial on W is a function P W W ! C that is a polynomial function in every
(and hence any) linear coordinate system on W. A polynomial P on W is called a
nondegenerate polynomial if P.w/ ¤ 0 for all w ¤ 0. Further, P is called a positive-
definite polynomial if its real part, R D ReP, is non-negative and has R.w/ D 0 only
when w D 0. The symbols R;C;Z mean what they usually do, N denotes the set
of non-negative integers and I D Œ0; 1� � R. The symbols RC, NC and IC denote
the set of strictly positive elements of R, N and I respectively. Likewise, RdC, NdC
and I

dC respectively denote the set of d-tuples of these aforementioned sets. Given
˛ D .˛1; ˛2; : : : ; ˛d/ 2 R

dC and a basis w D fw1; w2; : : : ; wdg of W, we denote by
E˛
w the isomorphism of W defined by

E˛
wwk D 1

˛k
wk (5)

for k D 1; 2; : : : ; d. We say that two real-valued functions f and g on a set X are
comparable if, for some positive constant C, C�1f .x/ � g.x/ � Cf .x/ for all x 2 X;
in this case we write f � g. Adopting the summation notation for semi-elliptic
operators of Hörmander’s treatise [37], for a fixed n D .n1; n2; : : : ; nd/ 2 N

dC, we
write

jˇ W nj D
dX

kD1

ˇk

mk
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for all multi-indices ˇ D .ˇ1; ˇ2; : : : ; ˇd/ 2 N
d. Finally, throughout the estimates

made in this article, constants denoted by C will change from line to line without
explicit mention.

2 Homogeneous Operators

In this section we introduce two important classes of homogeneous constant-
coefficient on V. These operators will serve as “model” operators in our theory in
the way that integer powers of the Laplacian serves a model operators in the elliptic
theory of partial differential equations. To this end, let ƒ be a constant-coefficient
partial differential operator on V and let P W V� ! C be its symbol. Specifically,
P is the polynomial on V

� defined by P.�/ D e�i�.x/ƒ.ei�.x// for � 2 V
� (this is

independent of x 2 V precisely because ƒ is a constant-coefficient operator). We
first introduce the following notion of homogeneity of operators; it is mirrored by
an analogous notion for symbols which we define shortly.

Definition 2.1 Given E 2 End.V/, we say that a constant-coefficient partial
differential operator ƒ is homogeneous with respect to the one-parameter group
fıE

t g if

ıE
1=t ı ƒ ı ıE

t D tƒ

for all t > 0; in this case we say that E is a member of the exponent set of ƒ and
write E 2 Exp.ƒ/.

A constant-coefficient partial differential operator ƒ need not be homogeneous
with respect to a unique one-parameter group fıE

t g, i.e., Exp.ƒ/ is not necessarily a
singleton. For instance, it is easily verified that, for the Laplacian �� on Rd,

Exp.��/ D 2�1I C od

where I is the identity and od is the Lie algebra of the orthogonal group, i.e., is given
by the set of skew-symmetric matrices. Despite this lack of uniqueness, when ƒ is
equipped with a nondegenerateness condition (see Definition 2.2), we will find that
trace is the same for each member of Exp.ƒ/ and this allows us to uniquely define
an “order” for ƒ; this is Lemma 2.10.

Given a constant coefficient operator ƒ with symbol P, one can quickly verify
that E 2 Exp.ƒ/ if and only if

tP.�/ D P.tF�/ (6)

for all t > 0 and � 2 V
� where F D E� is the adjoint of E. More generally, if P is

any continuous function on W and (6) is satisfied for some F 2 End.V�/, we say
that P is homogeneous with respect to ftFg and write F 2 Exp.P/. This admitted
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slight abuse of notation should not cause confusion. In this language, we see that
E 2 Exp.ƒ/ if and only if E� 2 Exp.P/.

We remark that the notion of homogeneity defined above is similar to that put
forth for homogeneous operators on homogeneous (Lie) groups, e.g., Rockland
operators [29]. The difference is mostly a matter of perspective: A homogeneous
group G is equipped with a fixed dilation structure, i.e., it comes with a one-
parameter group fıtg, and homogeneity of operators is defined with respect to this
fixed dilation structure. By contrast, we fix no dilation structure on V and formulate
homogeneity in terms of an operator ƒ and the existence of a one-parameter group
fıE

t g that “plays” well with ƒ in sense defined above. As seen in the study of
convolution powers on the square lattice (see [44]), it useful to have this freedom.

Definition 2.2 Let ƒ be constant-coefficient partial differential operator on V with
symbol P. We say that ƒ is a nondegenerate-homogeneous operator if P is a
nondegenerate polynomial and Exp.ƒ/ contains a diagonalizable endomorphism.
We say that ƒ is a positive-homogeneous operator if P is a positive-definite
polynomial and Exp.ƒ/ contains a diagonalizable endomorphism.

For any polynomial P on a finite-dimensional vector space W, P is said to be
nondegenerate-homogeneous if P is nondegenerate and Exp.P/, defined as the set
of F 2 End.W/ for which (6) holds, contains a diagonalizable endomorphism. We
say that P is positive-homogeneous if it is a positive-definite polynomial and Exp.P/

contains a diagonalizable endomorphism. In this language, we have the following
proposition.

Proposition 2.3 Let ƒ be a positive homogeneous operator on V with symbol
P. Then ƒ is a nondegenerate-homogeneous operator if and only if P is a
nondegenerate-homogeneous polynomial. Further, ƒ is a positive-homogeneous
operator if and only if P is a positive-homogeneous polynomial.

Proof Since the adjectives “nondegenerate” and “positive”, in the sense of both
operators and polynomials, are defined in terms of the symbol P, all that needs to
be verified is that Exp.ƒ/ contains a diagonalizable endomorphism if and only if
Exp.P/ contains a diagonalizable endomorphism. Upon recalling that E 2 Exp.ƒ/

if and only if E� 2 Exp.P/, this equivalence is verified by simply noting that
diagonalizability is preserved under taking adjoints. ut
Remark 1 To capture the class of nondegenerate-homogeneous operators (or
positive-homogeneous operators), in addition to requiring that the symbol P of
an operator ƒ be nondegenerate (or positive-definite), one can instead demand only
that Exp.ƒ/ contains an endomorphism whose characteristic polynomial factors
over R or, equivalently, whose spectrum is real. This a priori weaker condition
is seen to be sufficient by an argument which makes use of the Jordan-Chevalley
decomposition. In the positive-homogeneous case, this argument is carried out in
[44] (specifically Proposition 2.2) wherein positive-homogeneous operators are first
defined by this (a priori weaker) condition. For the nondegenerate case, the same
argument pushes through with very little modification.
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We observe easily that all positive-homogeneous operators are nondegenerate-
homogeneous. It is the “heat” kernels corresponding to positive-homogeneous
operators that naturally appear in [44] as the attractors of convolution powers
of complex-valued functions. The following proposition highlights the interplay
between positive-homogeneity and nondegenerate-homogeneity for an operator ƒ

on V and its corresponding “heat” operator @t C ƒ on R ˚ V.

Proposition 2.4 Let ƒ be a constant-coefficient partial differential operator on V

whose exponent set Exp.ƒ/ contains a diagonalizable endomorphism. Let P be the
symbol of ƒ, set R D ReP, and assume that there exists � 2 V

� for which R.�/ > 0.
We have the following dichotomy: ƒ is a positive-homogeneous operator on V if and
only if @t C ƒ is a nondegenerate-homogeneous operator on R ˚ V.

Proof Given a diagonalizable endomorphismE 2 Exp.ƒ/, set E1 D I˚E where I is
the identity on R. Obviously, E1 is diagonalizable. Further, for any f 2 C1

0 .R˚V/,

�
.@t C ƒ/ ı ıE1

s

�
. f /.t; x/ D �

@t
�

f
�
st; sEx

��C ƒ
�

f
�
st; sEx

���

D s.@t C ƒ/. f /.st; sEx/ D s
�
ıE1

s ı .@t C ƒ/
�

. f /.t; x/

for all s > 0 and .t; x/ 2 R ˚ V. Hence

ı
E1

1=s ı .@t C ƒ/ ı ıE1
s D s.@t C ƒ/

for all s > 0 and therefore E1 2 Exp.@t C ƒ/.
It remains to show that P is positive-definite if and only if the symbol of @t Cƒ is

nondegenerate. To this end, we first compute the symbol of @t Cƒ which we denote
by Q. Since the dual space ofR˚V is isomorphic toR˚V

�, the characters ofR˚V

are represented by the collection of maps .R ˚ V/ 3 .t; x/ 7! exp.�i.� t C �.x///

where .�; �/ 2 R ˚ V
�. Consequently,

Q.�; �/ D e�i.� tC�.x// .@t C ƒ/ .ei.� tC�.x// D i� C P.�/

for .�; �/ 2 R ˚ V
�. We note that P.0/ D 0 because E� 2 Exp.P/; in fact, this

happens whenever Exp.P/ is non-empty. Now if P is a positive-definite polynomial,
ReQ.�; �/ D ReP.�/ D R.�/ > 0 whenever � ¤ 0. Thus to verify that Q is a
nondegenerate polynomial, we simply must verify that Q.�; 0/ ¤ 0 for all non-zero
� 2 R. This is easy to see because, in light of the above fact, Q.�; 0/ D i� C P.0/ D
i� ¤ 0 whenever � ¤ 0 and hence Q is nondegenerate. For the other direction,
we demonstrate the validity of the contrapositive statement. Assuming that P is
not positive-definite, an application of the intermediate value theorem, using the
condition that R.�/ > 0 for some � 2 V

�, guarantees that R.	/ D 0 for some
non-zero 	 2 V

�. Here, we observe that Q.�; 	/ D i.� C ImP.	// D 0 when
.�; 	/ D .� ImP.	/; 	/ and hence Q is not nondegenerate. ut

We will soon return to the discussion surrounding a positive-homogeneous
operator ƒ and its heat operator @t C ƒ. It is useful to first provide representation



Positive-Homogeneous Operators, Heat Kernel Estimates and the Legendre-. . . 15

formulas for nondegenerate-homogeneous and positive-homogeneous operators.
Such representations connect our homogeneous operators to the class of semi-
elliptic operators discussed in the introduction. To this end, we define the “base”
operators on V. First, for any element u 2 V, we consider the differential operator
Du W D0.V/ ! D0.V/ defined originally for f 2 C1

0 .V/ by

.Du f /.x/ D i
@f

@u
.x/ D i

�

lim
t!0

f .x C tu/ � f .x/

t

�

for x 2 V. Fixing a basis v D fv1; v2; : : : ; vdg of V, we introduce, for each multi-
index ˇ 2 N

d, Dˇ
v D .Dv1/

ˇ1 .Dv2 /
ˇ2 � � � .Dvd /ˇd .

Proposition 2.5 Let ƒ be a nondegenerate-homogeneous operator on V. Then
there exist a basis v D fv1; v2; : : : ; vdg of V and n D .n1; n2; : : : ; nd/ 2 N

dC for
which

ƒ D
X

jˇWnjD1

aˇDˇ
v : (7)

where faˇg � C. The isomorphism En
v 2 Gl.V/, defined by (5), is a member

of Exp.ƒ/. Further, if ƒ is positive-homogeneous, then n D 2m for m D
.m1; m2; : : : ; md/ 2 N

dC and hence

ƒ D
X

jˇWmjD2

aˇDˇ
v :

We will sometimes refer to the n and m of the proposition as weights. Before
addressing the proposition, we first prove the following mirrored result for symbols.

Lemma 2.6 Let P be a nondegenerate-homogeneous polynomial on a d-
dimensional real vector space W: Then there exists a basis w D fw1; w2; : : : ; wdg
of W and n D .n1; n2; : : : ; nd/ 2 N

dC for which

P.�/ D
X

jˇWnjD1

aˇ�ˇ

for all � D �1w1 C �2w2 C � � � C �dwd 2 W where �ˇ WD .�1/
ˇ1 .�2/ˇ2 � � � .�d/ˇd and

faˇg � C. The isomorphism En
w 2 Gl.V/, defined by (5), is a member of Exp.P/.

Further, if P is a positive-definite polynomial, i.e., it is positive-homogeneous, then
n D 2m for m D .m1; m2; : : : ; md/ 2 N

dC and hence

P.�/ D
X

jˇWmjD2

aˇ�ˇ

for � 2 W.
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Proof Let E 2 Exp.P/ be diagonalizable and select a basis w D fw1; w2; : : : ; wdg
which diagonalizes E, i.e., Ewk D ıkwk where ık 2 R for k D 1; 2; : : : ; d. Because
P is a polynomial, there exists a finite collection faˇg � C for which

P.�/ D
X

ˇ

aˇ�ˇ

for � 2 W. By invoking the homogeneity of P with respect to E and using the fact
that tEwk D tık wk for k D 1; 2; : : : ; d, we have

t
X

ˇ

aˇ�ˇ D
X

ˇ

aˇ.tE�/ˇ D
X

ˇ

aˇtı�ˇ�ˇ

for all � 2 W and t > 0 where ı � ˇ D ı1ˇ1 C ı2ˇ2 C � � � C ıdˇd. In view of
the nondegenerateness of P, the linear independence of distinct powers of t and the
polynomial functions � 7! �ˇ , for distinct multi-indices ˇ, as C1 functions ensures
that aˇ D 0 unless ˇ � ı D 1. We can therefore write

P.�/ D
X

ˇ�ıD1

aˇ�ˇ (8)

for � 2 W. We now determine ı D .ı1; ı2; : : : ; ıd/ by evaluating this polynomial
along the coordinate axes. To this end, by fixing k D 1; 2; : : : ; d and setting � D xwk

for x 2 R, it is easy to see that the summation above collapses into a single term
aˇxjˇj where ˇ D jˇjek D .1=ık/ek (here ek denotes the usual kth-Euclidean basis
vector in R

d). Consequently, nk WD 1=ık 2 NC for k D 1; 2; : : : ; d and thus, upon
setting n D .n1; n2; : : : ; nd/, (8) yields

P.�/ D
X

jˇWnjD1

aˇ�ˇ

for all � 2 W as was asserted. In this notation, it is also evident that En
w D

E 2 Exp.P/. Under the additional assumption that P is positive-definite, we again
evaluate P at the coordinate axes to see that ReP.xwk/ D Re.ankek /x

nk for x 2 R.
In this case, the positive-definiteness of P requires Re.ankek / > 0 and nk 2 2NC for
each k D 1; 2; : : : ; d. Consequently, n D 2m for m D .m1; m2; : : : ; md/ 2 N

dC as
desired. ut
Proof of Proposition 2.5 Given a nondegenerate-homogeneous ƒ on V with sym-
bol P, P is necessarily a nondegenerate-homogeneous polynomial on V

� in view
of Proposition 2.3. We can therefore apply Lemma 2.6 to select a basis v� D
fv�

1 ; v�
2 ; : : : ; v�

d g of V� and n D .n1; n2; : : : ; nd/ 2 N
dC for which

P.�/ D
X

jˇWnjD1

aˇ�ˇ (9)
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for all � D �1v�
1 C �2v�

2 C � � � �dv�
d where faˇg � C. We will denote by v, the dual

basis to v�, i.e., v D fv1; v2; : : : ; vdg is the unique basis of V for which v�
k .vl/ D 1

when k D l and 0 otherwise. In view of the duality of the bases v and v�, it is
straightforward to verify that, for each multi-index ˇ, the symbol of Dˇ

v is �ˇ in the
notation of Lemma 2.6. Consequently, the constant-coefficient partial differential
operator defined by the right hand side of (7) also has symbol P and so it must
be equal to ƒ because operators and symbols are in one-to-one correspondence.
Using (7), it is now straightforward to verify that En

v 2 Exp.ƒ/. The assertion that
n D 2m when ƒ is positive-homogeneous follows from the analogous conclusion
of Lemma 2.6 by the same line of reasoning. ut

In view of Proposition 2.5, we see that all nondegenerate-homogeneousoperators
are semi-elliptic in some linear coordinate system (that which is defined by v). An
appeal to Theorem 11.1.11 of [37] immediately yields the following corollary.

Corollary 2.7 Every nondegenerate-homogeneousoperator ƒ on V is hypoelliptic.
Our next goal is to associate an “order” to each nondegenerate-homogeneous

operator. For a positive-homogeneous operator ƒ, this order will be seen to
govern the on-diagonal decay of its heat kernel Kƒ and so, equivalently, the
ultracontractivity of the semigroup e�tƒ. With the help of Lemma 2.6, the few
lemmas in this direction come easily.

Lemma 2.8 Let P be a nondegenerate-homogeneous polynomial on a d-
dimensional real vector space W. Then lim�!1 jP.�/j D 1; here � ! 1
means that j�j ! 1 in any (and hence every) norm on W.

Proof The idea of the proof is to construct a function which bounds jPj from below
and obviously blows up at infinity. To this end, let w be a basis for W and take n 2
N

dC as guaranteed by Lemma 2.6; we have En
w 2 Exp.P/ where En

wwk D .1=nk/wk

for k D 1; 2; : : : ; d. Define j � jnw W W ! Œ0; 1/ by

j�jnw D
dX

kD1

j�kjnk

where � D �1w1 C�2w2 C� � �C�dwd 2 W. We observe immediately En
w 2 Exp.j � jnw/

because tEn
wwk D t1=nk wk for k D 1; 2; : : : ; d. An application of Proposition 3.2

(a basic result appearing in our background section, Sect. 3), which uses the
nondegenerateness of P, gives a positive constant C for which j�jnw � CjP.�/j for
all � 2 W. The lemma now follows by simply noting that j�jnw ! 1 as � ! 1. ut
Lemma 2.9 Let P be a polynomial on W and denote by Sym.P/ the set of
O 2 End.W/ for which P.O�/ D P.�/ for all � 2 W. If P is a nondegenerate-
homogeneous polynomial, then Sym.P/, called the symmetry group of P, is a
compact subgroup of Gl.W/.

Proof Our supposition that P is a nondegenerate polynomial ensures that, for each
O 2 Sym.P/, Ker.O/ is empty and hence O 2 Gl.W/. Consequently, given O1 and
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O2 2 Sym.P/, we observe that P.O�1
1 �/ D P.O1O�1

1 �/ D P.�/ and P.O1O2�/ D
P.O2�/ D P.�/ for all � 2 W; therefore Sym.P/ is a subgroup of Gl.W/.

To see that Sym.P/ is compact, in view of the finite-dimensionality of Gl.W/ and
the Heine-Borel theorem, it suffices to show that Sym.P/ is closed and bounded.
First, for any sequence fOng � Sym.P/ for which On ! O as n ! 1, the
continuity of P ensures that P.O�/ D limn!1 P.On�/ D limn!1 P.�/ D P.�/

for each � 2 W and therefore Sym.P/ is closed. It remains to show that Sym.P/

is bounded; this is the only piece of the proof that makes use of the fact that P is
nondegenerate-homogeneous and not simply homogeneous. Assume that, to reach a
contradiction, that there exists an unbounded sequence fOng � Sym.P/. Choosing
a norm j � j on W, let S be the corresponding unit sphere in W. Then there exists a
sequence f�ng � W for which j�nj D 1 for all n 2 NC but limn!1 jOn�nj D 1. In
view of Lemma 2.8,

1 D lim
n!1 jP.On�n/j D lim

n!1 jP.�n/j � sup
�2S

jP.�/j;

which cannot be true for P is necessarily bounded on S because it is continuous. ut
Lemma 2.10 Let ƒ be a nondegenerate-homogeneous operator. For any E1; E2 2
Exp.ƒ/,

trE1 D trE2:

Proof Let P be the symbol of ƒ and take E1; E2 2 Exp.ƒ/. Since E�
1 ; E�

2 2 Exp.P/,
tE�

1 t�E�

2 2 Sym.P/ for all t > 0. As Sym.P/ is a compact group in view of
the previous lemma, the determinant map det W Gl.V�/ ! C

�, a Lie group
homomorphism, necessarily maps Sym.P/ into the unit circle. Consequently,

1 D j det.tE�

1 t�E�

2 /j D j det.tE�

1 / det.t�E�

2 / D jttrE�

1 t� trE�

2 j D ttrE�

1 t� trE�

2

for all t > 0. Therefore, trE1 D trE�
1 D trE�

2 D trE2 as desired. ut
By the above lemma, to each nondegenerate-homogeneousoperatorƒ, we define

the homogeneous order of ƒ to be the number


ƒ D trE

for any E 2 Exp.ƒ/. By an appeal to Proposition 2.5, En
v 2 Exp.ƒ/ for some

n 2 NC and so we observe that


ƒ D 1

n1

C 1

n2

C � � � C 1

nd
: (10)

In particular,
ƒ is a positive rational number.We note that the term “homogeneous-
order” does not coincide with the usual “order” for a partial differential operator.
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For instance, the Laplacian �� on Rd is a second order operator; however, because
2�1I 2 Exp.��/, its homogeneous order is 
.��/ D tr 2�1I D d=2.

2.1 Positive-Homogeneous Operators and Their Heat Kernels

We now restrict our attention to the study of positive-homogeneous operators and
their associated heat kernels. To this end, let ƒ be a positive-homogeneous operator
on V with symbol P and homogeneous order 
ƒ. The heat kernel for ƒ arises
naturally from the study of the following Cauchy problem for the corresponding
heat equation @t C ƒ D 0: Given initial data f W V ! C which is, say, bounded and
continuous, find u.t; x/ satisfying

(
.@t C ƒ/ u D 0 in .0; 1/ � V

u.0; x/ D f .x/ for x 2 V:
(11)

The initial value problem (11) is solved by putting

u.t; x/ D
Z

V

Kt
ƒ.x � y/f .y/ dy

where K.�/
ƒ .�/ W .0; 1/ � V ! C is defined by

Kt
ƒ.x/ D F�1

�
e�tP

�
.x/ D

Z

V�

e�i�.x/e�tP.�/ d�

for t > 0 and x 2 V; we call Kƒ the heat kernel associated to ƒ. Equivalently, Kƒ is
the integral (convolution) kernel of the continuous semigroup fe�tƒgt>0 of bounded
operators on L2.V/ with infinitesimal generator �ƒ. That is, for each f 2 L2.V/,

�
e�tƒf

�
.x/ D

Z

V

Kt
ƒ.x � y/f .y/ dy (12)

for t > 0 and x 2 V. Let us make some simple observations about Kƒ. First, by
virtue of Lemma 2.8, it follows that Kt

ƒ 2 S.V/ for each t > 0. Further, for any
E 2 Exp.ƒ/,

Kt
ƒ.x/ D

Z

V�

e�i�.x/e�P.tE
�

�/ d�

D
Z

V�

e�i.t�E�

/�.x/e�P.�/ det.t�E�

/ d�

D 1

ttrE

Z

V�

e�i�.t�Ex/e�P.�/d� D 1

t
ƒ
K1

ƒ.t�Ex/
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for t > 0 and x 2 V. This computation immediately yields the so-called on-diagonal
estimate for Kƒ,

ke�tƒk1!1 D kKt
ƒk1 D 1

t
ƒ
kK1

ƒk1 � C

t
ƒ

for t > 0; this is equivalently a statement of ultracontractivity for the semigroup
e�tƒ. As it turns out, we can say something much stronger.

Proposition 2.11 Let ƒ be a positive-homogeneous operator with symbol P and
homogeneous order 
ƒ. Let R# W V ! R be the Legendre-Fenchel transform of
R D ReP defined by

R#.x/ D sup
�2V�

f�.x/ � R.�/g

for x 2 V. Also, let v and m 2 N
dC be as guaranteed by Proposition 2.5. Then, there

exist positive constants C0 and M and, for each multi-index ˇ, a positive constant
Cˇ such that, for all k 2 N,

ˇ
ˇ@k

t Dˇ
vKt

ƒ.x � y/
ˇ
ˇ � CˇCk

0kŠ

t
ƒCkCjˇW2mj exp
�
�tMR#

�x � y

t

��
(13)

for all x; y 2 V and t > 0. In particular,

ˇ
ˇKt

ƒ.x � y/
ˇ
ˇ � C0

t
ƒ
exp

�
�tMR#

�x � y

t

��
(14)

for all x; y 2 V and t > 0.

Remark 2 In view of (10), the exponent on the prefactor in (13) can be equivalently
written, for any multi-index ˇ and k 2 N, as 
ƒ C k C jˇ W 2mj D k C j1 C ˇ W
2mj D j1 C 2km C ˇ W 2mj where 1 D .1; 1; : : : ; 1/.

Remark 3 We note that the estimates of Proposition 2.11 are written in terms of the
difference x � y and can (trivially) be expressed in terms of a single spatial variable
x. The estimates are written in this way to emphasize the role that K plays as an
integral kernel. We will later replace ƒ in (22) by a comparable variable-coefficient
operator H and, in that setting, the associated heat kernel is not a convolution kernel
and so we seek estimates involving two spatial variables x and y. To that end, the
estimates here form a template for estimates in the variable-coefficient setting.

We prove the proposition above in the Sect. 5; the remainder of this section is
dedicated to discussing the result and connecting it to the existing theory. Let us
first note that the estimate (13) is mirrored by an analogous space-time estimate,
Theorem 5.3 of [44], for the convolution powers of complex-valued functions on
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Z
d satisfying certain conditions (see Sect. 5 of [44]). The relationship between these

two results, Theorem 5.3 of [44] and Proposition 2.11, parallels the relationship
between Gaussian off-diagonal estimates for random walks and the analogous off-
diagonal estimates enjoyed by the classical heat kernel [33].

Let us first show that the estimates (13) and (14) recapture the well-known
estimates of the theory of parabolic equations and systems in R

d—a theory in
which the Laplacian operator � D Pd

lD1 @2
xl
and its integer powers play a central

role. To place things into the context of this article, let us observe that, for each
positive integerm, the partial differential operator .��/m is a positive-homogeneous
operator on R

d with symbol P.�/ D j�j2m; here, we identify R
d as its own

dual equipped with the dot product and Euclidean norm j � j. Indeed, one easily
observes that P D j � j2m is a positive-definite polynomial and E D .2m/�1I 2
Exp..��/m/ where I 2 Gl.Rd/ is the identity. Consequently, the homogeneous
order of .��/m is d=2m D .2m/�1 tr.I/ and the Legendre-Fenchel transform of
R D ReP D j � j2m is easily computed to be R#.x/ D Cmjxj2m=.2m�1/ where
Cm D .2m/1=.2m�1/ � .2m/�2m=.2m�1/ > 0. Hence, (14) is the well-known estimate

ˇ
ˇ
ˇKt

.��/m.x � y/
ˇ
ˇ
ˇ � C0

td=2m
exp

�

�M
jx � yj2m=.2m�1/

t1=.2m�1/

�

for x; y 2 R
d and t > 0; this so-called off-diagonal estimate is ubiquitous to the

theory of “higher-order” elliptic and parabolic equations [16, 27, 30, 45]. To write
the derivative estimate (13) in this context, we first observe that the basis given by
Proposition 2.5 can be taken to be the standard Euclidean basis, e D fe1; e2; : : : ; edg
and further, m D .m; m; : : : ; m/ is the (isotropic) weight given by the proposition.
Writing Dˇ D Dˇ

e D .i@x1 /
ˇ1.i@x2 /

ˇ2 � � � .i@xd /ˇd and jˇj D ˇ1 C ˇ2 C � � � C ˇd for
each multi-index ˇ, (13) takes the form

ˇ
ˇ
ˇ@k

t DˇKt
.��/m.x � y/

ˇ
ˇ
ˇ � C0

t.dCjˇj/=2mCk
exp

�

�M
jx � yj2m=.2m�1/

t1=.2m�1/

�

for x; y 2 R
d and t > 0, c.f., [27, Property 4, p. 93].

The appearance of the 1-dimensional Legendre-Fenchel transform in heat kernel
estimates was previously recognized and exploited in [8] and [9] in the context of
elliptic operators. Due to the isotropic nature of elliptic operators, the 1-dimensional
transform is sufficient to capture the inherent isotropic decay of corresponding
heat kernels. Beyond the elliptic theory, the appearance of the full d-dimensional
Legendre-Fenchel transform is remarkable because it sharply captures the general
anisotropic decay of Kƒ. Consider, for instance, the particularly simple positive-
homogeneous operator ƒ D �@6

x1
C @8

x2
on R

2 with symbol P.�1; �2/ D �6
1 C �8

2 . It
is easily checked that the operator E with matrix representation diag.1=6; 1=8/, in
the standard Euclidean basis, is a member of the Exp.ƒ/ and so the homogeneous
order of ƒ is 
ƒ D tr.diag.1=6; 1=8// D 7=24. Here we can compute the
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Legendre-Fenchel transform of R D ReP D P directly to obtain R#.x1; x2/ D
c1jx1j6=5 C c2jx2j8=7 for .x1; x2/ 2 R

2 where c1 and c2 are positive constants. In this
case, Proposition 2.11 gives positive constants C0 and M for which

jKt
ƒ.x1 � y1; x2 � y2/j � C0

t7=24
exp

�

�
�

M1

jx1 � y1j6=5

t1=5
C M2

jx2 � y2j8=7

t1=7

��

(15)

for .x1; x2/; .y1; y2/ 2 R
2 and t > 0 where M1 D c1M and M2 D c2M. We note how-

ever that ƒ is “separable” and so we can write Kt
ƒ.x1; x2/ D Kt

.��/3.x1/Kt
.��/4.x2/

where � is the 1-dimensional Laplacian operator. In view of Theorem 8 of [8] and
its subsequent remark, the estimate (15) is seen to be sharp (modulo the values
of M1; M2 and C). To further illustrate the proposition for a less simple positive-
homogeneous operator, we consider the operator ƒ appearing in Example 1.3. In
this case,

R.�1; �2/ D P.�1; �2/ D 1

8
.�1 C �2/2 C 23

384
.�1 � �2/4

and one can verify directly that the E 2 End.R2/, with matrix representation

Ee D
�

3=8 1=8

1=8 3=8

�

in the standard Euclidean basis, is a member of Exp.ƒ/. From this, we immediately
obtain 
ƒ D tr.E/ D 3=4 and one can directly compute

R#.x1; x2/ D c1jx1 C x2j2 C c2jx1 � x2j4=3

for .x1; x2/ 2 R
2 where c1 and c2 are positive constants. An appeal to Proposi-

tion 2.11 gives positive constants C0 and M for which

jKt
ƒ.x1 � y1; x2 � y2/j � C0

t3=4
exp

�

�
�

M1

j.x1 � y1/ C .x2 � y2/j2
t

CM2

j.x1 � y1/ � .x2 � y2/j4=3

t1=3

��

for .x1; x2/; .y1; y2/ 2 R
2 and t > 0 where M1 D c1M and M2 D c2M. Furthermore,

m D .1; 2/ 2 N
2C and the basis v D fv1; v2g of R2 given in discussion surrounding

(4) are precisely those guaranteed by Proposition 2.5. Appealing to the full strength
of Proposition 2.11, we obtain positive constants C0, M and, for each multi-index ˇ,
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a positive constant Cˇ such that, for each k 2 N,

ˇ
ˇ
ˇ@k

t Dˇ
v Kƒ.x1 � y1; x2 � y2/

ˇ
ˇ
ˇ

� CˇCk
0kŠ

t3=4CkCjˇW2mj exp
 

�
 

M1
j.x1 � y1/ C .x2 � y2/j2

t
C M2

j.x1 � y1/ � .x2 � y2/j4=3

t1=3

!!

for .x1; x2/; .y1; y2/ 2 R
2 and t > 0 where M1 D c1M and M2 D c2M.

In the context of homogeneous groups, the off-diagonal behavior for the heat
kernel of a positive Rockland operator (a positive self-adjoint operator which is
homogeneous with respect to the fixed dilation structure) has been studied in [6, 25,
32] (see also [5]). Given a positive Rockland operator ƒ on homogeneous group
G, the best known estimate for the heat kernel Kƒ, due to Auscher, ter Elst and
Robinson, is of the form

jKt
ƒ.h�1g/j � C0

t
ƒ
exp

 

�M

�kh�1gk2m

t

�1=.2m�1/
!

(16)

where k � k is a homogeneous norm on G (consistent with ƒ/ and 2m is the highest
order derivative appearing in ƒ. In the context of R

d, given a symmetric and
positive-homogeneous operator ƒ with symbol P, the structure GD D .Rd; fıD

t g/
for D D 2mE where E 2 Exp.ƒ/ is a homogeneous group on which ƒ becomes a
positive Rockland operator. On GD, it is quickly verified that k � k D R.�/1=2m is a
homogeneous norm (consistent with ƒ) and so the above estimate is given in terms
of R.�/1=.2m�1/ which is, in general, dominated by the Legendre-Fenchel transform
of R. To see this, we need not look further than our previous and simple example in
which ƒ D �@6

x1
C @8

x2
. Here 2m D 8 and so R.x1; x2/1=.2m�1/ D .jx1j6 C jx2j8/1=7.

In view of (15), the estimate (16) gives the correct decay along the x2-coordinate
axis; however, the bounds decay at markedly different rates along the x1-coordinate
axis. This illustrates that the estimate (16) is suboptimal, at least in the context of
R

d, and thus leads to the natural question: For positive-homogeneous operators on a
general homogeneous group G, what is to replace the Legendre-Fenchel transform
in heat kernel estimates?

Returning to the general picture, let ƒ be a positive-homogeneous operator
on V with symbol P and homogeneous order 
ƒ. To highlight some remarkable
properties about the estimates (13) and (14) in this general setting, the following
proposition concerning R# is useful; for a proof, see Sect. 8.3 of [44].

Proposition 2.12 Let ƒ be a positive-homogeneous operator with symbol P and
let R# be the Legendre-Fenchel transform of R D ReP. Then, for any E 2 Exp.ƒ/,
I � E 2 Exp.R#/. Moreover R# is continuous, positive-definite in the sense that
R#.x/ 	 0 and R#.x/ D 0 only when x D 0. Further, R# grows superlinearly in the
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sense that, for any norm j � j on V,

lim
x!1

jxj
R#.x/

D 0I

in particular, R#.x/ ! 1 as x ! 1.
Let us first note that, in view of the proposition, we can easily rewrite (14), for any
E 2 Exp.ƒ/, as

ˇ
ˇKt

ƒ.x � y/
ˇ
ˇ � C0

t
ƒ
exp

��MR#
�
t�E.x � y/

��

for x; y 2 V and t > 0; the analogous rewriting is true for (13). The fact that R# is
positive-definite and grows superlinearly ensures that the convolution operator e�tƒ

defined by (12) for t > 0 is a bounded operator from Lp to Lq for any 1 � p; q � 1.
Of course, we already knew this because Kt

ƒ is a Schwartz function; however,
when replacing ƒ with a variable-coefficient operator H, as we will do in the
sections to follow, the validity of the estimate (14) for the kernel of the semigroup
fe�tHg initially defined on L2, guarantees that the semigroup extends to a strongly
continuous semigroup fe�tHpg on Lp.Rd/ for all 1 � p � 1 and, what’s more, the
respective infinitesimal generators �Hp have spectra independent of p [15]. Further,
the estimate (14) is key to establishing the boundedness of the Riesz transform, it
is connected to the resolution of Kato’s square root problem and it provides the
appropriate starting point for uniqueness classes of solutions to @t C H D 0 [7, 42].
With this motivation in mind, following some background in Sect. 3, we introduce a
class of variable-coefficient operators in Sect. 4 called .2m; v/-positive-semi-elliptic
operators, each such operator H comparable to a fixed positive-homogeneous
operator. In Sect. 5, under the assumption that H has Hölder continuous coefficients
and this notion of comparability is uniform, we construct a fundamental solution
to the heat equation @t C H D 0 and show the essential role played by the
Legendre-Fenchel transform in this construction. As mentioned previously, in a
forthcomingwork we will study the semigroup fe�tHg whereH is a divergence-form
operator, which is comparable to a fixed positive-homogeneous operator, whose
coefficients are at worst measurable. As the Legendre-Fenchel transform appears
here by a complex change of variables followed by a minimization argument, in
the measurable coefficient setting it appears quite naturally by an application of the
so-called Davies’ method, suitably adapted to the positive-homogeneous setting.

3 Contracting Groups, Hölder Continuity
and the Legendre-Fenchel Transform

In this section, we provide the necessary background on one-parameter contracting
groups, anisotropic Hölder continuity, and the Legendre-Fenchel transform and its
interplay with the two previous notions.
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3.1 One-Parameter Contracting Groups

In what follows, W is a d-dimensional real vector space with a norm j � j; the corre-
sponding operator norm on Gl.W/ is denoted by k � k. Of course, since everything
is finite-dimensional, the usual topologies on W and Gl.W/ are insensitive to the
specific choice of norms.

Definition 3.1 Let fTtgt>0 � Gl.W/ be a continuous one-parameter group. fTtg is
said to be contracting if

lim
t!0

kTtk D 0:

We easily observe that, for any diagonalizable E 2 End.W/ with strictly positive
spectrum, the corresponding one-parameter group ftEgt>0 is contracting. Indeed, if
there exists a basis w D fw1; w2; : : : ; wdg of W and a collection of positive numbers
�1; �2; : : : ; �d for which Ewk D �kwk for k D 1; 2; : : : ; d, then the one parameter
group ftEgt>0 has tEwk D t�k wk for k D 1; 2; : : : ; d and t > 0. It then follows
immediately that ftEg is contracting.
Proposition 3.2 Let Q and R be continuous real-valued functions on W.
If R.w/ > 0 for all w ¤ 0 and there exists E 2 Exp.Q/ \ Exp.R/ for which
ftEg is contracting, then, for some positive constant C, Q.w/ � CR.w/ for all
w 2 W. If additionally Q.w/ > 0 for all w ¤ 0, then Q � R.

Proof Let S denote the unit sphere in W and observe that

sup
w2S

Q.w/

R.w/
DW C < 1

because Q and R are continuous and R is non-zero on S. Now, for any non-zero w 2
W, the fact that tE is contracting implies that tEw 2 S for some t > 0 by virtue of the
intermediate value theorem. Therefore, Q.w/ D Q.tEw/=t � CR.tEw/=t D CR.w/.
In view of the continuity of Q and R, this inequality must hold for all w 2 W. When
additionally Q.w/ > 0 for all non-zero w, the conclusion that Q � R is obtained by
reversing the roles of Q and R in the preceding argument. ut
Corollary 3.3 Let ƒ be a positive-homogeneous operator on V with symbol P and
let R# be the Legendre-Fenchel transform of R D ReP. Then, for any positive
constant M, R# � .MR/#.

Proof By virtue of Proposition 2.5, letm 2 N
dC and v be a basis forV and for which

E2m
v 2 Exp.ƒ/. In view of Proposition 2.12, R# and .MR/# are both continuous,

positive-definite and have I � E2m
v 2 Exp.R#/ \ Exp..MR/#/. In view of (5), it is

easily verified that I � E2m
v D E!

v where

! WD
�

2m1

2m1 � 1
;

2m2

2m2 � 1
; : : :

2md

2md � 1

�

2 R
dC (17)
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and so it follows that ftE!
v g is contracting. The corollary now follows directly from

Proposition 3.2. ut
Lemma 3.4 Let P be a positive-homogeneous polynomial on W and let n D 2m 2
N

dC and w be a basis for W for which the conclusion of Lemma 2.6 holds. Let
R D ReP and let ˇ and � be multi-indices such that ˇ � � (in the standard partial
ordering of multi-indices); we shall assume the notation of Lemma 2.6.

1. For any n 2 NC such that jˇ W mj � 2n, there exist positive constants M and M0
for which

j��ˇ�� j � M.R.�/ C R.//n C M0

for all �;  2 W.
2. If jˇ W mj D 2, there exist positive constants M and M0 for which

j�� ˇ�� j � MR.�/ C M0R./

for all ; � 2 W.
3. If jˇ W mj D 2 and ˇ > � , then for every � > 0 there exists a positive constant

M for which

j�� ˇ�� j � �R.�/ C MR./

for all ; � 2 W.

Proof Assuming the notation of Lemma 2.6, let E D E2m
w 2 End.W/ and consider

the contracting group ftE˚Eg D ftE ˚ tEg on W ˚ W. Because R is a positive-
definite polynomial, it immediately follows that W ˚ W 3 .�; / 7! R.�/ C R./ is
positive-definite. Let j � j be a norm on W ˚ W and respectively denote by B and S
the corresponding unit ball and unit sphere in this norm.

To see Item 1, first observe that

sup
.�;/2S

j��ˇ�� j
.R.�/ C R.//n

DW M < 1

Now, for any .�; / 2 W ˚ W n B, because ftE˚Eg is contracting, it follows from the
intermediate value theorem that, for some t 	 1, t�.E˚E/.�; / D .t�E�; t�E/ 2 S.
Correspondingly,

j��ˇ�� j D tjˇW2mjj.t�E�/� .t�E/ˇ�� j
� tjˇW2mjM.R.t�E�/ C R.t�E//n

� tjˇWmj=2�nM.R.�/ C R.//n

� M.R.�/ C R.//n
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because jˇ W mj=2 � n. One obtains the constant M0 and hence the desired
inequality by simply noting that j��ˇ�� j is bounded for all .�; / 2 B.

For Item 2, we use analogous reasoning to obtain a positive constant M for which
j��ˇ�� j � M.R.�/ C R.// for all .�; / 2 S. Now, for any non-zero .�; / 2 W ˚
W, the intermediate value theorem gives t > 0 for which tE˚E.�; / D .tE�; tE/ 2 S
and hence

j�� ˇ�� j � t�jˇW2mjM.R.tE�/ C R.tE// D M.R.�/ C R.//

where we have used the fact that jˇ W 2mj D jˇ W mj=2 D 1 and that E 2 Exp.R/.
As this inequality must also trivially hold at the origin, we can conclude that it holds
for all �;  2 W, as desired.

Finally, we prove Item 3. By virtue of Item 2, for any �;  2 W and t > 0,

j��ˇ�� j D j.tEt�E�/�ˇ�� j D tj� W2mjj.t�E�/�ˇ�� j
� tj� W2mj �MR.t�E�/ C M0R./

� D Mtj� W2mj�1R.�/ C M0tj� W2mjR./:

Noting that j� W 2mj � 1 < 0 because � < ˇ, we can make the coefficient of R.�/

arbitrarily small by choosing t sufficiently large and thereby obtaining the desired
result. ut

3.2 Notions of Regularity and Hölder Continuity

Throughout the remainder of this article, v will denote a fixed basis for V and
correspondingly we henceforth assume the notational conventions appearing in
Proposition 2.5 and n D 2m is fixed. For ˛ 2 R

dC, consider the homogeneous
norm j � j˛v defined by

jxj˛v D
dX

iD1

jxij˛i

for x 2 V where �v.x/ D .x1; x2; : : : ; xd/. As one can easily check,

jtE˛
v xj˛v D tjxj˛v

for all t > 0 and x 2 V where E˛
v 2 Gl.V/ is defined by (5).

Definition 3.5 Letm 2 N
dC. We say that ˛ 2 R

dC is consistent withm if

E˛
v D a.I � E2m

v / (18)

for some a > 0.
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As one can check, ˛ is consistent withm if and only if ˛ D a�1! where! is defined
by (17).

Definition 3.6 Let � � �0 � V and let f W �0 ! C. We say that f is v-Hölder
continuous on � if for some ˛ 2 I

dC and positive constant M,

j f .x/ � f .y/j � Mjx � yj˛v (19)

for all x; y 2 �. In this case we will say that ˛ is the v-Hölder exponent of f . If
� D �0 we will simply say that f is v-Hölder continuous with exponent ˛.
The following proposition essentially states that, for bounded functions, Hölder
continuity is a local property; its proof is straightforward and is omitted.

Proposition 3.7 Let � � V be open and non-empty. If f is bounded and v-Hölder
continuous of order ˛ 2 I

dC, then, for any ˇ < ˛, f is also v-Hölder continuous of
order ˇ.
In view of the proposition, we immediately obtain the following corollary.

Corollary 3.8 Let � � V be open and non-empty and m 2 N
dC. If f is bounded and

v-Hölder continuous on � of order ˇ 2 I
dC, there exists ˛ 2 I

dC which is consistent
with m for which f is also v-Hölder continuous of order ˛.

Proof The statement follows from the proposition by choosing any ˛, consistent
withm, such that ˛ � ˇ. ut
The following definition captures the minimal regularity we will require of funda-
mental solutions to the heat equation.

Definition 3.9 Let n 2 N
dC, v be a basis of V and let O be a non-empty open

subset of Œ0; T� � V. A function u.t; x/ is said to be .n; v/-regular on O if on O
it is continuously differentiable in t and has continuous (spatial) partial derivatives
Dˇ

vu.t; x/ for all multi-indices ˇ for which jˇ W nj � 1.

3.3 The Legendre-Fenchel Transform and Its Interplay
with v-Hölder Continuity

Throughout this section, R is the real part of the symbol P of a positive-
homogeneous operator ƒ on V. We assume the notation of Proposition 2.12 (and
hence Proposition 2.5) and write E D E2m

v . Let us first record two important results
which follow essentially from Proposition 2.12.

Corollary 3.10

R# � j � j!v :

where ! was defined in (17).
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Proof In view of Propositions 2.5 and 2.12, E!
v D I � E2m

v 2 Exp.R#/ \Exp.j � j!v /.
After recalling that ftE!

v g is contracting, Proposition 3.2 yields the desired result
immediately. ut
By virtue of Proposition 2.12, standard arguments immediately yield the following
corollary.

Corollary 3.11 For any � > 0 and polynomial Q W V ! C, i.e., Q is a polynomial
in any coordinate system, then

Q.�/e��R#.�/ 2 L1.V/ \ L1.V/:

Lemma 3.12 Let � D .2mmax � 1/�1. Then for any T > 0, there exists M > 0 such
that

R#.x/ � Mt� R#.t�Ex/

for all x 2 V and 0 < t � T.

Proof In view of Corollary 3.10, it suffices to prove the statement

jtExj!v � Mt� jxj!v
for all x 2 V and 0 < t � T where M > 0 and ! is given by (17). But for any
0 < t � T and x 2 V,

jtExj!v D
dX

jD1

t1=.2mj�1/jxjj!j � t�
dX

jD1

T.1=.2mj�1/��/jxjj!j

from which the result follows. ut
Lemma 3.13 Let ˛ 2 I

dC be consistent with m. Then there exists positive constants
� and � such that 0 < � < 1 and for any T > 0 there exists M > 0 such that

jxj˛v � Mt� .R#.t�Ex//�

for all x 2 V and 0 < t � T.

Proof By an appeal to Corollary 3.10 and Lemma 3.12,

jxj!v � Mt� R#.t�Ex/

for all x 2 V and 0 < t � T. Since ˛ is consistent with m, ˛ D a�1! where
a is that of Definition 3.5, the desired inequality follows by setting � D �=a and
� D 1=a. Because ˛ 2 I

dC, it is necessary that a 	 2mmin=.2mmin � 1/ whence
0 < � � .2mmin � 1/=.2mmin.2mmax � 1// < 1: ut

The following corollary is an immediate application of Lemma 3.13.
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Corollary 3.14 Let f W V ! C be v-Hölder continuous with exponent ˛ 2 I
dC and

suppose that ˛ is consistent with m. Then there exist positive constants � and � such
that 0 < � < 1 and, for any T > 0, there exists M > 0 such that

j f .x/ � f .y/j � Mt� .R#.t�E//�

for all x; y 2 V and 0 < t � T.

4 On .2m; v/-Positive-Semi-Elliptic Operators

In this section, we introduce a class of variable-coefficient operators on V whose
heat equations are studied in the next section. These operators, in view of Proposi-
tion 2.5, generalize the class of positive-homogeneous operators. Fix a basis v of V,
m 2 N

dC and, in the notation of the previous section, consider a differential operator
H of the form

H D
X

jˇWmj�2

aˇ.x/Dˇ
v D

X

jˇWmjD2

aˇ.x/Dˇ
v C

X

jˇWmj<2

aˇ.x/Dˇ
v

WD Hp C Hl

where the coefficients aˇ W V ! C are bounded functions. The symbol of H, P W
V � V

� ! C, is defined by

P.y; �/ D
X

jˇWmj�2

aˇ.y/�ˇ D
X

jˇWmjD2

aˇ.y/�ˇ C
X

jˇWmj<2

aˇ.y/�ˇ

WD Pp.y; �/ C Pl.y; �/:

for y 2 V and � 2 V
�. We shall call Hp the principal part of H and correspondingly,

Pp is its principal symbol. Let’s also define R W V� ! R by

R.�/ D RePp.0; �/ (20)

for � 2 V
�. At times, we will freeze the coefficients of H and Hp at a point y 2 V

and consider the constant-coefficient operators they define, namely H.y/ and Hp.y/

(defined in the obvious way). We note that, for each y 2 V, Hp.y/ is homogeneous
with respect to the one-parameter group fıE

t gt>0 where E D E2m
v 2 Gl.V/ is

defined by (5). That is, Hp is homogeneous with respect to the same one-parameter
group of dilations at each point in space. This also allows us to uniquely define the
homogeneous order of H by


H D trE D .2m1/
�1 C .2m2/

�1 C � � � C .2md/�1: (21)
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We remark that this is consistent with our definition of homogeneous-order for
constant-coefficient operators and we remind the reader that this notion differs from
the usual order a partial differential operator (see the discussion surrounding (10)).
As in the constant-coefficient setting, Hp.y/ is not necessarily homogeneous with
respect to a unique group of dilations, i.e., it is possible that Exp.Hp.y// contains
members of Gl.V/ distinct from E. However, we shall henceforth only work with
the endomorphism E, defined above, for worrying about this non-uniqueness of
dilations does not aid our understanding nor will it sharpen our results. Let us further
observe that, for each y 2 V, Pp.y; �/ and R are homogeneouswith respect to ftE�gt>0

where E� 2 Gl.V�/.

Definition 4.1 The operator H is called .2m; v/-positive-semi-elliptic if for all
y 2 V, RePp.y; �/ is a positive-definite polynomial. H is called uniformly .2m; v/-
positive-semi-elliptic if it is .2m; v/-positive-semi-elliptic and there exists ı > 0 for
which

RePp.y; �/ 	 ıR.�/

for all y 2 V and � 2 V
�. When the context is clear, we will simply say that H is

positive-semi-elliptic and uniformly positive-semi-elliptic respectively.
In light of the above definition, a semi-elliptic operator H is one that, at every

point y 2 V, its frozen-coefficient principal part Hp.y/, is a constant-coefficient
positive-homogeneous operator which is homogeneous with respect to the same
one-parameter group of dilations on V. A uniformly positive-semi-elliptic operator
is one that is semi-elliptic and is uniformly comparable to a constant-coefficient
positive-homogeneous operator, namely Hp.0/. In this way, positive-homogeneous
operators take a central role in this theory.

Remark 4 In view of Proposition 2.5, the definition of R via (20) agrees with that
we have given for constant-coefficient positive-homogeneous operators.

Remark 5 For an .2m; v/-positive-semi-elliptic operator H, uniform semi-
ellipticity can be formulated in terms of RePp.y0; �/ for any y0 2 V; such a
notion is equivalent in view of Proposition 3.2.

5 The Heat Equation

For a uniformly positive-semi-elliptic operator H, we are interested in constructing
a fundamental solution to the heat equation,

.@t C H/u D 0 (22)
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on the cylinder Œ0; T� � V; here and throughout T > 0 is arbitrary but fixed. By
definition, a fundamental solution to (22) on Œ0; T� �V is a function Z W .0; T� �V�
V ! C satisfying the following two properties:

1. For each y 2 V, Z.�; �; y/ is .2m; v/-regular on .0; T/ � V and satisfies (22).
2. For each f 2 Cb.V/,

lim
t#0

Z

V

Z.t; x; y/f .y/dy D f .x/

for all x 2 V.

Given a fundamental solution Z to (22), one can easily solve the Cauchy problem:
Given f 2 Cb.V/, find u.t; x/ satisfying

(
.@t C H/u D 0 on .0; T/ � V

u.0; x/ D f .x/ for x 2 V:

This is, of course, solved by putting

u.t; x/ D
Z

V

Z.t; x; y/f .y/ dy

for x 2 V and 0 < t � T and interpreting u.0; x/ as that defined by the limit of
u.t; x/ as t # 0. The remainder of this paper is essentially dedicated to establishing
the following result:

Theorem 5.1 Let H be uniformly .2m; v/-positive-semi-elliptic with bounded v-
Hölder continuous coefficients. Let R and 
H be defined by (20) and (21) respec-
tively and denote by R# the Legendre-Fenchel transform of R. Then, for any T > 0,
there exists a fundamental solution Z W .0; T� � V � V ! C to (22) on Œ0; T� � V

such that, for some positive constants C and M,

jZ.t; x; y/j � C

t
H
exp

�
�tMR#

�x � y

t

��
(23)

for x; y 2 V and 0 < t � T.
We remark that, by definition, the fundamental solution Z given by Theorem 5.1

is .2m; v/-regular. Thus Z is necessarily continuously differentiable in t and has
continuous spatial derivatives of all orders ˇ such that jˇ W mj � 2.

As we previouslymentioned, the result above is implied by the work of Eidelman
for 2Eb-parabolic systems on R

d (where Eb D m) [26, 28]. Eidelman’s systems,
of the form (1), are slightly more general than we have considered here, for their
coefficients are also allowed to depend on t (but in a uniformly Hölder continuous
way). Admitting this t-dependence is a relatively straightforward matter and, for
simplicity of presentation, we have not included it (see Remark 6). In this slightly
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more general situation, stated in R
d and in which v D e is the standard Euclidean

basis, Theorem 2.2 (p. 79) [28] guarantees the existence of a fundamental solution
Z.t; x; y/ to (1), which has the same regularity appearing in Theorem 5.1 and satisfies

jZ.t; x; y/j � C

t1=.2m1/C1=.2m2/C���C1=.2md/
exp

 

�M
dX

kD1

jxk � ykj2mk=.2mk�1/

t1=.2mk�1/

!

(24)

for x; y 2 R
d and 0 < t � T where C and M are positive constants. By an appeal to

Corollary 3.10, we have R# � j � j!v and from this we see that the estimates (23) and
(24) are comparable.

In view of Corollary 3.8, the hypothesis of Theorem 5.1 concerning the coeffi-
cients of H immediately imply the following a priori stronger condition:

Hypothesis 5.2 There exists ˛ 2 I
dC which is consistent with m and for which the

coefficients of H are bounded and v-Hölder continuous on V of order ˛.

5.1 Levi’s Method

In this subsection, we construct a fundamental solution to (22) under only the
assumption that H, a uniformly .2m; v/-positive-semi-elliptic operator, satisfies
Hypothesis 5.2. Henceforth, all statements include Hypothesis 5.2 without explicit
mention. We follow the famous method of Levi, c.f., [40] as it was adopted for
parabolic systems in [27] and [30]. Although well-known, Levi’s method is lengthy
and tedious and we will break it into three steps. Let’s motivate these steps by first
discussing the heuristics of the method.

We start by considering the auxiliary equation

�
@t C

X

jˇWmjD2

aˇ.y/Dˇ
v

�
u D .@t C Hp.y//u D 0 (25)

where y 2 V is treated as a parameter. This is the so-called frozen-coefficient heat
equation. As one easily checks, for each y 2 V,

Gp.t; xI y/ WD
Z

V�

e�i�.x/e�tPp.y;�/d� .x 2 V; t > 0/

solves (25). By the uniform semi-ellipticity of H, it is clear that Gp.t; �I y/ 2 S.V/

for t > 0 and y 2 V. As we shall see, more is true: Gp is an approximate identity in
the sense that

lim
t#0

Z

V

Gp.t; x � yI y/f .y/ dy D f .x/



34 E. Randles and L. Saloff-Coste

for all f 2 Cb.V/. Thus, it is reasonable to seek a fundamental solution to (22) of
the form

Z.t; x; y/ D Gp.t; x � yI y/ C
Z t

0

Z

V

Gp.t � s; x � zI z/�.s; z; y/dzds

D Gp.t; x � yI y/ C W.t; x; y/ (26)

where � is to be chosen to ensure that the correction term W is .2m; v/-regular,
accounts for the fact that Gp solves (25) but not (22), and is “small enough” as
t ! 0 so that the approximate identity aspect of Z is inherited directly from Gp.

Assuming for the moment that W is sufficiently regular, let’s apply the heat
operator to (26) with the goal of finding an appropriate � to ensure that Z is a
solution to (22). Putting

K.t; x; y/ D �.@t C H/Gp.t; x � yI y/;

we have formally,

.@t C H/Z.t; x; y/ D �K.t; x; y/ C .@t C H/

Z t

0

Z

V

Gp.t � s; x � zI z/�.s; z; y/ dz ds

D �K.t; x; y/ C lim
s"t

Z

V

Gp.t � s; x � zI z/�.s; z; y/ dz

�
Z t

0

Z

V

�.@t C H/Gp.t � s; x � zI z/�.s; z; y/ dz ds

D �K.t; x; y/ C �.t; x; y/ �
Z t

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds (27)

where we havemade use of Leibniz’ rule and our assertion that Gp is an approximate
identity. Thus, for Z to satisfy (22), � must satisfy the integral equation

K.t; x; y/ D �.t; x; y/ �
Z t

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds

D �.t; x; y/ � L.�/.t; x; y/: (28)

Viewing L as a linear integral operator, (28) is the equation K D .I � L/� which has
the solution

� D
1X

nD0

LnK (29)

provided the series converges in an appropriate sense.
Taking the above as purely formal, our construction will proceed as follows:

We first establish estimates for Gp and show that Gp is an approximate identity;
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this is Step 1. In Step 2, we will define � by (29) and, after deducing some subtle
estimates, show that �’s defining series converges whence (28) is satisfied. Finally
in Step 3, we will make use of the estimates from Steps 1 and 2 to validate the
formal calculation made in (27). Everything will be then pieced together to show
that Z, defined by (26), is a fundamental solution to (22). Our entire construction
depends on obtaining precise estimates for Gp and for this we will rely heavily on
the homogeneity of Pp and the Legendre-Fenchel transform of R.

Remark 6 One can allow the coefficients of H to also depend on t in a uniformly
continuous way, and Levi’s method pushes though by instead taking Gp as the
solution to a frozen-coefficient initial value problem [26, 28].

Step 1: Estimates for Gp and Its Derivatives
The lemma below is a basic building block used in our construction of a fundamental
solution to (22) via Levi’s method and it makes essential use of the uniform semi-
ellipticity of H. We note however that the precise form of the constants obtained,
as they depend on k and ˇ, are more detailed than needed for the method to work.
Also, the partial differential operators Dˇ

v of the lemma are understood to act of the
x variable of Gp.t; xI y/.

Lemma 5.3 There exist positive constants M and C0 and, for each multi-index ˇ,
a positive constant Cˇ such that, for any k 2 N,

j@k
t Dˇ

v Gp.t; xI y/j � CˇCk
0kŠ

t
H CkCjˇW2mj exp
��tMR# .x=t/

�
(30)

for all x; y 2 V and t > 0.
Before proving the lemma, let us note that tR#.x=t/ D R#.t�Ex/ for all t > 0 and

x 2 V in view of Proposition 2.12. Thus the estimate (30) can be written equivalently
as

j@k
t Dˇ

v Gp.t; xI y/j � CˇCk
0kŠ

t
H CkCjˇW2mj exp.�MR#.t�Ex// (31)

for x; y 2 V and t > 0. We will henceforth use these forms interchangeably and
without explicit mention.

Proof Let us first observe that, for each x; y 2 V and t > 0,

@k
t Dˇ

v Gp.t; xI y/ D
Z

V�

.Pp.y; �//k�ˇe�i�.x/e�tPp.y;�/ d�

D
Z

V�

.Pp.y; t�E�

�//k.t�E�

�/ˇe�i�.t�Ex/e�Pp.y;�/t� trE d�

D t�
H �k�jˇW2mj
Z

V�

.Pp.y; �//k�ˇe�i�.t�Ex/e�Pp.y;�/d �
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where we have used the homogeneity of Pp with respect to ftE�g and the fact that

H D trE. Therefore

t
H CkCjˇW2mj.@k
t Dˇ

vGp.t; � I y//.tEx/ D
Z

V�

.Pp.y; �//k�ˇe�i�.x/e�Pp.y;�/d� (32)

for all x; y 2 V and t > 0. Thus, to establish (30) (equivalently (31)) it suffices to
estimate the right hand side of (32) which is independent of t.

The proof of the desired estimate requires making a complex change of variables
and for this reason we will work with the complexification of V�, whose members
are denoted by z D � � i for �;  2 V

�; this space is isomorphic to C
d. We claim

that there are positive constants C0; M1; M2 and, for each multi-index ˇ, a positive
constant Cˇ such that, for each k 2 N,

j.Pp.y; � � i//k.� � i/ˇe�Pp.y;��i/j � CˇCk
0kŠe�M1R.�/eM2R./ (33)

for all �;  2 V
� and y 2 V. Let us first observe that

Pp.y; � � i/ D Pp.y; �/ C
X

jˇWmjD2

X

�<ˇ

aˇ;� �� .�i/ˇ��

for all z;  2 V
� and y 2 V, where aˇ;� are bounded functions of y arising from the

coefficients of H and the coefficients of the multinomial expansion. By virtue of the
uniform semi-ellipticity of H and the boundedness of the coefficients, we have

�RePp.y; � � i/ � �ıR.�/ C C
X

jˇWmjD2

X

�<ˇ

j��ˇ�� j

for all �;  2 V
� and y 2 V where C is a positive constant. By applying Lemma 3.4

to each term j��ˇ�� j in the summation, we can find a positive constant M for which
the entire summation is bounded above by ı=2R.�/ C MR./ for all �;  2 V

�. By
setting M1 D ı=6, we have

� RePp.y; � � i/ � �3M1R.�/ C MR./ (34)

for all �;  2 V
� and y 2 V. By analogous reasoning (making use of item 1 of

Lemma 3.4), there exists a positive constant C for which

jPp.y; � � i/j � C.R.�/ C R.//

for all �;  2 V
� and y 2 V. Thus, for any k 2 N,

jPp.y; � � i/jk � CkkŠ

Mk
1

.M1.R.�/ C R.///k

kŠ
� Ck

0kŠeM1.R.�/CR.// (35)



Positive-Homogeneous Operators, Heat Kernel Estimates and the Legendre-. . . 37

for all �;  2 V
� and y 2 V where C0 D C=M1. Finally, for each multi-index ˇ,

another application of Lemma 3.4 gives C0 > 0 for which

j.� � i/ˇj � j�ˇj C jˇj C
X

0<�<ˇ

c�;ˇj�� ˇ�� j � C0 ..R.�/ C R.//n C 1/

for all �;  2 V
� where n 2 N has been chosen to satisfy jˇ W 2nmj < 1.

Consequently, there is a positive constant Cˇ for which

j.� � i/ˇj � CˇeM1.R.�/CR.// (36)

for all �;  2 V
�. Upon combining (34)–(36), we obtain the inequality

ˇ
ˇPp.y; � � i/k.� � i/ˇe�Pp.y;��i/

ˇ
ˇ � CˇCk

0kŠe�M1R.�/C.MC2M1/R./

which holds for all �;  2 V
� and y 2 V. Upon paying careful attention to the way

in which our constants were chosen, we observe the claim is established by setting
M2 D M C 2M1.

From the claim above, it follows that, for any  2 V
� and y 2 V, the following

change of coordinates by means of a Cd contour integral is justified:

Z

V�

.Pp.y; �//k�ˇe�i�.x/e�Pp.y;�/ d� D
Z

�2V�

.Pp.y; � � i/k.� � i/ˇe�i.��i/.x/e�Pp.y;��i/ d�

D e�.x/

Z

�2V�

.Pp.y; � � i/k.� � i/ˇe�i�.x/e�Pp.y;��i/ d�:

Thus, by virtue of the estimate (33),

ˇ
ˇ
ˇ
ˇ

Z

V�

.Pp.y; �//k�ˇe�i�.x/e�Pp.y;�/ d�

ˇ
ˇ
ˇ
ˇ � CˇCk

0kŠe�.x/eM2R./

Z

V�

e�M1R.�/ d�

� CˇCk
0kŠe�..x/�M2R.//

for all x; y 2 V and  2 V
� where we have absorbed the integral of exp.�M1R.�//

into Cˇ . Upon minimizing with respect to  2 V
�, we have

ˇ
ˇ
ˇ
ˇ

Z

V�

.Pp.y; �//k�ˇe�i�.x/e�Pp.y;�/d�

ˇ
ˇ
ˇ
ˇ � CˇCk

0kŠe�.M2R/#.x/ � CˇCk
0kŠe�MR#.x/

(37)

for all x and y 2 V because

�.M2R/#.x/ D � sup


f.x/ � M2R./g D inf


f�..x/ � M2R.//gI
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in this we see the natural appearance of the Legendre-Fenchel transform. The
replacement of .M2R/#.x/ by MR#.x/ is done using Corollary 3.3 and, as required,
the constant M is independent of k and ˇ. Upon combining (32) and (37), we obtain
the desired estimate (30). ut
As a simple corollary to the lemma, we obtain Proposition 2.11.

Proof of Proposition 2.11 Given a positive-homogeneous operator ƒ, we invoke
Proposition 2.5 to obtain v and m for which ƒ D P

jˇWmjD2 aˇDˇ
v . In other words,

ƒ is an .2m; v/-positive-semi-elliptic operator which consists only of its principal
part. Consequently, the heat kernel Kƒ satisfies Kt

ƒ.x/ D Gp.t; xI 0/ for all x 2 V

and t > 0 and so we immediately obtain the estimate (13) from the lemma. ut
Making use of Hypothesis 5.2, a similar argument to that given in the proof of

Lemma 5.3 yields the following lemma.

Lemma 5.4 There is a positive constant M and, to each multi-index ˇ, a positive
constant Cˇ such that

jDˇ
v ŒGp.t; xI y C h/ � Gp.t; xI y/�j � Cˇt�.
H CjˇW2mj/jhj˛v exp.�tMR#.x=t//

for all t > 0, x; y; h 2 V. Here, in view of Hypothesis 5.2, ˛ is the v-Hölder
continuity exponent for the coefficients of H.

Lemma 5.5 Suppose that g 2 Cb..t0; T� � V/ where 0 � t0 < T < 1. Then, on
any compact set Q � .t0; T� � V,

Z

V

Gp.t; x � yI y/g.s � t; y/ dy ! g.s; x/

uniformly on Q as t ! 0. In particular, for any f 2 Cb.V/,

Z

V

Gp.t; x � yI y/f .y/ dy ! f .x/

uniformly on all compact subsets of V as t ! 0.

Proof Let Q be a compact subset of .t0; T� � V and write

Z

V

Gp.t; x � yI y/g.s � t; y/ dy

D
Z

V

Gp.t; x � yI x/g.s � t; y/ dy C
Z

V

ŒGp.t; x � yI y/ � Gp.t; x � yI x/�g.s � t; y/ dy

WD I.1/
t .s; x/ C I.2/

t .s; x/:
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Let � > 0 and, in view of Corollary 3.11, let K be a compact subset of V for which

Z

VnK
exp.�MR#.z// dz < �

where the constant M is that given in (30) of Lemma 5.3. Using the continuity of g,
we have for sufficiently small t > 0,

sup
.s;x/2Q

z2K

jg.s � t; x � tEz/ � g.s; x/j < �:

We note that, for any t > 0 and x 2 V,

Z

V

Gp.t; x � yI x/ dy D e�tPp.x;�/
ˇ
ˇ
ˇ
�D0

D 1:

Appealing to Lemma 5.3 we have, for any .s; x/ 2 Q,

jI.1/
t .s; x/ � g.s; x/j �

ˇ
ˇ
ˇ

Z

V

Gp.t; x � yI x/.g.s � t; y/ � g.s; x// dy
ˇ
ˇ
ˇ

�
Z

V

jGp.1; zI x/.g.s � t; x � tEz/ � g.s; x//j dz

� 2kgk
1

C

Z

VnK
exp.�MR#.z// dz

CC

Z

K
exp.�MR#.z//j.g.s � t; x � tEz/ � g.s; x//j dz

� �C
�
2kgk

1

C ke�MR#k1

�
I

here we have made the change of variables: y 7! tE.x�y/ and used the homogeneity
of Pp to see that t
H Gp.t; tEzI x/ D Gp.1; zI x/. Therefore I.1/

t .s; x/ ! g.s; x/

uniformly on Q as t ! 0.
Let us now consider I.2/. With the help of Lemmas 3.13 and 5.4 and by making

similar arguments to those above we have

jI.2/
t .s; x/j � Ckgk1

Z

V

t�
H jx � yj˛v exp.�MR#.t�E.x � y// dy

� kgk1Ct�
Z

V

t� trE.R#.t�E.x � y///� exp.�MR#.t�E.x � y/// dy

� kgk1Ct�
Z

V

.R#.x//� exp.�MR#.z// dz � kgk1C0t�

for all s 2 .t0; T�, 0 < t < s � t0 and x 2 V; here 0 < � < 1. Consequently,
I.2/
t .s; x/ ! 0 uniformly on Q as t ! 0 and the lemma is proved. ut
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Combining the results of Lemmas 5.3 and 5.5 yields at once:

Corollary 5.6 For each y 2 V, Gp.�; � � yI y/ is a fundamental solution to (25).

Step 2: Construction of � and the Integral Equation
For t > 0 and x; y 2 V, put

K.t; x; y/ D �.@t C H/Gp.t; x � yI y/

D �
Hp.y/ � H

�
Gp.t; x � yI y/

D
Z

V�

e�i�.x�y/
�
Pp.y; �/ � P.x; �/

�
e�tPp.y;�/ d�

and iteratively define

KnC1.t; x; y/ D
Z t

0

Z

V

K1.t � s; x; z/Kn.s; z; y/ dzds

where K1 D K. In the sense of (29), note that KnC1 D LnK.
We claim that for some 0 < � < 1 and positive constants C and M,

jK.t; x; y/j � Ct�.
H C1��/ exp.�MR#.t�E.x � y/// (38)

for all x; y 2 V and 0 < t � T. Indeed, observe that

jK.t; x; y/j �
X

jˇWmjD2

jaˇ.y/ � aˇ.x/jjDˇ
vGp.t; x � yI y/j C C

X

jˇWmj<2

jDˇ
vGp.t; x � yI y/j

for all x; y 2 V and t > 0 where we have used the fact that the coefficients of H are
bounded. In view of Lemma 5.3, we have

jK.t; x; y/j �
X

jˇWmjD2

jaˇ.y/ � aˇ.x/jCt�.
H C1/ exp.�MR#.t�E.x � y///

CCt�.
H C	/ exp.�MR#.t�E.x � y///

for all x; y 2 V and 0 < t � T where

	 D maxfjˇ W 2mj W jˇ W mj ¤ 2 and aˇ ¤ 0g < 1:

Using Hypothesis 5.2, an appeal to Corollary 3.14 gives 0 < � < 1 and � > 0 for
which

jK.t; x; y/j � Ct��.
H C1/.R#.t�E.x � y///� exp.�MR#.t�E.x � y///

CCt�.
H C	/ exp.�MR#.t�E.x � y///
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for all x; y 2 V and 0 < t � T. Our claim is then justified by setting

� D maxf�; 1 � 	g (39)

and adjusting the constants C and M appropriately to absorb the prefactor
.R#.t�E.x � y///� into the exponent. It should be noted that the constant � is
inherently dependent on H. For it is clear that 	 depends on H. The constants � and
� are specified in Lemma 3.13 and are defined in terms of the Hölder exponent of
the coefficients of H and the weightm.

Taking cues from our heuristic discussion, we will soon form a series whose
summands are the functions Kn for n 	 1: In order to talk about the convergence
of this series, our next task is to estimate these functions and in doing this we will
observe two separate behaviors: a finite number of terms will exhibit singularities
in t at the origin; the remainder of the terms will be absent of such singularities and
will be estimated with the help of the Gamma function. We first address the terms
with the singularities.

Lemma 5.7 Let 0 < � < 1 be given by (39) and M > 0 be any constant for which
(38) is satisfied. For any positive natural number n such that �.n � 1/ � 
H C 1

and � > 0 for which �n < 1, there is a constant Cn.�/ 	 1 such that

jKn.t; x; y/j � Cn.�/t�.
H C1�n�/ exp.�M.1 � �n/R#.t�E.x � y///

for all x; y 2 V and 0 < t � T.

Proof In view of (38), it is clear that the estimate holds when n D 1. Let us assume
the estimate holds for n 	 1 such that �n < 1 C 
H and � > 0 for which �n <

�.n C 1/ < 1. Then

jKnC1.t; x; y/j �
Z t

0

Z

V

C1.�/.t � s/�.
HC1��/Cn.�/s�.
H C1�n�/

� exp.�MR#..t � s/�E.x � z/// exp.�M�;nR#.s�E.z � y/// dz ds

(40)

for x; y 2 V and 0 < t � T where we have set M�;n D M.1 � �n/. Observe that

R#.t�E.x � y// D supf�.x � y/ � tR.�/g
D supf�.x � z/ � .t � s/R.�/ C �.z � y/ � sR.�/g
� R#..t � s/�E.x � z// C R#.s�E.z � y// (41)
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for all x; y; z 2 V and 0 < s � t. Using the fact that 0 < �n < �.n C 1/ < 1, (41)
guarantees that

.1 � �.n C 1//R#.t�E.x � y// C �
�
R#..t � s/�E.x � z// C R#.s�E.z � y//

�

� .1 � �.n C 1//
�
R#..t � s/�E.x � z// C R#.s�E.z � y//

�

C�
�
R#..t � s/�E.x � z// C R#.s�E.z � y//

�

� .1 � �n/R#..t � s/�E.x � z// C .1 � �n/R#.s�E.z � y//

� R#..t � s/�E.x � z// C .1 � �n/R#.s�E.z � y//

or equivalently

�MR#..t � s/�E.x � z// � M�;nR#.s�E.z � y//

� �M�;nC1R#.t�E.x � y// � �M
�
R#..t � s/�E.x � z// C R#.s�E.z � y//

�
(42)

for all x; y; z 2 V and 0 < s � t. Combining (40) and (42) yields

jKnC1.t; x; y/j

� C1.�/Cn.�/ exp.�M�;nC1R#.t�E.x � y///

Z t

0

Z

V

.t � s/�.
H C1��/s�.
HC1�n�/

� exp.��M.R#..t � s/�E.x � z// C R#.s�E.z � y/// dz ds

� C1.�/Cn.�/ exp.�M�;nC1R#.t�E.x � y///

�
h Z t=2

0

Z

V

.t � s/�.
HC1��/s�.
H C1�n�/ � exp.��MR#.s�E.z � y/// dz ds

C
Z t

t=2

Z

V

.t � s/�.
H C1��/s�.
HC1�n�/ exp.��MR#..t � s/�E.x � z/// dz ds
i

(43)

for all x; y 2 V and 0 < t � T, where we have used the fact that R# is non-negative.
Let us focus our attention on the first term above. For 0 � s � t=2,

.t � s/�.
HC1��/s�.
HC1�n�/ � .t=2/�.
HC1��/s�.
H C1�n�/

because 
H C 1 � � > 0. Consequently,

Z t=2

0

Z

V

.t � s/�.
H C1��/s�.
H C1�n�/ exp.��MR#.s�E.z � y/// dz ds

� .t=2/�.
HC1��/

Z t=2

0

s�.
H C1�n�/

Z

V

exp.��MR#.s�E.z � y/// dz ds
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� .t=2/�.
HC1��/

Z t=2

0

sn��1

Z

V

exp.��MR#.z// dz ds

� t�.
H C1�.nC1/�/ 2.
HC1�.nC1/�/

n�

Z

V

exp.��MR#.z// dz ds (44)

for all y 2 V and t > 0. We note that the second inequality is justified by making
the change of variables z 7! s�E.z � y/ (thus canceling the term s� trE D s�
H in
the integral over s) and the final inequality is valid because n� � 1 > � � 1 > �1.
By similar reasoning, we obtain

Z t

t=2

Z

V

.t � s/�.
HC1�n�/s�.
HC1��/ exp.��MR#..t � s/�E.x � z/// dz ds

� t�.
HC1�.nC1/�/ 2.
HC1�.nC1/�/

�

Z

V

exp.��MR#.z// dz ds (45)

for all x 2 V and t > 0. Upon combining the estimates (43), (44) and (45), we have

jKnC1.t; x; y/j � CnC1.�/t�.
H C1�.nC1/�/ exp.�M�;nC1R#.t�E.x � y//

for all x; y 2 V and 0 < t � T where we have put

CnC1.�/ D C1.�/Cn.�/
n C 1

n�
2
HC.1�.nC1/�/

Z

V

exp.��MR#.z// dz

and made use of Corollary 3.11. ut
Remark 7 The estimate (41) is an important one and will be used again. In the
context of elliptic operators, i.e., whereR#.x/ D Cmjxj2m=.2m�1/, the analogous result
is captured in Lemma 5.1 of [27]. It is interesting to note that Eidelman worked
somewhat harder to prove it. Perhaps this is because the appearance of the Legendre-
Fenchel transform wasn’t noticed.
It is clear from the previous lemma that for sufficiently large n, Kn is bounded by a
positive power of t. The first such n is Nn WD d��1.trE C 1/e. In view of the previous
lemma,

jKNn.t; x; y/j � CNn.�/ exp.�M.1 � � Nn/R#.t�E.x � y///

for all x; y 2 V and 0 < t � T where we have adjusted CNn.�/ to account for this
positive power of t. Let ı < 1=2 and set

� D ı

Nn ; M1 D M.1 � ı/ and C0 D max
1�n�Nn

Cn.�/:
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Upon combining preceding estimate with the estimates (38) and (41), we have

jK
NnC1.t; x; y/j

� C2
0

Z t

0

Z

V

.t � s/�.
HC.1��//

� exp.�MR#..t � s/�E.x � z// exp.�M.1 � � Nn/R#.s�E.z � y/// ds dz

� C2
0 exp.�M1R#.t�E.x � y///

Z t

0

Z

V

.t � s/�.
H C.1��// exp.�CıR#..t � s/�E.z/// dz ds

� C0.C0F/
t�

�
exp.�M1R#.t�E.x � y///

for all x; y 2 V and 0 < t � T where

F D
Z

V

exp.�MıR#.z// dz < 1:

Let us take this a little further.

Lemma 5.8 For every k 2 NC,

jKNnCk.t; x; y/j � C0

�.�/

.C0F�.�//k

kŠ
t�k exp.�M1R#.t�E.x � y/// (46)

for all x; y 2 V and 0 < t � T. Here �.�/ denotes the Gamma function.

Proof The Euler-Beta function B.�; �/ satisfies the well-known identity B.a; b/ D
�.a/�.b/=�.a C b/. Using this identity, one quickly obtains the estimate

k�1Y

jD1

B.�; 1 C j�/ D �.�/k�1

�.1 C k�/
� �.�/k�1

kŠ
:

It therefore suffices to prove that

jKNnCk.t; x; y/j � C0.C0F/k
k�1Y

jD0

B.�; 1 C j�/tk� exp.�M1R#.t�E.x � y/// (47)

for all x; y 2 V and 0 < t � T.
We first note that B.�; 1/ D ��1 and so, for k D 1, (47) follows directly from the

calculation proceeding the lemma. We shall induct on k. By another application of
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(38) and (41), we have

JkC1.t; x; y/ WD
h
C2

0.C0F/k
k�1Y

jD0

B.�; 1 C j�/
i

�1jK
NnCkC1.t; x; y/j

�
Z t

0

Z

V

.t � s/�.
HC.1��//s�k� exp.�MR#..t � s/�E.x � z///

� exp.�M1R#.s�E.z � y/// dz ds

� exp.�M1R#.t�E.x � y///

�
Z t

0

Z

V

.t � s/�.
H C.1��//s�k� exp.�MıR#..t � s/�E.x � z/// dz ds

for all x; y 2 V and 0 < t � T. Upon making the changes of variables z !
.t � s/�E.x � z/ followed by s ! s=t, we have

JkC1.t; x; y/ � exp.�M1R#.t�E.x � y///F
Z 1

0

.t � st/��1.st/k�t ds

� exp.�M1R#.t�E.x � y///Ft.kC1/�B.�; 1 C k�/

for all x; y 2 V and 0 < t � T. Therefore (47) holds for k C 1 as required. ut
Proposition 5.9 Let � W .0; T� � V � V ! C be defined by

� D
1X

nD1

Kn:

This series converges uniformly for x; y 2 V and t0 � t � T where t0 is any positive
constant. There exists C 	 1 for which

j�.t; x; y/j � C

t
H C.1��/
exp.�M1R#.t�E.x � y/// (48)

for all x; y 2 V and 0 < t � T where M1 and � are as in the previous lemmas.
Moreover, the identity

�.t; x; y/ D K.t; x; y/ C
Z t

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds (49)

holds for all x; y 2 V and 0 < t � T.
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Proof Using Lemmas 5.7 and 5.8 we see that

1X

kD1

jKn.t; x; y/j � C0

h NnX

nD1

t�.
H C.1�n�//

C 1

�.�/

1X

kD1

.C0F�.�//k

kŠ
tk�
i
exp.�M1R#.t�E.x � y///

for all x; y 2 V and 0 < t � T from which (48) and our assertion concerning
uniform convergence follow. A similar calculation and an application of Tonelli’s
theorem justify the following use of Fubini’s theorem: For x; y 2 V and 0 < t � T,

Z t

0

Z

V

K.t � s; x; z/�.s; z; y/ ds dz D
1X

nD1

Z t

0

Z

V

K.t � s; x; z/Kn.s; z; y/ dz ds

D
1X

nD1

KnC1.t; z; y/ D �.t; x; y/ � K.t; x; y/

as desired. ut
The following Hölder continuity estimate for � is obtained by first showing the
analogous estimate for K and then deducing the desired result from the integral
formula (49). As the proof is similar in character to those of the preceding two
lemmas, we omit it. A full proof can be found in [28, p. 80]. We also note here that
the result is stronger than is required for our purposes (see its use in the proof of
Lemma 5.12). All that is really required is that �.�; �; y/ satisfies the hypotheses (for
f ) in Lemma 5.11 for each y 2 V.

Lemma 5.10 There exists ˛ 2 I
dC which is consistent with m, 0 < 	 < 1 and C 	 1

such that

j�.t; x C h; y/ � �.t; x; y/j � C

t
H C.1�	/
jhj˛v exp.�M1R#.t�E.x � y///

for all x; y; h 2 V and 0 < t � T.

Step 3: Verifying That Z Is a Fundamental Solution to (22)

Lemma 5.11 Let ˛ 2 I
dC be consistent with m and, for t0 > 0, let f W Œt0; T� �

V ! C be bounded and continuous. Moreover, suppose that f is uniformly v-Hölder
continuous in x on Œt0; T� � V of order ˛, by which we mean that there is a constant
C > 0 such that

sup
t2Œt0;T�

j f .t; x/ � f .t; y/j � Cjx � yj˛v
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for all x; y 2 V. Then u W Œt0; T� � V ! C defined by

u.t; x/ D
Z t

t0

Z

V

Gp.t � s; x � zI z/f .s; z/ dz ds

is .2m; v/-regular on .t0; T/ � V. Moreover,

@tu.t; x/ D f .t; x/ C lim
h#0

Z t�h

t0

Z

V

@tGp.t � s; x � zI z/f .s; z/ dz ds (50)

and for any ˇ such that jˇ W mj � 2, we have

Dˇ
v u.t; x/ D lim

h#0

Z t�h

t0

Z

V

Dˇ
v Gp.t � s; x � zI z/f .s; z/ dz ds (51)

for x 2 V and t0 < t < T.
Before starting the proof, let us observe that, for each multi-index ˇ,
Dˇ

vGp.t � s; x � zI z/f .s; z/ is locally uniformly (in x) dominated by the function

hˇ.s; zI t; x/ WD C.t � s/�.
HCjˇW2mj/ exp.�MR#..t � s/�E.x � z///

for x; z 2 V and t0 � s � t � T, where the constant C > 0 depends on ˇ, k f k1 and
the bound for Dˇ

v Gp yielded by Proposition 2.11 which can be seen to hold locally
uniformly by an argument analogous to that given in the proof of Proposition 8.10
of [44]. We observe that

Z t

t0

Z

V

hˇ.s; zI t; x/ dz ds D C
Z t

t0

Z

V

.t � s/�.
HCjˇW2mj/ exp.�MR#..t � s/�E.x � z/// dz ds

� C
Z t

t0

Z

V

.t � s/�jˇW2mj exp.�MR#.z// dz ds

� C
Z t

t0

.t � s/�jˇW2mj ds

for all t0 � t � T and x 2 V. When jˇ W mj < 2,

Z t

t0

.t � s/�jˇW2mj ds (52)

converges and so, in view of the fact that Dˇ
v Gp.t � s; x � zI z/f .s; z/ is locally

uniformly dominated by hˇ, we may conclude that

Dˇ
vu.t; x/ D

Z t

t0

Z

V

Dˇ
v Gp.t � s; z � xI z/f .s; z/ dz ds
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for all t0 � t � T and x 2 V. From this it follows that Dˇ
v u.t; x/ is continuous on

.t0; T/ �V and moreover (51) holds for such an ˇ in view of Lebesgue’s dominated
convergence theorem. When jˇ W mj D 2, (52) does not converge and hence the
above argument fails. The main issue in the proof below centers around using v-
Hölder continuity to remove this obstacle.

Proof Our argument proceeds in two steps. The fist step deals with the spatial
derivatives of u. Therein, we prove the asserted x-regularity and show that the
formula (51) holds. In fact, we only need to consider the case where jˇ W mj D 2;
the case where jˇ W mj < 2 was already treated in the paragraph proceeding the
proof. In the second step, we address the time derivative of u. As we will see, (50)
and the asserted t-regularity are partial consequences of the results proved in Step
1; this is, in part, due to the fact that the time derivative of Gp can be exchanged for
spatial derivatives. The regularity shown in the two steps together will automatically
ensure that u is .2m; v/-regular on .t0; T/ � V.

Step 1 Let ˇ be such that jˇ W mj D 2. For h > 0 write

uh.t; x/ D
Z t�h

t0

Z

V

Gp.t � s; x � zI z/f .s; z/ dz ds

and observe that

Dˇ
vuh.t; x/ D

Z t�h

t0

Z

V

Dˇ
v Gp.t � s; x � zI z/f .s; z/ dz ds

for all t0 � t � h < t � T and x 2 V; it is clear that Dˇ
v uh.t; x/ is continuous in t

and x. The fact that we can differentiate under the integral sign is justified because t
has been replaced by t � h and hence the singularity in (52) is avoided in the upper
limit. We will show that Dˇ

vuh.t; x/ converges uniformly on all compact subsets of
.t0; T/ � V as h ! 0. This, of course, guarantees that Dˇ

vu.x; t/ exists, satisfies (51)
and is continuous on .t0; T/ � V. To this end, let us write

Dˇ
v uh.t; x/ D

Z t�h

t0

Z

V

Dˇ
v Gp.t � s; x � zI z/. f .s; z/ � f .s; x// dz ds

C
Z t�h

t0

Z

V

Dˇ
vGp.t � s; x � zI z/f .s; x/ dz ds

DW I.1/
h .t; x/ C I.2/

h .t; x/:

Using our hypotheses, Corollary 3.8 and Lemma 3.13, for some 0 < � < 1 and
� > 0, there is M > 0 such that

j f .s; z/ � f .s; x/j � C.t � s/� .R#..t � s/�E.x � z///�
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for all x; z 2 V, t 2 Œt0; T� and s 2 Œt0; t�. In view of the preceding estimate and
Lemma 5.3, we have

jDˇ
v Gp.t � s; x � zI z/. f .s; z/ � f .s; x//j

� C.t � s/�.
HC1/.t � s/� .R#..t � s/�E.x � z///� exp.�MR#..t � s/�E.x � z///

� C.t � s/�.
HC.1��// exp.�MR#.t � s/�E.x � z//

for all x; z 2 V, t 2 Œt0; T� and s 2 Œt0; t�, where C and M are positive constants. We
then observe that

Z t

t0

Z

V

jDˇ
v Gp.t � s; x � zI z/. f .s; z/ � f .s; x//j dz ds

� C
Z t

t0

.t � s/�.
H C.1��//

Z

V

exp.�MR#..t � s/�E.x � z/// dz ds

� C
Z t

t0

.t � s/��1

Z

V

exp.�MR#.z// dz ds

� C.t � t0/�

�

Z

V

exp.�MR#.z// dz

� C.T � t0/�

�

Z

V

exp.�MR#.z// dz < 1

for all t 2 Œt0; T� and x 2 V, where the validity of the second inequality is seen
by making the change of variables z 7! .t � s/�E.x � z/ and canceling the term
.t � s/�
H D .t � s/� trE. Consequently,

I.1/.t; x/ WD
Z t

t0

Z

V

Dˇ
vGp.t � s; x � zI z/. f .s; z/ � f .s; x// dz ds

exists for each t 2 Œt0; T� and x 2 V. Moreover, for all t0 � t � h < t � T and x 2 V,

jI.1/.t; x/ � I.1/
h .t; x/j �

Z t

t�h

Z

V

jDˇ
vGp.t � s; x � zI z/. f .s; z/ � f .s; x//j dz ds

� C
Z t

t�h

Z

V

.t � s/��1 exp.�MR#.z// dz ds � Ch� :

From this we see that limh#0 I.1/
h .t; x/ converges uniformly on all compact subsets of

.t0; T/ � V.
We claim that for some 0 < � < 1, there exists C > 0 such that

ˇ
ˇ
ˇ

Z

V

Dˇ
vGp.t � s; x � zI z/ dz

ˇ
ˇ
ˇ � C.t � s/�.1��/ (53)
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for all x 2 V and s 2 Œt0; t�. Indeed,

Z

V

Dˇ
v Gp.t � s; x � zI z/ dz

D
Z

V

Dˇ
v ŒGp.t � s; x � zI z/ � Gp.t � s; x � zI y/�

ˇ
ˇ
yDx dz C �

Dˇ
v

Z

V

Gp.t � s; x � zI y/ dz
	ˇ
ˇ
yDx:

The first term above is estimated with the help of Lemma 5.4 and by making
arguments analogous to those in the previous paragraph; the appearance of � follows
from an obvious application of Lemma 3.13. This term is bounded by C.t�s/�.1��/ .
The second term is clearly zero and so our claim is justified.

By essentially repeating the arguments made for I.1/
h and making use of (53), we

see that

lim
h#0

I.2/
h .t; x/ D I.2/.t; x/ DW

Z t

t0

Z

V

Dˇ
v Gp.t � s; x � zI z/f .s; x/ dz ds

where this limit converges uniformly on all compact subsets of .t0; T/ � V.

Step 2 It follows from Leibnitz’ rule that

@tuh.x; t/ D
Z

V

Gp.h; x � zI z/f .t � h; z/ dz C
Z t�h

t0

Z

V

@tGp.t � s; x � zI z/f .s; z/ dz ds

DW J.1/
h .t; x/ C J.2/

h .t; x/

for all t0 < t�h < t < T and x 2 V. Now, in view of Lemma 5.5 and our hypotheses
concerning f ,

lim
h#0

J.1/
h .t; x/ D f .t; x/

where this limit converges uniformly on all compact subsets of .t0; T/ � V.
Using the fact that @tGp.t � s; x � zI z/ D �Hp.z/Gp.t � s; x � zI z/, we see that

lim
h#0

J.2/
h .t; x/ D lim

h#0

Z t�h

0

Z

V

�
�

X

jˇWmjD2

aˇ.z/Dˇ
v

�
Gp.t � s; x � zI z/f .s; z/ dz ds

D �
X

jˇWmjD2

lim
h#0

Z t�h

0

Z

V

Dˇ
v Gp.t � s; x � zI z/.aˇ.z/f .s; z// dz ds

for all t 2 .t0; T/ and x 2 V. Because the coefficients of H are v-Hölder continuous
and bounded, for each ˇ, aˇ.z/f .s; z/ satisfies the same condition we have required

for f and so, in view of Step 1, it follows that J.2/
h .t; x/ converges uniformly on all
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compact subsets of .t0; T/ � V as h ! 0. We thus conclude that @tu.t; x/ exists, is
continuous on .t0; T/ � V and satisfies (50). ut
Lemma 5.12 Let W W .0; T� � V � V ! C be defined by

W.t; x; y/ D
Z t

0

Z

V

Gp.t � s; x � zI z/�.s; z; y/ dz ds;

for x; y 2 V and 0 < t � T. Then, for each y 2 V, W.�; �; y/ is .2m; v/-regular on
.0; T/ � V and satisfies

.@t C H/W.t; x; y/ D K.t; x; y/: (54)

for all x; y 2 V and t 2 .0; T/. Moreover, there are positive constants C and M for
which

jW.t; x; y/j � Ct�
H C� exp.�MR#.t�E.x � y/// (55)

for all x; y 2 V and 0 < t � T where � is that which appears in Lemma 5.7.

Proof The estimate (55) follows from (30) and (48) by an analogous computation
to that done in the proof of Lemma 5.7. It remains to show that, for each y 2 V,
W.�; �; y/ is .2m; v/-regular and satisfies (54) on .0; T/ � V. These are both local
properties and, as such, it suffices to examine them on .t0; T/ � V for an arbitrary
but fixed t0 > 0. Let us write

W.t; x; y/ D
Z t

t0

Z

V

Gp.t � s; x � zI z/�.s; z; y/ dz ds

C
Z t0

0

Z

V

Gp.t � s; x � zI z/�.s; z; y/ dz ds

DW W1.t; x; y/ C W2.t; x; y/

for x; y 2 V and t0 < t < T. In view of Lemmas 5.10 and 5.11, for each y 2 V,
W1.�; �; y/ is .2m; v/-regular on .t0; T/ � V and

.@t C H/W1.t; x; y/ D @tW1.t; x; y/ C
X

jˇWmj�2

aˇ.x/Dˇ
v W1.t; x; y/

D �.t; x; y/ C lim
h#0

Z t�h

t0

Z

V

@tGp.t � s; x � zI z/�.s; z; y/ dz dy

C lim
h#0

Z t�h

t0

Z

V

X

jˇWmj�2

aˇ.x/Dˇ
v Gp.t � s; x � zI z/�.s; z; y/ dz ds
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D �.t; x; y/ C lim
h#0

Z t�h

t0

Z

V

.@t C H/Gp.t � s; x � zI z/�.s; z; y/ dz ds

D �.t; x; y/ � lim
h#0

Z t�h

t0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds (56)

for all x 2 V and t0 < t < T; here we have used the fact that

.@t C H/Gp.t � s; x � zI z/ D �K.t � s; x; z/:

Treating W2 is easier because @tGp.t � s; x � zI z/ and, for each multi-index ˇ,

Dˇ
vGp.t � s; x � zI z/ are, as functions of s and z, absolutely integrable on .0; t0� � V

for every t 2 .t0; T� and x 2 V by virtue of Lemma 5.3. Consequently, derivatives
may be taken under the integral sign and so it follows that, for each y 2 V, W2.�; �; y/

is .2m; v/-regular on .t0; T/ � V and

.@t C H/W2.t; x; y/ D �
Z t0

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds (57)

for x 2 V and t0 < t < T. We can thus conclude that, for each y 2 V, W.�; �; y/ is
.2m; v/-regular on .t0; T/ � V and, by combining (56) and (57),

.@t C H/W.t; x; y/ D �.t; x; y/ � lim
h#0

Z t�h

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds

for x 2 V and t0 < t < T. By (38), Proposition 5.9 and the Dominated Convergence
Theorem,

lim
h#0

Z t�h

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds D
Z t

0

Z

V

K.t � s; x; z/�.s; z; y/ dz ds

D �.t; x; y/ � K.t; x; y/

and therefore

.@t C H/W.t; x; y/ D K.t; x; y/

for all x; y 2 V and t0 < t < T. ut
The theorem below is our main result. It is a more refined version of Theorem 5.1
because it gives an explicit formula for the fundamental solution Z; in particular
Theorem 5.1 is an immediate consequence of the result below.

Theorem 5.13 Let H be a uniformly .2m; v/-positive-semi-elliptic operator. If H
satisfies Hypothesis 5.2 then Z W .0; T� � V � V ! C, defined by

Z.t; x; y/ D Gp.t; x � yI y/ C W.t; x; y/ (58)
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for x; y 2 V and 0 < t � T, is a fundamental solution to (22). Moreover, there are
positive constants C and M for which

jZ.t; x; y/j � C

t
H
exp

�
�tMR#

�x � y

t

��
(59)

for all x; y 2 V and 0 < t � T.

Proof As 0 < � < 1, (55) and Lemma 5.3 imply the estimate (59). In view of
Lemma 5.12 and Corollary 5.6, for each y 2 V, Z.�; �; y/ is .2m; v/-regular on
.0; T/ � V and

.@t C H/Z.t; x; y/ D .@t C H/Gp.t; x � y; y/ C .@t C H/W.t; x; y/

D �K.t; x; y/ C K.t; x; y/ D 0

for all x 2 V and 0 < t < T. It remains to show that for any f 2 Cb.V/,

lim
t!0

Z

V

Z.t; x; y/f .y/ dy D f .x/

for all x 2 V. Indeed, let f 2 Cb.V/ and, in view of (55), observe that

ˇ
ˇ
ˇ
ˇ

Z

V

W.t; x; y/f .y/

ˇ
ˇ
ˇ
ˇ � Ct�k f k1

Z

V

t�
H exp.�MR#.t�E.x � y///dy

� Ct�k f k1
Z

V

exp.�MR#.y// dy � Ct�k f k1

for all x 2 V and 0 < t � T. An appeal to Lemma 5.5 gives, for each x 2 V,

lim
t!0

Z

V

Z.t; x; y/f .y/dy D lim
t!0

Z

V

Gp.t; x � yI y/f .y/ dy C lim
t!0

Z

V

W.t; x; y/f .y/ dy

D f .x/ C 0 D f .x/

as required. In fact, the above argument guarantees that this convergence happens
uniformly on all compact subsets of V. ut

We remind the reader that implicit in the definition of fundamental solution
to (22) is the condition that Z is .2m; v/-regular. In fact, one can further deduce
estimates for the spatial derivatives of Z, Dˇ

v Z, of the form (13) for all ˇ such that
jˇ W 2mj � 1 (see [28, p. 92]). Using the fact that Z satisfies (22) and H’s coefficients
are bounded, an analogous estimate is obtained for a single t derivative of Z.
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