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Abstract. Differential Evolution is an evolutionary algorithm composed
of vectors and based on the application of scaled differences of two vec-
tors over a third one, being all of them different. The variants of this
algorithm propose different types of vectors for the scaled difference, and
different number of scaled differences, to alter differently-selected vectors.
The successful track of Differential Evolution has propitiated numerous
variants. These variants use a limited number of vectors for forming the
scaled differences and, in general, only one vector for receiving these dif-
ferences. In this work, new variants with scaled differences using all the
population vectors are proposed. These variants are confronted to a wide
set of fitness functions and to a set of Differential Evolution variants.
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1 Introduction

Since it was proposed in 1995 [1], Differential Evolution (DE) has produced a suc-
cessful track of applications to real-parameter optimization. DE is a population-
based algorithm, in which its elements are termed vectors. It is based on the
application of scaled differences of two of more vectors to other different vector,
termed base vector. The weight is termed mutation factor, F This successful
track has required the creation of new DE-variants [6].

DE-variants have been created through diverse mechanisms: the creation of
scaled differences with two or four vectors randomly selected, the variation of
the criterion for selecting some of the vectors involved in the scaled differences,
or the selection criterion for the base vector. However, in all cases, the scaled
differences are not larger than two1.

In this work, exploratory studies about efficiently enlarging the number of
scaled differences are undertaken. Two approaches for incorporating more scaled
differences are presented. The first one is termed DE/rand/all, whereas the sec-
ond one is termed DE/rand/alldiff (Sect. 2.3).

1 Each scaled difference involves the selection of a pair of vectors. Therefore, two scaled
differences mean the selection of four vectors.
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In DE/rand/all variant, the vectors of the population are selected one by one,
and scaled differences are created with the pairs. Once a vector has been selected,
it can not be picked up any more. Taking into account that the base vector is
the first selection, for a population with a even number of vectors N

2 − 1 scaled
differences can be formed. The initial attempts in which the mutation factor
F acts over the N

2 − 1 scaled differences leaded to a poor performance. For
this reason, in DE/rand/all the mutation factor is halved for consecutive scaled
differences, so that for the first scaled difference, the mutation factor is F , for
the second one is F/2, and so on.

For the second DE-variant proposed in this work, DE/rand/alldiff, the scaled-
differences and their addition to the base vector are replaced by a sum of the
products of the mutation factor divided by the population size, with a binomial
distribution of the sign of F , by vectors randomly selected. Each vector can be
selected only once. In DE/rand/1 variant, the scaled difference is applied on a
base vector. In DE/rand/alldiff, the addition to the base vector is replaced by
adding a factor equal to the inverse of the population size, 1

pop size , to all the
factors of the product.

In order to ease the handling of the new proposed variants, a matrix notation
for DE has been created (Sect. 2.2). This matrix notation allows representing the
classical DE-variants as well as the variants proposed in this work. Furthermore,
this alternative representation can inspire new DE-variants.

Finally the proposed DE-variants are confronted to the classic DE-variants
(Sect. 2.1) as well as to jitter and dither ones for a wide set of benchmark func-
tions (Sect. 2.4).

To the author’s knowledge, no similar works have been proposed.
The rest of the paper is organized as follows: Section 2 summarizes the most

relevant points in the state-of-the-art and in-detail describes the proposed vari-
ants. Results are presented and analysed in Sect. 3. Finally, Sect. 4 contains the
conclusions of this work.

2 Methodology

2.1 Differential Evolution and Its Variants

DE is based on altering the population members (vectors) of each generation
with other population members, randomly selected, in its turn is modified by
the scaled difference of a pair of population members, being all these mem-
bers distinct. Two operators compose the DE optimizer: the Mutation operator
(Eq. 1) and the Crossover operator. The two most popular implementations of
the Crossover operator are the Binomial one (Eq. 2) and the Exponential one
(Eq. 3). On the other hand, numerous schemas for the Mutation operator have
been proposed.

Mutation operator is governed by a parameter, termed mutation factor F ,
which quantifies the amount of alteration supplied to the base vector. F weights
the addition of the scaled difference to the base vector. The vectors produced by
the Mutation operator are termed mutant vectors.
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On the other hand, the Crossover operator is characterized by a parameter,
termed crossover rate Cr. Cr governs how many components from the mutant
vector are inherited by the trial vector.

Finally, a selection process is undertaken. It consists of the selection of the
most suitable vector between the target vector, vector selected from population
in the current generation, and the trial vector.

vi = x1 + F · (x2 − x3), x1 �= x2 �= x3 (1)

ui(j) =
{
vi(j) if rand ≤ Cr;
xi(j) otherwise. (2)

ui(j) =
{

vi(j), for j = 〈n〉D 〈n + 1〉D, . . . , 〈n + L − 1〉D
xi(j), ∀j ∈ [1,D] (3)

From the initial publication [1], numerous variants have been proposed to
improve the efficiency of the initial implementation. The original authors of DE
even proposed some variants [9]. They try to balance the exploration of the
search space and the exploitation of the most suitable candidate solutions. For
this purpose diverse combination of vectors are selected for the base vectors as
well as for the scaled differences. A detailed review of these variants and other
ground-breaking modifications for DE can be found in [6,7,15].

For mentioning the DE-variants, a nomenclature based on the pattern
DE/X/Y/Z is frequently used. The two initial letters (DE) correspond to the
name of the algorithm, whereas the following ones consecutively correspond to
the mechanism to select the base vector (X), the number of vectors involved in
the scaled difference (Y), and the crossover operator (Z). Following this nomen-
clature, the classical DE is DE/rand/1/bin (Eqs. 1, 2). When using the Expo-
nential Crossover operator instead of Binomial one, then the nomenclature is
DE/rand/1/exp (Eqs. 1, 3).

In this work the following DE-variants have been analysed2. In all the tests,
the Binomial Crossover operator is used, and therefore omitted in the nomen-
clature.

DE/rand/1 Original proposal of DE.
vi = x1 + F · (x2 − x3)

DE/rand/2 In this case, the scaled differences is generated with
four vectors.
vi = x1 + F · (x2 + x3 − x4 − x5)

DE/best/1 In this variant, the base vector is not randomly
selected, but the best vector of the current genera-
tion is used, xbest.
vi = xbest + F · (x1 − x2)

DE/best/2 Similar to DE/best/1, but the number of vectors
involved in the scaled difference is doubled.
vi = xbest + F · (x1 + x2 − x3 − x4)

2 For the sake of brevity, the symbol corresponding to the crossover operator has been
omitted.
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DE/current-to-best/1 In this variant, a difference including the best vec-
tor in the current generation and the target vector
is included. Furthermore, the target vector is used as
base vector.
vi = xi + F · (xbest − xi) + F · (x1 − x2)
This variant and the previous ones were proposed by
Price and Storn in [9].

DE/rand-to-best/1 In the scaled differences, a difference including the
best vector in the current generation and the base vec-
tor is included.
vi = x1 + F · (xbest − x1) + F · (x2 − x3)

DE/rand/2/dir This variant incorporates information of the fitness
function. The objective is to guide the evolution
towards favourable regions [17].
vi = x1 + µ

2 · (x1 − x2 + x3 − x4)
where f(x1) < f(x2) and f(x3) < f(x4).

All the previous variants have steady values of parameters F and Cr, and
therefore they can be considered as static variants. However, these parameter can
vary along the cycles. In [9] two variants, termed jitter and dither, are proposed
with random values for the scaling factor, F . Dither is used when generating a
new random F value for each difference vector; whereas if the new random F
value is generated for each dimension of each difference vector, then the variant
is termed jitter. In [11] a dither schema with F randomly varying between 0.5
and 1 for each vector is proposed.

For comparison purposed, two dither variants are implemented: the first one
for which the scaling parameter is generated from a uniform statistical distribu-
tion in the range (0.5, 1.0), and the second one for which F is generated from a
Gaussian distribution with parameters N(0.5, 0.25) [11]. Also in [11], a schema
where F is reduced from 1.0 to 0.5 is proposed. This schema, termed DETVSF
(DE with time varying scale factor), aims at promoting the exploration in the
initial cycles, and reinforcing the exploitation in the final ones.

Apart from randomly generated scaling factors, they can be modified taking
into account the best suited vectors from the previous generations, self-adapting
variants [2,12,18,19]. Similarly to randomly generated, this mechanism aims at
improving the overall performance.

The efforts in self-adapting variants arise from the initial studies about the
importance of the control parameters for the final performance of the variants
[20], and specially due to the dispersion of the values for these parameters. In [1]
a value for the mutation factor of F = 0.5 is proposed. In [8], authors proposed
mutation factor in the range 0.5 < F < 0.95 with F = 0.9 as initial choice.

Some works have explored the DE performance when combining several trial-
vector generation strategies, namely multi-strategy variants. Examples can be
found in CoDE [21] and in EPSDE [22]. Comparisons with self-adapting or multi-
strategy variants are not considered in this work, and are proposed as Future
Work.
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2.2 Matrix Notation for DE

In the matrix notation for DE/rand/1, the population of N vectors of d dimen-
sions is represented by a matrix P (Eq. 4). P is formed by arranging the vectors
in rows. xi

k is the i dimension of the k vector, and it corresponds to the element
(k, i) of the matrix P.

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
1 . . . xi

1 . . . xd
1

...
. . . . . .

...
x1
k . . . xi

k . . . xd
k

...
. . . . . .

...
x1
N . . . xi

N . . . xd
N

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

The first point to be addressed is the selection of a vector k from P (Eq. 5).
This can be done by the product of a vector Sk and P. Vector Sk is composed
of null elements except for one position with a unitary value. By varying the
position of the unitary value, distinct vectors can be selected.

xk = Sk × P =
[
0 . . . 1 . . . 0

]
k

×

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
1 . . . xi

1 . . . xd
1

...
. . . . . .

...
x1
k . . . xi

k . . . xd
k

...
. . . . . .

...
x1
N . . . xi

N . . . xd
N

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

Thus, the difference between two vectors, xi −xj , can be rewritten as Eq. 6.

xi − xj = Si × P − Sj × P = Sij × P (6)

where Sij is a vector with all elements null, except for two elements which take
positive and negative unitary values:

[
. . . 0 1 0 . . . 0 −1 0 . . .

]
ij

(7)

Taking into account this notation and incorporating the mutation factor,
Eq. 1 can be rewritten as Eq. 8.

xk + F · (xi − xj) = Sk × P + F · Sij × P = F ∗
kij × P (8)

where F ∗
kij is a vector with dimensionality 1 × Pop. size (Eq. 9). The omitted

elements in F ∗
kij are all zeros.

F ∗
kij =

[
. . . F . . . 1 . . . −F . . .

]
(9)

The F ∗
kij can be vertically stacked, so that a matrix of Popsize × Popsize

is established, F∗. Each row of F∗ is created similarly to Eq. 9, with random
positions for the values: 1, F and −F .
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In this way, the next generation of mutant vectors, Pmutant is produced by
the product of the F∗ matrix and the current population PG (Eq. 10).

Pmutant = F∗ × PG (10)

The DE/rand/2 variant can be easily expressed with the F∗ notation (Eq. 9).
For this variant, two positions per row of zero values have to be replaced by a F
value and a −F value. For other variants involving a larger number of vectors,
DE/rand/Y, can also expressed by modifying the number of positions with F
and −F values. The DE/best/Y variants are transposed to matrix notation by
replacing the Sk vector selector, by the appropriate selector for the best vector
of the current generation, Sbest.

In all these implementations, F∗ keeps the following property
∑

i F∗
ij = 1.

This property is used as common ground for new DE-variants.

2.3 New Variants for Differential Evolution

The F∗ notation paves the way for new variants of DE. For example, the F∗

notation eases the implementation of a variant involving all the vectors. If the
population size is odd, in DE/rand/all all the vectors of the population con-
tribute as base vector or as part of the scaled differences. In this case, F∗ has
not zero elements. Conversely, if the population size is even, then one element
of the matrix is null. The sum of any row of F∗ is the unit

∑
i F∗

ij = 1.
The first attempt for implementing DE/rand/all simply creates as scaled dif-

ferences as possible with the population. However, this increment in the number
of scaled differences carries out a degradation of the performance. For this rea-
son, an alternative implementation, DE/rand/all F

2n , where the mutation factor
for the scaled differences are progressively halved is proposed of DE/rand/all
(Eq. 11).

F ∗ =

⎡
⎢⎣

−F . . . F/2 . . . 1 . . . −F/2 . . . F
...

. . . . . . . . . . . .
...

1 . . . −F/2 . . . F/2 . . . −F . . . F

⎤
⎥⎦ (11)

In DE/rand/alldiff the elements of matrix F∗ are generated following the
schema (−1)B(0.5) · 0.1∗U(0,1)

pop size + 1
pop size , where U(0, 1) is a uniform probability

distribution and B(0.5) is a binomial distribution of probability 0.5. In this
schema the base vector is completely removed, whereas the scaled differences
are not longer created by subtracting of pairs of vectors. Conversely, each vector
is weighted through the product of fixed and variable factors. The contribution
of the base vector is equally distributed among all the vector of the population
through the factor 1

pop size . This schema keeps the property
∑

i F∗
ij = 1.

2.4 Benchmark Functions

In order to evaluate the new DE-variants, a set of fitness functions are used
(Table 1). This set includes both multimodal and monomodal, separable and
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non-separable functions. These fitness functions have been used in CEC contests
[13,14] and also in works where presenting cutting-edge DE-variants [2,3,5,10,
16].

In all the tests performed in this work, a dimensionality of 30 and a pop-
ulation size of 10 vector have been used. Two configurations are used for the
number of cycles: 100 and 1000, and the mean and the standard deviation of
25 independent runs per case are shown. Generally, a larger number of cycles
leads to higher-quality solutions. However, it is specially interesting when these
high-quality solutions can be produced with few cycles, thus CPU-time is saved.
As pseudorandom number generator, a subroutine based on Mersenne Twister
[4] has been used.

3 Results and Discussion

In this section the performance of the proposed variants are confronted to the a
set of classic variants of DE for a set of benchmark functions. Tests with jitter
and dither variants are also undertaken.

In Table 2, the numerical results obtained with DE/rand/alldiff variant are
compared with the previous best results of the classical DE-variants3. Two con-
figurations for the number of cycles are used: 100 and 1000 cycles. This intends
to evaluate the DE-variants when trying to produce high-quality solutions with
short number of cycles and when enough number of cycles to maximize the
performance of the variants are supplied.

As can be appreciated, the DE/rand/alldiff variant outperforms the other
static DE-variants in 26 of the 32 cases. They exclude the two configurations
of the functions: Rastrigin, Schwefel, and Styblinski-Tang. Two of these func-
tions: Schwefel and Styblinski-Tang, have optimal solution not in 0, whereas the
third one, Rastrigin function, has the optimal solution in 0. For the other 13
functions, including Whitley function which has the optimal solution in 1, the
DE/rand/alldiff produces better solutions than the other DE-variants included
in the test. Concerning the cases where DE/rand/alldiff is outperformed, the
DE-variants producing the best results vary from DE/rand/1 and DE/best/2
with 2 cases, and DE/rand/2/dir and DE/rand-to-best/1 with 1 case.

With regard to the performance of DE/rand/all F
2n (comparing with sta-

tic DE-variants and DE/rand/alldiff), it only outperforms a single case. For
Styblinski-Tang and 1000 cycles, the best mean result obtained is −1111 ± 26,
whereas for DE/rand/all F

2n is −1127 ± 26. Although this is a single case, it cor-
responds to a function for which the results of DE/rand/alldiff systematically
is outperformed by other variants. So that, it is a good candidate to hybridize
with other DE-variant, or for studying its features in the exploration-exploitation
phases.

Beyond the static DE-variants, further comparisons can be made with
dither and jitter variants (Table 3). When comparing with these variants, the
3 The best DE variant for each configuration and fitness function appears in boldface

type.
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Table 2. Comparison of DE/rand/alldiff variant with best results of the previous DE-
variants. 25 independent runs per case with F = Cr = 0.5, for two configurations for
the number of cycles: 100 and 1000, and Binomial Crossover operator.

Function Cycles Best previous DE/rand/alldiff

Ackley 100 DE/best/2 6.83 ± 1.46 0.36 ± 0.08

1000 DE/best/2 (5.1 ± 9.7)10−5 (6.5 ± 0.7)10−15

Griewank 100 DE/best/2 17.19 ± 9.88 0.030 ± 0.011

1000 DE/best/2 (0.7 ± 1.3)10−9 (7.5 ± 5.2)10−17

Hyperellipsoid 100 DE/best/2 48.88 ± 22.25 0.10 ± 0.05

1000 DE/best/2 (0.8 ± 3.1)10−8 (1.5 ± 2.5)10−34

Rastrigin 100 DE/best/1 115.47 ± 35.91 149.97 ± 27.59

1000 DE/rand/2/dir 52.29 ± 19.77 86.03 ± 16.04

Rosenbrock 100 DE/best/2 (48 ± 20)103 68.95 ± 18.02

1000 DE/best/2 (1.3 ± 0.8)103 28.80 ± 0.16

Schaffer’s F6 100 DE/rand-to-best/1 (4925 ± 58)10−4 (3715 ± 444)10−4

1000 DE/rand/1 0.27 ± 0.11 0.03724 ± 0.00007

Schaffer’s F7 100 DE/rand-to-best/1 25.61 ± 0.80 4.15 ± 0.96

1000 DE/rand/1 1.22 ± 1.46 0.0012 ± 0.0006

Schwefel 100 DE/best/1 5130 ± 734 9948 ± 398

1000 DE/rand/1 1282 ± 977 8891 ± 512

Schwefel P. 1.2 100 DE/current-to-best/1 12766 ± 4593 99 ± 47

1000 DE/best/2 4621 ± 1931 (1.0311 ± 3.6)10−12

Schwefel P. 2.21 100 DE/current-to-best/1 34.07 ± 6.51 3.80 ± 1.07

1000 DE/rand/2 22.94 ± 6.96 (6.8 ± 3.5)10−8

Schwefel P. 2.22 100 DE/rand-to-best/1 18.07 ± 7.00 0.67 ± 0.18

1000 DE/best/2 (0.3 ± 1.8)10−3 (1.2 ± 0.8)10−17

Sphere 100 DE/rand/2/dir 1.99 ± 2.28 0.008 ± 0.004

1000 DE/best/2 (1.7 ± 3.5)10−10 (4.3 ± 5.9)10−36

Step 100 DE/best/2 (0.16 ± 0.07)106 317.16 ± 181.21

1000 DE/rand/2 1.12 ± 1.63 0.0 ± 0.0

Styblinski -Tang 100 DE/rand-to-best/1 −947 ± 41 −670 ± 62

1000 DE/rand/1 −1111 ± 26 −838 ± 59

Whitley 100 DE/best/2 (5 ± 4)106 0.48 ± 0.06

1000 DE/rand/2 1.25 ± 1.78 0.3590 ± 0.0006

Zakharov 100 DE/rand-to-best/1 93.7 ± 38.3 1.5 ± 1.3

1000 DE/best/2 0.41 ± 1.14 (1.84 ± 9.03)10−10

DE/rand/alldiff variant outperforms the dither and jitter variants in 27 of the
32 cases. With regard to the cases where DE/rand/alldiff is outperformed, the
two configuration of Schwefel and Styblinski-Tang functions can be mentioned,
as well as the Rastrigin function when using 1000 cycles.

In the previous comparisons, it is appreciated a slight bias toward a better
performance when the fitness function has the optimal solution at 0. Probably
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this is due to a greedy behaviour of the DE/rand/alldiff: it is intensive in the
exploitation of promising-candidate solutions, but its efficiency for exploring the
search space decreases. In order to improve the efficient of this variant in future
tests, this greedy behaviour should be corrected by improving the exploratory
capacity.

4 Conclusions

In this paper, two new variants of DE are proposed and evaluated:
DE/rand/all F

2n and DE/rand/alldiff. Differently to the variants proposed in the
past, these new variants include scaled differences involving all the vectors. In
DE/rand/all F

2n progressively halves the mutation factor, so that the importance
of the scaled difference is also reduced. And in DE/rand/alldiff, the base vec-
tor and the scaled differences are replaced by weighted contributions of all the
vectors in the population. The results state that this last variant outperforms a
large set of other DE-variants, including jitter and dither ones, over a wide set
of fitness functions.

Furthermore, a matrix notation for generating the mutant vectors population
in DE is introduced. This notation helps visualizing the process, at the same time
it might inspire new DE-variants.

This work opens diverse lines in relation of Future Work. They include the
adaptation of the DE/randalldiff and the DE/rand/all F

2n to adaptive variation of
the mutation factor, statistical studies about the values of the scaled differences
for these and other variants, and the generation of new variants based on the
matrix notation.
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