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Abstract. An appropriate characterization of the thermo-mechanical behavior
of elastic-plastic Finite Element (FE) models is essential to ensure realistic
results when welded joints are studied. The welded joints are subject to severe
angular distortion produced by an intense heat concentration on a very small
area when they are manufactured. For this reason, the angular distortion and the
temperature field, which the joints are subjected, is very difficult to model with
the Finite Element Method (FEM) when nonlinear effects such as plasticity of
the material, radiation and thermal contacts are considered. This paper sets out a
methodology to determine the most appropriate parameters needed for mod-
elling the thermo-mechanical behavior in welded joints FE models. The work is
based on experimental data (temperature field and angular distortion) and the
combined use of Support Vector Machines (SVM) and Genetic Algorithms
(GA) with multi-objective functions. The proposed methodology is applied for
modelling Butt joint with single V-groove weld manufactured by Gas Metal Arc
Welding (GMAW) process when the parameters of speed, current and voltage
are, respectively, 6 mm/sec 140 amps and 26 V.

Keywords: Finite element method � Genetic algorithms � Support vector
machines � Welding temperature distribution � Angular distortion �
Multi-objective optimization

1 Introduction

Welded joint components are widely used in many industrial applications, therefore
knowing the manufacturing process can help significantly to the industry. The regions
near to the weld line, when manufacturing such joints, are subjected to severe thermal
cycles due to the intense concentration of heat in a small area. These thermal cycles
generate changes in the microstructure and in the mechanical properties, and cause
residual stresses that produce important angular distortions on welded joints [1].
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Furthermore, these thermal cycles are substantially affected by the way the welds have
been manufactured and the welding process parameters [2]. During decades, the Finite
Element Method (FEM) has been used as an alternative in an attempt to reduce the
costs during the design phase of the welded joints. Generally, the Finite Element
(FE) models welded joints require a large number of parameters, which are difficult to
adjust when the chosen methodology is based solely on test error. Many authors have
studied the temperature field and the angular distortion separately in FE models to
study welded joints. For example, [3] studied the welding temperature distribution in
Gas Tungsten Arc Welding (GTAW) process. In this case, the FEM was applied to
predict temperature distributions throughout the plates welded using ABAQUS soft-
ware, and was validated experimentally with thermocouples. Other researchers have
based their studies of welded joints with FEM on the angular distortion instead of the
temperature fields. For example in [4], the combination of FE models and experiments
was applied to study the effects of arc distance and welding parameters to control the
residual angular distortion in Tungsten Inert Gas (TIG). The conduction and convection
phenomenon and the elastic-plastic material behavior were the parameters considered
on the welded joints FE models.

The current paper presents a methodology to determinate the most appropriate
parameters for modelling the thermo-mechanical behavior in welded joints FE models
on the basis of experimental data (temperature field and angular distortion). The work is
focused in Butt joint single V-groove weld manufactured by Gas Metal Arc Welding
(GMAW) when the parameters of speed, current and voltage are, respectively,
6 mm/sec 140 amps and 26 V. The process is based on the combined use of Support
Vector Machines (SVM) to predict critical features of the process and Genetic Algo-
rithms (GA) with multi-objective functions to adjust the variables that define the FE
models.

2 Experimental Data and FE Model Proposed

During the manufacturing process with GMAW, the plates that composed the welded
joint studied had the dimension 60 � 80 � 6 mm, and were composed by low carbon
steel ST37. The gas mixture used was 80% Argon (Ar) and 20% Carbon Dioxide
(CO2), and the parameters of speed, current and voltage considered were, respectively,
6 mm/sec, 140 amps and 26 V. Also, the plates to be welded were mounted on a
refractory surface, and one of the plates was fixed by a clamp. In these conditions, the
forces that produced the angular distortion of the welded joint were the gravity and the
force of thermal shrinkage. The temperature field was recorded during the manufacture
of the welded joint using a thermographic camera (Thermovision 570 AGEMA infrared
system AB) every two seconds during a period of 100 s, while the angular distortion
was measured on the most distorted edge using a coordinate-measuring machine
(model Zeiss PMC 850). To avoid possible errors in the temperature field measurement
produced by the transient event on starting and completion of the welding process, only
the central points of the weld cord were taken into consideration. In this case, the
locations P1, P5, P6, P10, P11 and P15 were not taken into consideration, and only the
locations P2, P3, P4, P7, P8, P9, P12, P13 and P14 were considered. Figure 1(a) shows the
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temperature field obtained experimentally during the experiment after 6 s, and Fig. 1(b)
shows the temperature field obtained after 20 s. In addition, the FE models proposed in
the current work were formulated parametrically to determine the temperature field and
the angular distortion of the butt welded joints with MSC Marc software. These FE
models were composed by a weld bead, a pair of plates and a refractory surface. They
considered coupled thermal-mechanical fields and temperature dependent material of
the ST37 steel [4]. The FE simulations proposed used the technique of birth and death
of elements to model the addition of weld metal on the parts to weld [5].

A total of thirteen different parameters of the welded joint FE models were taken
into consideration. They were: The thermal conduction phenomena considering six
parameters based on the different pairs of contacts that made up the welded joints
(melt_point; contac_p_init; contac_p_center; contac_p_end; contact_p1_p2; con-
tact_p2_ap). Also, the weld flux for all FE models was assumed to be a double
ellipsoidal shaped [6] and it was defined by four parameters that defined the shape of
the ellipsoid (forward_lenght; rear_lenght; width; deep). In addition, the phenomenon
of thermal convection was modelled using three different film coefficient parameters
(face_film; face_film2; face_film3) [7]. Finally, the radiation was taken into consid-
eration in the FE model and applied in the weld bead and the surrounding areas.
Figure 1(c) shows the temperature field obtained from the FE models proposed after
6 s and Fig. 1(d) shows the temperature field obtained after 9 s in order to compare
with those temperatures obtained experimentally.

Since the number of temperature samples from each of the 9 points studied during
the welding process is very high (one sample every two seconds during a period of

Fig. 1. Temperature field obtained experimentally and by FE model respectively at 6 s time ((a)
and (c)) and 9 s time ((b) and (d)). Temperature curves vs time for points P2; P3 and P4 (e) and
P7; P8 and P9 (f).
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100 s), the problem was simplified taking just the most significant points in each curve
of temperature. These selected points are shown in Table 1.

Also, Fig. 1(e), (f) show the temperature curves vs time obtained experimentally for
points P2, P3, P4, P7, P8 and P9 and the temperature values of the selected points
according to Table 1. Table 2 shows the corresponding experimental values of tem-
peratures obtained at each of the nine points studied in their respective times as well as
the distortion angle obtained by thermal retraction when welded joint is cooled.

In addition and due that the simulation time for each of the welded joint FE models
proposed were not excessive (around 2 h), the Design of Experiments (DoE) was
performed using a Fractional Factorial Design to generate the design matrix (dataset)
which was formed by 2048 FE simulations. This dataset was composed by the thirteen
inputs and the corresponding twenty outputs (angular distortion and temperature
points) obtained from the FE simulations.

Table 1. Selected final features: defined by the location in the weld and the time when the
temperature was measured.

Location Sample time
(seconds)

Feature name Location Sample time
(seconds)

Feature name

P2 10 Temp_c1_t10 P9 6 Temp_c6_t6
16 Temp_c1_t16 16 Temp_c6_t16

P3 8 Temp_c2_t8 P12 8 Temp_c7_t8
16 Temp_c2_t16 16 Temp_c7_t16

P4 6 Temp_c3_t6 P13 6 Temp_c8_t6
16 Temp_c3_t16 16 Temp_c8_t16

P7 10 Temp_c4_t10 P14 2 Temp_c9_t2
16 Temp_c4_t16 16 Temp_c9_t16

P8 4 Temp_c5_t4 All 100 Temp_final
16 Temp_c5_t16

Table 2. Experimental values at each of the nine points studied in their respective times.

Feature Exp. Data Feature Exp. Data Feature Exp. Data

Distort_Angle 4.93° Temp_c7_t8 1300.0 °C Temp_c5_t16 280.0 °C
Temp_c1_t10 355.0 °C Temp_c8_t6 1300.0 °C Temp_c6_t16 283.7 °C
Temp_c2_t8 355.3 °C Temp_c9_t2 1340.0 °C Temp_c7_t16 465.6 °C
Temp_c3_t6 376.9 °C Temp_c1_t16 323.0 °C Temp_c8_t16 334.9 °C
Temp_c4_t10 350.0 °C Temp_c2_t16 293.7 °C Temp_c9_t16 322.0 °C
Temp_c5_t4 400.0 °C Temp_c3_t16 273.1 °C Temp_final 216.8 °C
Temp_c6_t6 380.0 °C Temp_c4_t16 312.5 °C – –
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2.1 Analysis of Features Significance

The dataset obtained from the DoE and the FE simulations was analysed to determine
which variables were the most significant to define the outputs of the problem. This
point was performed with three different analyses, which were:

• Using an analysis of linear variance (ANOVA test) [8]
• Using an analysis of nonlinear variance (Kruskal-Wallis test) [9, 10]
• Using a backpropagation filter (random forest selection function) [11]

The following stages of the methodology were applied to the selected features
according to these three methods, as well as for the entire set of variables analysed in
the problem.

2.2 Support Vector Machines

There are numerous regression techniques inherently based on a nonlinear nature. One
of the most intensively studied and applied are SVM thanks to its performance as a
universal approximation [12]. This technique is based on a kernel-based algorithm that
have sparse solutions, where the predictions for new inputs depend on the kernel
function evaluated at a subset of instances during a training stage where a repeated
cross validation is performed.

The goal of this technique is to find a function that minimizes the final error in
Eq. 1.

y xð Þ ¼ wT � / xð Þþ b ð1Þ

Where y xð Þ is the predicted value, w is the vector with the parameters that define the
model, b indicates the value of the bias and / xð Þ is the function that fixes the
feature-space transformation.

The process is optimized and finally the initial function (Eq. 1) became the more
complex function (Eq. 2).

y xð Þ ¼
XN

n¼1

ai � a�i
� �

xi � xh iþ b ð2Þ

Where a is a solution of the optimization problem obtained through Lagrangian theory.
Also, the function makes a transformation of the data to a higher dimensional

feature space to improve the accuracy of the nonlinear problem. In this way the final
function became like Eq. 3.

y xð Þ ¼
XN

n¼1

ai � a�i
� �

k xi; xð Þþ b ð3Þ
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Where in this case three kernels functions were used: linear (Eq. 4), polynomial (Eq. 5)
and Gaussian Radial Basis Function (RBF) (Eq. 6).

k xi; xð Þ ¼ xTi x ð4Þ

k xi; xð Þ ¼ xi � xh id ð5Þ

k xi; xð Þ ¼ e�
xi�xk k2
2r2 ð6Þ

R statistical software environment v2.15.3 was used to program the proposed
methodologies, to develop the regression models and to perform the optimization based
on GA [13].

2.3 Model Selection Criteria

The SVM models were trained using 50 times repeated 10 fold cross-validation using
the entire training dataset obtained from the DoE, with 2048 entries, to create the
models. This method involves dividing the initial database into 10 subsets, building the
model with 9 subsets and calculating the error with the other partial sample of the
dataset. This procedure is repeated 50 times obtaining other errors. And finally, the
error is calculated as the arithmetic mean of all the errors of the process [14–16].

Once the different algorithms were trained during some of their most significant
parameters were tuned, a selection was made of those with the best predictive per-
formance. The coefficients indicative of the error used to evaluate the accuracy of the
predictions were the RMSE and its standard deviation.

2.4 Optimization Based on Genetic Algorithms

Once the regression model with the best generalization capacity was selected, the
optimal parameters for defining the welded joint FE models were performed applying
evolutionary optimization techniques based on GA [7, 17], and was conducted as
follows: firstly, a number of 1000 individuals or combinations of the 13 inputs were
randomly generated and named as the initial generation. Subsequently, and based on
these individuals, the 20 outputs were obtained applying the most accurate model
according to previous results. Two objective functions were analyzed in this case: the
objective function Jtempj implemented to adjust the nine curves of temperature (Eq. 7),
and the objective function Jangle, implemented to adjust the angular deformation
(Eq. 8). Both functions are combined affected by the same weight.

Jtempj ¼
Xn

i¼0

TFEM ið Þ � TEXP ið Þ
�� ��

TEXP ið Þ
ð7Þ

Jangle ¼ /FEM � /EXPj j
/EXP

ð8Þ
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Where TFEM ið Þ are FE models temperature measurements, TEXP ið Þ are experimental
temperature measurements, n is the number of points where temperature is measured,
/FEM is the FE models angular deformation, and /EXP is the experimental angular
deformation.

The next generations were generated using selection, crossover and mutation. The
new generation was comprised as follows:

• 25% comprised the best individuals from the previous generation.
• 60% comprised individuals obtained by crossover.
• The remaining 15% is obtained by random mutation.

Finally the best combination of values of each feature was selected and tested to
determinate the final error of the methodology.

3 Results

3.1 Analysis of Features Significance

First an analysis of variance ANOVA was performed to assess the uncertainty in the
experimental measurements based on the proposed DoE. All the final outputs were
analyzed against the input variables. The p-values that obtained low values were
selected since indicate that the observed relationships were statistically significant.
Subsequently a nonparametric Kruskal-Wallis test was performed by ranks in the same
way than the previous technique in order to select some features. Table 3 shows the
results of both techniques for the output feature “Distort_Angle”.

Finally, a feature selection using search backwards selection algorithms were
performed. In this case, the selected attributes according to the RMSE obtained for the
output feature “Distort_Angle” are those corresponded to the number 12 (see Table 4)
with a value of RMSE = 0.01956.

Table 3. Results obtained from the ANOVA analysis and the Kruskal-Wallis analysis for the
feature “angle” (only significant features are shown). Significant codes according to p-value:
‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ’.’ 0.1.

ANOVA analysis Kruskal-Wallis analysis
Feature p-value Feature p-value

melt_point 5.80e-05 *** melt_point 2.755e-09 ***
contac_p_init <2.2e-16 *** contac_p_init <2.2e-16 ***
contac_p_center <2.2e-16 *** contac_p_center <2.2e-16 ***
contac_p_end 0.04841 * contac_p_end 0.02151 *
rear_lenght 0.08133 . rear_lenght 0.06186 .
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3.2 SVM

The creation of regression models that predict the temperature on several points of the
welded joint and also the angular distortion was based on machine learning techniques
based on SVM. Also, and in order to compare linear and nonlinear techniques, a linear
regression (LR) was also performed. In this case, the method was conducted in the
following way: Firstly, the 2048 experiments were performed according to the pro-
posed DoE. The dataset obtained from the experiments was normalized between 0 and
1. Thereafter, these 2048 instances were used to train the models using 50 times
repeated cross-validation. During the training process, the RMSE and its standard
deviation were also obtained while a tuning of the most important parameters of each
algorithm was performed to improve its prediction capability.

The process was repeated four times, one per each of the feature selection method
previously mentioned. For example, the results obtained when all the features were
used in the process are shown in Table 5. For each feature selection method, one model
was selected subsequently, and from the four models selected, the most accurate one
was chosen. In that way, only the most accurate model per each output variable was
selected and used in the following processes.

From each of the selected models, the tuned parameters that allow the model its
most accurate behavior was obtained. For example, for the feature “angle” the best
performance happened when ANOVA group of features was used, and the selected
values from the tuning of parameters were a cost of 0.04 and a degree of the poly-
nomial applied in the kernel was 2. In this case the RMSE was equal to 2.46% and its
standard deviation was 0.06%.

3.3 Adjustment Based on Genetic Algorithms

The adjustment process to find the best combination of inputs to optimize both
objective functions was performed minimizing their error based on the experimental
data obtained experimentally (see Table 2).

The minimization of the objective functions generates the values that are shown in
Table 6. These values indicate the closest values to the real behavior of the Butt joint
single V-groove weld manufactured by GMAW. With these values, a new FE model
was simulated to observe the real effectiveness of the methodology. In this case, RMSE
equal to 12.35% was obtained comparing the new FE model simulated with the optimal

Table 4. Results obtained using the backwards selection algorithm for the feature “angle”
(Selected set of features in bold letters).

Number of features RMSE Rsquared RMSESD RsquaredSD

1 0.24532 0.4820 0.0042429 0.0137015
2 0.10301 0.9783 0.0029787 0.0016687
… … … … …

12 0.01956 0.9993 0.0008958 0.0001080
13 0.02654 0.9988 0.0010458 0.0002229
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values obtained from the adjustment process against the experimental data. This
indicates that the methodology proposed to find the best combination of parameters is
effective.

Table 5. Results obtained during training stage for the output variables (in bold letters the most
accurate and selected ones) (values in %)

Feature LR SVM
(Linear)

SVM
(Polynomial)

SVM
(RBF)

RMSE SD RMSE SD RMSE SD RMSE SD

Angle 11.64 0.18 13.09 0.91 2.64 0.04 3.20 0.02
Temp_c1_t10 4.87 0.17 5.36 0.33 2.73 0.02 2.96 0.03
Temp_c2_t8 5.11 0.10 5.17 0.09 3.82 0.02 4.23 0.01
Temp_c3_t6 5.48 0.17 6.14 0.28 2.91 0.03 3.03 0.03
Temp_c4_t10 4.94 0.18 5.44 0.33 2.73 0.01 2.94 0.01
Temp_c5_t4 2.50 0.08 3.68 0.01 3.68 0.01 4.34 0.01
Temp_c6_t6 5.49 0.19 6.23 0.32 2.88 0.02 3.03 0.03
Temp_c7_t8 14.75 0.20 17.92 1.01 2.97 0.01 3.54 0.04
Temp_c8_t6 13.31 0.08 17.07 1.84 2.87 0.05 3.40 0.04
Temp_c9_t2 0.88 0.02 5.33 1.04 3.76 1.60 5.38 1.07
Temp_c1_t16 4.69 0.16 4.88 0.24 2.50 0.04 2.65 0.03
Temp_c2_t16 5.22 0.13 5.38 0.13 2.70 0.03 3.03 0.02
Temp_c3_t16 4.84 0.14 5.12 0.27 2.57 0.02 2.69 0.04
Temp_c4_t16 4.71 0.16 4.89 0.24 2.51 0.04 2.65 0.01
Temp_c5_t16 5.22 0.14 5.37 0.18 2.70 0.04 3.03 0.02
Temp_c6_t16 4.85 0.15 5.21 0.17 2.57 0.05 2.69 0.02
Temp_c7_t16 15.46 0.18 18.17 0.78 1.78 0.02 2.39 0.01
Temp_c8_t16 5.27 0.19 5.32 0.17 1.48 0.03 1.88 0.01
Temp_c9_t16 18.88 0.26 21.37 0.62 1.93 0.03 2.66 0.01
Temp_final 3.97 0.15 3.99 0.17 2.28 0.02 2.62 0.04

Table 6. Results obtained from the minimization of the objective functions for each input
feature

Input variable Obtained value from GA
adjustment

Input variable Obtained value from GA
adjustment

melt_point 1423.11 face_film2 0.0003
contac_p_init 275.42 face_film3 0.0008
contac_p_center 239.71 forward_lenght 1.00
contac_p_end 150.90 rear_lenght 5.00
contact_p1_p2 83.48 width 23.40
contact_p2_ap 4.06 depth 4.43
face_film 0.0008
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4 Conclusions

This work presents a methodology for determining the most appropriate parameters for
modelling the thermo-mechanical behavior in welded joints FE models on the basis of
experimental data (temperature field and angular distortion). The work is focused in
Butt joint single V-groove weld manufactured by Gas Metal Arc Welding (GMAW).
The process is based on the combined use of Support Vector Machines (SVM) to
predict critical features of the process and Genetic Algorithms (GA) with
multi-objective functions to adjust the variables that define the FE models. In this case,
a value of 12.35% for the RMSE was obtained comparing the FE model with the
optimal parameters obtained from the adjustment against the experimental data
applying this methodology. This indicates that the methodology proposed to find the
best parameters in Butt joint single V-groove weld manufactured by GMAW is
effective when the parameters of speed, current and voltage are, respectively, 6 mm/sec
140 amps and 26 V.
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