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Abstract. The difficulty of the many practical decision problem lies in
the nature of analyzed data. One of the most important real data char-
acteristic is imbalance among examples from different classes. Despite
more than two decades of research, imbalanced data classification is still
one of the vital challenges to be addressed. The traditional classification
algorithms display strongly biased performance on imbalanced datasets.
One of the most popular way to deal with such a problem is to modify
the learning set to decrease disproportion between objects from different
classes using over- or undersampling approaches. In this work a novel pre-
processing technique for imbalanced datasets is presented, which takes
into consideration the mutual density class distribution. The proposed
approach has been evaluated on the basis of the computer experiments
carried out on the benchmark datasets. Their results seem to confirm
the usefulness of the proposed concept in comparison to the state-of-art
methods.

Keywords: Machine learning · Classification · Imbalanced data · Over-
sampling · Radial basis functions

1 Introduction

Most of commonly used machine learning algorithms work under an underlying
assumption that classes have roughly equal number of instances in the training
set. However, in many real-life scenarios it is difficult, or even impossible, to
gather representative collections of instances of similar size from all of classes
[11]. We may deal with a predominant group of objects being abundant and easy
to gather, and with a significantly smaller group to instances of which we have
an limited access [1]. Therefore, we need to create an efficient learning system
using the imperfect data at our disposal. Such an imbalanced distribution will
significantly affect the training process of a classifier, as it is usually guided by
predictive accuracy. This solution assumes uniform importance of all training
instances, thus leading to a classifier being biased towards the majority class.
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When concentrating on more abundant case classifier is more likely to obtain
higher accuracy rates, thus making such a model preferable from the canonical
point of view. However, the minority class is usually the more important one
and thus we want to maximize the predictive performance on it. This has lead
to development of a number of approaches for balancing the classes or alleviating
the bias during training step [4]. Let us now review quickly three most important
groups of methods in this domain.

Preprocessing approaches are applied directly on the training set, before a
classifier is being trained [14]. They aim at manipulating instances in such a way
that will lead to obtaining a balanced dataset. One may achieve this by either
undersampling the majority class, or oversampling the minority one. Random-
ized methods are the most basic ones, characterized by a low computational
complexity and ease of usage. However, they may actually have a harmful effect
on the dataset. Random undersampling may lead to discarding instances that
are essential to forming correct class boundary or lie in specific subregions of the
target class. Random oversampling may multiply noisy or corrupted instances,
thus shifting the actual class distribution. Therefore, in recent years one may
see significant developments in this area that propose a more guided approach
for balancing classes.

Algorithm-level approaches aim at modifying the classifier learning procedure
in order to make it skew-insensitive. This requires an in-depth understanding of
the modified methods, as well as of the actual learning difficulty that causes the
poor performance on minority class. Here, cost-sensitive approaches are popu-
lar, as they allow to easily modify any learning method by adding a separate
misclassification penalty for each class [8]. This should improve minority class
recognition, as classifier will be much more penalized for misclassification of
minority instance. Another potential solution include usage of one-class classi-
fiers [3]. Here, we create a data description of the target class (one selected by
the user) and treat the remaining one as outliers. While we sacrifice knowledge
about one of the classes, we gain a skew-insensitive classifier that captures unique
properties of its target.

Hybrid solutions use advantages of the mentioned approaches and combine
them with other methodologies, mainly ensemble learners [16]. They take advan-
tage of increased predictive power, diversity and ability to capture complex data
offered by combined classifiers and augment it with tackling imbalance at the
level of each classifier. Popular approaches include combination of Bagging or
Boosting with preprocessing.

Despite these developments there still exists a need for introducing more effi-
cient and robust methods for learning from imbalanced data. Especially interest-
ing recent direction is taking into account the properties of individual instances
in the minority class.

In this paper, we introduce a novel oversampling technique that uses radial
functions for estimating the potential of instances. We propose to use them to
model mutual class distributions and analyze the learning difficulty associated
with each instance. Our solution is able to select which objects should be subject
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to oversampling, instead of blindingly using all of them. By analyzing the differ-
ences in potential at a given point, we are able to predefine the nature of minor-
ity class instances use it to guide the artificial instance injection procedure. This
allows for a more meaningful capturing of the minority class underlying distrib-
ution. Additionally, as our solution does not rely on neighborhood calculation,
it is suitable for applications in high-dimensional datasets. Experimental study
conducted on a number of benchmarks prove that the proposed radial-based
oversampling is able to return satisfactory performance.

2 Radial-Based Approach to Oversampling

By far the most prevalent approach to imbalanced data oversampling is Syn-
thetic Minority Oversampling Technique (SMOTE) [6] algorithm and its numer-
ous extensions [5,7,9,12]. However, while widely used and empirically tested,
SMOTE and its derivatives are not devoid of weaknesses. In the remainder of
this section we discuss possible shortcomings of neighborhood-based oversam-
pling strategies. Afterwards, we propose an alternative approach that aims at
mitigating described issues. We describe how radial basis functions can be used
to estimate mutual class density. Finally, we propose a novel algorithm, Radial-
Based Oversampling, which takes advantage of this density estimation approach
to guide the oversampling process in an informed manner.

2.1 Shortcomings of Neighborhood-Based Approaches

Conceptually simplest approach to imbalanced data oversampling is duplicating
existing instances randomly, up to the point of achieving balanced class distri-
butions. However, it leads to minority class distribution being highly focused
in a small area, in which the original observations were present. Because of
that, learning on data modified in such manner is prone to overfitting. SMOTE
algorithm was designed specifically do address this issue. Instead of duplicat-
ing existing instances, SMOTE and its derivatives are based on creating new,
synthetic samples. This family of methods relies on finding nearest, same-class
neighbors of a given minority instance. Afterwards, new samples are being gen-
erated between the given target and one of its neighbors. This approach can be
interpreted as finding the regions in which new samples can be synthesized, and
these regions are lines connecting nearest minority neighbors. Since synthetic
observations are spread out, SMOTE is less prone to overfitting than random
oversampling. Furthermore, new objects can be synthesized in regions previously
not containing minority samples. Because of that, this approach tends to move
the decision border in favor of minority class, a behavior often desirable in case
of highly imbalanced data.

The underlying assumption being made in SMOTE is that the regions
between nearest minority neighbors are suitable for generating new instances.
While often being the case, this assumption does not always hold true. An exam-
ple of data distribution not meeting this requirement is presented in Fig. 1.
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In presented case minority instances form several small clusters, divided by a
large cluster of majority objects. Nearest minority neighborhood is therefore
spread apart, which leads to generation of synthetic samples overlapping the
majority cluster. This issue is so prevalent that it was addressed with several
post-oversampling cleaning strategies, most notable being Tomek links [13] and
Edited Nearest Neighbor Rule [15]. However, even applying such post-processing
is not always sufficient to properly clean the resulting distribution. Furthermore,
since sizes of minority clusters vary, it is not clear what size of neighborhood k
should be chosen. Even the choice of k = 1 would not, however, be sufficient to
fully remedy the issue of overlapping the majority cluster. To make the matters
worse, it cannot be picked dynamically for different minority instances: SMOTE
algorithm requires single choice of k for whole object space. Both of the men-
tioned issues, that is: synthetic samples overlapping existing majority instances
and inability to pick number of neighbors dynamically, are deeply rooted in the
fact that SMOTE does not take into the account presence of majority instances.
Regions in which synthetic samples are generated are based solely on the minor-
ity class distribution, and this information is simply not sufficient in all cases.

Fig. 1. Possible difficult case for SMOTE before (on the left) and after (on the right)
generating synthetic samples. Due to varying sizes of minority objects clusters, it is
not clear what number of neighbors k should be chosen. Even choosing k = 1 would
lead to generating synthetic samples overlapping cluster of majority objects.

2.2 Estimating Difficulty with Radial Basis Functions

Instead of relying on nearest neighbors in process of generating new samples,
in this paper we will investigate the possibility of density-based approach. Intu-
itively, our goal is similar to SMOTE techniques: we try to find the regions, in
which generating synthetic samples is justified. However, contrary to SMOTE,
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we will take into account placement of majority objects. By doing so, our hope
is to reduce the amount of synthetic samples placed in regions densely packed
with majority instances.

To this end we will employ radial basis functions (RBFs). RBFs are real-
valued functions, value of which depends on the distance of the point from the
origin. Common example of such function is Gaussian RBF. Given distance r
and parameter ε, Gaussian RBF can be defined as

φ(r) = e−(εr)2 . (1)

To estimate the mutual class density in a given point in space, also referred to
as a potential, we will sum the values of RBFs for all the instances, with sign
determined by the class of the particular instance. Throughout this paper we will
use a convention that for majority objects value of RBF will be added, whereas
for the minority objects it will be subtracted. Observing high potential in a given
point will therefore correspond to high confidence in the fact that it belongs to
the majority class. Furthermore, observing minority objects with high potential
might indicate that they will be hard to classify correctly, since it is likely to be
surrounded by multiple majority instances.

2.3 Generating Synthetic Samples in a Guided Manner

Mutual class density estimated with RBFs can later be used to guide the process
of synthetic samples generation. In principle, it could be used in various ways.
For instance, potential could indicate difficulty associated with observation, since
minority objects with high associated potential are likely to be surrounded by
a large number of majority instances. Such difficult examples can be prioritized
during oversampling, similar to ADASYN [10]. Instead, in this paper we will
focus on finding regions, in which generation of synthetic samples should be
conducted.

We will focus on regions with high potential, lying in close proximity to
existing minority instances. To make the approach computationally feasible, we
will employ modified hill climbing procedure to maximize the potential of the
synthetic samples. Optimization will start at a position of randomly chosen,
existing minority instance. Whole procedure will last limited number of steps
to prevent placing new instances too deeply into the majority objects clusters.
Finally, to spread synthetic samples more evenly, we will allow optimization pro-
cedure to stop early with a small probability. Pseudocode of the final algorithm
has been presented in Algorithm 1. An illustration of both confidence estimation
with radial basis function and the conducted oversampling has been presented
in Fig. 2.

3 Experimental Study

Experimental investigations, backed up with statistical analysis of the results,
were conducted to evaluate the practical usefulness of the proposed oversampling
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Algorithm 1. Radial-Based Oversampling algorithm
1: Input: collections of majority objects M and minority objects m
2: Parameters: spread of radial basis function γ, optimization step size, number of

iterations per synthetic sample, probability of early stopping p
3: Output: collection of synthetic minority objects S
4:
5: function RBO(M , m, γ, step size, iterations, p):
6: initialize empty collection S
7: while |m| + |S| < |M | do
8: point ← randomly chosen object from m
9: for i ← 1 to iterations do

10: break with probability p
11: translated ← point translated by step size in random direction
12: if potential(translated, M , m, γ) > potential(point, M , m, γ) then
13: point ← translated
14: end if
15: end for
16: add point to S
17: end while
18: return S
19:
20: function potential(point, M , m, γ):
21: result ← 0
22: for all majority points Mi do

23: result ← result + e
−(

‖Mi−point‖1
γ

)2

24: end for
25: for all minority points mi do

26: result ← result − e
−(

‖mi−point‖1
γ

)2

27: end for
28: return result

strategy. In the remainder of this section we describe set-up of the study, present
obtained results and discuss achieved outcomes.

3.1 Set-up

Proposed strategy of dealing with data imbalance, Radial-Based Oversampling
(RBO), has been compared with two state-of-the-art oversampling algorithms:
SMOTE [6] and ADASYN [10]. Additionally, the baseline case was considered, in
which no resampling was applied prior to classification. To assess the robustness
to the choice of learner, several classification algorithms were considered, namely:
k-nearest neighbors (k-NN), support vector machine with radial basis function
kernel (SVM) and CART decision tree (CART).

Following parameters were used in combination with the RBO method: γ
coefficient, corresponding to the spread of radial basis function, was set to 0.05.
Step size used during hill climbing optimization was set to 0.001. Number of
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Fig. 2. On the left: confidence estimation conducted using radial basis functions. Of
particular interest are minority objects (in blue) lying in regions of high confidence
in majority class (in red). On the right: modified data distribution with synthetically
generated samples. (Color figure online)

iterations per synthetic sample was set to 500. Finally, the probability of stop-
ping the optimization early was set to 0.02. Meanwhile, both baseline methods,
SMOTE and ADASYN, used 5 nearest neighbors to construct the synthetic sam-
ples. In all cases new samples were generated up to the point of balancing the
distributions.

Evaluation was performed on 10 datasets taken from KEEL [2] repository.
They were chosen to cover varying levels of imbalance and their details are
presented in Table 1. During the evaluation datasets were partitioned using a
5-folds stratified cross validation. Prior to classification data was normalized to
range from 0 to 1. No further preprocessing was applied.

3.2 Results

In order to properly analyze the behavior of examined methods on imbalanced
data, several metrics were considered: accuracy, precision, recall, F-measure and
geometric mean (G-mean). To assure statistical validity of the results Friedman
test was conducted and average rankings on all the datasets were reported.
They were presented in Table 2. Additionally, detailed results of F-measure for
all datasets were presented in Table 3.

Oversampling strategy proposed in this paper achieved performance compa-
rable to SMOTE method. Using ADASYN led to best results on tested datasets
as far as recall was considered, at the cost of slightly lower precision. These trends
were alike for all considered classifiers, suggesting robustness to the choice of base
learner. Overall, performance of all three resampling algorithms was similar. This
leads us to believe that further work on radial-based oversampling strategies is
a promising research direction.
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Table 1. Details of datasets used during the experimental study.

No Name IR Features Samples

1 glass1 1.82 9 214

2 wisconsin 1.86 7 220

3 yeast1 2.46 8 1484

4 vehicle0 3.25 18 846

5 ecoli1 3.36 7 336

6 new-thyroid1 5.14 5 215

7 segment0 6.02 19 2308

8 page-blocks0 8.79 10 5472

9 vowel0 9.98 13 988

10 abalone19 16.4 8 731

Table 2. Average rankings of various performance measures, computed for k-NN/
SVM/CART classifiers. Method proposed in this paper, Radial-Based Oversampling
(RBO), was compared with SMOTE and ADASYN algorithms, as well as the baseline
case in which no oversampling was applied.

Measure None SMOTE ADASYN RBO

Accuracy 1.8/2.3/1.8 2.6/2.6/2.8 3.1/2.4/2.7 2.4/2.6/2.6

Precision 1.4/2.2/1.7 2.5/2.4/2.9 3.2/2.8/2.8 2.7/2.6/2.6

Recall 4/4/3.8 2.3/2.2/2.2 1.5/1.4/1.4 2.1/2.3/2.5

F-measure 2.7/4/2.6 2.4/2/2.7 2.5/2/2.1 2.4/2/2.6

G-mean 4/4/3.5 2/2.3/2.4 1.9/1.6/1.9 2.1/2.1/2.2

Table 3. Values of F-measure achieved on specific datasets, computed for k-NN/
SVM/CART classifiers.

Dataset None SMOTE ADASYN RBO

1 0.67/0.00/0.66 0.70/0.56/0.64 0.72/0.53/0.67 0.72/0.57/0.67

2 0.96/0.96/0.90 0.96/0.96/0.92 0.96/0.96/0.93 0.96/0.96/0.92

3 0.49/0.11/0.52 0.57/0.58/0.52 0.56/0.58/0.50 0.54/0.59/0.52

4 0.86/0.00/0.89 0.84/0.68/0.86 0.85/0.71/0.89 0.85/0.69/0.85

5 0.82/0.72/0.74 0.78/0.75/0.74 0.78/0.76/0.74 0.77/0.75/0.77

6 0.89/0.62/0.90 0.96/0.93/0.92 0.94/0.93/0.90 0.95/0.93/0.89

7 0.98/0.57/0.98 0.97/0.89/0.98 0.97/0.66/0.97 0.97/0.88/0.98

8 0.77/0.55/0.84 0.76/0.67/0.82 0.76/0.61/0.83 0.77/0.67/0.80

9 0.97/0.00/0.92 0.99/0.76/0.90 0.99/0.80/0.93 0.99/0.76/0.90

10 0.00/0.00/0.00 0.04/0.04/0.03 0.04/0.04/0.03 0.03/0.03/0.02
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4 Conclusions and Future Directions

In this paper we proposed a novel approach to imbalanced data oversampling.
It relied on using radial basis functions to estimate classification difficulty of
minority objects. An inspiration for it lied in addressing possible shortcomings
of existing oversampling strategies, which we described in this paper. Results
of conducted experimental evaluation seem to confirm possible usefulness of the
proposed approach.

Proposed method, while capable of achieving performance comparable to
other state-of-the-art oversampling algorithms, is relatively simple and can be
improved upon. First of all, it is not clear whether maximization of potential is
the optimal choice. Usually it corresponds to generating new minority objects
in areas of the lowest certainty. In some cases it might be preferable to generate
safer objects instead, especially so if preserving high precision is an important
factor. Secondly, results of experimental study conducted in this paper indicate
that oversampling with ADASYN leads to better results than SMOTE. This cor-
responds to focusing on difficult minority objects while generating synthetic sam-
ples. Incorporating such mechanism into the Radial-Based Oversampling might
therefore improve performance of the method. Thirdly, in the proposed app-
roach we considered only mutual class density, difference between the potential
of majority and minority classes. In some cases it might be insufficient to describe
the difficulty of classification in a particular point in space. For instance, neigh-
borhood of an object could be densely packed with both minority and majority
instances. Opposite potentials could cancel themselves out, leading to the same
final value as in the case of a single object with no nearby observations. To
mitigate this issue, probability distributions of individual classes could be incor-
porated into the oversampling procedure. Finally, in presented form radial-based
approach to oversampling is computationally expensive, since at every iteration
potential is computed based on all existing objects. However, since influence of
far-away points is usually negligible, this operation could be significantly sped
up by focusing only on nearest instances.
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