Word Embedding Based Event Detection
on Social Media

Ali Mert Ertugrul', Burak Velioglu?, and Pinar Karagoz2(®
! Informatics Institute, METU, 06800 Ankara, Turkey
alimert@metu.edu.tr
2 Computer Engineering Department, METU, 06800 Ankara, Turkey
{velioglu,karagoz}@ceng.metu.edu.tr

Abstract. Event detection from social media messages is conventionally
based on clustering the message contents. The most basic approach is rep-
resenting messages in terms of term vectors that are constructed through
traditional natural language processing (NLP) methods and then assign-
ing weights to terms generally based on frequency. In this study, we use
neural feature extraction approach and explore the performance of event
detection under the use of word embeddings. Using a corpus of a set of
tweets, message terms are embedded to continuous space. Message con-
tents that are represented as vectors of word embedding are grouped by
using hierarchical clustering. The technique is applied on a set of Twitter
messages posted in Turkish. Experimental results show that automati-
cally extracted features detect the contextual similarities between tweets
better than traditional feature extraction with term frequency - inverse
document frequency (TF-IDF) based term vectors.

Keywords: Event detection + Neural feature extraction -+ Word embed-
ding - Neural probabilistic language models

1 Introduction

Social media has become a basic tool for communication among the Inter-
net users. Micro-blogging platforms enable users to broadcast digital contents
including texts, images and videos. Twitter is currently the most popular
micro-blogging platform in which people can share their experiences and ideas.
Although the twitter messages, tweets, are limited to 140 characters, they con-
stitute an important source of information. Additionally, the propagation of the
short information is easier and faster.

Tweets are the time-stamped information and Twitter can be considered as
an up-to-date source of event related messages [1]. Individuals who are taking
part in or watching an event tend to share a number of event-relevant messages
and communicate with each other to exchange opinions about that event [2].
Therefore, it is expected that when an important event, such as a disaster,
political election and football game, occurs, the number of the tweets related to
© Springer International Publishing AG 2017

F.J. Martinez de Pisén et al. (Eds.): HAIS 2017, LNAI 10334, pp. 3-14, 2017.
DOI: 10.1007/978-3-319-59650-1_1

4 A.M. Ertugrul et al.

that event considerably increases. Consequently, analysis and extraction of event
related information from social media resources enable individuals to obtain
important knowledge faster and easier.

Event detection can be described as a clustering process of the similar indica-
tors. In our case, tweets are used as indicators. Yet, clustering the semantically
similar tweets is not a straightforward task for the researchers. The conventional
approach is to construct term vectors representing tweets and calculating the
similarity between term vectors. There are several ways to assign weights to
terms, yet the mostly used weight assignment schema is using TF-IDF of the
tweet terms.

In this study, our purpose is to detect events from Twitter using word-
embedding based representation of tweets. To this aim, we represent each word
of each tweet as a continuous vector utilizing the word2vec model [3]. Each tweet
is represented in terms of vector representations of its words. Next, we cluster
the tweet representations with hierarchical clustering methods.

The technique is applied on a set of collected tweets in Turkish. In addition
to difficulties due to informal language, working on a morphologically complex
and agglutinative language poses challenges in traditional NLP tasks. Events
detected under word-embedding based representation is compared against TF-
IDF based term vector representation. Experimental analysis show that word
embedding based clustering improves event detection performance.

The contributions of this work can be summarized as follows: Word embed-
dings are used for event detection on micro-blogging platform, which uses short
message length and generally involves informal use of language. The technique
is applied on Turkish, which is an agglutinative and morphologically complex
language. The technique is experimentally analyzed on a collected set of tweets
including four different events, where two of them are unexpected events such
as a terrorist attack, and two other events are scheduled events such as a cele-
bration. Hence, the performance can be analyzed according to the nature of the
event.

This paper is organized as follows. In Sect. 2, related work is summarized. In
Sect. 3, proposed method is described. In Sect. 4, experiments on the performance
of the proposed method are presented. The paper is concluded with an overview
in Sect. 5.

2 Related Work

In the literature, there exists a number of studies related to event detection and
retrieval from social media data, especially Twitter. These studies can be classi-
fied into three categories according to their detection approaches, namely super-
vised, unsupervised and hybrid [4]. Among the studies employing supervised
approach, Popescu et al. extract the features including part-of-speech tags, reg-
ular expressions and relative positional information, then uses gradient boosted
decision trees to identify controversial and noncontroversial events [5]. Similarly,
Sakaki et al. detect domain specific events like earthquake, which are manually

Word Embedding Based Event Detection on Social Media 5

labeled, using SVM classifier [6]. There also exists studies for event extraction
from social media platforms using other types of supervised approaches like ran-
dom forest and logistic regression [7,8]. Supervised approaches are mostly used
for specified event detection. However, labeling tweet messages by annotators is
time consuming and requires intensive work load.

Unsupervised approaches for event detection and retrieval are generally based
on cluster analysis. Some studies employ incremental clustering algorithm based
on a similarity threshold to form clusters [9,10]. These studies consider the
features containing number of tweets, users and term vectors while clustering.
Likewise, Ozdikis et al. apply agglomerative clustering technique to detect events
in Turkish, using words with and without semantic expansions as tweet vectors
[11,12]. Parikh et al. propose an event detection method by exploring textual
and temporal components of the tweets so that events are detected using hierar-
chical clustering technique [13]. Additionally, several studies employ graph-based
clustering for the detection of new events including detection techniques; hier-
archical divisive clustering [14], community detection [15], and wavelet analysis
and graph partitioning [16].

In addition to these approaches, there are also studies combining both
supervised and unsupervised approaches for event detection. Becker et al. use
both online clustering and SVM classifier to distinguish the messages belong-
ing to real world events and non-event messages [17]. Moreover, Hua et al. [18]
employ semi-supervised approach to detect targeted events like crimes and civil
unrests.

The studies in the literature related to event detection and retrieval can also
be analyzed in terms of the features they employ. Apart from utilization of hand
crafted features, word embedding techniques are used as a feature extraction
process for many problems in NLP literature. Tan et al. [19] make a lexical
comparison between Twitter and Wikipedia corpora by pursuing a linear relation
between obtained word embeddings. To extract Adverse Drug Reactions (ADR),
Lin et al. [20] feed the vectors obtained by word2vec algorithm into conditional
random fields. To learn a sentiment-specific word embeddings, Tang et al. [21]
proposed their own word embedding algorithm and compare their results with
classical word2vec algorithm. Besides these studies, Fang et al. [22] utilize word
embedding technique to evaluate the coherence of topics from Twitter data.

Number of the studies related to event detection learn features from the
sentences instead of using hand crafted features. Among them, Nguyen et al.
use Convolutional Neural Network (CNN) to detect events [23]. In [24], Nguyen
et al. use deep neural networks to both identify informative tweets and classify
them into classes in an online fashion to detect crisis from tweets. As far as we
know, neural feature extraction of the words for event detection on Turkish has
not been applied before. However, there are studies in which learning continuous
vector representations of words is used to develop a Named Entity Recognition
(NER) system for Turkish [25,26].

6 A.M. Ertugrul et al.

3 Proposed Method

In this work, we propose an event detection approach based on clustering con-
tinuous vector representations obtained by word embedding. We use an agglom-
erative clustering technique with time constraint.

3.1 Data Collection

In order to access Twitter data, Twitter provides two general APIs namely REST
API' and Streaming API?. We use REST API to create a corpus. Using this
dataset, we aimed to learn continuous representation of the tokens (words) in
tweets by using word embedding technique. We gathered nearly 2.1M tweets
for the corpus during three days. On the other hand, we use Streaming API to
collect messages posted between April 234, 2016 and May 10*", 2016, which is
used for event detection. For event detection, more than 1M tweets have been
collected within 18 days. During the collection of data for both datasets, only
Turkish tweets are selected.

3.2 Data Preprocessing

We start with removing the tweets including “I'm at” text since they are the
Foursquare® related ones showing the check-in activities of users. We remove
the words whose length is less than 2 characters (except numbers), hashtags,
mentions, links and “RT” keyword. We also remove a number of emoticons. In
order to detect and remove various types of emoticons, we use the java library
com.vdurmont*. Furthermore, we omit a number of punctuation marks including
(-+.:2!1%*/:;[]{} =). We also filter out the stop words from the
tweets using the list of Turkish stop words provided by Lucene®.

After basic removal and parse operations, we fix misspelled words and obtain
word stems. To this aim, we use Zemberek API® which is a general purpose
natural language processing library and toolset designed for Turkish language.
Turkish is an agglutinative language. We perform stemming on all words of
all tweets we collect (both corpus dataset and event detection dataset) and
then separate them into form of word stem, derivational affixes and inflectional
suffixes using Zemberek API. Inflectional suffixes do not change the meaning of
the words, yet they diversify the words. Due to this reason, we extract stems of
the words by omitting inflectional suffixes. As a result of preprocessing step, the
test dataset has 881 K tweets.

! https://dev.twitter.com/rest/public.

2 https://dev.twitter.com/streaming/public.
3 https:/ /foursquare.com/.

* https://github.com/vdurmont /emoji-java.

5 http://lucene.apache.org)/.

5 https://github.com/ahmetaa/zemberek-nlp.

https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/public
https://foursquare.com/
https://github.com/vdurmont/emoji-java
http://lucene.apache.org/
https://github.com/ahmetaa/zemberek-nlp

Word Embedding Based Event Detection on Social Media 7

3.3 Word Embedding

In this study, continuous vector representation of each word is obtained by
word2vec algorithm [3], which is one of the Neural Probabilistic Language Model
(NPLM)-based models. This representation can be obtained by either predicting
the word itself using its neighbor words or predicting neighbor words using only
corresponding word. NPLM models can be trained using maximum likelihood
(ML) principle. Note that, in this study representations are obtained by esti-
mating the neighbor words using the word itself, since it is much faster than the
other approach [3].

Note that optimizing the model using maximum likelihood would take O(|V|)
time, since maximizing the cost function with ML principle iterates over all words
included in the vocabulary. So, rather than maximizing the log-likelihood over all
words, lately developed word2vec model is trained utilizing negative sampling.
In this approach, objective is optimized by maximizing the probability of words
and contexts being in the corpus, and minimizing sampled others which are not
in the context. Real words are represented by w and imaginary target words are
represented by w*. Then, the cost function can be defined as,

JInEG =10gQe(D = 1w, h) + kE[logQe(D = 0|w*, h)], (1)

where Qg(D = 1w, h) is the logistic regression calculated in terms of the learned
embedding vectors 6. h represents the matrix of embedded representations.

Each preprocessed tweet is represented as a vector using the skip-gram
model [3]. Due to character limitation of Twitter, window size is used as 2. After
eliminating the tweets with less than 5 words, word vectors are created by training
word2vec algorithm with 1.5 million tweets. The length of the continuous vectors
are selected as 150 and the number of negative words is selected as 10, empiri-
cally. That means, neighbor words are estimated with the center word projected
into 150 dimensions and neighbor words are mixed randomly ten times. The five
nearest neighbor words of five sample words are given in the Table 1.

Table 1. Sample words and their five nearest words. Skip-gram is trained with 1.5 M
tweets

Word Nearest 5 words

mag¢ match {hakem, Galatasaray, gol, seyircisiz, Besiktag}
{referee, Galatasaray, goal, without spectators, Besiktas}

terdr terror {azdiran, boliicii, orgiit, menfez, terorist}
{arouser, separatist, organization, culvert, terrorist}

bomba bomb {roketatar, aragli, patlat, bombala, patlama}
{bazooka, with vehicle, explode, bombing, explosion}

Besiktag Besiktas | {sampiyon, Galatasaray, namaglup, Fenerbahge, taraftar}
{champion, Galatasaray, unbeaten, Fenerbahce, supporter}

bayram festival | {giin, isci, kutlu, nisan, emekgi}
{day, worker, blessed, April, laborer}

8 A.M. Ertugrul et al.

In order to obtain vector representation of a tweet, vector representations of
its all words are summed. Note that, summation vector is divided by the length
of tweet to handle tweets with varying lengths.

3.4 Clustering Algorithm

We follow a special type of agglomerative clustering technique based on time
constraint for event detection. Basically, vector representation of each tweet is
individually evaluated considering its time-stamp and similarity to active clus-
ters. Then, it is included into the matching cluster or a new cluster is created
for the corresponding tweet.

In order to add a tweet into an existing cluster, the following two conditions
should be satisfied. Firstly, the difference between time-stamp of the latest tweet
in the cluster and the tweet to be clustered should be less than or equal to
the parameter T,,q.. If this condition is satisfied for the given cluster, then
it is called active cluster. In our experiments, this parameter is set to 3 and
6 h. Secondly, the similarity between the vector of an active cluster and the
vector representation of the tweet to be clustered should be greater than or
equal to Syin. A cluster vector corresponds to cluster centroid which is the
arithmetic mean of the vector representations of the tweets in that cluster. In
the experiments, cosine similarity measure is used and the parameter S,,;, is set
to 0.60, 0.65, 0.70 and 0.75. If there exists clusters satisfying these two conditions
for a given tweet, the one with the maximum similarity value is chosen and the
tweet is put into that cluster. On the other hand, a new cluster is created for
the corresponding tweet unless there exists a cluster satisfying the conditions.
The pseudo code of the clustering algorithm we employ is given in Algorithm 1.

Algorithm 1. Clustering Algorithm

for t € Tweets do
is_assigned «— false
active_clusters — get ActiveClusters(t.getTime(), Tmax)
if active_clusters # () then
optimum_cluster «— findMaxSimilarCluster(t, active_clusters)
if similarity(t, optimum_cluster) > Spmin then
optimum_cluster.add(t)
optimum_cluster.calculate NewCentroid()
is_assigned < true
end if
end if
if not is_assigned then
new_cluster — createNewCluster(t)
all_clusters.add(new_cluster)
end if
end for

Word Embedding Based Event Detection on Social Media 9

4 Experiments and Results

During the 18-day test data collection period between April 23", 2016 and
May 10", 2016, we focused on four events to analyze, where two of them are
unexpected events and two other events are scheduled events as celebrations.
The unexpected events are the suicide bomb attack in Bursa and gun attack
to a Turkish journalist in Istanbul. On the other hand, the scheduled events
are anniversaries of national sovereignty and children’s day and labor day. The
information about the events are presented in Table 2.

In order to identify the event clusters for each event, we firstly specify rep-
resentative query words. We ask ten Turkish participants to determine the
words to represent corresponding events. Based on their answers, we finalize
the query sentences. For example, the query sentence for F; is “Bursa canli
bomba saldir1 (Bursa suicide bomb attack)” as given in Table 2. For each event,
we obtain word2vec representation of the query sentence and calculate the sim-
ilarity between this representation and cluster vectors. Finally, if the similarity
between the query sentence representation and the cluster vectors are larger
than the threshold, which is specified for the clustering process, corresponding
clusters are called event clusters.

In order to compare performance of word2vec representation, we obtain TF-
IDF [27] based vectors for each tweet, perform clustering by using these term
vectors, as the baseline. IDF weight for each word is calculated using only cor-
pus dataset. Note that, TF-IDF based vectors are obtained after the same pre-
processing step. There exist 59214 unique words included in the corpus dataset.
Then, normalized TF score for each word of each test tweet is calculated. The
TF weight of a word that occurs in a tweet is simply proportional to the word
frequency. To represent each tweet as a feature vector, bag-of-words representa-
tion is used. In other words, each tweet is represented as a feature vector where
features correspond to words in the corpus. For each word in the tweet, TF-IDF

Table 2. Description of the events

Id | Event type | Event time | Query

Suicide bomb attack | F1 | Unexpected | 27.04.2016 | Bursa canli bomba saldiri
in Bursa

17:30 (Bursa suicide bomb attack)

Armed attack to E> | Unexpected | 06.05.2016 | [Ad, soyad] saldir
journalist

17:25 ([Name, surname] attack)

National sovereignty | Ei3 | Scheduled |23.04.2016 | 23 nisan gocuk bayrami
and children’s day

All day (April 23 child festival)
Labor day FE4 | Scheduled | 01.05.2016 | 1 may1s isgi bayrami
All day (May 1 labor day)

10 A.M. Ertugrul et al.

Table 3. Information related to clusters obtained using word2vec

3H 6 H
0.60 0.65 0.70 0.75 0.60 0.65 0.70 |0.75
Number of event FE, |8 6 5 3 9 6 5 4
clusters E> |26 16 11 5 37 19 16 7
E3 |3 3 1 1 3 3 2 1
E, |8 7 6 3 10 9 6 5
Number of Tweets Eq | 323 619 393 407 492 332 343 | 423
in the best cluster E5 | 943 749 586 462 902 823 615 590
Es | 1229 889 679 545 1552 784 727 | 581
E, | 1169 1075 778 676 1297 949 915 505
Avg. size of event Eq | 1220,8 |963.2 444.8 | 274 1143.89 | 898.33 | 509 338.5
clusters E5 | 1573.46 | 1641.31 | 324.36 | 864.2 | 1235.11 | 1398.37 | 320 513.43
E3 | 1339.7 | 775.67 | 679 545 1347 850.33 | 420.5 | 581
E, | 768.5 662.25 | 578.67 | 624.67 | 579.3 583.89 | 585.5 | 374.8

scores are computed and assigned to corresponding element of feature vector.
The remaining entries of the feature vector are 0. Using this representation, each
tweet is represented by 59214 dimensional feature vector. In our implementation,
each feature vector is stored sparsely as hash map to overcome memory problem.

We perform clustering experiments using word2vec and TF-IDF representa-
tions of the tweets as term vectors with the following parameters; S, € [0.60,
0.65,0.70,0.75] and Ty € [3, 6] hours. During the experiments, for each event
we analyze the number of event clusters, number of tweets in the best event clus-
ter and average size of the event clusters obtained using word2vec (see Table 3)
and TF-IDF (see Table4) representations. Best event cluster refers to the clus-
ter whose cluster vector is the most similar to the query sentence representation
for a given event. Experiments show that the number of event clusters obtained
using word embedding are less than the ones obtained by TF-IDF regardless of
the parameters and event. Also, the number of the tweets in the best event clus-
ter and average size of event clusters obtained by word embedding are extremely
larger than those obtained by TF-IDF. These results reflect that, employing
word embedding leads to better clusters compared to TF-IDF.

In addition to measures given in Tables 3 and 4, we compute precision scores
of the best event clusters to evaluate the success and quality of clustering based
on word embedding. The tweets in the best event clusters are labeled by two
annotators and the precision scores are given in Table 5. The results show that
the precision of the scheduled events, F3 and Fy, increases with an increase in
the parameter S,,;,, regardless of the parameter T),,,. We also observe that
the number of tweets in the best event clusters decrease as the parameter Sp,;y,
increases. This can be inferred in such a way that people are more likely to
share structured tweets for the scheduled events such as celebrations. On the
other hand, it is observed that the unexpected events F; and FEs exhibit a
different pattern compared the scheduled events E3 and F4. When T,,,, = 3h,
the precision values of the best event clusters reach its peak value at Sy,;,, = 0.65.
However, the precision values are maximum at S,,;, = 0.70 when T},,, = 6h.

Word Embedding Based Event Detection on Social Media 11

Table 4. Information related to clusters obtained using TF-IDF

3H 6 H
0.60|0.65|0.70 | 0.75]0.60 | 0.65 | 0.70 | 0.75
Number of event clusters Ei |9 8 3 1 9 8 2 1
Ey|65 |37 |32 |15 |56 |37 |26 |15
FEs |9 8 5 4 8 8 5 3
E4|39 |26 |15 |10 |34 |17 |12 |6
Number of T'weets in the best Ei|3 3 6 4 3 7 6 4
cluster Fs 4 4 3 2 4 4 2 3
FEs|1 1 1 1 4 1 1 1
Es|l 1 1 2 1 1 1 2
Avg. size of event clusters Ev |5 4 1.83 4 5.22 |4 5 4
FE>(2281.81]1.97|1.93|2.2 [3.35|1.65|2.53
FEs|2.22]|2 1.6 |16 |25 |2 1.6 |2.67

E,121511.88/2.8 |1.7 |2 1.76 | 3 1.67

In other words, unlike in scheduled events, we cannot observe a monotonically
increasing pattern with an increase in the parameter .S,,;,. We observe that, after
a similarity threshold (0.65 for 3h and 0.70 for 6h), the precision value decreases
for unexpected events. We can infer that, tweets related to unexpected events
are less likely to be structured as in scheduled events and less similar tweets are
shared for these events.

Table 5. Precision scores of the best event clusters obtained using word2vec, with
respect to the parameters Trar and Spin

3H 6 H

0.60 [0.65 |0.70 |0.75 |0.60 |0.65 |0.70 |0.75

FEy162.54 1 83.52|79.39|79.61 |76.42|81.33|90.08 | 84.63
E>{85.0486.92|84.13 | 84.20 |85.03 |86.03 | 88.78 | 83.73
FE3150.04 76.38 | 82.0391.74|50.19 | 88.78 | 94.49 | 94.84
E4189.48 1 82.83 [93.1895.71|80.26 | 90.94 | 94.86 | 95.84

Note that, precision values of the best event clusters obtained using TF-IDF
are 100% for all events and conditions. The reason for this is that, event clusters
contain only a few tweets which are highly similar to query sentences. Due to the
large amount of data, it is time-consuming to annotate all event related tweets
and calculate recall values. However, it is clear that, since event clusters consist
of only a few tweets, they miss a large amount of event related tweets. It results
in very low recall values obtained using TF-IDF compared to word embedding.

In order to analyze temporal information of the tweets belonging to the best
event clusters, we plot the figures revealing the number of tweets shared within

12 A.M. Ertugrul et al.

200 T T T

of Tweets
g g
T T
1 L

o
=)
T
L

Period of Time

(a) E1, (Smin = 0.70 and Ti,ax = 6 hours)

of Tweets

)
Period of Time

(b) E4, (Smin = 0.75 and Tee = 6 hours)

Fig. 1. The number of tweets shared within the periods of 2 h for each of the best event
clusters obtained by the corresponding parameters Sp,in and Tiaz

the periods of 2h. Due to space limitation, we do not present the figures for Fs
and Fj3 since their behaviors are similar to F; and Fy, respectively These best
event clusters are the ones having the highest precision values where 7T},,,, = 6 h.
We compare the original event times given in Table2 with the corresponding
times of number of shared tweets in Fig. 1. We observe that the tweets related
scheduled events are shared during the all-day and even the beginning of the
following day. We also observe that tweets related to scheduled event E5 are
posted starting from the last hours of the previous day. The number of the
shared tweets for the same event are minimum between two peaks since people
are most likely to sleep in that interval (03:26 AM — 07:26 AM). Moreover, the
unexpected events F3 and Ej4 gets their peak values just after the corresponding
original event times.

5 Conclusion

In this study, we explore the effectiveness of word-embedding based representa-
tion of tweets to detect events from Twitter. In that regard, the words of the
tweets are represented as a continuous vector employing the word2vec model.
We analyze the proposed method on a set of collected tweets in Turkish, which

Word Embedding Based Event Detection on Social Media 13

contains four events, in comparison to the TF-IDF based vector representations
of tweets. The results reflect that utilizing word2vec features improves the per-
formance on event detection on Twitter although it includes mostly short-length
and informal data.

As a future work, we are planning to compare the performance of different
continuous vector representations of words techniques such as GloVe [28] in
event detection in Turkish. Additionally, we will analyze the effect of employing
embedding techniques at different granularity namely sentence2vec and doc2vec
[29], which are extensions of word2vec algorithm, for the event detection on
micro-blogging platforms.

References

1. Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. Geo-
Journal 69(4), 211-221 (2007)

2. Abdelhaq, H., Sengstock, C., Gertz, M.: EvenTweet: online localized event detec-
tion from twitter. Proc. VLDB Endowment 6(12), 1326-1329 (2013)

3. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111-3119 (2013)

4. Atefeh, F., Khreich, W.: A survey of techniques for event detection in Twitter.
Comput. Intell. 31(1), 132-164 (2015)

5. Popescu, A-M., Pennacchiotti, M., Paranjpe, D.: Extracting events and event
descriptions from Twitter. In: Proceedings of the 20th International Conference
Companion on World Wide Web, pp. 105-106 (2011)

6. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web, pp. 851-860 (2010)

7. Kallus, N.: Predicting crowd behavior with big public data. In: Proceedings of the
23rd International Conference on World Wide Web, pp. 625-630 (2014)

8. Reschke, K., Jankowiak, M., Surdeanu, M., Manning, C.D.; Jurafsky, D.: Event
extraction using distant supervision. In: LREC, pp. 4527-4531 (2014)

9. Phuvipadawat, S., Murata, T.: Breaking news detection and tracking in Twit-
ter. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), vol. 3, pp. 120-123 (2010)

10. Petrovié, S., Osborne, M., Lavrenko, V.: Streaming first story detection with appli-
cation to Twitter. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 181-189 (2010)

11. Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of Tweet contents for
enhanced event detection in Twitter. In: 2012 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM), pp. 2024
(2012)

12. Ozdikis, O., Senkul, P., Oguztuzun, H.: Context based semantic relations in
Tweets. In: Can, F., Ozyer, T., Polat, F. (eds.) State of the Art Applications of
Social Network Analysis. Lecture Notes in Social Networks, pp. 35-52. Springer,
Switzerland (2014)

13. Parikh, R., Karlapalem, K.: ET: events from Tweets. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 613-620 (2013)

14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A.M. Ertugrul et al.

Long, R., Wang, H., Chen, Y., Jin, O., Yu, Y.: Towards effective event detection,
tracking and summarization on microblog data. In: Wang, H., Li, S., Oyama, S.,
Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 652—-663. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23535-1_55

Sayyadi, H., Hurst, M., Maykov, A.: Event detection and tracking in social streams.
In: ICWSM (2009)

Weng, J., Lee, B-S.: Event detection in Twitter. In: ICWSM, vol. 11, pp. 401-408
(2011)

Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event
identification on Twitter. In: ICWSM, vol. 11, pp. 438-441 (2011)

Hua, T., Chen, F., Zhao, L., Lu, C-T., Ramakrishnan, N.: STED: semi-supervised
targeted-interest event detection in Twitter. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1466-1469 (2013)

Tan, L., Zhang, H., Clarke, C.L.A., Smucker, M.D.: Lexical comparison between
Wikipedia and Twitter corpora by using word embeddings. In: Short Papers, vol.
2, p. 657 (2015)

Lin, W-S., Dai, H-J., Jonnagaddala, J., Chang, N-W., Jue, T.R., Igbal, U., Shao,
J.Y-H., Chiang, I-J., Li, Y-C.: Utilizing different word representation methods for
twitter data in adverse drug reactions extraction. In: 2015 Conference on Tech-
nologies and Applications of Artificial Intelligence (TAAI), pp. 260-265 (2015)
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for Twitter sentiment classification. In: ACL, no. 1, pp. 1555-1565
(2014)

Fang, A., Macdonald, C., Ounis, I., Habel, P.: Using word embedding to evaluate
the coherence of topics from Twitter data. In: Proceedings of SIGIR (2016)
Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with con-
volutional neural networks. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing, vol. 2, pp. 365-371 (2015)

Nguyen, D.T., Joty, S., Imran, M., Sajjad, H., Mitra, P.: Applications of online
deep learning for crisis response using social media information. arXiv preprint
arXiv:1610.01030 (2016)

Demir, H., Ozgiir, A.: Improving named entity recognition for morphologically
rich languages using word embeddings. In: 2014 13th International Conference on
Machine Learning and Applications (ICMLA), pp. 117-122 (2014)

Onal, K.D., Karagoz, P.: Named entity recognition from scratch on social media.
In: ECML-PKDD, MUSE Workshop (2015)

Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary
information. IBM J. Res. Dev. 1(4), 309-317 (1957)

Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532-1543 (2014)

Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, vol. 14, pp. 1188-1196 (2014)

http://dx.doi.org/10.1007/978-3-642-23535-1_55
http://arxiv.org/abs/1610.01030

	Word Embedding Based Event Detection on Social Media
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Data Collection
	3.2 Data Preprocessing
	3.3 Word Embedding
	3.4 Clustering Algorithm

	4 Experiments and Results
	5 Conclusion
	References

