
Multithreading Approach to Process Real-Time
Updates in KNN Algorithms

Anne-Marie Kermarrec, Nupur Mittal, and Javier Olivares(B)

Inria Rennes, Rennes, France
{anne-marie.kermarrec,nupur.mittal,javier.olivares}@inria.fr

Abstract. K-Nearest Neighbors algorithm (KNN) is the core of a con-
siderable amount of online services and applications, like recommenda-
tion engines, content-classifiers, information retrieval systems, etc. The
users of these services change their preferences over time, aggravating the
computational challenges of KNN. In this work, we present UpKNN : an
efficient thread-based out-of-core approach to take the updates of users
preferences into account while it computes the KNN efficiently.

1 Introduction

K-Nearest Neighbors (KNN) has been one of the most important classifica-
tion techniques, specially used on recommender systems [1,2], and information
retrieval applications.

KNN is a process of finding the most similar neighbors of a node/entity from
a dataset. Each node of the dataset is represented for some data, commonly
known as profile. We consider two data entities as neighbors if their profiles are
similar based on a similarity metric as cosine or Jaccard.

Unfortunately, the main bottleneck of KNN is its huge memory requirements.
Besides, some of the KNN applications witness high rate of changes in pro-
files over time, making very difficult to take these changes into account. These
updates only increase the computation time considerably, making the algorithm
less and less scalable. Due to this cost, many current approaches [2–4] simplify
the processing assuming the dataset remains static throughout the computation.
Consequently, the computation of KNN on static datasets does not consider
data’s dynamism, relying on content that is always outdated. Unfortunately,
nowadays data changes continuously [7,8] at unimaginable rates, specially on
those web-based, or recommendation systems’ applications [5,6].

Hence, we propose UpKNN, a multithreading approach for processing real-
time profile updates in KNN algorithms. UpKNN is designed to perform well on
a single commodity PC, through an efficient out-of-core approach that leverages
disk and main memory efficiently. The use of a single commodity PC, instead of
a more complex computing platform, is motivated by its lower cost and ease of
access for a vast majority of potential users, compared to a distributed system.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 109–114, 2017.
DOI: 10.1007/978-3-319-59647-1 9

110 A.-M. Kermarrec et al.

2 Background

Given N entities with their profiles in a D-dimensional space, the K-Nearest
Neighbors (KNN) algorithm finds the K closest neighbors for each entity. The
distance between two entities is computed based on a well-defined metric that
takes into account their profiles. To compute KNN efficiently we adopt an
approximate approach as proposed in [1].

Let us consider a set of entities U (|U | = N), associated with a set of
items denoted by I. Each entity u has a profile UPu, composed of items in I.
UpKNN assumes that the N entities are randomly partitioned into M parti-
tions, in such a way that at least one partition can be processed in memory at
a time.

Corresponding to each of the M partitions there is a partition file PFj in
disk, storing the profiles UP of all the entities belonging to partition j.

To update the profiles, UpKNN receives an unsorted set of updates S con-
sisting of entity-item tuples: S = {< u, i > |u ∈ U, i ∈ I}.

3 UpKNN Algorithm

3.1 Classify

UpKNN classifies each update of the set S per its entity’s partition, such that
all updates for the entities of a partition are applied at once, avoiding further
IO operations. For a fast classification, we use a set of in-memory buffers, which
are read and written in parallel. UpKNN performs the expensive read operations
from S (on disk) in parallel with the classification, achieving a higher throughput.

Figure 1 depicts the classify phase. The classification separates the updates
and stores them into M update files, UFm. To do so, we have pairs of reader-
classifier threads (Tri and Tci). Each pair shares a unique communication chan-
nel Ci.

Each reader thread Tri reads one of the equal-sized slices of S at a time. Once
the Tri has read a slice from S, it puts that slice in the communication channel
Ci and notifies the corresponding Tci. When Tci receives the notification, it reads
data from Ci, freeing it for new data (from Tri).

To classify the updates into the update files UFm, each classifier thread Tci

has access to its M partitioned local buffer LBi of size M × 4[mb].

Fig. 1. Classify. Reader threads in continuous lines, classifier threads in dashed lines

Multithreading Approach to Process Real-Time Updates in KNN Algorithms 111

Keeping the large size of updates in mind, we implement a second level of
buffer called Global buffer, mostly to reduce synchronizations and IO operations.
This buffer of size M×8[mb] is common to all the classifier threads, consequently
is protected by a mutex, preventing multiple classifiers to access the same par-
tition concurrently. The size of the buffer is experimentally selected to achieve
the best performance.

Each thread Tci classifies the updates and stores them into their correspond-
ing local buffer partitions: LBij . As soon as a partition j of the local buffer LBi

becomes full, its data is put into the corresponding partition of the global buffer
by Tci. Once the global buffer partition is full, the data of that particular par-
tition j is written into the update profile file UFj . The thread Tci∗, who made
j’s partition in the global buffer full, writes the update profile file UFj . As only
one thread has access to the global buffer of some partition j, when this is full,
there is no need of synchronization to write UFj file.

In UpKNN a key factor to achieve high performance is the overlap of com-
putations and IO operations. While a reader thread obtains data from S (IO
request), a classifier thread classifies updates in partitions, preliminarily stored
on in-memory buffers and later written into the corresponding update files.

3.2 Merge

The phase merges the updates from these UFm files with the already existing M
profile files PFm in disk. We use a set of M threads Tme to process the updates
from these files in parallel. We have enough threads Tme so that each file is read
and merged in parallel, leveraging IO parallelism observed on modern SSDs.

To merge, each thread Tme loads the updates from the corresponding update
profile file UFi into memory. These updates are inserted sequentially into a heap
to sort them by entities’ id. The purpose of sorting the updates by entities’ id
is to have all the occurrences of a particular user continuously. Now that the
updates are sorted by id, Tme proceeds to read sequentially from disk the profile
file PFi (obtained from the underlying KNN approach) and to merge them with
the updates from the heap. The process of merging old profiles with new items
is performed in-memory. Finally, Tme writes the updated profiles back to PFi.
Using the same thread for reading and writing, avoids synchronization operations
and related costs, and hence, achieves full parallelism in IO operations.

4 Evaluation

UpKNN is implement in C++, clang-omp++ 3.5.0, −O2 optimization. Openmp
and Pthreads enable multithreading computation. We ran our experiments on a
MacBook Pro laptop, Intel Core i7 4 cores, 16 GB RAM and a 500 GB SSD.

Although UpKNN is independent of the underlying KNN algorithm, we show
a particular instance of its implementation on Pons [3]. UpKNN is evaluated
on Movielens, which provides the movie-rating data from the Movielens website.
Users’ profiles are composed of their affinities for some movies. Additionally, we

112 A.-M. Kermarrec et al.

Table 1. Datasets

Dataset Users Items #Up (80% items) M

Movielens (MOV) 138,493 20,000,263 16,000,210 2

Mediego (MED) 4,130,101 7,954,018 6,363,214 2

use Mediego (MED)’s dataset, which consists of users and the webpages they
visit from various websites. In both cases, each user activity has a timestamp,
which is used to divide the profiles into initial profiles (20% of the items) and
the update set S (80% of the items) (Table 1).

Baseline. To the best of our knowledge, there are no out-of-core algorithms
updating profiles while computing the KNN. To overcome this, we choose a nat-
ural baseline, which also uses a multithreading approach, where several threads
read the updates from the update set and add them to the respective profiles.

4.1 UpKNN ’s Performance

Runtime. Table 2 shows UpKNN ’s and baseline’s wall-time and speedup for
computing the corresponding #Up (20/80% division, 10 M and 100 M randomly
generated updates).

UpKNN considerably outperforms the baseline on both the datasets.
UpKNN achieves a speedup of 49.5X on Movielens, taking only 3.687 s for about
16 million updates. We obtain a speedup of 47X on Mediego’s dataset.

We notice from Table 3, that UpKNN processes more than 4 million
[updates/second], for both the datasets, being consistent with the motivation
of our work. UpKNN not only performs the computation on a single commodity
PC, but also does it in real-time, making it a novel approach in itself.

In Fig. 2, we verify UpKNN ’s scalability in terms of updates processed. Even
after increasing the number of updates from 10 M to 100 M, the execution time
increases only by a factor of 10.

Number of Threads. Figure 3 presents the wall-time of executing 100 M
updates, varying the numbers of threads. We observe near-linear decrease in

Table 2. UpKNN ’s performance

Data #Up UpKNN [s] Base.[s] Speedup

MOV 10M 3.635 105.747 29.08X

MOV 20/80 3.687 184.513 49.5X

MOV 100M 39.662 1055.804 26.61X

MED 20/80 1.543 72.576 47X

MED 10M 17.665 198.658 11.24X

MED 100M 47.329 1931.154 40.80X

Table 3. #Up/second

Dataset and #Up Time[s] #Up/sec

MOV 20/80 (16M) 3.678 4.33M

MED 20/80 (6.3M) 1.543 4.12M

MOV 100M 39.662 2.52M

MED 100M 46.329 2.11M

Multithreading Approach to Process Real-Time Updates in KNN Algorithms 113

Fig. 2. Updates Scalability Fig. 3. Threads Scalability

the runtime when the number of threads increases. This small difference is due
to the increase in threads synchronization, and to some small pieces of sequential
code.

Disk Operations. As evident from Table 4, UpKNN reduces considerably the
number of disk operations performed throughout the process. In the case of
ordering the updates in time, we obtain better results than the case where the
updates are randomly put in the set. In the former case, UpKNN takes only
0.0006% of the seeks performed by the baseline. The bytes written in our app-
roach are reduced to only 1.98% of those of the baseline, and the bytes read are
reduced to 3.88% of those of the baseline. These differences are explained by
UpKNN ’s capability to apply all the updates for a profile at once. Conversely,
the baseline reads/writes the whole profile each time there is an update for it.

UpKNN ’s performance relies on its capacity to reduce disk operations
throughout each phase of the computation. For instance, the updates (read from
disk) are accessed only once on the classification. In addition, the heap reduces
the need of multiple profile readings/writings.

Table 4. Disk Operations

MOV 20/80 MED 20/80

UpKNN Baseline % UpKNN Baseline %

Disk seeks 29 48 M 0.0006 27 19 M 0.0001

Written [bytes] 128M 6400 M 1.98 50 M 2570 M 1.98

Write op. [#] 12 16 M 0.0001 10 6 M 0.0001

Read [bytes] 256M 6592 M 3.88 101 M 2621 M 3.88

Read op. [#] 127 32 M 0.0004 55 12 M 0.0004

MOV 100M MED 100 M

Disk seeks 277K 300 M 0.092 8 M 300 M 2.753

Written [bytes] 856M 40 KM 2.118 2468 M 40 KM 6.110

Write op. [#] 138K 100 M 0.138 4.1 M 100 M 4.130

Read [bytes] 1656M 41 KM 4.019 3268 M 41 KM 7.933

Read op. [#] 139K 200 M 0.069 4.1 M 200 M 2.065

114 A.-M. Kermarrec et al.

5 Conclusions

We presented UpKNN, a multithreading out-of-core approach to handle updates
on users-profiles, while the K -Nearest Neighbors computation is performed. The
performance of our novel approach relies on a carefully designed set of in-memory
buffers. UpKNN uses these buffers to overlap IO requests and CPU computation
throughout the processing. This optimization goes together with a significant
reduction in IO operations, the main bottleneck on out-of-core algorithms.

Acknowledgments. This work was partially funded by Conicyt/Beca Doctorado en
el Extranjero Folio 72140173 and Google Focused Award Web Alter-Ego.

References

1. Boutet, A., Frey, D., Guerraoui, R., Kermarrec, A.M., Patra, R.: Hyrec: leveraging
browsers for scalable recommenders. In: Middleware (2014)

2. Boutet, A., Kermarrec, A.M., Mittal, N., Täıani, F.: Being prepared in a sparse
world: the case of knn graph construction. In: ICDE (2016)

3. Chiluka, N., Kermarrec, A.-M., Olivares, J.: The out-of-core KNN awakens: the light
side of computation force on large datasets. In: Abdulla, P.A., Delporte-Gallet, C.
(eds.) NETYS 2016. LNCS, vol. 9944, pp. 295–310. Springer, Cham (2016). doi:10.
1007/978-3-319-46140-3 24

4. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: WWW (2011)

5. Lathia, N., Hailes, S., Capra, L., Amatriain, X.: Temporal diversity in recommender
systems. In: SIGIR (2010)

6. Rana, C., Jain, S.: A study of dynamic features of recommender systems. Artif.
Intell. Rev. 43, 141–153 (2012)

7. Yang, C., Yu, X., Liu, Y.: Continuous knn join processing for real-time recommen-
dation. In: ICDM (2014)

8. Yu, C., Zhang, R., Huang, Y., Xiong, H.: High-dimensional knn joins with incre-
mental updates. Geoinformatica 14(1), 55–82 (2010)

http://dx.doi.org/10.1007/978-3-319-46140-3_24
http://dx.doi.org/10.1007/978-3-319-46140-3_24

	Multithreading Approach to Process Real-Time Updates in KNN Algorithms
	1 Introduction
	2 Background
	3 UpKNN Algorithm
	3.1 Classify
	3.2 Merge

	4 Evaluation
	4.1 UpKNN's Performance

	5 Conclusions
	References

