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Abstract. Attribute-based access control (ABAC) represents a generic
model of access control that provides a high level of flexibility and pro-
motes information and security sharing. Since ABAC considers a large
set of attributes for access decisions, using it might get very complicated
for large systems. Hence, it is interesting to offer techniques to reduce
the number of rules in ABAC policies without affecting the final deci-
sion. In this paper, we present an approach based on K-nearest neighbors
algorithms for clustering ABAC policies. To the best of our knowledge,
it is the first approach that aims to reduce the number of policy rules
based on similarity computations. Our evaluation results demonstrate
the efficiency of the suggested approach. For instance, the reduction rate
can reach up to 10% for an ABAC policy with more than 9000 rules.
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1 Introduction

Collaborative computing environments (i.e., cloud computing) bring numerous
benefits, such as flexibility, scalability and reliability. While benefiting from these
advantages, such systems entail multiple security risks, by exercising limited
control to make information accessible to only those who are allowed to access it.
In this direction, access control models represent a key component for providing
security features.

Access control is concerned with determining the allowed activities of legiti-
mate users, mediating every attempt by a user to access a resource in the system
[10]. Traditionally, access control was based on user identities (Access Control
Lists - ACL), or through predefined roles or groups assigned to that user (Role-
based Access Control - RBAC) [18]. In the ACL model, a user is allowed to
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perform an access depending on whether that user appears in the list of autho-
rized users or not. In the RBAC model, the access decision is based on the role
of the requestor (i.e., the roles associated with a hospital can include doctor,
nurse, clinician, etc.). One of the advantages of the RBAC model is the fact
that a given user might have multiple roles. Therefore, such a user might have
different permissions according to the selected role.

Several variants of access control models have been proposed as extended ver-
sion of the RBAC model. For instance, Rule-based RBAC [1] provides a mech-
anism to dynamically assign users to roles based on a finite set of authorization
rules. The Task-Role-based Access Control (T-RBAC) model [16] is based on the
concept of classification of tasks, where a task is a fundamental unit of business
activity. Another variant of RBAC is the context-aware access control model
[6], where the access control takes into account the context-sensitive require-
ments (such as time, location, or environmental state). Besides these works, the
Attribute-based Access Control (ABAC) model has been suggested as a generic
access control model [25]. ABAC considers a set of attributes, based on which
the access decision will be taken. An attribute is assigned to a subject (e.g., user,
application or process), resource (e.g., data structure, web service or system com-
ponent) and environment (e.g., current time, location). These attributes may be
considered as characteristics of anything that may be defined and to which a
value may be assigned.

ABAC policy representation is more expressive and fine-grained, because it
might consider any combination of subject, resource and environment attributes.
However, in distributed environments such as cloud computing, deploying and
managing an ABAC model to ensure access control might become more complex
and hard to manage. This is due to the massive amount of information that
should be considered as attributes. For example, considering an e-health use case,
each piece of data related to the patients’ medical records should be taken into
account as an attribute to help deciding the types of person (determined by their
attributes) having access to each individual piece of data in a given environment
(location, time, etc.). In fact, an ABAC policy in distributed applications may
be aggregated from multiple parties and can be managed by more than one
administrator. Therefore, it may contain several redundant rules, which may
lead to high implementation complexity. Hence, reducing the number of rules
in ABAC policies without affecting the final decision in large sets of complex
policies is primordial.

Following the idea of using K-nearest neighbors (KNN) algorithms to reduce
the number of ABAC policy rules to enhance the policy analysis [4], in this paper
we propose a new approach referred to as ABAC-PC (ABAC Policy Clustering).
ABAC-PC works as follows: (1) First, the policy rules are grouped according
to their decision effects (i.e., permit rules, deny rules), and for each group, the
similarity scores of each pair of rules are computed; (2) clusters of rules are
created based on the similarity scores; (3) finally, given the set of clusters, ABAC-
PC produces the minimum set of rules that represent each cluster. Regarding the
algorithmic complexity, the computation time is in O(n2) where n is the number



88 M. Ait El Hadj et al.

of rules. ABAC-PC has been tested on a synthetic dataset of up to 9000 rules, and
the obtained results show that ABAC-PC can successfully reduce the number
of policy rules up to 10% for a policy with more than 9000 rules. In a nutshell,
given an ABAC policy, ABAC-PC produces a reduced policy and guarantees the
policy’s conformity. Furthermore, our approach can be extended and integrated
with other policy analysis tools in order to enhance managing authorization
policies, such as detecting and resolving anomalies among XACML (eXtensible
Access Control Markup Language) policies (since XACML is the most convenient
way to express ABAC policies).

The paper is organized as follows. Section 2 presents related work. Section 3
presents the ABAC model. Section 4 gives an overview on the KNN algo-
rithms. ABAC-PC is described in Sect. 5. Section 6 reports experimental results.
Section 7 concludes the paper and outlines areas for future work.

2 Related Work

To the best of our knowledge, this paper presents the first approach specifically
designed to reduce the number of ABAC policy rules. ABAC-PC is based on
KNN, which has been often used in data mining. In the following, we present
existing work that considers data mining techniques to resolve some of the access
control related issues.

In the literature, several works have considered the usage of data mining for
role mining to discover roles from existing system configuration data [7,13,19].
Role mining refers to the process of mining data about the actual user-to-resource
permission assignments to extract role definitions. Molloy et al. [14] consider the
problem of migrating a non-RBAC system to an RBAC system. Then, a role
mining algorithm constructs an RBAC state with low cost and complexity, while
maintaining the semantic meaning of roles.

Ni et al. [15] have investigated the role adjustment problem. It consists of
how to automate the process that provisions existing roles with entitlements
from newly deployed applications. In this direction, the authors have suggested
the use of supervised machine learning algorithms to automate the process of
providing users with access to data and resources.

Xu and Stoller [20] attempt to produce small RBAC policies (i.e., with low
weighted structural complexity) with meaningful roles. The same authors [22]
present a parameterized RBAC (PRBAC) framework, in which users and per-
missions have attributes, i.e., implicit parameters of the roles that can be used
in role definitions.

An ABAC policy mining algorithm has been suggested by Xu and Stoller
[21,24]. This algorithm aims to reduce the cost of migration to an ABAC policy
from an ACL or from an RBAC policy with accompanying attributes. Another
variant of the ABAC policy mining algorithm has been presented by Xu and
Stoller [23], where the authors consider the logs as attribute data. These works
might be considered to detect either roles or attributes during RBAC and ABAC
policies construction, whereas in our work, we consider the optimization of the
ABAC policies themselves.



ABAC Rule Reduction via Similarity Computation 89

3 Attribute-Based Access Control

In this section, we briefly present the ABAC model [25]. An ABAC policy defines
permissions based on predefined attributes. Attributes describe any character-
istics that should be taken into account for the authorization decisions. These
attributes are associated to three different entities: Subject (i.e., the user or the
process that takes an action on a resource), Resource (i.e., the entity that is
acted upon by a subject) and Environment (i.e., the operational, technical or
situational context in which the information access occurs). Thus, the attributes
are Subject attributes, Resource attributes and Environment attributes.

Regarding the ABAC policy formulation, we consider the following notation:

– S: Set of subjects.
– RS: Set of resources.
– E: Set of environments.
– For a given subject with M attributes: SAm is a subject attribute with

1 ≤ m ≤ M .
– For a given resource with N attributes: RSAn is a resource attribute with

1 ≤ n ≤ N .
– For a given environment with O attributes: EAo is a environment attribute

with 1 ≤ o ≤ O.
– ATTR(s) ⊆ SA1 × ...× SAm: Attribute assignment relations for a subject s.
– ATTR(rs) ⊆ RSA1 × ... × RSAn: Attribute assignment relations for a

resource rs.
– ATTR(e) ⊆ EA1 × ...×EAo: Attribute assignment relations for an environ-

ment e.

A policy P = {r1, r2, ..., rn} is made up of a set of rules. A rule r decides
whether a subject s can access a resource rs in an environment e. To this end,
a Boolean function is evaluated based on the values of all the attributes of s, rs
and e. Thus, the Policy rule that regulates this access is expressed as follows:

Rule : can access(s, rs, e) ← f(ATTR(s), ATTR(rs), ATTR(e))

The next section gives an overview of the KNN algorithm that will be used
in ABAC-PC.

4 K-Nearest Neighbors

The K-nearest neighbor algorithm (KNN) is widely used in pattern recognition,
text categorization, ranking models, and so on. The KNN algorithm classifies
objects based on closest training examples in the feature space [5]. Given a sys-
tem with N objects, where each object has a specific profile, a KNN algorithm
provides each object with its K most similar objects, based on a given similar-
ity metric. This results in a KNN graph where there is an edge between each
object and its K most similar objects (based on the comparison of profiles).
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Such a graph can be useful in the context of many applications such as similarity
search [2], data mining [17] and machine learning [8]. To illustrate the use of the
KNN algorithm, assume that a web-based platform is visited by multiple users to
listen to different kinds of music. It would be interesting to provide a given user
with items matching its interest. One approach is to look for K different users
sharing similar profiles (i.e., users with the same music tastes). Then, recommend
the most popular songs among the music liked by the K selected users.

The most straightforward way to construct the KNN graph is to rely on a
brute-force solution computing the similarity between each pair of nodes. The
similarity between nodes can be computed by several metrics, such as the cosine
similarity metric or Jaccard similarity. These similarities are computed as follows:

– The cosine similarity: It is represented using the dot product and the magni-
tude of two vectors:

Cosine(v1, v2) =
v1.v2

‖ v1 ‖ . ‖ v2 ‖
– The Jaccard similarity: Given two sets of attributes, this measure is defined

as the cardinality of the intersection divided by the size of the union of the
two sets:

Jaccard(s1, s2) = |s1 ∩ s2
s1s2

|

After the presentation of the basic idea of the KNN algorithm, the next section
shows how such algorithms are useful for ABAC policy optimization. Therefore,
we present the suggested ABAC Policy Clustering Approach (ABAC-PC).

5 ABAC-PC: ABAC Policy Clustering

Let us recall that the aim of the suggested approach is to reduce the number
of rules in ABAC policies. To achieve this goal, we create clusters of rules that
share similar characteristics based on similarity scores. Then, for each cluster, we
compute the minimum set of rules that represent each cluster. The ABAC-PC
process is depicted in Fig. 1. In this section, we will first present the steps of
ABAC-PC and then prove its correctness.

5.1 Rule Profiling

Without loss of generality, we consider that an ABAC policy consists of two
categories of decision effects (permit and deny rules). Therefore, the policy base
is split into two categories. Rules from each category are extracted and expressed
as profiles. The general format of a profile is as follows:

Decision effect(attr name1 = attr value1, ..., attr namen = attr valuen)

The profile represents the combination of the whole sets of subject, resource
and environment attributes (ATTR(s), ATTR(rs) and ATTR(e)). For instance,
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Fig. 1. ABAC-PC steps

the profile of a given rule with permit access between 12:00 and 16:00 to an MRI
scan for a female nurse belonging to the oncology team, the nursing department
and the Steatl organization might be expressed as:

permit access (position = {nurse}, team = {oncology}, gender = {female},
department = {Nursing}; type = {MRI}, formatType = {TXT}; Organization
= {Steatl}, time in {{12–16}}).

5.2 Similarity Computation

The similarity measures adopted in ABAC-PC are inspired by Lin et al. [11].
The rule similarity measure assigns a similarity score Srule for any two given
rules, which reflects how similar these rules are with respect to subject, resource
and environment attributes values. The formal definition of the rule similarity
measure is given in Eq. (1), the score for each rule pair is the sum of the similarity
scores of all the subject, resource and environment attributes of these rules.

Srule(ri, rj) = WsSs(ri, rj) + WrsSrs(ri, rj) + WeSe(ri, rj) (1)

where Ss, Srs and Se are functions to compute similarity scores based on the
Subject, Resource, and Environment attributes respectively. Ws, Wrs and We

are weights that can be chosen to reflect the relative importance to be given
to the similarity computation. The weight values should satisfy the constraint:
Ws + Wrs + We = 1.

The similarity score is a value between 0 and 1. Two equivalent rules are
expected to obtain a similarity score that equals 1. The rule similarity measure
algorithm is shown in Algorithm 1. Given two rules, the algorithm, first computes
the similarity score regarding the same rule elements (subject, resource and envi-
ronment). Then, the obtained scores for the different rule elements are combined
according to the weights chosen in order to produce an overall similarity score.
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Algorithm 1. Rule similarity measure algorithm
Require: Elm: Rule Element (Subject, Resource, Environment)
1: ForEach attribute ai ∈ Elmri

2: ForEach attribute aj ∈ Elmrj

//Compute similarity of Rule Element ¡Elm¿
3: S<Elm>(ri, rj)+ = wElmS<Elm>(ai, aj)

//Compute similarity for each rule elements
4: Ss(ri, rj) ← similarity score of Subject attributes
5: Srs(ri, rj) ← similarity score of Resource attributes
6: Se(ri, rj) ← similarity score of Environment attributes

//Compute the overall similarity score
7: Srule(ri, rj) = WsSs(ri, rj) + WrsSrs(ri, rj) + WeSe(ri, rj)

Similarity Score of Rule Elements: Each rule element Subject, Resource,
and Environment are represented as a set of predicates in the form of:

(attr name1 = attr value1, attr name2 = attr value2, ...)

The similarity score between two rules and regarding the same element is denoted
as S<Elm>(ri, rj), where <Elm> refers to Subject, Resource, or Environment.
The S<Elm> is computed as the sum of the similarity scores of attribute elements
(Eq. (2)).

S<Elm>(ri, rj) =
|ATTR(Elm)|∑

k=1

wk,ElmSElm(ai, aj) (2)

where wk,Elm is the weight assigned to each attribute element. ai, aj are
attributes for ri, rj , respectively, regarding the same element, and |ATTR(Elm)|
is the number of attribute elements being computed.

Similarity Score of Attribute Elements: The similarity score of attribute
elements for two rules is computed only for sets of attribute elements having the
same attribute names (Eq. (3)).

S<Elm>(ai, aj) =
| ANi ∩ ANj |
| ANi ∪ ANj |

∑

ANi=ANj

S<att typ>(vi, vj) (3)

where ANi and ANj denote the attribute names for ai, aj respectively.
|ANi ∩ ANj | denote the common number of attribute names and |ANi ∪ ANj |
the total number of attribute names. S<att typ>(vi, vj) denotes the similarity
score of attribute values, where vi, vj are the attribute values for ai, aj respec-
tively. The condition ANi = ANj ensures that the similarity score is only com-
puted for sets of attribute elements having the same attribute names for both
rules (i.e. |ANi∩ANj |

|ANi∪ANj | �= 0).
The similarity score of attribute elements algorithm ispresented inAlgorithm2.

Given two attribute elements, we compute the similarity score of attribute values
for attribute elements having the same attribute names.
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Algorithm 2. Attribute Elements Similarity Algorithm
Require: ANi, ANj : set of attribute names for ri, rj respectively, AttrElm: Attribute

element
1: ForEach attribute value vi ∈ AttrElmai

2: ForEach attribute value vj ∈ AttrElmaj

3: if ANi = ANj then
//Compute similarity of Attribute Element

4: S<Elm>(ai, aj)+ = Satt typ(vi, vj)
5: end if
6: return

|ANi∩ANj |
|ANi∪ANj | × S<Elm>(ai, aj)

Algorithm 3. Attribute Values Similarity Algorithm
1: if v1 and v2 are single values then
2: if v1 = v2 then
3: return 1
4: else
5: return 0
6: end if
7: else if v1 and v2 are bounded intervals then
8: return

len|vi∩vj |
len|vi∪vj |

9: else v1 and v2 are Categorical values

10: return
|vi∩vj |
|vi∪vj |

11: end if

The similarity score between attribute values differs, depending on whether
their type is categorical (i.e., the string data type) or numerical (i.e., integer,
real, or date/time data types). For the categorical values, we only consider the
exact match of two values. The similarity is computed based on Jaccard measure
(Algorithm 3).

5.3 Clustering

The results obtained in the similarity measures are used to classify rules into
clusters, where similar rules are grouped together, while different rules belong
to different groups.

Two rules ri and rj are similar if their similarity score is no less than a
predefined threshold: Srule(ri, rj) ≥ threshold. The value of the threshold is set
to 0.8, based on previous works regarding recommender systems and a similarity
measure for security policies [9,11]. Lowe [12] has proposed to use the value 0.8
reporting that this threshold allows to eliminate 90% of the false matches while
discarding less than 5% of the correct matches.

Given a policy with n rules, the clustering method constructs k sets of rules
with k≤n. Rules are classified into k clusters, which satisfy the following require-
ments:
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– Each cluster contains at least one rule.
– Each rule must belong to exactly one cluster.

Formally, a policy P is represented as a set of clusters, where P=
k⋃

i=1

Ci, such

that Ci ∩ Cj = ∅ for i �= j.

5.4 Generalization

After constructing clusters of rules, the purpose of this step is to compute the
minimum set of rules that represent each cluster. To this end, a generalization
function is applied in each cluster. This function attempts to reduce the number
of policy rules, by removing redundant rules and merging pairs of rules.
Let Rulesc denotes the rules in a cluster c.

Redundancy Removal: A rule ri ∈ Rulesc is redundant if Rulesc contains
another rule rj such that:

– ri = rj (i.e. Srule(ri, rj) = 1): for all the shared attribute elements of sub-
ject, resource and environment are identical. In this case, the generalization
function will remove one of these two rules, or

– ri ⊆ rj : Some of the shared attribute elements of subject, resource and envi-
ronment are identical, i.e. ri ∪rj = rj . In this case, the subset rule is removed
(i.e. ri is removed).

For instance, let us consider the following rules r1 and r2:

– r1: permit access (Designation = {Professor, Student}; FileType = {Source,
Documentation}; time = [8:00, 18:00])

– r2: permit access (Designation = {Professor}; FileType = {Source, Docu-
mentation}; time = [8:00, 18:00])

In this case, r2 will be removed because r2 represents the subset rule of r1
(i.e. r2 ⊆ r1).

Rule Merging: For the merging process, two policy rules ri and rj are merge-
able if one of their shared attribute elements of subject, resource and environment
do not intersect, while the rest of the attribute elements are identical:

ATTR(sri) ∩ ATTR(srj ) = ∅ or ATTR(rsri) ∩ ATTR(rsrj ) = ∅ or
ATTR(eri) ∩ ATTR(erj ) = ∅

Given two rules ri and rj , the merging process consists of the union of the
subject, resource and environment attributes.

ATTR(srmerge
) = ATTR(sri) ∪ ATTR(srj )

ATTR(rsrmerge
) = ATTR(rrsi) ∪ ATTR(rsrj )

ATTR(ermerge
) = ATTR(eri) ∪ ATTR(erj )
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Algorithm 4. Generalization Algorithm
1: ForEach rule ri ∈ clusteri
2: // Remove subset of rules
3: subRules= {ri ∈ clusteri|∃rj ∈ clusteri \ ri.ri ⊆ rj}
4: clusteri.removeAll(subRules)
5: // merge of rules
6: subRules= {(ri, rj)|ri ∈ clusteri ∧ rj ∈ clusteri}
7: if (Ss(ri, rj) = 1∧Srs(ri, rj) = 1)∨ (Ss(ri, rj) = 1∧Se(ri, rj) = 1)∨ (Srs(ri, rj) =

1 ∧ Se(ri, rj) = 1) then
8: rmerge = (ATTR(sr1)∪ATTR(sr2), ATTR(rsr1)∪ATTR(rsr2), ATTR(er1)∪

ATTR(er2))
// Add the merged rule to clusteri

9: clusteri.add(rmerge)
// remove rules that become subset of rmerge

10: subRules= {rk ∈ clusteri|rk ⊆ rmerge}
11: clusteri.removeAll(subRules)
12: end if
13: return clusteri

rmerge, which is the merging rule, is added to Rulesc, while rules being merged
(i.e., ri and rj) are removed from Rulesc.

For instance, let us consider the following rules r1 and r2:

– r1: permit access (Designation = {Professor, Student}; FileType = {Source,
Documentation};time = [8:00, 12:00])

– r2: permit access (Designation = {Professor, Student}; FileType = {Source,
Documentation};time = [12:00, 18:00])

– rmerge: permit access (Designation = {Professor, Student}; FileType =
{Source, Documentation}; time = [8:00, 12:00]∪[12:00, 18:00])

Given a cluster of rules clusteri, the generalization function in Algorithm 4
attempts to update rules in clusteri. It eliminates redundant rules and merges
pairs of rules. If there is a valid generalization, the algorithm outputs an updated
cluster with minimum rules. Otherwise, the algorithm outputs the same cluster.

5.5 Correctness

The aim of this subsection is to prove the correctness of the suggested approach.

Given an original policy base OP where OP =
n⋃

i=1

ri, we want to find a reduced

policy base RP =
m⋃

j=1

rj which is conform to OP with n ≥ m. In order to

prove the correctness of the suggested approach, first, we define the concepts of
Conformity and Access Domain.
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Definition 1 (Conformity).
An original policy OP conforms to a reduced policy RP if OP ’s access domain
is equivalent to RP ’s access domain: ADOP ≡ ADRP .

Definition 2 (Access Domain).
Given a rule r(s, rs, e) ← f (ATTR(s), ATTR(rs), ATTR(e)), the access
domain of r denoted ADr is defined as the set of all possible combinations of
ATTR(s), ATTR(rs) and ATTR(e). Therefore, the access domain of the global
policy P is ADP , defined by the union of the access domains of the individual
rules of P .

Theorem 1. Consider an original policy base OP with n rules. ABAC-PC pro-
duces a reduced policy base RP with m rules conforming to OP with n ≥ m.

Proof. ABAC-PC is composed of four steps (i.e., rules profiling, similarity com-
putation, clustering and generalization). During the first three steps, the policy
conformity holds, since no change is performed on attribute values. In the fourth
step, two actions are performed: (1) redundancy removal and (2) rule merging.

Let ri and rj be two rules in OP . Thus, the union of their access domains
belong to OP ’s access domain.

(ri, rj) ⊆ OP =⇒ ADri ∪ ADrj ⊆ ADOP

(1) Redundancy removal
In case ri = rj (i.e. ADri = ADrj ), either ri or rj is removed. Let rj be the
removed one.

ri ⊆ RP =⇒ ADri ⊆ ADRP

While ADri = ADrj , the access domain represented by the reduced policy RP
is the same as OP ’s access domain.

In case ri ⊆ rj (i.e. ADri ⊆ ADrj ), ri represents the subset of rj . Thus, ri is
the removed rule.

rj ⊆ RP =⇒ ADrj ⊆ ADRP

Since our function keeps the superset of rules (i.e., rj), the access domain selected
is the general one. Therefore, the access domain represented by the reduced
policy RP is the same as OP ’s access domain.

(2) Rule merging
Let ri and rj are good candidates for the merging process (i.e., two of their
attribute elements are matched) and rmerge be the merging rule. rmerge represents
the union of the subject, resource and environment attributes of ri and rj :

ATTR(srmerge
) = ATTR(sri) ∪ ATTR(srj )

ATTR(rsrmerge
) = ATTR(rsri) ∪ ATTR(rrj )

ATTR(ermerge
) = ATTR(eri) ∪ ATTR(erj )
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While rmerge = ri ∪ rj , the access domain specified by rmerge is the union of
the access domains of ri and rj (i.e., ADrmerge

= ADri ∪ ADrj ). ri and rj are
removed from the resulting policy. Thus, the access domain represented by the
reduced policy RP is the same as OP ’s access domain.

rmerge ⊆ RP =⇒ ADrmerge
⊆ ADRP

Therefore, for all performed actions we guarantee that the access domain
specified by the OP is the same specified by RP , Thus, the policy RP conforms
to OP .

Complexity analysis: Let n be the number of rules of a policy, K the number
of clusters and nk the number of rules in a cluster k. The running time of the
rule profiling step is in O(n). During the similarity computation step, we use
brute force approach to compute to the rules similarities. Thus, the complexity
is O(n2). The running time of the clustering step is in O(C2

n) since every pair
of n rules is explored to construct clusters. The running time of the last step
(generalization) in the worst is O(K×n2

k). Therefore, the overall time complexity
for constructing a reduced policy is in O(n2).

6 Experimental Results

To evaluate ABAC-PC, we consider a synthetic dataset composed of the combi-
nation of eight subject attributes, four resource attributes and two environment
attributes. Evaluation on policies from real organization would be perfect. Unfor-
tunately, no benchmarks have been published in this area and real medical data
are hard to obtain because of confidentiality constraints.

The number of rules varies between 1000 and 10000. ABAC-PC has been
implemented in Java and the experiments were made using a laptop with a 2.7
GHz Intel Core i5 CPU, 8 Gb RAM.

As comparison metrics, we mainly consider the running time, the size of
the resulted policy and the reduction rate. Figure 2 shows the running time
as a function of policy size. The graph explicitly shows that the running time
increases with the number of policy rules in a quadratic way. This is related
to the number of the combinations generated and being treated for policy rules
during the ABAC-PC steps, especially in the similarity computation.

Figure 3 shows the size of reduced policy based on the similarity threshold.
The obtained results represent the evaluation of the ABAC-PC on three bases
with different number of policy rules (1000, 3000 and 5000 rules). As depicted
in this figure, the lowest threshold (i.e., 0.6) returns a very reduced policy. The
threshold effect is negligible from the value 0.8, where the reduced policy size
is close to the original policy size. Therefore, the default value of the threshold
selected for our experiments is 0.8.

Figures 4 and 5 show the reduction rate for five policy bases with different
number of rules. The reduction rate increases significantly for large policies. The
obtained results can be explained by the fact that the probability of having
redundant and mergeable rules increases.
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Fig. 2. Running time Fig. 3. Reduced policy size vs. threshold

Fig. 4. Original and reduced policy sizes Fig. 5. Reduction rate

Fig. 6. Policy decision evaluation time

In order to evaluate the impact of the reduced policy on the functionality of
ABAC, we consider the policy decision time (i.e., the time required for sending
the final decision regarding a given request). The policy decision time is directly
related to the size of the overall policy. Hence, reducing the number of rules will
be beneficial for the policy decision performance.
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The policy decision evaluation is depicted in Fig. 6. The obtained results
represent the time evaluation for a request on four policies (original and reduced
policies). The experiments were made on Balana [3] as the Open source XACML
3.0 implementation. As depicted in this figure, the time required for the decision
on original policies is higher than the one on reduced policies. The difference can
be explained by the fact that our approach reduces the policy size by eliminating
redundant rules and merging pairs of rules. Therefore, the PDP takes more time
to evaluate the request in a policy that contains more rules.

7 Conclusion

Since an ABAC policy is based on combination of subject, resource and environ-
ment attributes for access decisions, its policy representation is rich and expres-
sive. However, using the ABAC model for large systems might generate a large
number of security policy rules. In this direction, we have presented an approach
that reduces the number of the ABAC policy rules. The suggested approach
is mainly based on the K-nearest neighbors algorithm. The evaluation results
demonstrate the efficiency of the proposed approach. Directions for future work
include the integration of the suggested ABAC-PC in a real world policy analysis
project.
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