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Abstract. The design of distributed gathering and convergence algo-
rithms for tiny robots has recently received much attention. In particular,
it has been shown that the convergence problem, that is, the problem of
moving robots close to each other (i.e., inside an area of some maximum
size, where the position of the area is not fixed beforehand), can even
be solved for very weak, oblivious robots: robots which cannot maintain
state from one round to the next. The oblivious robot model is hence
attractive from a self-stabilization perspective, where the state is subject
to adversarial manipulation. However, to the best of our knowledge, all
existing robot convergence protocols rely on the assumption that robots,
despite being “weak”, can measure distances.

We in this paper initiate the study of convergence protocols for even
simpler robots, called monoculus robots: robots which cannot measure
distances. In particular, we introduce two natural models which relax the
assumptions on the robots’ cognitive capabilities: (1) a Locality Detec-
tion (LD) model in which a robot can only detect whether another
robot is closer than a given constant distance or not, (2) an Orthogonal
Line Agreement (OLA ) model in which robots only agree on a pair of
orthogonal lines (say North-South and West-East, but without knowing
which is which).

The problem turns out to be non-trivial, as simple strategies like
median and angle bisection can easily increase the distances among
robots (e.g., the area of the enclosing convex hull) over time. Our main
contribution is deterministic self-stabilizing convergence algorithms for
these two models. We also show that in some sense, the assumptions
made in our models are minimal: by relaxing the assumptions on the
monoculus robots further, we run into impossibility results.
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1 Introduction

1.1 The Context: Tiny Robots

In the recent years, there has been a wide interest in the cooperative behavior
of tiny robots. In particular, many distributed coordination protocols have been
devised for a wide range of models and a wide range of problems, like conver-
gence, gathering, pattern formation, flocking, etc. At the same time, researchers
have also started characterizing the scenarios in which such problems cannot be
solved, deriving impossibility results.

1.2 Our Motivation: Even Simpler Robots

An interesting question regards the minimal cognitive capabilities that such tiny
robots need to have for completing a particular task. In particular, researchers
have initiated the study of “weak robots” [6]. Weak robots are anonymous (they
do not have any identifier), autonomous (they work independently), homoge-
neous (they behave the same in the same situation), and silent (they also do not
communicate with each other). Weak robots are usually assumed to have their
own local view, represented as a Cartesian coordinate system with origin and
unit length and axes. The orientation of axes, or the chirality (relative order of
the orientation of axes or handedness), is not common among the robots. The
robots move in a sequence of three consecutive actions, Look-Compute-Move:
they observe the positions of other robots in their local coordinate system and
the observation step returns a set of points to the observing robot. The robots
cannot distinguish if there are multiple robots at the same position, i.e., they
do not have the capability of multiplicity detection. Importantly, the robots are
oblivious and cannot maintain state between rounds (essentially moving steps).
The computation they perform are always based on the data they have collected
in the current observation step; in the next round they again collect the data.
Such weak robots are therefore interesting from a self-stabilizing perspective:
as robots do not rely on memory, an adversary cannot manipulate the memory
either. Indeed, researchers have demonstrated that weak robots are sufficient to
solve a wide range of problems.

We in this paper aim to relax the assumptions on the tiny robots further. In
particular, to the best of our knowledge, all prior literature assumes that robots
can observe the positions of other robots in their local view. This enables them
to calculate the distance between any pair of robots. This seems to be a very
strong assumption, and accordingly, we in this paper initiate the study of even
weaker robots which cannot locate other robots positions in their local view,
preventing them from measuring distances. We define these kinds of robots as
monoculus robots.

In particular, we explore two natural, weaker models for monoculus robots
with less cognitive capabilities, those are Locality Detection and Orthogonal Line
Agreement. The locality detection model is motivated by, e.g., capacitive sensing
or sensing differences in temperature or vibration. The orthogonal line model is
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practically motivated by robots having a simple compass align for orthogonal
line agreement.

1.3 The Challenge: Convergence

We focus on the fundamental convergence problem for monoculus robots and
show that the problem is already non-trivial in this setting.

In particular, many naive strategies lead to non-monotonic behaviors. For
example, strategies where boundary robots (robots located on the convex hull)
move toward the “median” robot (i.e., the median in the local ordering of the
robots) they see, may actually increase the area of the convex hull in the next
round, counteracting convergence as shown in Fig. 1(a). A similar counterexam-
ple exists for a strategy where robots move in the direction of the angle bisector
as shown in Fig. 1(b).

Fig. 1. The 4 boundary robots are moving (a) towards the median robot (b) along the
angle bisector. The discs are the old positions and circles are the new positions. The
old convex hull is drawn in solid line, the new convex hull is dashed. The arrows denote
the direction of moving.

But not only enforcing convex hull invariants is challenging, also the fact that
visibility is restricted and we cannot detect multiplicity: We in this paper assume
that robots are not transparent, and accordingly, a robot does not see whether
and how many robots may be hidden behind a visible robot. As robots are also
not able to perform multiplicity detection (i.e., determine how many robots are
collocated at a certain point), strategies such as “move toward the center of
gravity” (the direction in which most robots are located), are not possible.

1.4 Our Contributions

This paper studies distributed convergence problems for anonymous,
autonomous, oblivious, non-transparent, monoculus, point robots under a most
general asynchronous scheduling model and makes the following contributions.

1. We initiate the study of a new kind of robot, the monoculus robot which
cannot measure distances. The robot comes in two natural flavors, and we
introduce the Locality Detection (LD) and the Orthogonal Line Agreement
(OLA ) model accordingly.
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2. We present and formally analyze deterministic and self-stabilizing distributed
convergence algorithms for both LD and OLA .

3. We show our assumptions in LD and OLA are minimal in the sense that
robot convergence is not possible for monoculus robots.

4. We report on the performance of our algorithms through simulation.
5. We show that our approach can be generalized to higher dimensions and,

with a small extension, supports termination.

1.5 Related Work

The problems of gathering [13], where all the robots gather at a single point, con-
vergence [2], where robots come very close to each other and pattern formation
[5,13] have been studied intensively in the literature.

Flocchini et al. [6] introduced the CORDA or Asynchronous (ASYNC)
scheduling model for weak robots. Suzuki et al. [12] have introduced the ATOM
or Semi-synchronous (SSYNC) model. In [13], the impossibility of gathering for
n = 2 without assumptions on local coordinate system agreement for SSYNC
and ASYNC is proved. Also, for n > 2 it is impossible to solve gathering with-
out assumptions on either coordinate system agreement or multiplicity detection
[10]. Cohen and Peleg [1] have proposed a center of gravity algorithm for conver-
gence of two robots in ASYNC and any number of robots in SSYNC. Flocchini et
al. [7] propose algorithm to gather robots with limited visibility and agreement
in coordinate system in ASYNC model. Souissi et al. have proposed an algo-
rithm to gather robots with limited visibility if the compass achieves stability
eventually in SSYNC in [11]. For two robots with unreliable compass Izumi et al.
[9] investigate the necessary conditions required to gather them under SSYNC
and ASYNC setting.

In many of the previous works, the mathematical models assume that the
robots can find out the location of other robots in their local coordinate system
in the Look step. This in turn implies that the robots can measure the distance
between any pair of robots albeit in their local coordinates. All the algorithms
exploit this location information to create an invariant point or a robot where all
the other robots gather. But in this paper, we deprive the robots of the capabil-
ity to determine the location of other robots. This leads to robots incapable of
finding any kind of distance or angles. Note that any kind of pattern formation
requires these robots to move to a particular point of the pattern. Since the
monoculus robots cannot figure out locations, they cannot stop at a particular
point. Hence any kind of pattern formation algorithm described in the previous
works which require location information as input are obsolete. Gathering prob-
lem is nothing but the point formation problem [13]. Hence gathering is also not
possible for the monoculus robots.

1.6 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the necessary
background and preliminaries. Section 3 introduces two algorithms for conver-
gence. Section 4 presents an impossibility result which shows the minimality of
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our assumptions. We report on simulation results in Sect. 5 and discuss exten-
sions in Sect. 6. We finally conclude in Sect. 7.

2 Preliminaries

2.1 Model

We are given a system of n robots, R = {r1, r2, · · · , rn}, which are located in the
Euclidean plane. We consider anonymous, autonomous, homogeneous, oblivious
point robots with unlimited visibility. The robots are non-transparent, so any
robot can see at most one robot in any direction. The robots have their local
coordinate system, which may not be the same for all the robots. The robots in
each round execute a sequence of Look-Compute-Move steps: First, each robot
r ∈ R observes other robots and obtains a set of directions LC = {θ1, θ2, · · · , θk}
where k ≤ n − 1 (Look step). Each θ ∈ LC is the angle of a robot in the local
coordinate system of robot r with respect to the positive direction of the x-
axis with the robot itself as the origin. Second, on the basis of the observed
information, it executes an algorithm which computes a direction (Compute
step); the robot then moves in this direction (Move step), for a fixed distance
b (the step size). The robots are silent, cannot detect multiplicity points, and
can pass over each other. We ignore the collisions during movement. We name
this kind of robots as monoculus robots. We also consider the following two
additional capability of the monoculus robots.

Locality Detection (LD): Locality detection is the ability of a robot to deter-
mine whether its distance from any visible robot is greater than a predefined
value c or not.

A robot with locality detection capability can divide the visible robots into
two sets based on the distance from itself. So a monoculus robot with locality
detection can partition the set LC to two disjoint sets LClocal and LCnon−local,
where LClocal and LCnon−local are the set of directions of robots with distances
less than equal to c and more than c respectively.

Orthogonal Line Agreement (OLA ): The robots agree on a pair of orthog-
onal lines, but can neither distinguish the two lines in a consistent way nor have
a common sense of direction.

Robots with orthogonal line agreement capability agree on the direction of
two perpendicular lines, but the lines themselves are indistinguishable: the robots
neither agree on a direction (e.g., North) nor can they mark a line as, e.g., the
North-South or East-West line. In other words, any two robots agreeing on the
pair of orthogonal lines, either have their x-axis parallel or perpendicular to the
other. In case of parallel orientation, the plus/minus direction of the x-axis may
point to the same or the opposite direction, and in the case of a perpendicular
orientation, the rotation of the axis can be clockwise or counter-clockwise.

We consider the most general CORDA or ASYNC scheduling model known
from weak robots [6] as well as the ATOM or Semi-Synchronous (SSYNC)
model [12]. These models define the activation schedule of the robots: the SSYNC
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model considers instantaneous computation and movement, i.e., the robots can-
not observe other robots in motion, while in the ASYNC model any robot can
look at any time. In SSYNC the time is divided into global rounds and a subset
of the robots are activated in each round which finish their Look-Compute-Move
within that round. In case of ASYNC, there is no global notion of time. The
Fully-synchronous (FSYNC) model is a special case of SSYNC, in which all
the robots are activated in each round. The algorithms presented in this paper,
work in both the ASYNC and the SSYNC setting. For the sake of generality, we
present our proofs in terms of the ASYNC model.

2.2 Notation and Terminology

A Configuration (C) is a set containing all the robot positions in 2D. At any
time t the configuration (the mapping of robots in the plane) is denoted by Ct.
The convex hull of configuration Ct is denoted as CHt. We define Augmented
Configuration at time t (ACt) as Ct augmented with the destinations of each
robot from the most recent look state on or before t. If all the robots are idle
at time t, then ACt is the same as Ct. The convex hull of ACt is denoted as
ACHt as shown in Fig. 2. Convergence is achieved when the distance between
any pair of robots is less than a predefined value ζ (and subsequently does not
violate this). Our multi-robot system is vulnerable to adversarial manipulation,
however, the algorithms presented in this paper are self-stabilizing [4] and robust
to state manipulations. Since the robots are oblivious, they only depend on the
current state: if the state is perturbed, the algorithms are still able to converge
in a self-stabilizing manner [8].

Fig. 2. r′
4 is the destination of robot r4 from the most recent look state on or before

time t, and analogously for r5. At t, �r1r2r3r4r5 is both the CHt and ACHt. At t′

(> t), �r1r2r3r4r
′
5 is CHt′ , while �r1r2r3r4r

′
4r

′
5 is ACHt′ . ACHt contains both r4 and

r′
4 because r4 has not moved. ACHt′ contains r′

4 as a corner which is outside CHt′ ,
because r5 moved to r′

5.
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3 Convergence Algorithms

The robot convergence is the problem of moving all the robots inside a suffi-
ciently small non-predefined area. In this section, we present distributed robot
convergence algorithms for both our models, LD and OLA . We converge the
robots inside a disc and a square, respectively, for the two models.

3.1 Convergence for LD

In this section, we consider the convergence problem for the monoculus robots
in the LD model. Our claims hold for any c ≥ 2b, where c is the predefined
distance of locality detection and b is the step size a robot moves each time it
is activated. The step size b and locality detection distance c is common for all
the robots. Algorithm 1 distinguishes between two cases: (1) If the robot only
sees one other robot, it infers that the current configuration must be a line (of 2
or more robots), and that this robot must be on the border of this line; in this
case, the boundary robots always move inside (usual step size b). (2) Otherwise,
a robot moves towards any visible, non-local robot (distance at least c), for a b
distance (the step size). The algorithm works independent of n, the number of
robots present, but depends on D, the diameter of smallest enclosing circle in
the initial configuration.

Our proof unfolds in a number of lemmas followed by a theorem. First,
Lemma 1 shows that it is impossible to have a pair of robots with distance
larger than 2c in the converged situation. Lemma2 shows that our algorithm
ensures a monotonically decreasing convex hull size. Lemma 3 then proves that
the decrement in perimeter for each movement is greater than a constant (the
convex hull decrement is strictly monotonic). Combining all the three lemmas,
we obtain the correctness proof of the algorithm. In the following, we call two
robots neighboring if they see each other (line of sight is not obstructed by
another robot).

Algorithm 1. ConvergeLocality

Input : Any arbitrary configuration LC
Output: A direction θ towards the robot moves

1 if |LC| = 1 then
2 Move distance b in the direction θ, where θ ∈ LC
3 else
4 if |LCnon−local| ≥ 1 then
5 Move distance b towards any θ, where θ ∈ LCnon−local

6 else
7 Do not move // All neighbor robots are within a distance c
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Lemma 1. If there exists a pair of robots at distance more than 2c in a non-
linear configuration, then there exists a pair of neighboring robots at distance
more than c.

Proof. Proof by contradiction. If there is a pair of robots with distance more than
2c, then they themselves are the neighboring pair with more than c distance. To
prevent them from being a neighboring pair with more than c distance, there
should be at least two robots on the line joining them positioned such that each
neighboring pair has a distance less than c. Since the robots are non-transparent,
the end robots cannot look beyond their neighbors to find another robot at a
distance more than c. In Fig. 3, r1 and r4 are 2c apart. So r2 and r3 block the view
such that r1r2 < c, r2r3 < c and r3r4 < c. Since it is a non-linear configuration,
say robot r5 is not on the line joining r1 and r4. l is the perpendicular bisector of
r1r4. If r5 is on the left side of l, then it is more than c distance away from r4 and
if it is on the right side of l then it is more than c distance away from r1. If there
is another robot on r4r5, then consider that as the new robot in a non-linear
position, and we can argue similarly considering that robot to be r5. If r5 is on l,
then r1r5 = r4r5 > c. Hence there would at least be a single robot similar to r5
in a non-linear configuration for which the distance is more than c. ��

Fig. 3. A non-linear configuration with a pair of robots at a distance 2c

Lemma 2. For any time t′ > t before convergence, ACHt′ ⊆ ACHt.

Proof. The proof follows from a simple observation. Consider any robot ri. If ri

decides to move towards some robot, say rj , then it moves on the line joining
two robots. There are two cases.

Case 1: If all the robots are on a straight line, then the boundary robots move
monotonically closer in each step. The distance between the end robots is a
monotonically decreasing sequence until it reaches c.

Case 2: For a non-linear configuration the robot moves when the distance
between ri and rj is more than c and it moves only a distance b, where c ≥ 2b.
The movement path at the time when it looks, is always contained inside the
CHt, and CHt ⊆ ACHt. So the ACHt contains its entire movement path
and it continues to do so until the robot has reached its destination. For any
t′ > t, parts of the path traversed by the robot and outside CHt′ are removed
from ACHt.
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Fig. 4. On activation, ri and rj will move outside the solid circle inside the convex
hull. The radius of the solid circle is b/2. The robot rk moves a distance b towards
ri because the distance between them is more than 2b and stops at D. In the second
figure the shadowed area is the decrement considered for each corner and the central
convex hull inside solid lines is the new convex hull after every robot moves.

Hence ACHt′ ⊆ ACHt. ��

Lemma 3. After each robot is activated at least once, the decrement in the

perimeter of the convex hull is at least b
(
1 −

√
1
2

(
1 + cos

(
2π
n

)))
, where b is the

step size and n is the total number of robots.

Proof. Suppose the n robots form a k (k ≤ n) sided convex hull. The sum of
internal angles of a k-sided convex polygon is (k − 2)π. So there exists a robot
r at a corner A (ref. Fig. 4) of the convex hull such that the internal angle is
less than

(
1 − 2

n

)
π, where n is the total number of robots. Let B and C be

the points where the circle centered at A with radius b/2 intersects the convex
hull. Any robot lying outside the circle will not move inside the circle according
to Algorithm 1, because the maximum distance between any two points in the
circle is b and all the robots move towards a robot which is more than c distance
apart, and c � 2b. All the robots inside the circle will eventually move out once
they are activated, because the robot which is activated will have to move at
least b distance, and since the distance between any two points in the b/2 radius
circle is less than or equal to b, the robot will find itself outside the b/2 radius
circle inside the convex hull. After all the robots are activated at least once, the
decrement in the perimeter is at least AB + AC − BC. From cosine rule,

AB + AC − BC =
b

2
+

b

2
−

√(
b

2

)2

+
(

b

2

)2

− 2
b

2
b

2
cos

(
π − 2π

n

)

= b

(
1 −

√
1
2

(
1 + cos

(
2π

n

)))

��



78 D. Pattanayak et al.

Fig. 5. Robots on the boundary of a square moving along the boundary (a) all in
the clockwise direction, (b) not all in the same direction. The dotted line represent
the configuration before movement and the solid line represents the configuration after
movement.

Remark 1. Let us consider a special case of the execution of the algorithm. Here
all n robots are on the boundary of the convex hull with side length more than
c and move only on the boundary of the convex hull. Then the n-sided polygon
will again become an n-sided polygon, but the perimeter will decrease overall as
a consequence of Lemma 3 as shown in Fig. 5.

Theorem 1 (Correctness). Algorithm1 always terminates after at most Θ
(

D
b

)
fair scheduling rounds and for any arbitrary but fixed n, where D is the diameter
of smallest enclosing circle in initial configuration and b is the step size. After
termination all the robots converge within a c radius disc.

Proof. If a corner robot on the boundary of convex hull is activated, then the
perimeter of the convex hull decreases from Lemma 3. If non-corner robots are
activated, then the perimeter of the convex hull remains the same. If we have a
fair scheduler, the idle time for robots are unpredictable but finite. Consequently,
the time between successive activations is also finite. So we can always assume
a time step which is large enough for each robot to activate at least once. The
total number of robots n is finite and invariant throughout the execution, so

1 −
√

1
2

(
1 + cos

(
2π
n

))
= δ is constant. Hence the decrement of perimeter is

at least bδ according to Lemma 3. Notice that the perimeter of convex hull is
always smaller than the perimeter of the smallest enclosing circle. According to
Lemma 1, eventually there will not be a pair of robots with more than 2c distance.
Note that the distance between any two points in a disc of radius c is less than
or equal to 2c. In other words, ζ = 2c. Hence the robots will converge within a
disc of radius c. So the perimeter of the circle at termination is 2πc. Now the
decrement in the perimeter is πD−2πc. Total time required is π(D−2c)

δb = Θ
(

D
b

)
.

��

3.2 Convergence for OLA

In this section, we consider monoculus robots in the OLA model. Our algo-
rithm will distinguish between boundary-, corner- and inner-robots, defined in
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the canonical way. We note that robots can determine their type: From the
Fig. 6, we can observe that for r2, all the robots lie below the horizontal line.
That means, one side of the horizontal line is empty and therefore r2 can figure
out that it is a boundary robot. Similarly all ri, i ∈ {3, 4, 5, 6, 7, 8} are bound-
ary robots. Whereas, for r1, both horizontal and vertical lines have one of the
sides empty, hence r1 is a corner robot. Other robots are all inner robots. Con-
sequently, we define boundary robots to be those, which have exactly one side of
one of the orthogonal lines empty.

Fig. 6. Movement direction of the boundary robots

Algorithm 2 (ConvergeQuadrant) can be described as follows. A rectan-
gle can be constructed with lines parallel to the orthogonal lines passing through
boundary robots such that, all the robots are inside this rectangle. In Fig. 6, each
boundary robot always moves inside the rectangle perpendicular to the bound-
ary and the inside robots do not move. Note that the corner robot r1 has two
possible directions to move. So it moves toward any robot in that common quad-
rant. Gradually the distance between opposite boundaries becomes smaller and
smaller and the robots converge. In case all the robots are on a line which is
parallel to either of the orthogonal lines, then the robots will find that both
sides of the line are empty. In that case, they should not move. But the robots
on either end of the line would only see one robot. So they would move along
the line towards that robot.

Theorem 2 (Correctness). Algorithm2 moves all the robots inside some 2b-
sided square in finite time, where b is the step size.

Proof. Consider the distance between the robots on the left and right boundary.
The horizontal distance between them decreases each time either of them gets
activated. The rightmost robot will move towards the left and the leftmost will
move towards the right. The internal robots do not move. So in at most n acti-
vation rounds of the boundary robot, the distance between two of the boundary
nodes will decrease by at least b. Hence the distance is monotonically decreasing
until 2b. Afterward, the total distance will never exceed 2b anymore.
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Algorithm 2. ConvergeQuadrant

Input : Any arbitrary configuration and robot r
Output: All robots are inside a square with side 2b

1 if only one robot is visible then
2 Move towards that robot
3 else if r is a boundary robot then
4 Move perpendicular to the boundary to the side with robots
5 else if r is a corner robot then
6 Move towards any robot in the non-empty quadrant
7 else
8 Do not move // It is an inside robot

If there is a corner robot present in the configuration, that robot will move
towards any robot in the non-empty quadrant. So, the movement of the corner
robot contributes to the decrement in distance in both directions. If an inside
robot is very close to one of the boundaries and the corner robot moves towards
that robot, then the decrement in one of the dimensions can be small (an ε > 0).
Consider for example the configuration of a strip of width b, then the corner
robot becomes the adjacent corner in the next round; this can happen only
finitely many times. Each dimension converges within a distance 2b, so in the
converged state the shape of the converged area would be 2b-sided square, i.e.,
ζ = 2

√
2b. ��

Remark 2. If the robots have some sense of angular knowledge, the corner robots
can always move in a π/4 angle, so the decrement in both dimension is significant,
hence convergence time is less on average.

4 Impossibility and Optimality

Given these positive results, we now show that the assumptions we made on the
capability of monoculus robots are minimal for achieving convergeability: the
following theorem shows that monoculus robots by themselves cannot converge
deterministically.

Theorem 3. There is no deterministic convergence algorithm for monoculus
robots.

Proof. We prove the theorem using a symmetry argument. Consider the two
configurations C1 and C2 in Fig. 7. In C1, all the robots are equidistant from
robot r, while in C2, the robots are at different distances, however, the relative
angle of the robots is the same at r. Now considering the local view of robot r, it
cannot distinguish between C1 and C2. Say a deterministic algorithm φ decides
a direction of movement for robot r in configuration C1. Since both C1 and C2

are the same from robot r’s perspective, the deterministic algorithm outputs the
same direction of movement for both cases.
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Fig. 7. Locally indistinguishable configurations with respect to r

Now consider the convex hull CH1 and CH2 of C1 and C2 respectively. The
robot r moves a distance b in one round. The distance from any point inside CH1

is more than b but we can skew the convex hull in the direction of movement,
so to make it like CH2, where if the robot r moves a distance b it exits CH2.
Therefore there exists a situation for any algorithm φ such that the area of the
convex hull increases. Hence it is impossible for the robots to converge. ��

5 Simulation

We now complement our formal analysis with simulations, studying the average
case. We assume that robots are distributed uniformly at random in a square
initially, that b = 1 and c = 2, and we consider fully synchronous (FSYNC)
scheduling [13]. As a baseline to evaluate performance, we consider the optimal
convergence distance and time if the robots had the capability to observe posi-
tions, i.e., they are not monoculus. Moreover, as a lower bound, we compare
to an algorithm which converges all robots to the centroid, defined as follows:
{x̄, ȳ} =

{∑n
i=1 xi

n ,
∑n

i=1 yi

n

}
where {xi, yi}∀i ∈ {1, 2, · · · , n} are the robots’ coor-

dinates. We calculate the distance di from each robot to the centroid in the initial
configuration. The optimal distance we have use as convergence distance is the
sum of distances from each robot to the unit disc centered at the centroid. So the
sum of the optimal convergence distances dopt is given by dopt =

∑n
i=1(di − 1),

if di > 1.
In the simulation of Algorithm 1, we define dCL as the cumulative number of

steps taken by all the robots to converge (sometimes also known as the work).
Now we define the performance ratio, ρCL as ρCL = dCL

dopt
. Similarly for Algo-

rithm2 we define dCQ and ρCQ.
We have used BoxWhiskerChart [3] to plot the distributions. The

BoxWhiskerChart in the Figs. 8 and 9 show four quartiles of the distribution
notched at the median taken from 100 executions of the algorithms. Figures 8,
and 9 show the comparison between the performance ratio (PR) for distance. We
can observe that the distance traveled compared to optimal distance increases
for same size region as the number of robots increase for Algorithm 1 but it
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Fig. 8. ρCL vs ρCQ for the same size of
region

Fig. 9. ρCL vs ρCQ for the same num-
ber of robots

Fig. 10. τCL vs τCQ for the same number
of robots

Fig. 11. τCL vs τCQ for the same size of
region

remains almost the same for Algorithm 2. We can observe that Algorithm 2 per-
forms better. This is due to the fact that, in Algorithm2 only boundary robots
move.

Let dmax be the distance of farthest robot from the centroid and tCL

be the number of synchronous rounds taken by Algorithm1 for convergence.
We define τCL as follows τCL = tCL

dmax
. Similarly for Algorithm2, we define tCQ

and τCQ. τCL and τCQ show performance ratio for convergence time of Algo-
rithms 1 and 2 respectively. In Figs. 10 and 11, we can observe that τCL is very
close to 1, so Algorithm 1 converges in almost the same number of synchronous
rounds (proportional to distance covered, since step size b = 1) as the max-
imum distance from the centroid of the initial configuration. We can observe
that Algorithm 2 takes more time as the number of robots and the side length
of square region increases. Since Algorithm 2 only boundary robots move, the
internal robots wait to move until they are on the boundary. As expected, this
creates a chain of dependence which in turn increases the convergence time.

6 Discussion

This section shows that our approach supports some interesting extensions.
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6.1 Termination for OLA Model

While we only focused on convergence and not termination so far, we can show
that with a small amount of memory, termination is also possible in the OLA
model.

Algorithm 3. ConvergeQuadrantTermination

Input : Any arbitrary configuration and robot r with 4-bit memory
Output: All robots are inside a square with side 2b

1 if the robot is on a boundary(ies) then
2 set the corresponding bit(s) to 1
3 else
4 Do nothing // r is an inside robot

5 if r is a boundary robot and the bits corresponding to that dimension are not 1
then

6 Move perpendicular to the boundary to the side with robots
7 else if r is a corner robot then
8 if Both bits corresponding to a dimension is 1 then
9 Move in other dimension to the side with robots

10 else
11 Move towards any robot in the non-empty quadrant

12 else
13 Do not move // r is not on boundary OR all four bits are 1

To see this, assume that each robot has a 2-bit persistent memory in the
OLA model for each dimension, total 4-bits for two dimensions. Algorithm2
has been modified to Algorithm 3 such that it can accommodate termination. All
the bits are initially set to 0. Each robot has its local coordinate system, which
remains consistent over the execution of the algorithm. The four bits correspond
to four boundaries in two dimensions, i.e., left, right, top and bottom. If a robot
finds itself on one of the boundaries according to its local coordinate system, then
it sets the corresponding bit of that boundary to 1. Once both bits corresponding
to a dimension become 1, the robot stops moving in that dimension. Consider
a robot r. Initially, it was on the left boundary in its local coordinate system.
Then it sets the first bit of the pair of bits corresponding to x-axis. It moves
towards right. Once it reaches the right boundary, then it sets the second bit
corresponding to x-axis to 1. Once both the bits are set to 1, it stops moving
along the x-axis. Similar movement termination happens on the y-axis also. Once
all the 4-bits are set to 1, the robot stops moving.

6.2 Extension to d-Dimensions

Both our algorithms can easily be extended to d-dimensions. For the LD model,
the algorithm remains exactly the same. For the proof of convergence, similar
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arguments as Lemma 3 can be used in d dimensions. We can consider the convex
hull in d-dimensions and the boundary robots of the convex hull always move
inside. The size of convex hull reduces gradually and the robots converge.

Analogously for the OLA model, the distance between two robots in the
boundary of any dimension gradually decreases and the corner robots always
move inside the d-dimensional cuboid. Hence it converges. Here the robot would
require 2d number of bits for termination.

7 Conclusion

This paper introduced the notion of monoculus robots which cannot measure
distance: a practically relevant generalization of existing robot models. We have
proved that the two basic models still allow for convergence (and with a small
memory, even termination), but with less capabilities, this becomes impossible.

The LD model converges in an almost optimal number of rounds, while
the OLA model takes more time. But the cumulative number of steps is less
for the OLA model compared to the LD model since only boundary robots
move. Although we found in our simulations that the median and angle bisector
strategies successfully converge, finding a proof accordingly remains an open
question. We see our work as a first step, and believe that the study of weaker
robots opens an interesting field for future research.
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