Self-stabilizing Reconfiguration

Shlomi Dolev!, Chryssis Georgiou?, Ioannis Marcoullis?®9,

and Elad M. Schiller®

! Department of Computer Science,
Ben-Gurion University of the Negev, Be’er Sheva, Israel
2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
imarcoullis@cs.ucy.ac.cy
3 Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

Abstract. Current reconfiguration techniques depend on starting the
system in a consistent configuration, in which all participating entities
are in a predefined state. Starting from that state, the system must pre-
serve consistency as long as a predefined churn rate of processors joins
and leaves is not violated, and unbounded storage is available. Many sys-
tems cannot control this churn rate and lack access to unbounded storage.
System designers that neglect the outcome of violating the above assump-
tions may doom the system to exhibit illegal behaviors. We present the
first automatically recovering reconfiguration scheme that recovers from
transient faults, such as temporal violations of the above assumptions.
Our self-stabilizing solutions regain safety automatically by assuming
temporal access to reliable failure detectors (FDs). Once safety is estab-
lished, the FD reliability is no longer needed. Still, liveness is conditioned
by the FD’s unreliable signals. Our self-stabilizing reconfiguration tech-
niques can serve as the basis for the implementation of several dynamic
services over message passing systems. Examples include self-stabilizing
reconfigurable virtual synchrony, extendable to a self-stabilizing recon-
figurable state machine replication.

1 Introduction

Motivation. We consider distributed systems working in dynamic asynchronous
environments, such as a shared storage system [17]. Quorum configurations [19],
i.e., sets of active processors (servers or replicas), are typically used to provide

A full version of this paper can be found in [8].

S. Dolev—The research was partially supported by the Rita Altura Trust Chair in
Computer Sciences; Frankel center for computer science, grant of the Ministry of
Science, Technology and Space, Israel, and the National Science Council (NSC) of
Taiwan; the Ministry of Foreign Affairs, Italy; the Ministry of Science, Technology
and Space, Infrastructure Research in the Field of Advanced Computing and Cyber
Security and the Israel National Cyber Bureau.

I. Marcoullis—Partially supported by a Doctoral Scholarship program of the
University of Cyprus.

© Springer International Publishing AG 2017

A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 51-68, 2017.
DOI: 10.1007/978-3-319-59647-1_5

52 S. Dolev et al.

service to the system’s participants. A configuration may gradually lose active
participants due to voluntary leaves or stop failures, rendering service provi-
sion poor or impossible. It is important to instate a new configuration, i.e., to
reconfigure, on time, based on a more recent participation set. In recent years,
several reconfiguration techniques were proposed, mainly for state machine repli-
cation and atomic memory emulation (e.g., [1-4,13-16,18]). Such reconfigura-
tion techniques depend on initiating the system in a consistent configuration,
with all processors in a predefined state. Continuing from this state, the sys-
tem must preserve consistency assuming a predefined churn rate is not violated
and unbounded storage availability. Also, they do not claim to tolerate transient
faults that may arbitrarily alter the system’s variables.

Many working systems cannot control their churn rate and do not have access
to unbounded storage. System designers that neglect the outcome of violating the
above assumptions may doom the system to forever exhibit a behavior that does
not satisfy the system requirements. Furthermore, the dynamic and difficult-to-
predict nature of distributed systems gives rise to many fault-tolerance issues
and requires efficient solutions. Large-scale message passing networks are asyn-
chronous and they are subject to transient faults due to hardware or software
temporal malfunctions, short-lived violations of the assumed failure rates or vio-
lation of correctness invariants, such as the uniform agreement among all current
participants about the current configuration. Fault tolerant systems that are self-
stabilizing [6] can recover after the occurrence of transient faults as long as the
program’s code is still intact.

Contributions and Approach. We present the first automatically recovering
reconfiguration scheme that recovers from transient faults, such as temporal
violations of the predefined churn rate or the unexpected activities of processors
and communication channels. Our blueprint for self-stabilizing reconfigurable
distributed systems can withstand a temporal violation of such assumptions, and
recover once conditions are resumed, using a bounded amount of local storage
and message size. Our self-stabilizing solutions regain safety automatically by
assuming temporal access to reliable failure detectors! (FDs). Once safety is
established, the FDs’ reliability is no longer needed; liveness is conditioned by
the FDs’ unreliable signals. We now overview our approach.

Reconfiguration scheme. Our scheme comprises of two layers that appear as a
single “black-box” module to any application that uses the reconfiguration ser-
vice. The objective is to provide the application with a conflict-free configuration,
such that no two alive processors consider different configurations.

The first layer, called Reconfiguration Stability Assurance (recSA) and
detailed in Sect. 3.1, is mainly responsible for detecting configuration conflicts
(possibly the result of transient faults). It deploys a brute-force technique for
converging to a conflict-free new configuration. It also employs a delicate config-
uration replacement technique when a processor notifies that it wishes to replace

! Transient faults pose challenges in managing dynamic membership that justify the
use of FDs; see discussion in Related work.

Self-stabilizing Reconfiguration 53

the current configuration with a new set of participants. For both techniques,
processors use an implementable FD (cf. Section 2) to obtain membership infor-
mation. Configuration convergence is reached when the FDs have temporal reli-
ability. Once a uniform configuration is installed, the FDs’ reliability is no longer
needed. Liveness conditions thereafter consider unreliable FDs.

The decision for requesting a delicate reconfiguration is controlled by the
other layer, called Reconfiguration Management or recMA for short (detailed in
Sect. 3.2). Specifically, if a processor suspects that the dependability of the cur-
rent configuration is under jeopardy, it seeks to obtain a majority approval from
the alive members of the current configuration, and requests a (delicate) reconfigu-
ration from recSA. Moreover, in the absence of such a majority (e.g., configuration
replacement was not activated “on time” or the churn assumptions were violated),
the recMA can aim to control the recovery via a recSA reconfiguration request.
The current participant set can, over time, become different than the configura-
tion member set. As new members arrive and others go, changing the configuration
based on system membership would imply a high frequency of (delicate) reconfig-
urations, especially in the presence of high churn. Note that we avoid unnecessary
reconfiguration requests by requiring a weak liveness condition: if a majority of
the configuration set has not collapsed, then there exists at least one processor
that is known to trust this majority in the FD of each alive processor. Such active
configuration members can aim to replace the current configuration with a newer
one (that would provide an approving majority for prospective reconfigurations)
without the use of the brute-force stabilization technique.

Joining mechanism. We complement our reconfiguration scheme with a self-
stabilizing joining mechanism JoinMec (detailed in Sect.3.3) that manages and
controls the introduction of new processors into the system. It is crucial to ensure
that newly joining processors do not carry stale information (due to arbitrary
faults) into the system state. To this end, we employ several techniques along with
a snap-stabilizing data link protocol (see Sect. 2). We have designed JoinMec to
grant the application the control on whether to allow new processors to join the
system or not. In this way, the churn (regarding new arrivals) can be “fine-tuned”
based on the application requirements; we have modeled this by having joining
processors obtaining approval from a majority of the current configuration’s mem-
bers given no reconfiguration is taking place. These, in turn, provide such approval
if the application’s (among other) criteria are met. We note that in the event of
transient faults, such as unavailable approving majority, recSA assures recovery
via brute-force stabilization that includes all alive processors.

Applications. The presented reconfiguration scheme is modular and can be used
to extend the capabilities of algorithms designed for more static environments,
i.e., for environments where processors are aware of a single set of processors
that can fail by crashing. The reconfiguration scheme allows for this set to be
renewed and thus service can continue. We have used our reconfiguration scheme
to obtain dynamic versions of a multipurpose counter increment algorithm and
a self-stabilizing virtual synchrony algorithm that also leads to a self-stabilizing
replicated state machine (cf., Sect. 4).

54 S. Dolev et al.

Related Work. Existing solutions for providing reconfiguration in dynamic
systems, such as [1,14], do not consider transient faults and self-stabilization,
as their correctness proofs (implicitly) depend on a coherent start [17] and also
assume that fail-stops can never prevent the (quorum) configuration to facilitate
configuration updates. They also often use unbounded counters for ordering
consensus messages (or for shared memory emulation) and by that facilitate
configuration updates, e.g., [14]. Our self-stabilizing solution recovers after the
occurrence of transient faults, which we model as an arbitrary starting state,
and guarantees a consistent configuration that provides (quorum) services, e.g.,
allowing reading from and writing to distributed shared memory, and at the
same time managing the configuration that provides these services.

In existing non self-stabilizing solutions, dynamic membership is usually
maintained by the exchange of “membership sets” (e.g., the set World in [14]).
But when dealing with transient faults, it is possible that local membership
sets may change arbitrarily resulting in sets with large numbers of identifiers of
processors that are not present in the system. Given the asynchronous environ-
ment, this would result in a deadlock if the processors wait for some majority (or
quorum) of these non-existing processors to respond while they have no means
for detecting their non-existence. To this respect, our self-stabilizing solution
makes use of failure detectors (cf. Sect. 2).

There exists a significant amount of research to characterize the fault-tolerance
guarantees that different quorum system designs can provided; see [19] for an in
depth discussion. In this paper we use majorities, generally regarded as the sim-
plest quorum system (each set composed of a majority of the processors is a quo-
rum). One can modify our reconfiguration scheme to support more complex, quo-
rum systems, as long as processors have access to a mechanism (that is a function)
that, given a set of processors, can generate the specific quorum system. The when
a reconfiguration (delicate in our case) should take place is another important
design decision; see related discussion in [17]. A simple approach is to reconfig-
ure when a fraction (e.g., 1/4th) of the members of a configuration appear to have
failed. More complex decisions use prediction mechanisms (possibly based on sta-
tistics). This issue is beyond the scope of this work; however, we have designed our
reconfiguration scheme (specifically the recMA layer) to use any decision mecha-~
nism imposed by the application (via an application interface).

2 System Settings

Processing Entities. We consider an asynchronous message-passing system
of processors. Each processor p; has a unique identifier, ¢, taken from a totally-
ordered set of identifiers P. The number of live and connected processors at any
time of the computation is bounded by some integer N such that N < |P|. We
refer to such processors as active. We assume that processors have knowledge of
the upper bound N, but not of the actual number of active processors. Proces-
sors may stop-fail by crashing at any point without warning. A crashed processor
takes no further steps and never rejoins the computation. (For readability’s sake,

Self-stabilizing Reconfiguration 55

we model rejoins as transient faults rather than considering them explicitly. Self-
stabilization inherently deals with rejoins by regarding the past join information
as possibly corrupted.) New processors may join the system (using a joining pro-
cedure) at any point in time with an identifier drawn from P, such that this identi-
fier is only used by this processor forever. A participant is an active processor that
has joined the computation and sends configuration-related messages. Note that
N accounts for all active processors, both the participants and those still joining.

Communication. The network topology is that of a fully connected graph, and
links have a bounded capacity cap. Processors exchange low-level messages called
packets to enable a reliable delivery of high level messages. Packets sent may be
lost, reordered, or duplicated but not arbitrarily created, although the channels
may initially (after transient faults) contain stale packets, which due to the
boundedness of the channels are also bounded in a number that is in O(N?cap).
We assume the availability of self-stabilizing protocols for reliable FIFO end-to-
end message delivery (over unreliable channels with bounded capacity), e.g., [9],
and that channels provide fair communication, i.e., a packet sent infinitely often
is received infinitely often.

Using the underlying packet exchange protocol described, a processor p; that
has received a packet from some processor p; which did not belong to p;’s FD,
engages in a two phase protocol with p; in order to clean their intermediate
link. This is done before any messages are delivered to the reconfiguration and
joining services or the applications. We follow the snap-stabilizing data link
protocol of [12]. A snap-stabilizing protocol allows the system (after faults cease)
to behave according to its specification upon its first invocation. We require that
every data-link between any two processors is initialized and cleaned straight
after it is established. In contrast to [12] where the protocol runs on a tree
we require that each pair of processors takes the responsibility of cleaning their
intermediate link. Snap-stabilizing data links do not ignore signals indicating the
existence of new connections (such as physical carrier signal from the port). In
fact, when such a connection signal is received by the newly connected parties,
they start a communication procedure that uses the bound on the packet in
transit (possibly in buffers too) to clean all unknown packets in transit, possibly
repeatedly sending the same packet until more than the round trip capacity
acknowledgments arrive.

(N, ©)-Failure Detector. It extends the ©-FD used in [5]. It allows each proces-
sor p; to order other processors according to how recently they have communi-
cated. To achieve this, p; maintains an ordered vector nonCrashed where every
other communicating processor py is ranked according to the message exchanges
that it has performed with p; and relative to the communication it has with some
other processor p;. Specifically, when p; receives a message from pj;, it sets p;’s
corresponding counter to 0, and increments the counters of any other processor
pr by one. Since there are at most N processors in the computation at any given
time, we can ignore any processors that rank below the N** vector entry. Each
processor p; uses the nonCrashed vector to get an estimate on the number of
processors n; that p; believes to be active in the system; n; < N. Processor p;

56 S. Dolev et al.

will find that between the last processor that is still communicating with, and
the first processor that has not communicated for some time, there is a signif-
icant difference in their counter. Thus, the last processor is the n;*"® processor
and provides an estimate on the number of active processors. If, for example,
the first 30 processors in the vector have corresponding counters of up to 30,
then the 31%% will have a counter much greater than that, say 100; so n; will be
estimated at 30. This estimation mechanism is suggested in [10] and in [11]. (For
implementation details see [8].)

The Interleaving Model and Self-stabilization. A program is a sequence of
(atomic) steps. Each atomic step starts with local computations and ends with a
communication operation, i.e., packet send or receive. We assume the standard
interleaving model where at most one step is executed in every given moment.
An input event can either be the arrival of a packet or a periodic timer triggering
p; to (re)send. Note that the system is asynchronous and the rate of the timer
is totally unknown. The state, ¢;, consists of p;’s variable values and the content
of p;’s incoming communication channels. A step executed by p; can change p;’s
state. The tuple of the form (¢1,co,- -+ ,¢,) is used to denote the system state.
An ezecution (or run) R = cp,ap,c1,a1,... is an alternating sequence of system
states ¢, and steps a,, such that each c,t1, except the initial system state co,
is obtained from ¢, by the execution of a,. A practically infinite execution is an
execution with many steps, where many is defined to be proportional to the time
it takes to execute a step and the life-span time of a system. The system’s task is
a set of executions called legal executions (LE) in which the task’s requirements
hold. An algorithm is self-stabilizing with respect to LE when every (unbounded)
execution of the algorithm has a suffix that is in LFE.

3 Self-stabilizing Reconfiguration Scheme

We now describe the reconfigura- evalConf() passQuery()
tion scheme and joining mecha- ! [
nism. Figurel depicts the interaction

Reconfiguration Joining

between the modules and the appli- | Application .
. . - anagement Mechanism
cation. The Reconfiguration Stability
Assurance (recSA) layer ensures that f f
participants eventually have a com- estab() getConfig() |participate()
. . . Rec
mon configuration. It provides infor- roRecol) y

mation on the current configuration
and on whether a reconfiguration
is not taking place using interfaces
getConfig() and noReco() respec- Fig. 1. Module Interaction.
tively. This is based on local informa-

tion. The Reconfiguration Management (recM A) layer uses the (application-
based) prediction mechanism evalConf() to evaluate if a reconfiguration is

Reconfiguration Stability Assurance

Self-stabilizing Reconfiguration 57

required. If a reconfiguration is necessary, recM A initiates it with estab(). Join-
ing only proceeds if no reconfiguration is taking place. A joiner becomes a par-
ticipant via participate() only if passQuery() of a majority of configuration
members is reported as True. Arrows directed from module A to B show the
transfer of specified information from A to B. We proceed with details.

3.1 The Reconfiguration Stability Assurance Layer

This layer uses Algorithm 1 for assuring correct configuration while allowing
updates from the recM A layer (next section). Algorithm 1 guarantees that (1)
all active processors have eventually identical copies of a single configuration,
(2) when participants notify the system that they wish to replace the current
configuration with another, the algorithm selects one proposal and replaces the
current configuration with it, and (3) joining processors can become participants
eventually.

The Algorithm Structure. The algorithm combines two techniques: one for
brute force stabilization that recovers from stale information and a complemen-
tary technique for delicate (configuration) replacement, where participants jointly
select a single new configuration that replaces the current one.

Combining the two techniques. As long as a given processor is not aware of
ongoing configuration replacements, Algorithm 1 merely monitors the system
for stale information, e.g., that the config fields hold the same non- 1 value. Dur-
ing these periods the algorithm allows the invocation of configuration replace-
ment processes (via the estab(set) interface) as well as the acceptance of joining
processors as participants (via the participate() interface). During the process of
configuration replacement, the algorithm selects a single configuration proposal
and replaces the current one with that proposal before returning to monitor for
configuration disagreements.

Blocking joins to the participants’ set during reconfiguration periods. While the
system reconfigures, there is no immediate need to allow joining processors to
become participants. By temporarily disabling this functionality, the algorithm
can focus on completing the configuration replacement using the current partici-
pant set. To that end, only participants broadcast their state when finishing the
do forever loop (line 17) and only their messages arrive to the other active proces-
sors (line 18). Moreover, we assume that the only way for a joining processor to
start executing Algorithm 1 is by responding to an interrupt call (line 19), where
the assignment of § to config nullifies the configuration. Thus, joining processors
cannot broadcast (line 17) before their safe entry to participant set via the func-
tion participate() (line 2), which enables broadcasting. Note that non-participants
monitor the intersection between the current configuration and the set of active
participants (line 8). In case it is empty, the processors (participants or not) call
configSet(L) and start a reset process that ends with a brute-force stabilization,
which we explain below. Thus, the f values are removed from config and there is
no more blocking of joining processors to become participants.

58 S. Dolev et al.

Algorithm 1. Stabilizing Reconfiguration Stability Assurance; p;’s code

1 Variables: Each field is held in an array that stores p;’s own values and p;’s most recently

received ones. For example, in the case of the config[] field, config[i] is p;’s view on the

current configuration and config[j] stores the most recently received one. Note that p;

assigns L (the empty configuration) after receiving a conflicting (different) non-empty

configuration value. FD[i] and FDJ[¢].part represent p;’s failure detector, and respectively, an

alias to {p; € FD[4] : config[j] # #}. Note that we consider only the trusted (unsuspected)

processors. Namely, crashed processors are eventually suspected and the FD field of every

message encodes also this participation info. The field prp[i] = (phase € {0, 1,2}, set C P),

where prpl[i] refers to p;’s configuration replacement proposal. The case of no proposal is

denoted by (0, L). The field allz] is true when p; observes that all trusted nodes notice its

current (max) proposal and they hold the same value. The variable allSeen stores the set of

nodes pj for which p; received the all = true indication.

Interfaces: function participate() replaces p;’s configuration (possibly set to f) with

chsConfig(). Only allowed when no reconfiguration is taking place.

function chsConfig() is the current config value, or L when there is no single non-f value.

function getConfig() {if noReco() then return(chsConfig()) else return(config[i])};

function noReco() test (locally) whether p; runs a reconfiguration process.

function estab(set) = {if (noReco() A (set ¢ {config[i],0})) then prp[i] « (1,set)};

do forever begin

if stale info present, e.g., different (non-L or-§) config values or empty intersection
between config and participant set then reset, i.e., call configSet(L);

if there is no proposal for configuration replacement then

10 if [{configlk]}p, erppi) \ {1, 8} > 1 then configSet(L) // once a trusted processor

has sent a different (non-L or #) configuration, L-nullify the stored one — i.e.,

nullify the configuration upon conflict;

11 if (configli) = L A |{FDlj] : p; € FD[i]}| = 1) then configSet(FD[:i]) // once all

trusted nodes trust the same nodes, use this node set as the new configuration;

(I e I) N

©

12 else

13 if all trusted participants report the same proposals and participation sets and
they echo back the sent values of these fields then all[i] — true;
14 else if trusted participant pi reports all[i] = true then
15 add pj to allSeen;
16 if allSeen includes all trusted participants then run the automaton (Fig. 2)
and empty allSeen « (;
17 if config[i] # f then send to p; the state of p; (including p;’s recently received info.);

18 upon receive m from p; do store m’s fields as the recently received values from p;;
19 upon interrupt p;’s booting do foreach p; do (configlk], prp[k], all[k]) «—
(#, (0, L), false) // during boot, nullify the stored fields and disable message transmissions;

Brute-force Stabilization. The proposed
algorithm detects the presence of stale infor-
mation and recovers from these transient
faults. Configuration conflicts are one of sev-
eral kinds of such stale information and
they refer to differences in the field config,
which stores the configuration values. Proces-
sor p; can signal to all processors that it
has detected stale information by assigning 1
to config, and by that starts a reset process
that nullifies all config fields in the system
(lines 8 and 10). Algorithm 1 uses the brute-
force technique for letting processor p; to

in the absence of
proposals, monitor
stale information

when there is at least
one proposal, select
one uniformly

A
»

once a single proposal
exists, replace the current
configuration with it

once a single
configuration exists,
return to stale

info. monitoring

Fig. 2. The automaton

assign to config; its set of trusted processors (line 11), which the failure detec-
tor FD; provides. Note that brute-force stabilization removes any § value from

Self-stabilizing Reconfiguration 59

config and allows all processors (joining or participants) to become a participant
at the end of the brute-force process. Theorem 1 together with Lemma2 show
that eventually all active processors share identical (non-_1) config values.

Delicate (configuration) Replacement. Participants can propose to replace
the current configuration with a new set, via the estab(set) interface. This
replacement uses the configuration replacement automaton (Fig.2) that a self-
stabilizing mechanism for (phase transition) coordination emulates.

The configuration replacement automaton. When the system is free from stale
information, the configuration uniformity invariant (of the config field values)
holds. Then, any number of calls to the estab(set) interface starts the automaton,
which controls the configuration replacement using the following three phases:
(1) selecting uniformly a single proposal (while verifying the eventual absence of
“unselected” proposals), (2) replacing uniformly all config fields with the jointly
selected proposal, and (3) bringing the system back to a state where it merely
tests for stale information.

A self-stabilizing mechanism for phase transition coordination. The configura-
tion replacement automaton, requires coordinated phase transition. Algorithm 1
lets processor p; represent proposals as prp;[j] = (phase, set), where p; is the
processor from which p; received the proposal, phase € {0,1,2} and set is a
processor set or the null value, L. The default proposal, (0, L), refers to the
case in which prp encodes “no proposal” (line 1). When p; calls the function
estab(set), it changes prp to (1,set) (line 6) as long as p; is not aware of an
ongoing configuration replacement process, i.e., noReco() returns true. Upon
this change, the algorithm disseminates prp,[¢] and by that guarantees that even-
tually noReco() returns false for any processor that calls it. Once this happens,
no call to estab(set) adds a new proposal for configuration replacement and no
call to participate() lets a joining processor to become a participant (line 2).
Algorithm 1 can then use the lexical value of the prp,[]’s tuples to deterministi-
cally select one of them (Fig.2). To that end, each participant ensures that all
other participants report the same tuples by waiting until they “echo” back the
same values as the ones it had sent them. After this, participant p; makes sure
that the communication channels do not include other “unselected” proposals,
by raising a flag all; = true (line 13) and waiting for the echoed values of these
three fields, i.e., participant set, prp;[i] and all;. This waiting continues until the
echoed values match the values of any other active participant in the system
(while monitoring their well-being). Before this participant proceeds, it makes
sure that all active participants have noticed its phase completion (line 15). Each
processor maintains the allSeen variable; a set of participants that have noticed
its phase completion and has thus added them to the set allSeen.

The above self-stabilizing mechanism for phase transition coordination allows
progression in a unison fashion. Namely, no processor starts a new phase before
it has seen that all other active participants have completed the current phase
and have noticed that all others have done so (because they have identical par-
ticipant set, prp and all values). This is the basis for emulating every step of the

60 S. Dolev et al.

configuration replacement automaton (line 16) and making sure that the phase
2 replacement occurs correctly before returning to phase 0, in which the sys-
tem simply tests for stale information. Since the FDs monitor the participants’
well-being, this process terminates.

Correctness. We here highlight the main steps of the proof, starting with some
key definitions. An execution R is admissible when throughout R the FD values
of active processors are identical, do not change and consist of only themselves
(the set of active processors). Le., Ve € R, p;,p; € P that are active in R, we
have FD,[i] = FD,[j] and py € FD;[i] <= py is active. Furthermore, we say
that system state ¢ has no stale information when (1) all (quorum) configura-
tion proposals are valid, e.g., the proposal (0, set) is not valid when set # L, (2)
all config values are non-L and the same, (3) the phase information (including
allSeen) is in synch, and (4) the config set includes active participants. The cor-
rectness proof shows that eventually there is no stale information (Theorem 1),
because they are all detected and cleaned eventually (lines 8 and 10), as proces-
sors run configuration reset processes (by calling configSet(L)). To guarantee
the success of such reset processes (Lemma 2), we assume that the system reaches
eventually an admissible execution until the reset process terminates.

Failure Detector Usage: The above assumption implies that Algorithm 1 com-
pletes the reset process by having a temporal access to reliable FDs. However,
once it completes this process, safety holds forever thereafter because, as The-
orem 1 shows, the system cannot introduce stale information (or start another
reset process) after the process terminates. In other words, once the reset process
establishes safety, the FD reliability is no longer needed, because the success of
Algorithm 1 to achieve its task does not require that the system reaches admissi-
ble executions, and liveness is conditioned by the FD’s unreliable signals. Since
Theorem 1 shows that no stale information eventually exists, all the processors
p; for which the field config,[i] ¢ {L,t} store the same value in that field. We
now give the main result and a proof sketch. (For the full proof see [8]).

Theorem 1 (Convergence). Let R be an admissible execution of Algorithm 1.
R has no stale information eventually.

Proof Sketch. Lines 8 and 10 detect stale information and start the configuration
reset, which by Lemma 2 terminates. The proof uses Claim5 and Lemma6 to
imply the theorem’s correctness, the first assuming that R does not include
(notifications about) replacement proposals, and the second that it does.

Lemma 2. During admissible executions R, reset processes terminate, eventu-
ally leading to no configuration conflicts.

Proof Sketch. Suppose that R’s starting system state does include a detec-
tion (line 8), does not include a conflict, i.e., Ip;,p; € P : (config;[i] =
1) Vv (config;[i] # config;[j]) V (config;[i] # config;[j]) or there is a mes-
sage, m; ;, in the communication channel from p; to p;, such that the field

Self-stabilizing Reconfiguration 61

(m; ;.configlk] = L) : pr € FD;[i] V (m; j.config # config,[i]), where both p;
and p; are active processors. We use Claims 3 and 4 to show that in all of these
cases, eventually Vp; € P : config;[i] € {1,FD;[i]} before using Claim 5 to show
that eventually there are no configuration conflicts. Claims 3 and 4 consider the
values in the field config that are either held by an active processor p; € P or
in its outgoing communication channel to another active processor p; € P. We
define the set S = {S; U S_out;}p,ep to be the set of all these values, where
S; = {config;[j]},,erp, i and S-out; = {m; j.config}, crp,i-

Claim 3. Suppose that in R’s starting system state, there are proces-
sors p;,pj € P that are active in R, for which |S \ {L,4} > 1.
(1) 38" € S : 5" € {{config[i], config;[j}, { config;[i], m; ;.config}} implies that
eventually the system reaches a state in which config;[i] € {L, FD;[i]} holds.
(2) 38" € S : 8" € {{config;[i], config;[j]}} implies that eventually the system
reaches a state in which config;[i] € { L, FD;[i]} or config;[j] € {.L, FD;[i]} holds.

Claim 4. Suppose that config;[i] € {L, FD;[i]} : p; € P in R’s starting system
state. (1) For any system state ¢ € R : config;[i] € {L, FD;[i]}, and (2) R =
R o R" has a suffit, R”, such that V¢" € R" ,Vp;,p; that are active in R :
({mi;-config, config;i], config;[j]} \ {L, FDi[i]}) = 0.

Claim 5. Suppose for any two active p;,p; € P, we have that ({config,[i],
config;[i], m; j.configy \ { L, FD;[i]}) = 0. Eventually config;[i] = FD;[i].

Lemma 6. Let R be an admissible execution (wrt the participant sets) of
Algorithm 1. Let n be a configuration replacement notification in R. Eventually
n leaves the system.

Proof Sketch. We assume, towards a contradiction, that notification n never
leaves the system and it has a maximal lexical value among all the notifications in
R. We begin by assuming that all of R’s notifications appear in its starting state
before removing this assumption. We use the fact that only lines 15 to 16 change
the notifications and by that we show the non-decrease property of their lexical
values. A contradiction is achieved by showing that the following invariants hold.
suppose that prp;[i] = n holds in every system state ¢’ € R. Eventually the sys-
tem reaches a state ¢’ € R, such that for any p; € P that is an active participant
in R, it holds that: (1) prp;[i] = n and FD;[i] = FD;. Moreover, prp;[j] = n and
FD;[j] = FD; in ¢ eventually, (2) echo;[j].prp = n, echo;[j].part = FD,[i].part
and prp,[j] = n in ¢’, (3) all;[z]] = true in ¢’. (4) all;[i] = true in ¢”. (5)
echo;[j] = (FD;[i].part, prp;[i], all;[1]) in ¢”. (6) p; € allSeen; in ¢’. (7) the if-
statement condition of line 16 holds in ¢”. Note that there exists a system state
¢an € R in which there are no notifications, because of invariant (7) there is
a step a; that immediately follows ¢’ and in which p; for any n.phase value
contradicts the assumption that n is of maximal value or that it never leave the
system. We complete the proof by showing that even in executions in which not
all of R’s notifications appear in its starting state, the above eventually holds.
To that end, the proof considers all notifications that appeared in R’s starting

62 S. Dolev et al.

state and shows that they must leave the system eventually because their (con-
tinuous) presence causes noReco() to return false and by that disable the effect
of the function estab(set) (line 6). Once this is true for every active processor
in the system, the conditions for invariants (1) to (7) hold and all notifications
leave the system eventually.

3.2 Reconfiguration Management

The Reconfiguration Management (recMA) layer (Algorithm2), bears the
weight of initiating (or “triggering”) a reconfiguration when either the major-
ity has been lost, or when the prediction function evalConf() indicates to a
majority of processors that a reconfiguration is needed to preserve the majority.
To achieve this, it uses the estab() interface of Algorithm 1. In spite of using
majorities, the algorithm is generalizable to other (more complex) quorum sys-
tems, while the prediction function evalConf() (used as a black box) can be
either very simple, e.g., asking for reconfiguration once 1/4*" of the members
appear to have failed, or more complex, based on application criteria or net-
work considerations. More elaborate methods may also be used to define the set
of processors that Algorithm 2 proposes as the new configuration. Our current
implementation, aiming at simplicity of presentation, defines the set of trusted
participants of the proposer as the proposed set for the new configuration.

Algorithm Description. Each processor executing the algorithm maintains
two variables, noMaj and needReconf. The first stores True/False on whether
pi’s FD considers a majority of the configuration members as alive. need Recon f
stores the outcome of the last call to the prediction function evalConf(). These
two variables are sent to all participating processors in every iteration of the
algorithm and the received variables are stored for every participating processor.
All decisions on whether a reconfiguration should take place or not, is based on
the received values for the two flags.

Algorithm 2 persistently refrains from triggering a reconfiguration if one is
already taking place, by the check of line 9. If a reconfiguration is not taking
place, two cases can force the algorithm to reconfigure.

(i) Processor p; sees that a magjority of members suggests a reconfiguration.
If a majority of active configuration members exists and locally they see that
evalConfig() = True, each propagates needReconf = True. Any such processor,
that locally sees a majority of needRecon f = True (lines 14-15), will proceed to
propose FD;[i] as the new configuration (line 15). We note that this will be a
delicate reconfiguration.

(i) Processor p; sees a loss of majority also seen by p;’s core. If a processor p;
suspects that the majority has collapsed, it propagates noMaj = True. Given
that FDs are not required to be always perfect (this is only required by Algo-
rithm 1 to converge to a new configuration), local information may inaccurately
at times present a loss of majority. In order to prevent unnecessary reconfigu-
rations, we require that a processor considers a “core” of information from the

Self-stabilizing Reconfiguration 63

Algorithm 2. Self-stabilizing Reconfiguration Management; code for
processor p;

1 Interfaces: evalConf() returns True/False on whether a reconfiguration is required or not
by based on a user-defined prediction function. The rest of the interfaces are specified in
Algorithm 1. noReco() returns True if a reconfiguration is not taking place, else False.
estab(set) initiates the creation of a new configuration based on the processor set
provided. getCon fig() returns the current local configuration.

2 Variables: needRecon f[] is an array of size at most N, composed of booleans {True, False},
where needRecon f;[j] holds the last value of needReconf;[j] that p; received from p; as a
result of exchange (lines 16 and 17) and needReconf is an alias to needReconf;[i] i.e., of
pi’s last reading of evalConf(). Similarly, noMaj;[] is an array of booleans of size at most
N on whether some trusted processor of p; detects a majority of members that are active
per the reading of line 11. noMaj;[j] (for ¢ # j) holds the last value of noMaj;|[j] that p;
received from p;. prevCon fig holds p;’s believed previous con fig.

3 Macros: core() = mijFDi[i].part F Dlj].part;

4 flushFlags(): foreach p; € FD[i] do needReconf[j] < (noMaj[j] < False);

5 Do forever begin

6 if p; € FD[i].part then

7 curConf = getConfig(); needReconf[i] < (noMaj[i] < False);

8 if prevConfig € {curConf, L} then flushFlags();

9 if noReco() = True then

10 prevConfig < curConf;

11 if [{p; & curConf N FD[i]}| < (M + 1) then noMaj[i] < True;

12 if (noMaj[t] = True) A (Jcore()| > 1) A (Vpr € core() : noMaj[k] = True)
then

13 | estab(FDIi].part); flushFlags();

14 else if (needReconf[i] < evalConf(curConf)) A
[{p; € curConf N FD[i] : needReconf[j] = True}| > M then

15 | estab(FD[i].part); flushFlags();

16 | foreach p; € FD[i].part do send((noMaj[i], needRecon f[i]));

17 Upon receive m from p; do if p; € FD[i].part then (noMaj[j], needRecon f[j]) < m;

processors that seem to be regarded active by all the processors. We thus intro-
duce the notion of the local core as the intersection of the FDs of participating
processors in p;’s FD (line 3). If every processor in p;’s core appears to have
noMaj = True based on p;’s local information (collected via the exchange of
line 17) then a reconfiguration is triggered by p; with FD;[i] as the new config-
uration (lines 12-13). The core is required to have size greater than 1 to prevent
p; from triggering if it is the only processor of its core. Using the notion of the
core, we also place the following liveness assumption on the FDs.

Magjority-supportive core assumption. If a majority (of the configuration) has
not collapsed, then in the core of every participant p;, there exists at least one
processor that is known (by p;) to trust this majority in its FD.

In triggering a reconfiguration, Algorithm 2 uses the estab(set) interface with
Algorithm 1. In this perspective the two algorithms display modularity as to their
workings. Several processors may trigger reconfiguration simultaneously, but by
the correctness of Algorithm 1 this does not affect the delicate reconfiguration,
and by the correctness of Algorithm 2, a processor can only trigger once when
this is needed.

64 S. Dolev et al.

Correctness. Algorithm 2 achieves correctness based on the ability of delicate
reconfiguration in Algorithm 1 to converge to a single configuration even if many
proposals are given. We use the term steady config state to indicate a system
state were recSA has imposed a conflict-free state at least once. We refer to a
system state csqre during an execution Rg,y. of Algorithm 2, as one which con-
tains no stale information. We first show that the algorithm eventually cleans
stale information from an initial arbitrary state (in variables and program coun-
ters) after a bounded number of reconfiguration triggerings that may be the
result of this arbitrary state. We then proceed to prove that recM A prevents
processors that are already reconfiguring to trigger a new reconfiguration.

Lemma 7. Starting from an arbitrary initial state in an execution R, where
stale information exists, Algorithm 2 eventually converges to a steady config
state, where local stale information is removed.

Lemma 8. Starting from an Rgafe execution, any call to estab() (lines 13
and 15) related to a specific event (majority collapse or agreement of major-
ity to change config), can only cause a one per participant trigger. After the
config has been established, no triggering that relates to this event takes place.

A legal execution R’ of Algorithm 2, refers to an execution composed of
conflict-free states and delicate configurations triggered due to loss of major-
ity of members, or due to the need of a majority of the members to reconfigure.
Given the above lemmas, the proof concludes that a reconfiguration will take
place when required and only when it is necessary, if the majority-supportive
core assumption holds. This provides liveness to the application and leads to the
following theorem.

Theorem 9. Let R be an execution of Algorithm 2 starting from an arbitrary
system state. R has an execution suffiz R’ which is a legal execution.

3.3 Joining Mechanism (JoinMec)

Every processor that wants to become a participant, uses the snap-stabilizing
data-link protocol (cf. Sect. 2) so as to avoid introducing stale information before
establishing a connection with the system’s processors. Algorithm 1 enables a
joiner to obtain the agreed config when no reconfiguration is taking place. In
spite of eventually acquiring knowledge of this config via recSA, a processor
should only be able to participate in the computation if the application allows it.
In order to sustain the self-stabilization property, it is also important that a new
processor initializes its application-related local variables to either default values
or to the latest values that a majority of the configuration members suggest. The
joining protocol, Algorithm 3, illustrates the above and introduces joiners to the
system as participants and not as config members.

Algorithm Description. Both non-participants and participants execute the
algorithm.

Self-stabilizing Reconfiguration 65

Algorithm 3. Self-stabilizing Joining Mechanism (JoinMec); code for
Processor p;

1 Interfaces. The algorithm uses following interfaces from Algorithm 1. noReco() returns True
if a reconfiguration is not taking place. participate() makes p; a participant. getCon fig()
returns the agreed configuration from Algorithm 1 or L if reconfiguration is taking place.
The passQuery() interface to the application, returns a True/False in response to granting
a permission to a joining processor.

2 Variables. F'D]] as defined in Algorithm 1. state[] an array of application states, where
state[i] represents p;’s local variables and state[j] the state that p; most recently received
from p;. pass[] a boolean array of passes that p; receives from configuration members.

3 Functions. resetVars() initializes all variables related to the application based on default
values. initVars() initializes all variables related to the application based on states
exchanged with the configuration members.

4 procedure join() begin

5 foreach p; € F'D do pass[j] < False;

6 do forever begin

7 if p; € FD[i].part then

8 resetVars();

9 repeat

10 let conf = getConfig();

11 if noReco() A (|{p; : pj € conf N FDI[i] A pass[j] = True}| > LGﬂ) then
nitVars(); participate();

12 foreach p; € FD[i] do send(“Join”);

13 until p; € FD[i].part;

14 upon receive (“Join”) from p; € FD \ FDJi].part do begin
15 | if p; € config A noReco() = True then send((passQuery(), state;));

16 upon receive m = (pass, state) from p; € FD do if p; ¢ FDJ[i].part then
(passlj], statelj]) — m;

The joiner’s side. Upon a call to the join() procedure, a joiner sets all the
entries of its pass[] array to False (line 5) and resets application-related vari-
ables to default values, (lines 8). The processor then enters a do-forever loop,
the contents of which it executes only while it is not a participant (line 7).
Joiners enter an inner loop in which they try to gather enough support from
a majority of configuration members in order to become participants. In every
iteration, the joiner sends a “Join” request (line 12) and stores the responses by
any configuration member p; in pass[j], along with the latest application state
that p; had. If a majority of active members has granted a pass = True and
there is no reconfiguration taking place, then application-related variables are
initialized and participate() is called to allow the joining processor to become a
participant (line 11).

The participant’s side. A participant only executes the do—forever loop (line 6)
but none of its contents since it always fails the condition of line 7. Participants
however respond to join requests, by checking whether a joining processor has
the correct configuration, and whether a reconfiguration is not taking place, as
well as if the application can accept a new processor (line 15). If the above are
satisfied, then the participant sends a pass = True and its application state,
otherwise it responds with False.

Correctness. The proof first considers safety, by establishing that a proces-
sor becomes a participant through JoinMec only while a reconfiguration is not

66 S. Dolev et al.

taking place. In the case of a pending delicate reconfiguration, joining proces-
sors running Algorithm 3 can only wait. In case of brute force reconfiguration,
recSA was shown to bypass the JoinMec in order to introduce more processors
to the configuration. The proof proceeds to show that eventually a processor will
become a participant if the application permits it, unless it crashes. Theorem 10
summarizes the correctness.

Theorem 10. Given an execution R of Algorithm 8 with an arbitrary initial
state, R has a suffiz in which every joining processor p eventually becomes a
participant if the application grants permission. Moreover, p respects the installed
configuration and does not affect a LE as defined by Theorem 9.

4 Applications of the Reconfiguration Scheme

Our self-stabilizing reconfiguration scheme allows applications built for static
crash-prone systems to endure more adverse system dynamics. When a config-
uration exists and no reconfiguration is running, applications work in the same
way as in their static version, since they run their service on the configuration set
as in the original static setting. A main consideration, however, is functionality
during and after reconfiguration.

A general framework for adapting the static algorithm to form a reconfig-
urable one, involves developing an interface between the application and the
reconfiguration scheme to adapt the applications structures and data to the new
configuration set. We note that using this framework, the algorithms are sus-
pending, i.e., they do not provide service during reconfiguration, albeit we believe
that it is possible with more elaborate frameworks and under certain conditions
to sustain service even during reconfiguration. It is an interesting open question
whether this is achievable, but in the meanwhile we refer the reader to [4] for
tradeoffs between suspending and non-suspending services.

Due to space limitations (and to focus on presenting the reconfiguration
mechanism) we omit details of how this adaptation is performed and refer the
reader to [8]. There, we show how the self-stabilizing algorithms of [7] can be
adapted to be reconfigurable and prove that the algorithms remain correct and
extend their capabilities after this adaptation. Specifically, we present a self-
stabilizing counter algorithm that is multipurpose (e.g., for Paxos ballot num-
bers, or view identifiers in group communication services). This forms the basis
for virtually synchronous state machine replication (SMR).

5 Conclusion

We presented the first self-stabilizing reconfiguration scheme that recovers auto-
matically from transient faults, such as temporal violations of the predefined
churn rate or the unexpected activities of processors and communication chan-
nels, using a bounded amount of local storage and message size. We use a number

Self-stabilizing Reconfiguration 67

of bootstrapping techniques for allowing the system to always recover from arbi-
trary transient faults, even in cases where the current configuration includes no
active processors. We believe that the presented techniques provide a generic
blueprint for different solutions that are needed in the area of self-stabilizing
high-level communication and synchronization primitives, which need to deal
with processor joins and leaves as well as transient faults.

References

10.

11.

12.

13.

14.

15.

Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7 (2011)

Alon, N.; Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Prac-
tically stabilizing SWMR atomic memory in message-passing systems. J. Comp.
Syst. Sci. 81(4), 692-701 (2015)

Attiya, H., Chung, H.C., Ellen, F., Kumar, S., Welch, J.L.: Simulating a shared
register in an asynchronous system that never stops changing. In: Moses, Y. (ed.)
DISC 2015. LNCS, vol. 9363, pp. 75-91. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48653-5_6

Birman, K., Malkhi, D., van Renesse, R.: Virtually synchronous methodology
for dynamic service replication. Technical report MSR-TR-2010-151, Microsoft
Research (2010)

Blanchard, P., Dolev, S., Beauquier, J., Delaét, S.: Practically self-stabilizing paxos
replicated state-machine. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS,
vol. 8593, pp. 99-121. Springer, Cham (2014). doi:10.1007/978-3-319-09581-3_8
Dolev, S.: Self-Stabilization. The MIT press, Cambridge (2000)

Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing virtual syn-
chrony. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp.
248-264. Springer, Cham (2015). doi:10.1007/978-3-319-21741-3_17

Dolev, S., Georgiou, C., Marcoullis, I., Schiller, E.M.: Self-stabilizing reconfigura-
tion. CoRR, abs/1606.00195 (2016)

Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-
end communication in (bounded capacity, omitting, duplicating and non-FIFO)
dynamic networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol.
7596, pp. 133-147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33536-5_14
Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. (1997)

Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group commu-
nication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893-905 (2006)
Dolev, S., Tzachar, N.: Empire of colonies: self-stabilizing and self-organizing dis-
tributed algorithm. Theor. Comput. Sci. 410(6-7), 514-532 (2009)

Gafni, E., Malkhi, D.: Elastic configuration maintenance via a parsimonious spec-
ulating snapshot solution. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp.
140-153. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5-10

Gilbert, S., Lynch, N.A., Shvartsman, A.A.: Rambo: a robust, reconfigurable
atomic memory service for dynamic networks. Distrib. Comput. 23(4), 225-272
(2010)

Jehl, L., Vitenberg, R., Meling, H.: SmartMerge: a new approach to reconfiguration
for atomic storage. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 154-169.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5_11

http://dx.doi.org/10.1007/978-3-662-48653-5_6
http://dx.doi.org/10.1007/978-3-662-48653-5_6
http://dx.doi.org/10.1007/978-3-319-09581-3_8
http://dx.doi.org/10.1007/978-3-319-21741-3_17
http://dx.doi.org/10.1007/978-3-642-33536-5_14
http://dx.doi.org/10.1007/978-3-662-48653-5_10
http://dx.doi.org/10.1007/978-3-662-48653-5_11

68

16.

17.

18.

19.

S. Dolev et al.

Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News
41(1), 63-73 (2010)

Musial, P.M., Nicolaou, N.C., Shvartsman, A.A.: Implementing distributed shared
memory for dynamic networks. Commun. ACM 57(6), 88-98 (2014)

Spiegelman, A., Keidar, I., Malkhi, D.: Dynamic reconfiguration: a tutorial. In:
OPODIS (2015)

Vukolic, M.: Quorum Systems: With Applications to Storage and Consensus. Syn-
thesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
San Rafael (2012)

	Self-stabilizing Reconfiguration
	1 Introduction
	2 System Settings
	3 Self-stabilizing Reconfiguration Scheme
	3.1 The Reconfiguration Stability Assurance Layer
	3.2 Reconfiguration Management
	3.3 Joining Mechanism (JoinMec)

	4 Applications of the Reconfiguration Scheme
	5 Conclusion
	References

