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Abstract. The predominant notion for specifying problems to study
distributed computability are tasks. Notable examples of tasks are con-
sensus, set agreement, renaming and commit-adopt. The theory of task
solvability is well-developed using topology techniques and distributed
simulations. However, concurrent computing problems are usually speci-
fied by objects. Tasks and objects differ in at least two ways. While a task
is a one-shot problem, an object, such as a queue or a stack, typically
can be invoked multiple times by each process. Also, a task, defined in
terms of sets, specifies its responses when invoked by each set of processes
concurrently, while an object, defined in terms of sequences, specifies the
outputs the object may produce when it is accessed sequentially.

In a previous paper we showed how tasks can be used to specify one-
shot objects (where each process can invoke only one operation, only
once). In this paper we show how the notion of tasks can be extended to
model any object. A potential benefit of this result is the use of topol-
ogy, and other distributed computability techniques to study long-lived
objects.
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1 Introduction

A predominant formalism for specifying one-shot distributed problems, espe-
cially in distributed computability, is through the notion of a task [12]. Tasks
are one-shot because each process invokes exactly one operation, and receives
exactly one response. We think of the operation invoked by the process as its pro-
posal, or its input value, and of the response, as its output value. Informally, a task
is specified by an input/output relation, defining for each set of processes that
may run concurrently, and each assignment of inputs to the processes in the set,
the valid outputs of the processes. A central task is consensus, where processes
agree on one of the proposed input values. In k-set agreement, processes agree on
at most k different input values. Thus, 1-set agreement is the same as consensus.
Tasks have been intensively studied in distributed computability, leading to an
understanding of their relative power [8], to the design of simulations between
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models [2], and to the development of a deep connection between distributed
computing and topology [7].

In concurrent computing, problems are typically specified sequentially,
instead of as tasks, because it is harder to reason about concurrent specifica-
tions. Tasks and objects model in a different way the concurrency that naturally
arises in distributed systems: while tasks explicitly state what might happen
when a set of processes run concurrently, objects only specify what happens
when processes access the object sequentially.

An object is specified in terms of a sequential specification, i.e., an automa-
ton describing the outputs the object produces when it is accessed sequentially.
There are various ways of defining how the object behaves when it is accessed
concurrently by several processes. The linearizability [11] consistency condition
is a way of producing a sequential execution out of a concurrent execution, which
then can be used against the object specification. Linearizability is very popular
because it is local, namely, one can consider linearizable object implementations
in isolation, and their composition is guaranteed to be linearizable. Also, lin-
earizability is a non-blocking property, which means that a pending invocation
(of a total operation) is never required to wait for another pending invocation
to complete.

Contributions. In a previous paper [4] we showed how tasks can be used to
specify one-shot objects (where each process can invoke only one operation,
only once). In this paper we show how the notion of tasks can be extended
to model any object. More precisely, for any object X, we describe how to
construct a task TX , the long-lived task derived from X, with the property that
an execution E is linearizable with respect to X if and only if E satisfies TX .
Then we explore the opposite direction, namely, transforming long-lived tasks
to sequential objects. As shown in [4,13], there are tasks (in the usual sense)
that cannot be expressed as objects. Notable examples are the set agreement
and immediate snapshot tasks. Interval-sequential objects, introduced in [4],
are a generalization of sequential objects, which can describe any pattern of
concurrent invocations. We show that from any long-lived task T can be obtained
an interval-sequential object XT such that an execution E satisfies T if and only
if E is interval-linearizable with respect to XT . Thus, interval-sequential objects
and long-lived tasks have the same expressive power.

Related work. Tasks and objects have largely been independently studied. The
first to study the relation between tasks and objects was Neiger [13] in a brief
announcement in 1994, where he noticed that there are tasks, like immedi-
ate snapshot [1], with no specification as sequential objects. An object mod-
eling the immediate snapshot task is necessarily stronger than the immedi-
ate snapshot task, because such an object implements test-and-set. In contrast
there are read/write algorithms solving the immediate snapshot task and it is
well-known that there are no read/write linearizable implementations of test-
and-set. Therefore, Neiger proposed the notion of a set-sequential object, that
specifies the values returned when sets of processes access it simultaneously.



Long-Lived Tasks 441

Then, one can define an immediate snapshot set-sequential object, and there are
set-linearizable implementations. Much more recently, it was again observed that
for some concurrent objects it is impossible to provide a sequential specification,
and concurrency-aware linearizability was defined [9], and studied further in [10].
In [4] we initiated an in-depth study of the relation between tasks and objects.
We introduced the notion of interval-sequential object, and showed that it can
model any task. Also, we showed that a natural extension of the notion of a task
is expressive enough to specify any one-shot object.

Set linearizability and concurrency-aware linearizability are closely related
and both are strictly less powerful than interval-linearizability to model tasks.

Transforming the question of wait-free read/write solvability of a one-shot
sequential object, into the question of solvability of a task was suggested in [6].
That transformation takes a sequential object X and produces a task TX such
that X is solvable in the read/write wait-free crash-failure model of computation
if and only if TX is solvable in that model. In TX , processes produce outputs for
X and an additional snapshot. Our construction here and in [4] is reminiscent
to the construction in [6].

2 Tasks and Objects

2.1 Tasks

A simplicial complex, or complex for short, is a generalization of a graph. A com-
plex is a collection of sets closed under containment. The sets of a complex are
called simplices. A graph consists of two types of simplices: sets of dimension
1, namely edges (which are sets of vertices), and sets of dimension 0, namely
vertices. A 2-dimensional complex consists of simplices of 3 vertices, simplices of
2 vertices, and simplices of 1 vertex. It is always required that if a simplex is in
the complex, all its subsets also belong to the complex.

Formally, a task is a triple 〈I,O,Δ〉, where I and O are complexes, with
I containing valid input configuration to the processes and O containing valid
output configurations. Each simplex of I has the form {(id1, x1), . . . , (idk, xk)},
where the id′

is are distinct ID’s of processes and the x′
is are inputs. The vertices of

I are its singleton sets. The meaning of an input simplex σ is that the processes
in σ might start with those inputs in the simplex. The output complex O is
defined similar.

In Fig. 1 part of the input complex I for 2-set agreement, for 3 processes,
is illustrated. It is the part where each process proposes as input its own id.
The simplex σ represents the initial configuration where each processes proposes
as input its own id. Inside a vertex is the id of the process, and outside is
its input value. The edges of σ are input simplexes, where only two processes
participate, and the third process never wakes up. The vertices of σ represent
initial configurations where only one process participate.

Each simplex of the output complex represents the decisions of the processes
in some execution solving the task. Vertices are labeled, on the inside with ids,
and on the outside with decision values. For instance, in σ1 the decisions are p, r
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Fig. 1. An input simplex σ and the corresponding output complex Δ(σ), for 2-set
agreement task.

and p, respectively for p, q, r. Notice that there is no simplex in the center, there
is a hole, because the processes are not allowed to decide 3 different values in
2-set agreement. An example of a 1-dimensional simplex is σ3, where p decides
p and q decides q.

The relation Δ states that if a process sees only itself in an execution, it
should decide its own input value. For instance, Δ of input vertex for p contains
only the output vertex of p labeled p at the top corner of O. Similarly, if p and q
see each other in an execution, where r does not participate, Δ of the input edge
for p and q contains only σ3. Finally, Δ(σ) contains all triangles of O, because
it specifies output values when all three processes see all input values.

The function Δ is the artefact that relates valid inputs and outputs. Formally,
Δ is a function mapping each input simplex σ ∈ I to a subcomplex Δ(σ) ⊆ O
such that each output simplex τ ∈ Δ(σ) has the same cardinality as σ and both
simplexes, σ and τ , contain the same ID’s of processes. In words, Δ(σ) describes
all possible output configurations in executions in which only the processes in σ
participate in the computation and all of them run to completion.

Tasks have their own notion of solvability, that is, a mechanism to distinguish
between valid from invalid executions, with respect to a given task. Let E be an
execution in which every participating process decides an output value (to its
unique invocation). Namely, there are no pending invocations in E. Let σE be
the set with all pairs (idi, xi), where xi is the input of process idi, and, similarly,
let τE be the set with all pairs (idi, yi), where yi is the output of process idi.
Then, we say that E satisfies a task T if τE ∈ Δ(σE), i.e., the processes decide
an output assignment that agrees with the specification of the task.

2.2 Objects

A long-lived sequential object, or object for short, allows each process to invoke
any number of times any of the operations provided by the object. For example,
in a stack, each process can invoke push and pop operation as many times as
it wants, in any order. Typically, a long-lived object is formally specified in
terms of a sequential specification, i.e., an automaton describing the outputs
the object produces when it is accessed sequentially. Thus, an execution with
concurrent operations needs to emulate somehow an allowed sequential behavior
of the automaton.
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There are various ways of defining what it means for an execution to be valid
with respecto a sequential specification (or the meaning of emulating a sequential
behavior of the automaton). One of the most popular consistency conditions is
linearizability [11].

Given a sequential specification of an object, an execution is linearizable if it
can be transformed into a sequential one such that (1) it respects the real-time
order of invocation and responses and (2) the sequential execution is recognized
by the automaton specifying the object. Thus, an execution is linearizable if,
for each operation call, it is possible to find a unique point in the interval of
real-time defined by the invocation and response of the operation, and these
linearization points induce a valid sequential execution.

Linearizability is very popular to design components of large systems because
it is local, namely, one can consider linearizable object implementations in isola-
tion and compose them without sacrificing linearizability of the whole system [5].
Also, linearizability is a non-blocking property, which means that a pending
invocation (of a total operation, i.e., an operation that always can be invoked
regardless of the state of the automaton) is never required to wait for another
pending invocation to complete.

2.3 Limitations of the Standard Semantics of Task

It has been observed [4] that tasks are too weak to represent some objects, under
the usual semantics of a task described above. We briefly recall the following
example from [4].

Consider a restricted queue O for three processes, p, q and r, in which, in
every execution, p and q invoke enq(1) and enq(2), respectively, and r invokes
deq(). If the queue is empty, r’s dequeue operation gets ⊥.

Suppose, for contradiction, that there is a corresponding task TO =
(I,O,Δ), that corresponds to O. The input complex I consists of one
vertex for each possible operation by a process, namely, the set of ver-
tices is {(p, enq(1)), (q, enq(2)), (r, deq())}, and I consists of all subsets of
this set. Similarly, the output complex O contains one vertex for every
possible response to a process, therefore it consists of the set of ver-
tices {(p, ok), (q, ok), (r, 1), (r, 2), (r,⊥)}. It should contain a simplex σx =
{(p, ok), (q, ok), (r, x)} for each value of x ∈ {1, 2,⊥}, because there are exe-
cutions where p, q, r get such values, respectively. See Fig. 2.

Now, consider the three sequential executions of the figure, α1, α2 and α⊥.
In α1 the process execute their operations in the order p, q, r, while in α2 the
order is q, p, r. In α1 the response to r is 1, and if α2 it is 2. Given that these
executions are linearizable for O, they should be valid for TO. This means that
every prefix of α1 should be valid:

{(p, ok)} = Δ((p, enq(1))
{(p, ok), (q, ok)} ∈ Δ({(p, enq(1), (q, enq(2)})

σ1 = {(p, ok), (q, ok), (r, 1)} ∈ Δ({(p, enq(1), (q, enq(2), (r, deq())}) = Δ(σ)
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Fig. 2. Counterexample for a simple queue object

Similarly from α2 we get that

σ2 = {(p, ok), (q, ok), (r, 2)} ∈ Δ(σ)

But now consider α3, with the same sequential order p, q, r of operations, but
now r gets back value 2. This execution is not linearizable for O, but is accepted
by TO because each of the prefixes of α3 is valid. More precisely, the set of inputs
and the set of outputs of α2 are identical to the sets of inputs and set of outputs
of α3.

3 Long-Lived Tasks

Tasks provide a compact and static formalism for specifying one-shot distrib-
uted problems. Could it be that long-lived objects can be specified as a task?
Is it possible to have a static representation of a queue or list? As explained
above, tasks are not expressive enough to model even restricted queues or stacks
in which each process can execute at most one operation. However, the task
formalism can be extended to handle long-lived objects.

In order to model long-lived objects, the task formalism has to be extended
to deal with two issues: (1) each process might invoke several operations (in
any order) and (2) model valid executions, i.e., executions that are linearizable
with respect to the object (which in the end involves modeling the interleaving
pattern in a given execution).

A long-lived task is a triple 〈I,O,Δ〉, where I and O are input and output
complexes and Δ is a function from simplexes of I to subcomplexes of O. A
main difference with regular tasks is the meaning of input and output vertices
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and the solvability condition, which will be slightly modified. Roughly speaking,
for a long-lived task, a vertex of I represents the invocation of an operation by
a particular process. Then, an input simplex σ ∈ I represents a collection of
invocations (maybe all of them by the same process) that are to be performed
on the object, and Δ(σ) is the subcomplex containing all allowed responses the
invocations in σ might obtain, in all sequential interleavings. We will use Fig. 3
as a running example.

3.1 Modeling Multiple Invocations

Let X be any sequential object. To make things simple, we will treat each invo-
cation as unique by tagging each of them with an invocation ID made of a pair
composed of the ID of the invoking process and an additional integer which
makes invocations of the same process to the same operation type unique.

Let Inv be the infinite set with all invocations to X. Each element in Inv
has the form Inv(idi, op type, inputi). Then, I is the complex containing every
finite subset of Inv as simplex. Thus, I is a simplex of infinite dimension whose
faces are of finite dimension. Note that simplices in I might contain invocations
by the same process.

The output complex O has the responses to the invocations in I. Let Res be
the infinite set with all response values X might produce to the invocation in Inv.

Fig. 3. An input simplex of the long-lived task modeling the stack in which p executes
a push and a pop and q a push. Two ways of drawing the output complex are shown.
The one on the bottom emphasizes the role of the map Δ: input vertices are sent to
corner output vertices, edges are sent to edges on the boundary of O, and σ is sent to
all of O.
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The output complex O is the complex containing every finite set in Inv ×Res×
2Inv, where 2Inv is the power set of Inv. Thus, each vertex in O is a triple with
an invocation, a response to the invocation and set of invocations. This set is
called set-view and is the mechanism to model valid sequential executions, as
explained below.

3.2 Modeling Valid Executions

Let E be sequential execution accepted by X in which every invocation has a
matching response. We would like to represent that execution and its interleaving
pattern as an output simplex in O, that is, we identify that sequential interleav-
ing and the output values as correct and encode it somehow in O. It turns out
that this can be easily done by adding to each response in E, the set of invo-
cations preceding the response in E. These are the set-views mentioned before.
Intuitively, the set-view of a response is the set of all invocation a process sees
when computing the output for its invocation. Thus, the set-view of a response
is a subset of the set of all invocations in E.

Let σE be the set with all invocation in E and τE be set of all pairs invocation,
response in E, each of them with its corresponding set-view. The importance of
the set-views is that they together fully capture the interleaving pattern in E.
More precisely, two executions E and E′ (not necessarily sequential) induce
the same set of set-views (namely, τE = τE′) if and only if they have the same
interleaving pattern, i.e., they are the same execution. Therefore, using set-views,
we can model valid executions.

We can now define the mapping Δ: for every input simplex σ ∈ I, Δ(σ)
is the subcomplex of O containing τE , as defined above, for every sequential
execution E accepted by X with only invocations in σ and every invocation has
a matching response.

3.3 Solvability Condition

Se far we have encoded all valid sequential executions with the help of the set-
views. Now we need a way to identify any execution as valid, namely, as one
which is linearizable with respect to X.

For a given sequential object X, let TX = 〈I,O,Δ〉 be the long-lived task
constructed from X as described above. Consider any execution E without pend-
ing operations let σE and τE be the simplexes defined above from E. Then, we
say that E satisfies TX if there is a simplex λ ∈ Δ(σE) such that for every
(inv, resp, view) ∈ τE there is a (inv′, resp′, view′) ∈ λ such that inv′ = inv,
resp′ = resp and view′ ⊆ view. Intuitively, E satisfies the task if its set-views
can be sequentially arranged so that the sequence induce an execution in Δ(σE),
hence, by construction, accepted by X.

Theorem 1. Let X be any sequential object and let TX be the long-lived task
derived from X. Consider any execution E without pending operations. Then, E
is linearizable with respect to X if and only if E satisfies TX .
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Proof. We first show that if E is linearizable then E satisfies TX . By lineariz-
ability, E can be transformed into a sequential execution S accepted by X such
that S respects the real-time order of E. Consider the simplexes σE , σS , τE and
τS obtained from E and S. We have that σE = σS because E and S have the
same invocations. Also, τS ∈ Δ(σE), by the definition of TX and because S is
accepted by X. Pick any (inv, resp, view) ∈ τE and let (inv′, resp′, view′) ∈ τS
with inv′ = inv. Since S is a linearization of E, it must be that resp′ = resp.
Observe that if we prove that view′ ⊆ view, then it follows that E satisfies TX .
For the sake of contradiction, assume that view′ ⊃ view. Then, in the sequential
execution S, the invocation inv appears after the response of an invocation inv∗

in view′ \ view. However, since inv∗ /∈ view, hence, the response of inv occurs
before inv∗ in E, from which follows that S does not respect the real-time order
in E. A contradiction.

We now show that if E satisfies TX then E is linearizable. Let σE and τE
be the simplexes induced by E. Since E satisfies TX , there is a λ ∈ Δ(σE) such
that for every (inv, resp, view) ∈ τE there is a (inv′, resp′, view′) ∈ λ such that
inv′ = inv, resp′ = resp and view′ ⊆ view. By definition, λ is induced by a
sequential execution S accepted by X. Let σS and τS be the simplexes induced
by S. Note that E and S contain the same invocations and responses. If we
prove that S respects the real-time order in E, then S is a linearization of E. By
contradiction, suppose the opposite. Then, there are invocations inv and inv′

such that the response of inv appears before inv′ in E but the response of inv′

appears before inv in S. Let viewE and viewS be the set-views of inv in E
and S. Thus, inv′ /∈ viewE and inv′ ∈ viewS , and hence viewS � viewE . A
contradiction. Then, S is a linearization of E. �	

We stress that set-views are not output values produced by processes, they
are a mechanism to identify executions as correct. An alternative way to think of
set-views is that they model the memory of a long-lived object in a static man-
ner. It is also worth to stress that the set-views of any execution (possibly non
sequential) are essentially snapshots: each set-view contains its corresponding
invocation and every pair of set-views are comparable under containment.

Remark 1. If a long-lived task is restricted so that each process executes at most
one operation and every set-view is the empty set, then we obtain a regular task
and the solvability condition is equivalent to the usual solvability condition for
tasks.

4 Interval-Sequential Objects

A natural question is if we can do the opposite direction of the construction
described in the previous section. Namely, if for every long-lived task there is an
object such that any execution satisfies the task if and only if it is linearizable
with respect to the object. As shown in [4,13], there are tasks (in the usual
sense) that cannot be expressed as objects, e.g., the set agreement and immediate
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snapshot tasks. Generally speaking, the reason is that tasks (and hence also long-
lived tasks) have the ability to describe executions in which there are concurrent
invocations, which cannot be naturally described with sequential objects (this
can be done at the cost of getting counterintuitive objects, like objects that can
predict future invocations).

Interval-sequential objects, introduced in [4], are a generalization of sequen-
tial objects. Intuitively, they allow concurrent invocations by more than a single
process in some states. As we shall see later, these objects can model long-lived
tasks.

4.1 The Notion of an Interval-Sequential Object

To generalize the usual notion of a sequential object e.g. [3,11], instead of con-
sidering sequences of invocations and responses, we consider sequences of sets of
invocations and responses. An invoking concurrency class C ⊆ 2Inv, is a non-
empty subset of the set of invocations Inv such that C contains at most one
invocation by the same process. A responding concurrency class C, C ⊆ 2Res, is
defined similarly, where Rev is the set of possible responses.

Interval-sequential execution. An interval-sequential execution h is an alternat-
ing sequence of invoking and responding concurrency classes, starting in an
invoking class, h = I0, R0, I1, R1, . . . , Im, Rm, where the following conditions
are satisfied.

1. For each Ii ∈ h, any two invocations in1, in2 ∈ Ii are by different processes.
Similarly, for Ri ∈ h if r1, r2 ∈ Ri then both responses are from distinct
processes.

2. Let r ∈ Ri for some Ri ∈ h. Then there is in ∈ Ij for some j ≤ i, such that
res is matching response for in and furthermore, there is no other in′ such
that in and in′ are from the same processes and in′ ∈ Ij′ , j < j′ ≤ i.

In words, an interval-sequential execution h consists of matching invocations
and responses, perhaps with some pending invocations with no response.

Interval-sequential object. An interval-sequential object X is a (not necessarily
finite) Mealy state machine (Q, 2Inv, 2Res, δ) whose output values R are respond-
ing concurrency classes R of X, R ⊆ 2Res, are determined both by its current
state s ∈ Q and the current input I ∈ 2Inv, where I is an invoking concurrency
class of X. There is a set of initial states Q0 of X, Q0 ⊆ Q. The transition
relation δ ⊆ Q × 2inv × 2Res × Q specifies both, the output of the automaton
and its next state. If X is in state q and it receives as input a set of invocations
I, then, if (R, q′) ∈ δ(q, I), the meaning is that X may return the non-empty
set of responses R and move to state q′. We stress that always both I and R are
non-empty sets.
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Interval-sequential execution of an object. Consider an initial state q0 ∈ Q0 of
X and a sequence of inputs I0, I1, . . . Im. Then a sequence of outputs that X
may produce is R0, R1, . . . Rm, where (Ri, qi+1) ∈ δ(qi, Ii). Then the interval-
sequential execution of X starting in q0 is q0, I0, R0, q1, I1, R1, . . . , qm, Im, Rm.
However, we require that the object’s response at a state uniquely determines the
new state, i.e. we assume if δ(q, Ii) contains (Ri, qi+1) and (Ri, q

′
i+1) then qi+1 =

q′
i+1. Then we may denote the interval-sequential execution of X, starting in q0

by h = I0, R0, I1, R1, . . . , Im, Rm, because the sequence of states q0, q1, . . . , qm is
uniquely determined by q0, and by the sequences of inputs and responses.

Notice that X may be non-deterministic, in a given state qi with input Ii
it may move to more than one state and return more than one response. Also,
sometimes it is convenient to require that the object is total, meaning that, for
every singleton set I ∈ 2Inv and every state q in which the invocation inv in I
is not pending, there is an (R, q′) ∈ δ(q, I) in which there is a response to inv in
R. In what follows we consider only objects whose operations are total.

Our definition of interval-sequential execution is motivated by the fact that
we are interested in well-formed executions h = I0, R0, I1, R1, . . . , Im, Rm. Infor-
mally, the processes should behave well, in the sense that a process does not
invoke a new operation before its last invocation received a response. Also, the
object should behave well, in the sense that it should not return a response to
an operation that is not pending.

Representation of interval-sequential executions. An interval sequential execu-
tion h = I0, R0, I1, R1, . . . , Im, Rm can be represented by a table, with a column
for each element in the sequence h, and a row for each process. A member in ∈ Ij
invoked by pk (resp. a response r ∈ Rj to pk) is placed in the kth row, at the
2jth column (resp. (2j + 1)th column). Thus, a transition of the automaton will
correspond to two consecutive columns, Ij , Rj . See Fig. 4.

Interval-sequential objects include as particular cases sequential objects and
the set-sequential objects and its corresponding set linearizability consistency
condition suggested in [13].

Remark 2 (Sequential and Set-sequential objects). Let X be an interval-
sequential object, (Q, 2Inv, 2Res, δ). Suppose for all states q and all I, if δ(q, I) =
(R, q′), then |R| = |I|, and additionally each r ∈ R is a response to one in ∈ I.
Then X is a set-sequential object. If in addition, |I| = |R| = 1, then X is a
sequential object in the usual sense.

4.2 An Example: The Validity Problem

Consider an object X with a single operation validity(x), that can be invoked by
each process, with a proposed input parameter x, and a very simple specification:
an operation returns a value that has been proposed. This problem is easily
specified as a task. Indeed, many tasks include this apparently simple property,
such as consensus, set-agreement, etc. It turns out that the validity task cannot
be expressed as a sequential object. As an interval-sequential object, it is formally
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specified by an automaton, where each state q is labeled with two values, q.vals is
the set of values that have been proposed so far, and q.pend is the set of processes
with pending invocations. The initial state q0 has q0.vals = ∅ and q0.pend = ∅.
If in is an invocation to the object, let val(in) be the proposed value, and if r
is a response from the object, let val(r) be the responded value. For a set of
invocations I (resp. responses R) vals(I) denotes the proposed values in I (resp.
vals(R)). The transition relation δ(q, I) contains all pairs (R, q′) such that:

– If r ∈ R then id(r) ∈ q.pend or there is an in ∈ I with id(in) = id(r),
– If r ∈ R then val(r) ∈ q.vals or there is an in ∈ I with val(in) = val(r), and
– q′.vals = q.val ∪ vals(I) and q′.pend = (q.pend ∪ ids(I)) \ ids(R).

Fig. 4. An execution of a validity object, and the corresponding part of an interval-
sequential automata

On the right of Fig. 4 there is part of a validity object automaton. On the
left of Fig. 4 is illustrated an interval-sequential execution with the vertical red
double-dot lines: I0, R0, I1, R1, where I0 = {p.validity(1), q.validity(2)}, R0 =
{p.resp(2)}, I1 = {r.validity(3)}, R1 = {q.sfresp(3), r.resp(1)}.

The interval-linearizability consistency notion described in subsection 4.3 will
formally define how a general execution (blue double-arrows in the figure) can be
represented by an interval-sequential execution (red double-dot lines), and hence
tell if it satisfies the validity object specification. The execution in Fig. 4 roughly
shows that the validity object has no specification as a natural sequential object:
if one tries to transform the execution into a sequential one respecting real-time
order, then always an invocation outputs a value that has not been proposed,
namely, the invocation “predicts” the future.

4.3 Interval Linearizability

Interval-sequential come with its own consistency condition, called interval lin-
earizability, that generalizes the linearizability condition of sequential objects.
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Given an interval-sequential specification of an object, an execution is interval
linearizable if it can be transformed into an interval-sequential execution such
that (1) it respects the real-time order of invocation and responses and (2)
the interval-sequential execution is recognized by the automaton specifying the
object.

In other words, an execution is interval-linearizable if, for each operation call,
it is possible to find two points, defining an interval, in the interval of real-time
defined by the invocation and response of the operation, and these linearization
intervals induce a valid interval-sequential execution. Although being more gen-
eral, and hence expressive, interval linearizability retains the good properties of
linearizability of being local and non-blocking.

We can now complete the example of the validity object. In Fig. 5 there is
an interval linearization of the execution in Fig. 4.

Fig. 5. An execution of a validity object

Remark 3 (Linearizability and set-linearizability). When restricted to interval-
sequential executions in which for every invocation there is a response to it in
the very next concurrency class, then interval-linearizability boils down to set-
linearizability. If in addition we demand that every concurrency class contains
only one element, then we have linearizability.

5 Interval-Sequential Objects = Long-Lived Tasks

In this section, we finally show that long-lived tasks and interval-sequential
objects have the same expressiveness power, i.e., they are able to describe the
same set of distributed problems.

5.1 From Interval-Sequential Objects to Long-Lived Tasks

Let X be an interval-sequential object. Using the construction in Sect. 3, one
can obtain a long-lived task TX modeling X. The only difference is that, when
defining Δ(σ), we consider all valid executions of X in which only the invocations
in σ appear. Some of these executions might be non-sequential, i.e., they might be
strictly interval-sequential executions but that is not a problem, the interleaving
pattern in those executions can be succinctly modeled by the set-views. The
solvability conditions remains the same.

The proof of the following theorem is almost the same as the proof of Theo-
rem 1, we just need to replace the word linearizability by interval linearizability.
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Theorem 2. Let X be any interval sequential object and let TX be the long-
lived task derived from X. Consider any execution E without pending operations.
Then, E is interval-linearizable with respect to X if and only if E satisfies TX .

5.2 From Long-Lived Tasks to Interval-Sequential Objects

Let T = 〈I,O,Δ〉 be a long-lived task. We require the task is well-defined in the
following sense. We say that T is well-defined if its set-views have the snapshot
property: for every σ ∈ I, for every τ ∈ Δ(σ), the set-views in τ satisfy the
following: (1) for every v ∈ τ , its set-view contains the invocation in v and (2)
for every u, v ∈ τ , the set-views of u and v are comparable under containment.

In what follows we consider only well-formed long-lived tasks. It can be
checked that the tasks constructed from interval-sequential objects above are
well-formed.

We define an interval-sequential object XT from T as follows. The set of
invocations, Inv, is the infinite set with all invocations in I and the set of
responses, rev, is the infinite set with all responses in O. The set of states
Q contains every pair (I,R) where I and R are finite sets of Inv and Res,
respectively. The interval-sequential object XT has one initial state: (∅, ∅).

The transition function δ is defined as follows. Let E be an execution without
pending operations that satisfies T . Let σE and τE be the simplexes induced
by E. Since E satisfy T , there is a simplex λ ∈ Δ(σE) such that for every
(inv, resp, view) ∈ τE there is a (inv′, resp′, view′) ∈ λ such that inv′ = inv,
resp′ = resp and view′ ⊆ view. Since T is well-defined, the set-views in λ
can be ordered V1 ⊂ V2 ⊂ . . . ⊂ Vm (with Vm = σE). Set W0, V0 = ∅. For
i = 1, . . . ,m, let Ii = Vi \ Vi−1, Ri = {resp : ∃inv ∈ Vi, (inv, resp, Vi) ∈ λ} and
Wi = ∪j=1,...,iRi. One can check that the sequence S = I1, R1, I2, R2, . . . , Im, Rm

has the form a interval sequential execution. The reason is that Ri contains
every matching response, resp, to an invocation, inv ∈ Vi, whose set-view is
precisely Vi. Then, inv can be completed with resp right after Ii because, at
that point, the set-view of inv is the needed one, i.e., Vi (see Fig. 6). Then, for
every i = 1, . . . , m, δ((Vi−1,Wi−1), Ii) contains ((Vi,Wi), Ri). In other words,
XT accepts the interval-sequential execution S obtained from λ. We repeat the
previous construction for every such execution E.

Theorem 3. Let T be any long-lived task and let XT be the interval-sequential
object derived from T . Consider any execution E without pending operations.
Then, E satisfies T if and only if E is interval-linearizable with respect to XT .

Proof. We first show that if E satisfies T then E is interval linearizable with
respect to XT . Let σE and τE be the simplexes induced by E. Since E satisfies
T , there is a λ ∈ Δ(σE) such that for every (inv, resp, view) ∈ τE there is a
(inv′, resp′, view′) ∈ λ such that inv′ = inv, resp′ = resp and view′ ⊆ view.
By construction, λ induces an interval sequential execution S accepted by XT .
Note that E and S contain the same invocations and responses. If we prove
that S respects the real-time order in E, then S is an interval linearization of
E. By contradiction, suppose the opposite. Then, there are invocations inv and
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Fig. 6. From output simplexes to interval-sequential. The two simplexes have set-views
with the snapshot property. Each invocation in a set-view is represented by its subindex.
The corresponding interval-sequential executions are shown at the right.

inv′ such that the response of inv appears before inv′ in E but the response of
inv′ appears before inv in S. Let viewE and viewS be the set-views of inv in
E and S. Thus, inv′ /∈ viewE and inv′ ∈ viewS , and hence viewS � viewE . A
contradiction. Then, S is an interval linearization of E.

We now show that if E is interval linearizable with respect to OT then E
satisfies T . By interval linearizability, E can be transformed into an interval
sequential execution S accepted by XT such that S respects the real-time order
of E. Consider the simplexes σE , τE obtained from E. We have that E and S have
the same invocations. By construction, there is a λ ∈ Δ(σE) that induces S in
XT . Since S is an interval linearization of E and the execution S is induced by λ,
for any (inv, resp, view) ∈ τE , there is a (inv′, resp′, view′) ∈ λ with inv′ = inv
and resp′ = resp. Observe that if we prove that view′ ⊆ view, then it follows
that E satisfies TO. For the sake of contradiction, assume that view′ ⊃ view.
Then, in the interval sequential execution S, the invocation inv appears after
the response of an invocation inv∗ ∈ view′ \ view. However, since inv∗ /∈ view,
the response of inv occurs before inv∗ in E, from which follows that S does not
respect the real-time order in E. A contradiction. �	
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