
Sequential Proximity

Towards Provably Scalable Concurrent Search Algorithms

Karolos Antoniadis(B), Rachid Guerraoui, Julien Stainer,
and Vasileios Trigonakis

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{karolos.antoniadis,rachid.guerraoui,julien.stainer,

vasileios.trigonakis}@epfl.ch

Abstract. Establishing the scalability of a concurrent algorithm a pri-
ori, before implementing and evaluating it on a concrete multi-core plat-
form, seems difficult, if not impossible. In the context of search data
structures however, according to all practical work of the past decade,
algorithms that scale share a common characteristic: They all resemble
standard sequential implementations for their respective data structure
type and strive to minimize the number of synchronization operations.

In this paper, we present sequential proximity, a theoretical frame-
work to determine whether a concurrent search algorithm is close to its
sequential counterpart. With sequential proximity we take the first step
towards a theory of scalability for concurrent search algorithms.

1 Introduction

Concurrent search data structures (CSDSs), such as linked lists and skip lists,
are fundamental building blocks of modern software, ranging from operating
systems, such as the Linux kernel [15], to key-value stores, such as RocksDB [6].
A vast amount of work has been dedicated to the development of correct and
scalable CSDS algorithms [3–5,7–10,14,17].

To establish the correctness of such algorithms, several formal tools are avail-
able. For instance, linearizability [12] helps determine the safety of CSDS algo-
rithms. Similarly, in terms of liveness, we can prove whether a CSDS algorithm
is lock-free or wait-free [11].

In contrast, no formal tool is available for establishing the scalability of a
CSDS algorithm, namely that the algorithm delivers better performance when
the number of threads accessing the data structure increases. A non-scalable
CSDS that resides in an application’s critical path eventually becomes a perfor-
mance bottleneck that needs to be replaced by an alternative design. Ideally, we
would like to be able to prove that an algorithm is scalable without the need to
evaluate the algorithm on every single workload and multi-core platform.

Defining a formal theory of scalability is an onerous task, since such a theory
would need to take into account a multitude of different architectures, diverse set

This work has been supported in part by the European ERC Grant 339539 - AOC.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 405–420, 2017.
DOI: 10.1007/978-3-319-59647-1 30



406 K. Antoniadis et al.

of workloads, etc. In this work, we follow an indirect approach: Instead of formal-
izing scalability, we create a formal framework that captures when a CSDS is sim-
ilar to its respective sequential search data structure. Our work is based on the
vast amount of prior practical work that points to a single direction for achiev-
ing scalability: Strip down synchronization (i.e., every construct that induces
coordination of concurrent threads), which is a major impediment to scalability.
To achieve minimal synchronization, all existing patterns for designing concur-
rent data structures do, directly or indirectly, promote concurrent designs that
are close to their sequential counterparts: concrete CSDS algorithms [10,13],
RCU [17], RLU [16], OPTIK [8], ASCY [4], etc.

Comparing a CSDS and a sequential search data structure in a formal way is
challenging (e.g., how to compare the number of stores or where stores are issued
between a CSDS and its respective sequential counterpart, etc.) In this paper,
we tackle this challenge by introducing sequential proximity (SP), a theoretical
framework composed of ten formal properties that can be used to establish
whether a CSDS algorithm is close to a reference sequential counterpart. SP can
be viewed as a first step towards formalizing the scalability of CSDS algorithms.

Sequential Proximity: Overview. Our ten SP properties (Table 1) are defined
with respect to the three basic operations of a CSDS: search, insert, and delete,
for retrieving, adding, and removing an element from a set, respectively.

Table 1. The ten commandments of SP.SP1−4 concern search oper-
ations. In a sequential design,
search operations (i) are read-
only, (ii) do not block, (iii) do
not restart, and (iv) do not
allocate any memory. SP1−4

enforce the exact same behav-
ior as (i)–(iv) for concurrent
search operations. SP2−5 con-
cern parsing the set before
performing an update (i.e.,
insert or delete). Essentially,
the parse phase of an update
operation traverses the set to
find the node(s) to be modi-
fied. In a sequential data struc-
ture, parsing is identical to
searching, hence searching and parsing share SP2−4. SP5 replaces SP1 for pars-
ing, to capture the fact that concurrent designs (e.g., [7,9]) might retain some
minimal helping strategy in order to “clean-up” the data structure. SP6 concerns
both insertions and deletions. In a sequential design, no writes are issued if the
operation is unsuccessful (e.g., a deletion does not find the target element in the
set). SP6 enforces the same behavior for concurrent algorithms: An unsuccess-
ful update cannot perform any stores or atomic operations after parsing. SP7



Sequential Proximity 407

restricts the ability of an update operation to restart due to concurrency. SP7

does not have any correspondence in sequential algorithms, as the latter never
restart. Intuitively, an update in a CSDS can only restart when a concurrent
update of another thread modifies the same nodes as the current update. SP8

and SP9 restrain the amount of synchronization allowed when modifying the
structure during insertions and deletions. We define the maximum number of
shared memory stores (or atomic operations) and the locations of these stores in
a concurrent design with respect to the sequential counterpart per data struc-
ture. Finally, SP10 captures the fact that deleting an element from a set should
not allocate memory.

A CSDS algorithm is said to be sequentially proximal if it satisfies SP1−4

for search, SP2−9 for insert, and SP2−10 for delete operations.

Overall, we believe that SP can be used in guiding the design of scalable
CSDS algorithms, detecting whether a CSDS algorithm is likely to scale, and
optimizing existing CSDS designs by “fixing” one or more SP properties.

Roadmap. The rest of the paper is organized as follows. In Sect. 2, we recall
background notions on CSDSs and describe the machinery we use to formulate
the SP properties. We describe the SP properties in Sect. 3. We conclude the
paper of SP in Sect. 4. Due to space limitations, we defer the reader to the
technical report [1] for the precise definitions of some parts of our vocabulary,
proofs of relations between SP properties and classic progress conditions, proofs
that two known concurrent linked lists are sequentially proximal, related work,
as well as concrete examples of the applicability of SP.

2 Preliminaries

In this section, we define sequential and concurrent search data structures and
we introduce the formalism used to define our ten SP properties.

2.1 Search Data Structures

A search data structure (SDS) corresponds to a set of elements and operations
for retrieving, storing, and removing elements. The main operations of a SDS are
the search, insert, and delete operations. In this work, we consider linked lists,
hash tables, skip lists, and binary search trees, which are all widely-used SDSs.
Queues and stacks are not SDSs as they do not provide search operations.

The insert and delete operations are update operations used for inserting and
removing elements, respectively. An update operation can be divided into two
phases: parse and modify. For instance, an insertion in a sorted linked list first
looks for the position where the element has to be inserted. The actual insertion
can then happen during a modify phase. The typical flow of an update operation
in a SDS is depicted in Fig. 1. The parse phase takes place first and returns a
boolean value which indicates whether it can be followed by a modification. If the



408 K. Antoniadis et al.

returned value is true (e.g., deleting an element that exists), the modification can
be attempted. Otherwise, if the returned value is false (e.g., deleting an element
that does not exist), the parse phase did not find a valid state to apply the
subsequent modification. After a successful parse phase, the modify phase takes
place (which always returns true in sequential SDSs).

Sequential Specification. The sequential specification of a SDS, denoted
SpecSDS , can be constructed using the notion of a set. At the beginning of
a history of SpecSDS the set is empty, thus every search operation returns false.
If an insert operation is called and the element is not in the set, the element is
inserted into the set and true is returned. Otherwise, the set remains unchanged
and false is returned. If a delete operation is called for an element that belongs
to the set, the element is removed from the set and true is returned. Otherwise
the set remains unchanged and false is returned.

Concurrent Search Data Structures (CSDSs). In CSDSs, the modify phase
of update operations can return two values other than true, namely false and
restart. These two additional transitions appear as dashed lines in Fig. 1.

On the one hand, a modification can return false either due to concurrency
(e.g., the element was concurrently deleted by another process), or because the
algorithm enters the modify phase, although the operation cannot be completed.
On the other hand, a modification might return restart due to conflicting con-
currency (i.e., another process modifies the same vicinity of the structure).

The sequential and concurrent SDSs that we consider in this work are imple-
mentations of SpecSDS . We assume they have been proven correct in their respec-
tive environments (i.e., when used by one process for sequential and by several
for CSDSs). We consider that fulfilling SpecSDS in a concurrent context means
ensuring linearizability [12].

2.2 Language

Fig. 1. Flow diagram of an update oper-
ation. The transitions in dashed lines are
only feasible in concurrent SDSs.

To describe CSDS algorithms, we con-
sider a formal language [2] that we
extend to capture specific character-
istics of CSDSs. We present here a
quick overview of its classic features
and a more detailed description of
the additions we introduce to capture
the notions needed to define sequential
proximity.

Shared Memory Locations. These
are the unit of memory, accessible by
every process, on which read and write
instructions operate atomically.



Sequential Proximity 409

Local and Global Instructions. Each process executes a sequential program
(of a Turing-complete language) augmented with instructions to interact with
the shared memory. The language uses a standard syntax and semantics for
boolean and numerical literals, variables, and expressions. It also features point-
ers, conditionals expressions, and branching (labels and goto instructions).

Each process maintains a state (set of local variables and execution context)
and executes elementary local or global instructions. Shared memory allocations,
and any instruction that takes as operand a shared memory location, are consid-
ered global instructions. There are six types of global instructions: allocate, read,
write, compare-and-swap, try-lock, and unlock. A read(l) instruction retrieves the
content of the shared memory location l and a write(v, l) writes the value of the
local variable v to shared memory location l.

Compare-and-swap. In one atomic step, a compare-and-swap(l, old, new) instruc-
tion reads the content v of the shared memory location l, and, if v = old, it writes
value new in l. In any case, compare-and-swap returns v.

Try-lock and Unlock. In one atomic step, the try-lock(l) instruction tests if the
value v contained in the shared memory location l is true, and, in this case, it
writes false in l. In any case, try-lock returns v. The try-lock instruction can be
used to implement a traditional blocking lock operation by repeatedly executing
try-lock until it returns true. The unlock(l) instruction writes true in l.

Allocate. allocate takes a list of local variables as argument and fills each variable
with the address of a newly allocated shared memory location. Note that the
use of allocate is closely related to the notion of node, defined below, that plays
an important role in the definition of the SP properties.

Operations Delimiters. To capture the implementation of CSDSs, additional
dummy statements are introduced to delimit the beginning and the end of search,
insert, and delete operations. For update operations (i.e., insert and delete), addi-
tional statements are used to localize the beginning and the end of the parse and
modify phases: beg-parse, end-parse, beg-modify, and end-modify. The statement
end-parse returns a boolean indicating if the update is possible (i.e., the target
value is not already present in the set for insert operations, or is present for
delete operations). The statement end-modify returns true, false, or restart, indi-
cating respectively that the operation succeeded, failed, or has to be restarted.
For op ∈ {search, insert, delete} the dummy statement entry op v (resp. exit op b)
denotes the beginning (resp. end) of an operation of type op on the data structure
(resp. returning a boolean b, indicating success or failure).

States, Transitions, and Executions. A program state σ is a tuple
(pc, locals, globals) where pc associates to each process the current value of its
program counter, locals associates values to the local variables of each process,
and globals to shared memory locations. The transition function TF associates
to a state σ and a process p the program state σ′ reached after p executes its next
instruction in state σ. A triple (σ, p, σ′) s.t. TF (σ, p) = σ′ is called a transition.

An execution is a sequence of transitions t0, t1, . . . s.t. ∀i ≥ 0, ti =
(σi, pji , σi+1), where pji ∈ {p0, p1, . . .}. Furthermore, σ0 designates the initial



410 K. Antoniadis et al.

state in which each process is about to execute its first instruction and all the
local variables and shared memory locations are uninitialized.

Histories. A history is a sequence of tuples (p, st) where st is an entry or exit
statement and p is a process. To any execution π, we associate history hs(π)
defined as the subsequence of the transitions of π corresponding to entry and
exit statements, labelled by the processes taking them.

Given a history H, we denote by H|p the history formed by the subsequence
of the tuples of H taken by p. Statements s = (p, entry op v) and s′ = (p′,
exit op′ b) of a history H are said matching if p = p′, op = op′, s precedes s′

in H, and if there is no (p, exit op b′) statement in H between s and s′. An
entry statement of a history H that has no matching exit in H is said pending.
A history H is said sequential if H = en0, ex0, en1, ex1, . . . where for all i ≥ 0,
eni and exi are matching entry and exit statements. A sequential history that
does not end with a pending entry statement is said to be a complete sequential
history. A history H is well-formed if for each process p, H|p is sequential.

Consider any execution π s.t. hs(π) is a well-formed history, and ten a tran-
sition of π corresponding to an entry statement executed by process p. We define
opTrans(ten, π) as the subsequence of π formed by the transitions of p from ten

to the next transition tex corresponding to an exit statement by p. If the oper-
ation entered in ten is pending in hs(π)|p, there is no such transition tex and
opTrans(ten, π) is defined as the sequence of transition taken by p in π starting
from ten.

Parse-modify Patterns. For an execution π s.t. hs(π) is well-formed, let us
consider a transition ten taken by process p that corresponds to an entry op v
statement with op ∈ {insert, delete} and let tex be the matching exit tran-
sition. We defer for the moment the case of ten corresponding to a pending
entry statement in hs(π). We say that the operation entered in ten follows a
parse-modify pattern if it follows the flow illustrated by Fig. 1. Formally, if we
consider pm(opTrans(ten, π)) the subsequence of transitions of opTrans(ten, π)
corresponding to beg-parse, end-parse, beg-modify and end-modify statements,
then (a) pm(opTrans(ten, π)) starts with a beg-parse statement, (b) each beg-
parse is immediately followed by an end-parse, (c) an end-parse returning true
is immediately followed by a beg-modify statement, (d) if an end-parse or end-
modify statement returns false, it is the last transition of pm(opTrans(ten, π))
and tex returns false, (e) a beg-modify is immediately followed by an end-modify
statement, (f) if an end-modify statement returns true, it is the last transition
of pm(opTrans(ten, π)) and tex returns true, and (g) an end-modify statement
returning restart is immediately followed by a beg-parse statement.

If the transition ten is pending in hs(π)|p, we consider that opTrans(ten, π)
follows a parse-modify pattern if π can be extended to an execution in which ten

has a corresponding tex statement and the (now complete) operation entered in
ten follows a parse-modify pattern.

Consider an entry transition ten of an execution π s.t. opTrans(ten, π) follows a
parse-modify pattern. We define the integer numberOfParsePhases(ten, π)
(resp. numberOfModifyPhases(ten, π)) as the number of transitions



Sequential Proximity 411

corresponding to beg-parse (resp. beg-modify) statements in opTrans(ten, π).
We also define the sequence parsePhase(ten, π, k) (resp. modifyPhase(ten,
π, k)), for any k in 1, . . . , numberOfParsePhases(ten, π) (resp. 1, . . . ,
numberOfModifyPhases(ten, π)), as the subsequence of opTrans(ten, π)
starting at the k-th beg-parse (resp. beg-modify) statement and ending at the next
following end-parse (resp. end-modify) statement (or at the end of opTrans(ten, π)
if there is no such statement).

Positions of Global Transitions. We say that an execution π s.t. hs(π) is
well-formed has no global transition outside operations if each global transition
of π belongs to some opTrans(ten, π) with ten an entry transition of π.

Similarly, we state that an execution π has no global update
transition outside parse and modify phases if, for any entry transi-
tion ten of an insert or delete operation, any global transition of
opTrans(ten, π) belongs to either the set parsePhase(ten, π, k) (for some k in
1, . . . , numberOfParsePhases(ten, π)) or modifyPhase(ten, π, k′) (for some k′

in 1, . . . , numberOfModifyPhases(ten, π)).

Well-formed Executions. An execution π is well-formed if it verifies: (a) hs(π)
is a well-formed history, (b) transitions never read uninitialized variables, (c) for
any transition ten corresponding to an entry op v statement with op ∈ {insert,
delete}, the operation entered in ten follows a parse-modify pattern, (d) π has no
global transition outside operations, and (e) π has no global update transition
outside parse and modify phases.

A program Prog is said well-formed if all the executions it allows are well-
formed. The set of all the executions allowed by Prog is denoted [[Prog]]. The
remaining of the paper considers only well-formed programs.

2.3 Nodes and Allocation Sets

Nodes and Shared Memory Management. We assume that a SDS imple-
mentation provides the notion of node that captures the set of shared memory
locations that are allocated and freed/unlinked together. It is assumed that one
allocate statement allocates a list of shared memory locations corresponding to
exactly one node. For example, in an external tree, a single operation can allo-
cate shared memory locations logically corresponding to an internal node and
to a leaf. The SP properties rely on that a separate allocate instruction is used
for each of these two nodes.

To capture this relation between nodes and allocate instructions, we define,
for any execution π and any transition tal corresponding to an allocate instruc-
tion, the set NodeAlloc(tal, π) of the memory locations it reserves.

Memory reclamation is orthogonal to designing correct CSDSs and is typi-
cally handled by an external garbage collector. For clarity reasons, we do not
consider memory reclamation in our model: Once a node is unlinked from the
data structure (becomes unreachable, see below), the corresponding shared mem-
ory area is never reused.



412 K. Antoniadis et al.

Read and Written Locations. For any execution π and any transition t
of π, we denote by wloc(t) (resp. rloc(t)) the set that contains the shared
memory location written (resp. read) by the instruction corresponding to t. If
t corresponds to a local instruction, a global read, or an allocate instruction,
then wloc(t) = ∅. If t corresponds to a write(v, l), try-lock(l), unlock(l), or a
compare-and-swap(l, old, new) global instruction, then wloc(t) = {l}. Similarly,
rloc(t) = ∅ if the instruction executed during t is a local instruction, a global
write, or an allocate instruction, while rloc(t) = {l} if it is a read(l), try-lock(l),
or a compare-and-swap(l, old, new). By an abuse of terminology, we will refer to
instructions issued by a transition t s.t. wloc(t) �= ∅ as write instructions.

For each transition ten of π that corresponds to a process p execut-
ing an entry op v statement, we define the set WrittenLoc(ten, π) (resp.
ReadLoc(ten, π)) of shared memory locations written (resp. read) during the
operation started at ten as follows:

WrittenLoc(ten, π) =
⋃

t∈opTrans(ten,π)

wloc(t)

ReadLoc(ten, π) =
⋃

t∈opTrans(ten,π)

rloc(t).

Writing to Nodes Allocated by Others. Consider a well-formed execution
π and any entry transition ten corresponding to an entry op v statement by a
process p. Let S be a subsequence of opTrans(ten, π), and let us denote by w(S)
the subsequence of transitions of S corresponding to global write instructions.
We define opAlloc(ten, π) as the set of shared memory locations allocated by p
during the operation starting by ten. Formally:

opAlloc(ten, π) =
⋃

t∈al(opTrans(ten,π))

NodeAlloc(t, π),

where al(opTrans(ten, π)) is the subsequence of opTrans(ten, π) transitions that
issue allocate instructions.

We now define the set OtherNodeWrites(S, ten, π) of the transitions of S
writing into shared memory locations that have not been allocated by p during
the operation it started at ten. Formally, OtherNodeWrites(S, ten, π) is the
maximal subset of w(S) such that:

opAlloc(ten, π) ∩
⎛

⎝
⋃

t∈OtherNodeWrites(S,ten,π)

wloc(t)

⎞

⎠ = ∅.

2.4 Solo Executions, Relative Nodes, and Reachability

Capturing the idea that a CSDS issues stores in a similar region as a respective
sequential one is challenging: It is difficult to define what a “similar region” is.



Sequential Proximity 413

To overcome this challenge, we define the notions of sequential freedom and solo
executions and then introduce the concept of relative nodes. We then show how
relative nodes can be used to construct sets of read and written nodes. Finally,
we define the notion of reachability and the set of nodes that are freed during
an operation.

Sequential Freedom. An execution π is in a steady state, if there is no entry
statement pending in hs(π). A program Prog is sequentially free if, starting from
any steady state, an operation taking steps alone terminates.

Solo Execution. A solo execution by a program Prog of a history S ∈ SpecSDS

corresponds to the execution of each operation of S by Prog in a solo (i.e.,
running the operation alone with no real concurrency) manner. Formally, con-
sider a complete sequential history S = en0, ex0, en1, ex1, . . . , enn, exn s.t.
S ∈ SpecSDS . Let Σ be the sequence pj0 , pj1 , ..., pjn of process identifiers
that execute operations en0, en1, ..., enn, respectively (a process identifier might
appear several times). We call solo execution of history S by program Prog, and
denote by se(S, Prog,Σ), the execution of Prog in which pj0 executes alone the
transitions of the operation entered in en0 and exited in ex0, then followed by
pj1 executing alone the operation entered in en1, etc.

Relative Nodes. A relative node corresponds to a pair (a, b) ∈ N×N in an exe-
cution π, if there is a transition ten in π that corresponds to an entry statement
s.t. this entry statement appears in the a-th position in hs(π) and the sequence
al(opTrans(ten, πS)) contains at least b elements. For example, if there exists a
relative node (5, 2) in an execution π, then this node has a “one-to-one” corre-
spondence with the second allocate statement that was executed during the fifth
operation.

Using relative nodes, we abstract away from memory locations and instead
of comparing writes, we can compare the nodes where those writes are issued
to. This abstraction allows us to compare writes (by comparing nodes) between
a CSDS and a sequential SDS in order to capture property SP9. We use relative
nodes only on solo executions. We assume that in any solo execution of a given
sequential history S, the operations of the CSDS and those of the respective
SDS allocate the same nodes and in the same order.

Given an execution π, we define rel(a, b, π) for a, b ∈ N to be a transition
tal of π. If rel(a, b, π) = tal, this means that there is an entry statement in
the a-th position of history hs(π) that has a corresponding transition ten in
π and there are at least b elements in al(opTrans(ten, π)) issuing an allocate
instruction with tal being the b-th such transition. If there exist no such a and
b, then rel(a, b, π) =⊥.

Read and Written Nodes. For defining the read and written nodes of an
operation we first define the set S which contains all the relative nodes of an
execution π.

S = {(a, b) ∈ N × N : rel(a, b, π) �=⊥}



414 K. Antoniadis et al.

We can now define the sets of read and written nodes that contain relative nodes.
ReadNodes(ten, π) is the set of pairs (a, b) ∈ S satisfying:

ReadLoc(ten, π) ∩ NodeAlloc(rel(a, b, π), π) �= ∅.

Similarly, WrittenNodes(ten, π) is the set of pairs (a, b) ∈ S that satisfy:

WrittenLoc(ten, π) ∩ NodeAlloc(rel(a, b, π), π) �= ∅.

These sets are used in defining property SP9 in Sect. 3.

Reachability and the Root Pointer. Consider an execution π and a transi-
tion t of π such that, after t, a pointer pt points to a shared memory location
l. Since π is well-formed, l was allocated by an allocate statement. Let tal be
the corresponding transition in π. l satisfies l ∈ NodeAlloc(tal, π). We define
reachable(pt, 1)t as the set NodeAlloc(tal, π). For a set of shared memory loca-
tions M , we denote by pointers(M) the locations of M that corresponds to
pointers.1 We define recursively for any x > 0:

reachable(pt, x + 1)t =
⋃

pt′∈pointers(reachable(pt,x)t)

reachable(pt′, 1)t.

Intuitively, reachable(pt, x)t captures the set of shared memory locations that
are reachable from pt by following a path traversing at most x nodes. Those
locations are reachable immediately after transition t has been executed in π
but before the transition succeeding t in π has been executed. We additionally
define reachable(pt,∞)t =

⋃
x>0 reachable(pt, x)t the set of all shared memory

locations accessible from pt.
We assume that each data structure provides an init operation that is exe-

cuted before any other operation. The init operation, as the name implies, is
used for initializing the data structure. For example, for a linked list, init could
allocate the head and tail of the list to simplify the execution of the upcoming
operations. We denote with root (and call it root pointer) any pointer that points
to a memory location that was allocated during the first allocate statement of
init. For instance, init for linked list has to first allocate the head node, so the
root pointer points to this head node.

Reachable and Freed Nodes. In a sequential setting, freed nodes are the ones
removed by a delete operation. In order to define freed nodes, we first have to
define the nodes that are reachable from a pointer pt. Using reachable, for a
transition t ∈ π we define ReachableNodes(pt, π)t as the set of pairs (a, b) ∈ S
satisfying:

NodeAlloc(rel(a, b, π), π) ∩ reachable(pt,∞)t �= ∅,

1 Locations containing pointers could be differentiated from other locations if they
contain a pointer type. This could be easily done by for example marking the last
bit of the value residing in such a location.



Sequential Proximity 415

where S is the set of relative nodes defined earlier. ReachableNodes includes the
nodes that contain at least one location reachable from pt just after transition t.

For a tuple (ten, tex) in a sequential history hs(π), we define
FreedNodes(ten, π) = InitialNodes \ FinalNodes, where InitialNodes =
ReachableNodes(root, π)ten and FinalNodes = ReachableNodes(root, π)tex .

The above definition captures the idea that freed nodes are the nodes that
were reachable from a root pointer at the beginning of the operation, but are not
anymore reachable at the end. Note that the definition of FreedNodes makes
sense only for solo executions and is helpful when restricting the number (SP8),
as well as the region of stores (SP9).

Logical Deletion. Many CSDSs [9,10] perform deletions in two steps: (i) mark
the node to be deleted, and (ii) do the actual deletion (i.e., physical removal).

In the technical report [1], we formally define logical deletions. Addition-
ally, we define when a transition is a cleaning-up store, meaning a transition
that physically removes a marked node from the data structure. Intuitively, a
cleaning-up store is defined as a transition that after it is performed in an exe-
cution, makes a reachable node of the data structure to be unreachable (based
on reachable).

3 Sequential Proximity (SP)

In this section, we define the ten SP properties. The first five properties describe
characteristics of traversals: search operations and parse phases. The last five
describe modifications due to update operations.

3.1 Traversals

Traversals correspond to search operations or parse phases of update oper-
ations. More precisely, for an entry transition ten in execution π, we
define traversals(ten, π). If ten is a search entry transition (i.e., ten exe-
cutes an entry search v statement), then traversals(ten, π) corresponds
to {opTrans(ten, π)}. If ten is an update entry transition (i.e., ten exe-
cutes an entry op v statement where op ∈ {insert, delete}), then
traversals(ten, π) corresponds to {parsePhase(ten, π, k), 1 ≤ k ≤ n} where
n = numberOfParsePhases(ten, π).

SP1: Read-only Traversal. No global memory is written during traversals.

Definition 1 (SP1). A program Prog has op read-only traversals if for each
entry op transition ten in π ∈ [[Prog]], there is no transition executing a write
instruction in any sequence of traversals(ten, π).

SP2: Non-blocking Traversal. Traversals must not block (e.g., do not wait
for a lock to be released). To define this property, we first define the notion of a
non-blocking process. Intuitively, a process is non-blocking if there is a constant



416 K. Antoniadis et al.

n such that no global memory location is read more than n times. Also, in every
n steps that the process takes, at least one global memory location is read.

In detail, we say that a process p is n steps non-blocking in tr(p) =
t1, t2, . . . , te, where tr(p) is a contiguous subsequence of opTrans(ten, π) with
an entry transition ten taken by process p in execution π, if ∃n ∈ N s.t.:

– no more than n transitions from tr(p) execute a global read instruction to the
same memory location;

– for all r ∈ {1, 2, . . . , e}, consider k = �r/n
 s.t. (k + 1) · n ≤ e, then
there is a transition that issues a global read in the sequence of transitions:
tk·n+1, . . . , t(k+1)·n.

Definition 2 (SP2). A program Prog has op non-blocking traversals if there
exists an n ∈ N such that: For every entry op transition ten taken by a process
p in execution π ∈ [[Prog]], p is n steps non-blocking in every sequence of
traversals(ten, π).

SP3: No Back-step Traversal. Only forward progress is allowed in traversals:
When moving from a node a to a b during traversal, node a is never visited
again.

For this property, we first define the notion of no back-steps. More precisely,
consider a contiguous subsequence tr(p) of opTrans(ten, π) where ten is an entry
transition taken by a process p in π. We say that process p has no back-steps if,
for any pair of transitions tr, tr′ appearing in this order in tr(p) with rloc(tr) =
rloc(tr′) = {�} and � ∈ NodeAlloc(tal, π), every transition t taken between tr
and tr′ in tr(p) verifies rloc(t) ⊆ NodeAlloc(tal, π).

Definition 3 (SP3). A program Prog has op no back-step traversals if for
every entry op transition ten taken by a process p in π ∈ [[Prog]], in every sequence
trav in traversals(ten, π), process p has no back-steps in trav.

SP4: No allocation Traversal. Traversals do not allocate any memory.

Definition 4 (SP4). A program Prog has op no allocation traversals if for
every entry op transition ten in π ∈ [[Prog]], there is no transition executing an
allocate instruction in any sequence of traversals(ten, π).

SP5: Read-clean Traversal. Traversals might issue stores only for cleaning-up
purposes.

Definition 5 (SP5). A program Prog has op read-clean traversals if for every
entry op transition ten in π ∈ [[Prog]], if a transition tw executes a write instruc-
tion in a sequence of traversals(ten, π), tw is a cleaning-up store.

3.2 Modifications

For an update entry transition ten in π, we define modifications(ten, π) to
be the set of sequences {modifyPhase(ten, π, k), 1 ≤ k ≤ n} where n =
numberOfModifyPhases(ten, π).



Sequential Proximity 417

SP6: Read-only Unsuccessful Modification. An unsuccessful operation
(e.g., trying to insert an element that is already present) does not issue any
write in a solo execution.

Definition 6 (SP6). A program Prog has op read-only unsuccessful modifica-
tions, if, for any complete sequential history S ∈ SpecSDS and any sequence
of processes P , the solo execution π = se(S, Prog, P ) verifies that: For every
entry op transition ten in π that has a matching exit op false statement in hs(π),
it is the case that modifications(ten, π) = ∅.
SP7: Conflict Restart Modification. The modify phase of an update oper-
ation can restart if there is a conflict with a concurrent operation. This type of
conflict corresponds to the modification of similar nodes by concurrent opera-
tions. To capture when concurrent operations are allowed to conflict and restart,
we check if such a conflict exists in the underlying sequential data structure.

We first introduce some auxiliary definitions. Two entry transitions ten0 and
ten1 are said conflict-free in a solo execution π, if (WrittenNodes(ten0 , π) ∪
FreedNodes(ten0 , π))∩(WrittenNodes(ten1 , π)∪FreedNodes(ten1 , π)) = ∅. An
entry transition ten is called restart-free in an execution π, if opTrans(ten, π) does
not contain an end-modify transition with a restart result. Given an execution
π and two operations op1 and op2, we say that an execution π′ is an extension
of π by op1 and op2, if π is a prefix of π′ followed by the transitions of the
operations op1 and op2 executed by two processes (possibly concurrently) until
their corresponding exit transitions.

Consider two programs ProgS and ProgC and S′ = S, en0, ex0, en1, ex1 a
complete sequential history, where S is a history and for every i ∈ {0, 1}, eni

corresponds to an entry statement and exi is its matching exit statement. Let us
consider the following notations:

– πS = se(S′, P rogS , PS) and πC = se(S, ProgC , PC), for PS and PC any
sequences of processes;

– ten0 and ten1 the transitions corresponding to the entry statements en0 and
en1 in πS .

The triple t = (S′, P rogS , P rogC) is said to be a valid restart triple if ten0 and
ten1 are not conflict-free in πS or if, for any extension πC′ of πC by operations
en0 and en1, the transitions corresponding to the entry statements en0 and en1

in πC′ are restart-free.

Definition 7 (SP7). A program ProgC has valid conflict restart modifications,
with respect to a sequential search data structure ProgS, if for all complete
sequential histories S with at least four tuples, triple (S, ProgS , P rogC) is valid
restart triple.

SP8: Number of Stores per Modification. SP8 defines the number of stores
allowed per modification. SP8 depends on a respective sequential SDS and on
whether the operations of the concurrent algorithm are blocking or not. The
distinction between blocking and non-blocking is made due to the fact that a



418 K. Antoniadis et al.

Table 2. SP9: Upper bounds on the number of writes (i.e., stores, lock acquisitions,
and CAS operations).

lock-based algorithm needs to acquire a lock and then issue its modification store.
In contrast a non-blocking algorithm applies its modification simultaneously with
a compare-and-swap statement.

Definition 8 (SP8). A program ProgC has a sequential number of stores per
modification, with respect to a sequential search data structure ProgS, if the
number of stores per modify phase is bounded by the maximum number of sequen-
tial writes and freed nodes, as defined in Table 2. Specifically, the upper bounds
of Table 2 hold for all modi ∈ modifications(ten, π) where ten is an update
entry op transition in π ∈ [[Prog]]. CASOps(S) corresponds to the set of tran-
sitions that execute a compare-and-swap instruction in the sequence of tran-
sitions S. AcquiredLocks(S) corresponds to the transitions from S that suc-
cessfully acquired a lock (i.e., transitions that executed a try-lock statement
that returned true). MaxFreedNodes(typ) is defined as the maximum num-
ber of freed nodes during the sequential execution of an operation of type typ.
MaxOtherNodeWrites(typ) is defined as the maximum number of writes issued
during the sequential execution of an operation op of type typ to nodes that were
not allocated by operation op. The number of stores are constrained depending
on whether the CSDS operation is blocking or not.

SP9: Region of Stores per Modification. The following property restricts
the nodes that an operation writes during a modification, with respect to a
sequential SDS.

We first define the written nodes during all the modify phases of an operation.
To do this, we define all the memory locations that were written during all the
modify phases:

WrittenMLoc(tenπ) =
⋃

t∈modi : modi∈modifications(ten,π)

wloc(t)

WrittenMNodes(ten, π) is the set of pairs (a, b) ∈ N×N s.t. rel(a, b, π) �=⊥ that
satisfies:

WrittenMLoc(ten, π) ∩ NodeAlloc(rel(a, b, π), π) �= ∅.



Sequential Proximity 419

Definition 9 (SP9). A program ProgC has a valid region of stores per modifi-
cation with respect to a sequential search data structure ProgS if it writes to simi-
lar nodes as ProgS during modifications. Formally, for every complete sequential
history S and any sequence of processes PC and PS, consider the solo executions
πC = se(S, ProgC , PC) and πS = se(S, ProgS , PS). Since hs(πC) = hs(πS), for
every entry transition ten in πC , there is a corresponding entry transition ten′ in
πS. SP9 is satisfied2 if the following holds for every update transition ten in πC :
If ten executes

– an insert statement, then WrittenMNodes(ten, πC) =
WrittenNodes(ten′ , πS);

– a delete statement, then WrittenMNodes(ten, πC) ⊆
WrittenNodes(ten′ , πS) ∪ FreedNodes(ten′ , πS).

SP10: No Allocation Modification. No memory is allocated during modifi-
cations.

Definition 10 (SP10). A program Prog has op no allocation modifications if
for every entry op transition ten in π ∈ [[Prog]] there is no transition executing
an allocate instruction for any sequence in modifications(ten, π).

4 Concluding Remarks

In this paper, we defined sequential proximity (SP), a formalization that captures
the closeness of concurrent search data structures (CSDSs) and their sequential
counterparts. Based on prior work, we argued that sequentially-proximal algo-
rithms, namely algorithms which follow SP, are scalable. As a result, we claim
that SP is the first step towards a formal theory for proving that a CSDS algo-
rithm is likely to be scalable. We believe that from a practitioner’s point of view,
adherence to the SP properties can lead to scalable implementations and help
avoid commonly introduced bottlenecks in CSDSs.

2 For randomized data structures, such as skip lists [18], we assume that the underlying
random number generator produces the exact same sequences of numbers for both
ProgS and ProgC .



420 K. Antoniadis et al.

References

1. Antoniadis, K., Guerraoui, R., Stainer, J., Trigonakis, V.: Sequential proximity:
towards provably scalable concurrent search algorithms. Technical report, EPFL
(2017)

2. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P. Michael, M.M., Vechev,
M.T.: Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In: POPL (2011)

3. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A Practical Concurrent Binary
Search Tree. In: PPopp (2010)

4. David, T., Guerraoui, R., Trigonakis, V., Concurrency, A.: The secret to scaling
concurrent search data structures. In: ASPLOS (2015)

5. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: PODC (2010)

6. Facebook: RocksDB. http://rocksdb.org
7. Fraser, K.: Practical lock-freedom. Ph.D. thesis, University of Cambridge (2004)
8. Guerraoui, R., Trigonakis, V.: Optimistic concurrency with OPTIK. In: PPopp

(2016)
9. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,

J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
doi:10.1007/3-540-45414-4 21

10. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer,
R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidelberg (2006).
doi:10.1007/11795490 3

11. Herlihy, M.: Wait-free synchronization. In: TOPLAS (1991)
12. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent

objects. In: TOPLAS (1990)
13. Herlihy, M., Lev, Y., Luchangco, V., Shavit, N.: A simple optimistic skiplist algo-

rithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp.
124–138. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72951-8 11

14. Howley, S.V., Jones, J.: A non-blocking internal binary search tree. In: SPAA
(2012)

15. Linux Kernel: Linux Kernel. https://www.kernel.org
16. Matveev, A., Shavit, N., Felber, P., Marlier, P.: Read-log-update: a lightweight

synchronization mechanism for concurrent programming. In: SOSP (2015)
17. McKenney, P.E., Slingwine, J.D.: Read-copy update: using execution history to

solve concurrency problems. In: PDCS (1998)
18. Pugh, W., Lists, S.: A probabilistic alternative to balanced trees. In: CACM (1990)

http://rocksdb.org
http://dx.doi.org/10.1007/3-540-45414-4_21
http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1007/978-3-540-72951-8_11
https://www.kernel.org

	Sequential Proximity
	1 Introduction
	2 Preliminaries
	2.1 Search Data Structures
	2.2 Language
	2.3 Nodes and Allocation Sets
	2.4 Solo Executions, Relative Nodes, and Reachability

	3 Sequential Proximity (SP)
	3.1 Traversals
	3.2 Modifications

	4 Concluding Remarks
	References


