
A Comparative Study of Software
Testing Techniques

Meriem Atifi(&), Abdelaziz Mamouni(&), and Abdelaziz Marzak(&)

Faculty of Sciences Ben M’sik,
University Hassan II of Casablanca, Casablanca, Morocco

Meryematif@gmail.com, Mamouni.abdelaziz@gmail.com,

Marzak@hotmail.com

Abstract. Nowadays, software systems have become an essential element in
our daily life. To ensure the quality and operation of software, testing activities
have become primordial in the software development life cycle (SDLC). Indeed,
software bugs can potentially cause dramatic consequences if the product is
released to the end user without testing. The software testing role is to verify that
the actual result and the expected result are consistent and ensure that the system
is delivered without bugs. Many techniques, approaches and tools have been
proposed to help check that the system is defect free. In this paper, we highlight
two software testing techniques considered among the most used techniques to
perform software tests, and then we perform a comparative study of these
techniques, the approaches that supports studied techniques, and the tools used
for each technique. We have selected the first technique based on the 2014
survey [62] that heighted the motivations for using the Model-based-testing, and
by analyzing the survey results we have found that some MBT limits are ben-
efits in Risk based testing, the second technique in our study.

Keywords: Software systems � Software testing � Software testing
approaches � Model-based testing � Risk-based testing

1 Introduction

Software system consists of a number of separate programs, configuration files, which
are used to set up these programs, system documentation, which describes the structure
of the system, and user documentation, which explains how to use the system and web
sites for users to download recent product information [59]. Nowadays, software sys-
tems have become an essential part of our daily life. We use these software systems daily
and have generally tried to keep them updated as much as possible. While in many times
these software systems do not work as expected. Therefore, creating high-quality
software is an intellectual challenge. Generally this quality is ensured by a test activity.
However, this activity is time consuming, and too demanding as far as resources are
concerned, and it is essential to ensure a certain percent of software quality. Indeed, a
defect in software can have serious consequences for users and companies. These
consequences may cause trivial issues viz; loss of money, time, business credibility
or even loss of life. This was the case, for example in medicine in 1985, the Therac 25,

© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 373–390, 2017.
DOI: 10.1007/978-3-319-59647-1_27



was a radiation therapy machine for treating cancer. A dysfunction of software has led to
an overdose of radiation and was the cause of several deaths. Also the flight 501 failure
of Ariane 5 in 1996 caused by a problem in specification, the estimated loss of this
failure is 8.5 BILLION dollars. And more recently, on 6 January 2010, the German bank
card holders designed by Gemalto had the unpleasant surprise of not being able to use
their cards in some terminals. However, even if this bug lasted only one day, Gemalto
has estimated the cost associated between 6 and 10 million. These accidents show that
regardless of the scope of the software, it is necessary to validate and verify its operation
and quality before using it. To ensure the quality and operation of software, testing
activities have become primordial in the software development life cycle (SDLC).
Indeed, software testing is a process of validating and verifying that a software product
works as expected. Recently, the Software testing activity has changed dramatically, the
complexity of IT systems has increased, the applications areas have been expanded, and
the costs and consequences of bugs became higher, turning testing into an essential
activity that should not be overlooked during the software development cycle. Testing is
a vital part of software development, and it is important to start it as early as possible,
and to make testing a part of the process of deciding requirements [60]. For that, in this
present paper, we will present the tools, the processes, and the approaches of existing
testing techniques. Also, this paper offers a detailed comparison between these testing
techniques, especially, two major techniques viz; the model based testing technique
(MBT), which is an application of model-based design to perform software testing or
system testing. Models can be used to represent the desired behaviour of a System Under
Test (SUT), or to represent testing strategies and a test environment; and the risk based
testing technique (RBT), which is a type of software testing that functions as an orga-
nizational principle used to prioritize the tests of features and functions in software,
based on the risk of failure, the function of their importance and likelihood or impact of
failure [61].

The rest of this paper is organized as follows. Section 2 exposes general processes
of MBT and RBT techniques, used tools and stockholders of each technique. Section 3
presents a classification of approaches related to each technique. Section 5 present
some MBT and RBT Advantages and Limits, Sect. 6 discuss and presents the results of
our analysis. Finally, Sect. 7 describes conclusion and future work.

2 MBT and RBT Processes

2.1 Model-Based Testing

The MBT (Model-Based Testing) is a form or a technique that aims to automatically
generate test cases from formal specification or models describing the expected
behaviour of the system under test. The behaviour model or formal specification are
built from requirements and represents the software characteristics. It consists in
managing and listing the requirements, creating a behavioural model of the SUT based
on this list of requirements in order to generate abstracts tests cases and Requirements
Traceability Matrix (RTX) by using the selection criteria that aim the model coverage
and detect certain types of fault. The tests cases generated are then concretized, making

374 M. Atifi et al.



them executable on the SUT, the actual result and the expected result are then com-
pared in order to get a verdict. Based on MBT application steps, used tools and
stockholders, we present the following process.

As shown in Fig. 1 above, the process of Model-based testing can be splitted into
five main steps. These steps will be explained further below.

• Requirements management: The first step of model based testing is to collect
customer needs, desires and constraints, manage and classify them as requirements.
This first step is potentially the most important step in a process of testing software
such as MBT. Requirement management step in MBT involves the collection,
analysis, prioritization, validation, definition and control of all customer business

Fig. 1. Model-based testing general process

A Comparative Study of Software Testing Techniques 375



requirements, it serves to create a requirement repository that is the basis of com-
munication between analysts and testers and is define in a structured way the
expected result for the software, in different terms (functional, technical, security,
load and response time…).

• Modelling: The main purpose of the modelling step in MBT is to model the system
requirements, it consists in creating a behaviour model that describes the expected
behaviour of the system under test and suitable for test purposes, this model is
created by a tester analyst using requirements resulting from requirements man-
agement step and described in many ways, depending on the discipline. It can be
described by use of diagrams, tables, text, or other kinds of notations. It might be
expressed in a mathematical formalism or informally, where the meaning is derived
by convention kinds of notations. They might be expressed in a mathematical
formalism or informally, where the meaning is derived by convention.

• Generation: The generation step is realized on the basis of a test generator which
takes as input the model designed in the modelling step and the test selection criteria
selected by the test analyst and produces the abstract test cases from the model and a
requirements traceability matrix that illustrates the link between tests and model
elements covered by the tests.

• Concretization: The concretization step consists to translate the abstracts test cases
to executables test cases in order to be executed on SUT. It consists in making the
link between the model elements and the system’s concrete elements, and involving
specific adapters and manual intervention that requires the expertise of the test
engineer.

• Execution: The execution step can be manually or automatically. In this phase, all
the test cases are executed on the system under test, eventually the obtained results
are then compared with the expected results to give a verdict for test cases and
consequently give a status on the operation of the product [1, 2, 13, 15–18].

2.2 Risk-Based Testing

When we cannot test exhaustively, we must test selectively and achieve better with less
in time and resources and without affecting the product quality. The RBT is a software
testing technique or method that uses risk as a basis for test planning, It uses risk to
select, prioritize and manage the appropriate tests during test execution and conse-
quently to make sure that the limited time and resources are used to test the most
important things [3, 5]. In simple terms, Risk is an undesirable event whose appearance
is not certain and having as consequence negative results on the project objectives such
as impact on completion date, costs, the quality, the company image, etc. Thus, the risk
may be considered as the composition of two factors viz; the probability of occurrence
of an undesirable event and the severity of the potential consequences of the unde-
sirable event. Based on RBT application steps, used tools and stockholders [3, 7, 62],
we present in Fig. 2 below, the process of risk-based testing that can be divided into
five main steps.

376 M. Atifi et al.



• Requirements management: As the MBT process, RBT process start with
requirements management step to extract and identify requirements from system
specifications.

• Risks identification: Identifying risks is an absolutely essential activity in RBT
process, it involves making a list of everything that might potentially come up and
disrupt the normal flow of project, and provides the indicators that allows the
organization to identify major risks before they impact operations and hence the
business. It consists to identify and describe all requirements in terms of risk
involved in the project. Thus at the end of this step all risk items are identified.

• Analysis and Evaluation: Risk analysis and evaluation is the second step of risk
management in RBT process. It consists in studying the risks identified in risk
identification phase, categorizing them, determining the level of risk by specifying
likelihood and impact of the risk and then assigning the level of risk to each item.

Fig. 2. Risk-based testing general process

A Comparative Study of Software Testing Techniques 377



• Mitigation/Reduction: The objective of Risk mitigation step is to reduce the Risk
Impact or Risk Probability. It consists in looking for risk Mitigation where tests are
built to mitigate the risk.

• Execution: The execution step in RBT consists in executing test cases resulting
from reduction step according to prioritization and acceptance criteria identified in
the risks report.

3 MBT and RBT Approaches Classification

3.1 Model-Based Testing Approaches Classification

Arilo et al. [16, 19] have classified MBT approaches into four categories, some of these
approaches use UML diagrams, whereas, the others use a non-UML notations to
represent software requirements or software internal structure. This classification is
described and detailed in the form of table as show in Table 1 below.

Utting et al. [2] have defined a taxonomy of model based testing that allows the
characterization of different approaches to model-based testing, they have defined three
general classes viz; model specification, test generation and test execution. Each of these
classes is divided into various categories viz; model specification: It is divided into
scope, characteristics and paradigm categories; test generation: It is divided into test
selection criteria and technology categories; and test execution: It is divided into online
test execution and offline test execution. Based on this taxonomy, Utting et al. have
classified a collection of existing approaches in order to show the characteristics of those
approaches to target various application domains. They have classified the existing
approaches into two main categories: approaches to model-based test case generation
and approaches to model-based test input generation. Felderer et al. [6] have defined a
novel classification of model-based security testing approaches. They have classified the
existing approaches into two dimensions viz; automated test generation and risk. The
first dimension describes how much of the system and the security requirements is
captured by formal models. The second dimension “risk” can have the values integrated
into the model or not integrated into the model. Anand et al. [58] have performed a

Table 1. Classification of MBT approaches

Classifications Approaches

C1 Model representing software requirements is described using UML
diagrams

C2 Model representing software requirements is described using non-UML
notation

C3 Model representing software internal structure is described using UML
diagrams

C4 Model representing software internal structure is described using any
non-UML notation

378 M. Atifi et al.



survey of methodologies for automated software test case generation. They have clas-
sified the MBT approaches into three categories viz; axiomatic approaches that use
scenario-oriented notations, finite state machine approaches that use state-oriented
notations, and labelled transition system approaches that use process-oriented notations.

3.2 Risk-Based Testing Approaches Classification

In other respects, for RBT technique, Erdogan et al. [5] have classified the approaches
that use both tests and risks into two global categories, some approaches when risk is
used to focus testing, and others when test is used to focus risk. It defines the first
category for test-based risk analysis (TR), and the second category for risk-based
testing (RT). In Table 2 below we expose the approaches studied by Erdogan et al. [5]
and Alam et al. [3] in order of this classification. Otherwise, depending on main focus,
Erdogan et al. have classified RBT approaches into eight categories viz;

• Approaches that combine risk analysis and testing at a general level as
Amland2000, Felderer2012, Felderer2013 and Redmill2004 and Redmill2005;

• Approaches with main focus on model-based risk estimation as Gleirscher2011,
Gleirscher2013 and Ray2013;

• Approaches with main focus on test-case generation as Kloos2011, Nazier2012 and
Xu2012;

• Approaches with main focus on test-case analysis as Chen2003, Chen2002 and
Entin2012;

• Approaches based on automatic source code analysis as Wong 2005 and
Hosseingholizadeh2010;

• Approaches targeting specific programming paradigms as Kumar2009 and
Rosenberg1999;

• Approaches targeting specific applications as Bai2009, Bai2012, Casado2010 and
Zech2011;

• Approaches’ aiming at measurement in the sense that measurement is the main issue
as Schneidewind2007 and Souza2009.

Table 2. TR & RT approaches classification

TR category RT category

Wong 2005 [39]
Schneidewind2007
[49]
Bach- Inside-
Out1999 [52]

Amland2000 [20], Felderer2012 [21], Felderer2013 [22],
Felderer2015, Redmill2004 [23], Redmill2005 [24], Yoon 2011 [25],
Gleirscher2011 [26], Gleirscher2013 [27], Ray2013 [28], Kloos2011
[29], Nazier2012 [30], Wendland2012 [31], Xu2012 [32],
Zimmermann2009 [33], Chen2003 [34], Chen2002 [35], Entin2012
[36], Stallbaum2008 [37], Hosseingholizadeh2010 [38], Kumar2009
[40], Rosenberg1999 [41], Bai [42, 43], Casado2010 [44], Murthy2009
[46], Zech2011 [47], Zech2012 [48], Souza2010 [50],
Bach-Outside-In1999 [51], Paul2002 [52], Stålhane2003 [54] and
Palanivel2014 [9]

A Comparative Study of Software Testing Techniques 379



4 MBT and RBT Supporting Tools

To benefit fully from any technique or approach asMBT orRBT, the automation supports
are required to automate as much as possible and to increase the reliability of the software
testing process. In MBT, the challenge is that from a formal, semi-formal or informal
models generate complete test cases without human interference. On the other hand, in
RBT approach, the challenge is how to manage, select, and evaluate risk in testing
process. In this context, when practitioners want to adopt anMBT or RBT approach, they
therefore seek associated tools. For MBT, a number of model-based testing tools have
been proposed [8, 10–12, 18]. We can classify these tools in different criteria viz; tool
category: Commercial (CL), Open Source (OS) or Academic (AC); model type: UML,
SysML, FSM, EFSM, Textual Models (TM), and more; and test type: Functional Testing
(FT), Non Functional Testing (NFT), Structural Testing (ST). The Table 3 below
describes these tools according to these criteria. For RBT, the most used tools are test
management systems that support RBT approaches [14]. Table 4 exposes some of the test
management tools that support RBT and some tools intended for RBT technique.

Table 3. MBT tools classification

Tool Category Model type Software area Test
type

4Test CL TM All FT
BPM-Xchange CL BPMN All FT
Conformiq
Creator

CL Activity Diagrams
& DSL

All FT

Conformiq
Designer

CL UML State
Machines and QML

All FT

DTM CL Custom activity
model

All ST

MaTeLo CL Markov chains All FT
MBTsuite CL UML, BPMN All FT
RT-Tester CL UML, SysML and

Matlab
All (embedded real-time
systems)

FT

Smartesting
CertifyIt

CL UML, OCL and
BPMN

All (Enterprise IT
applications)

FT

Microsoft’s
SpecExplorer

CL model programs in
C#, FSM/ASM

All FT

TEMPPO
Designer
(IDATG)

CL Task flow model All FT

TestCast CL UML State
Machines

All (Embedded Systems) FT &
ST

TestOptimal CL FSM & E-FSM All FT &
NFT

T-VEC CL Simulink All (Embedded Systems) ST

(continued)

380 M. Atifi et al.



5 MBT and RBT Advantages and Limits

The MBT and RBT solutions are highly effective testing techniques that can be used to
perform and manage software testing. Each solution has distinct benefits and limits. In
this context, Legeard [4], has classified the major MBT benefits that solved some
problems of classical approaches into six areas viz; SUT fault detection, reduced testing
cost and time, improved test quality, requirements defect detection, tractability man-
agement, and requirements evolution. Also, he discussed some of fundamental limi-
tations that limit the usage areas of MBT approaches. In the other hand, Alam [3] in his
paper highlight some benefits and limits of RBT. Table 5 present some major
advantages and disadvantages of RBT and MBT Approaches.

Table 3. (continued)

Tool Category Model type Software area Test
type

Conformiq’s
Qtronic

CL UML, QM & TM All FT

Test Designer CL UML All FT
LTG [2, 57] CL UML, OCL and B

abstract machines
All FT

mbt OS FSM/EFSM All FT
GraphWalker OS FSM All (nondeterministic

systems)
FT

JTorX [2, 56] OS(AC) LTS All FT
Modbat OS EFSM Specialized for API testing

of program libraries
FT

ModelJUnit OS FSM & EFSM All FT
OSMO OS Model programming

Java
All FT

PyModel OS Python source All ST
Tcases OS TM All FT
JSXM AC SXM All FT
MISTA AC PrT net All FT &

NFT
MoMuT::UML AC UML state machines

& OOAS
All FT

MOTES AC EFSM All (Embedded Systems) FT
AGEDIS AC UML (AML) All (Component based

distributed Systems)
FT

ParTeG AC UML & OCL All FT

A Comparative Study of Software Testing Techniques 381



Table 4. RBT tools classification

Tool Category Model type Software area Test
type

HP Quality Center CL - All FT
Kristoffer Tool [14] AC - All FT &

NFT
NORIZZK.COM (SaaS
platform)

CL - All FT &
NFT

Sonata OS - All FT &
NFT

Casado Framework [45] AC Transaction
Model

Web services models
and standards

NFT

ReQtest(SaaS platform) CL - All FT &
NF

SOASense™ framework
[40]

AC - Aspect oriented
programming

ST

Hosseingholizadeh Tool
[38]

AC - All ST

RBTTool [55] AC-OS - All FT
RiteDAP [37] AC Activity

diagrams
All FT

Table 5. MBT and RBT limitations and advantages

Ref. Remaining problems (Limits) Solved problems (Advantages)

Hartman
et al. [53]
Arilo
et al. [19]
Monalisa
et al. [18]

MBT approach
• Cannot manage outdated
requirements when the software
evolves

• One of practical limitations of model
based testing is tester skills; the
model designers must be able to
design the models, in addition to
being experts in the application area

• Difficulty to analyze failed tests when
any of the generated tests is failed

• Difficulty to model some parts of the
system under test

• Requires a formal specification or
model to carry out testing

• Test cases are tightly coupled to the
model; the change of model gives
rise to a generation of altogether
different test cases

MBT approach
• Allows improving the bugs’ detection
in system under test

• Allows reducing testing time and
costs

• Allows improving testing quality and
therefore software quality

• The fact that the model is derived
from the requirements allows to start
very early in system cycle life and so
allows to detect defaults in
requirements

• Allows the traceability management
between requirements and the
abstract model through the
requirements traceability matrix
generated in generating step in MBT
process

(continued)

382 M. Atifi et al.



6 Analyse and Discussion

Both studied techniques have their own processes, approaches, tools, merits and
demerits. For risk-based testing, all approaches described in this paper use risk to
prioritize what to test and focus on activities related to risk identification, analysis and
prioritizing. Most RBT approaches are black-box testing that takes as input software
requirements. In this category we find some approaches which are intended to func-
tional testing as Amland, Chen, Bach, and others that are proposed for non functional
testing as Zech, Xu and Bai. Otherwise, for white-box testing, we find a limited number
of RBT approaches which are intended to Structural testing like Wong and

Table 5. (continued)

Ref. Remaining problems (Limits) Solved problems (Advantages)

• Writing test cases that cover dynamic
aspects of the system dependent on
the engineer expertise

• Difficulty to detect all the differences
between model and implementation

• Allows to easily adapting the model
to the new changes contributed to
system under test and re-generate test
case what makes easy adaptation of
requirement’s evolution and reduce
the maintenance costs

• Using MBT approach in testing
activity allows to high level of
automation and to generate high
volumes of non-repetitive useful tests

Mottahir
et al. [3]
Erdogan
et al. [5]
Felderer
et al. [7]

RBT approach
• When some risks are not identified or
marked as low, may cause problems
in future if they become a reality

• Managing traceability between
requirements and tests is too
expensive

• Difficulty to associate concretes test
cases to risks identified too abstract

• Sometimes, some mitigation are very
expensive in cost and time

• Difficulty to identify and select the
right stakeholders for risk assessment

RBT approach
• Allows optimizing available time and
resources without affecting product
quality

• The RBT activities can be started
early in system cycle life and
discovered defaults

• Test in risk order gives the highest
likelihood to discovering defects in
severity order and therefore allows
risking reducing

• When time, money and resources are
limited, RBT reduces the number of
tests for adapting with available
resources without impacting product
quality

• In RBT the communication is based
on risk that is understandable by all
stakeholders

• Prioritize testing tasks more
efficiently

• Allows to detect high risk defects in
software and therefore to reduce risks

A Comparative Study of Software Testing Techniques 383



Hosseingholizadeh. For model-based testing, the general idea is that from an explicit
behaviour model that represents behaviour of system under test, generate test cases to
validate the expected behaviour of the system under test. Based on studied classifi-
cations and after analyzing different approaches of model-based testing, we concluded
that we can also classify existing MBT approaches according to different criteria viz;
testing type, testing level, testing sources, and notation type used to represent testing
sources. This classification is very detailed and it facilitates the selection of MBT
approaches according to the test context (Table 6).

Based onMBT Approaches Characterization proposed by Arilo and Guilherme [19],
we expose some approaches in order of proposed classification (Tables 7, 8, 9 and 10).

Table 6. MBT approaches classification

Criteria Categories

Testing type • Category approaches which are intended to functional testing
• Category approaches which are intended to non functional testing
• Category approaches which are intended to Structural testing

Testing level • Category approaches which are intended to system level testing
• Category approaches which are intended to integration level testing
• Category approaches which are intended to unit/component level testing
• Category approaches which are intended to regression level testing

Testing source • Category approaches which uses software requirements as testing
source

• Category approaches which uses software internal structure as testing
source

Testing notation
type

• They uses Graphical notation to describe and represent testing source
• They uses Textual/Scripting notation to describe and represent testing
source

• They uses Symbolic (completely mathematical) notation to describe and
represent testing source

Table 7. MBT approaches classification in term of testing type

Functional testing Non-functional testing Structural testing

Abdurazik2000, Crichto 2001,
Chen2002, Cavarra2003,
Botaschanjan2004, Andrews2005,
Bernard2006, Sokenou2006

Bousquet1999, Garousi2006,
Mandrioli1995, Offutt1999b,
Parissis1996, Pretschner2001,
Richardson1992, Rumpe2003,
Felderer2012

• Xu2006
• Kim1999
• Chang1999

384 M. Atifi et al.



Table 8. MBT approaches classification in term of testing level

Unit/Component testing Integration testing System testing Regression testing

• Kim1999
• Dalal999
• Briand2006
• Barbey1996

• Bertolino2003
• Bertolino2005
• Beyer2003
• Chen2005

• Abdurazik2000
• Briand2004
• Crichton2001
• Legeard2004

• Briand2002
• Chen2002
• Den2004
• Tahat2001

Table 9. MBT approaches classification in term of testing source

Software requirements Software internal structure

Ammann1994, Bernard2006, Belletini2005,
Cavarra2003, Friedman2002 and Offut1999

Kim1999, Legard2004, Chang1999,
Garousi2006 and Xu2006

Table 10. MBT approaches classification in term of testing notation type

Graphical notation Textual notation Symbolic notation

Bertolino2003, Briand2002,
Kansomkeat2003, Lund2006,
Sokenou2006 and Zhen2004

Bousquet1999,
Mandrioli1995, Tahat2001,
Hartmann&Nagin2004 and
Tan2004

• Legeard2004
• Richardson1996
• Ammann1994

Table 11. RBT approaches classification in term of testing type

Functional testing Non-functional testing Structural testing

Amland2000,
Bach-Outside-In1999,
Bach-Inside-Out1999,
Chen2003, Chen2002,
Paul2002, Scheafer,
Felderer2012, Stallbaum2008,
Zimmermann2009,
Wendland2012, Stålhane and
Souza2010

Bach-Outside-In1999,
Palanivel201, Zech2011,
Zech2012, Murthy2009,
Casado2010, Xu2012,
Bai2009

Rosenberg1999,
Hosseingholizadeh2010
and Wong 2005

Table 12. RBT approaches classification in term of testing level

Unit/Component
testing

Integration testing System testing Regression
testing

Paul2002,
Wong 2005

Paul2002,
Wong 2005

Amland2000,
Bach-Outside-In1999,
Bach-Inside-Out1999, Paul2002,
Stallbaum2008,
Zimmermann2009 and
Wendland2012

Chen2003,
Chen2002

A Comparative Study of Software Testing Techniques 385



For RBT technique, After Analyzing existing approaches, we concluded that we
can also classify them according to the following criteria: Testing type, Testing level,
Testing sources, and Notation type used to represent testing sources if exist (Tables 11,
12, 13 and 14).

7 Conclusion and Perspective

In this paper, we have studied the main two techniques of software testing. The idea of
the first technique is to use the abstractions of a system under test and its environment
to automatically generate test cases. MBT consists to create an abstract system model
that specifies the behaviour of the SUT, and then generate test cases. The key points of
MBT are the modelling behaviour of the SUT for test generation, the test generation
strategies and techniques, and the concretization of abstract tests into concrete, exe-
cutable tests. The second is a technique that aims to minimize the software risks and
testing problems. RBT consists of a set of activities regarding risk factors identification
associated to software requirements. Once identified, the risks are prioritized according
to its likelihood and impact and the test cases are projected based on the strategies or
approaches for treatment of the identified risk factors. The test efforts are continuously
adjusted according to the risk monitoring. Based on our study between MBT and RBT
techniques we are identifying the following research tasks in the area of model-based
testing and risk based testing viz; Proposition of a meta-model that represent
model-based testing technique; Proposition of a meta-model that represent risk-based
testing technique; Proposition of a novel testing approach based on model based testing
and risk based testing techniques to overcome some testing limitations; and Make some
case studies by applying the novel testing approach to obtain empirical results and
compare our approach over existing approaches.

Table 13. RBT approaches classification in term of testing source

Software requirements Software internal structure

Amland2000, Chen2003, Chen2002, Bach1999,
Redmill2004, Redmill2005, Felderer2012, Zech2011,
Zech2012, Entin2012, Stallbaum2008,
Zimmermann2009, Wendland2012, Stålhane2003,
Souza2010 and Bai2009

Rosenberg1999,
Hosseingholizadeh2010 and
Wong 2005

Table 14. RBT approaches classification in term of testing notation type

UML notation Non UML notation

Stålhane, Chen2002, Chen2003, Entin2012,
Stallbaum2008, Wendland2012, Stallbaum2008 and
Wendland2012

Felderer2012, Felderer2013,
Zech2012 and Xu2012

386 M. Atifi et al.



References

1. Pretschner, A.: Model-based-testing. In: ICSE, pp. 722–732 (2005)
2. Utting, M., Pretschner, A., Legeard, B.: A Taxonomy of Model-Based Testing, a School of

Computing and Mathematical Sciences (2006)
3. Alam, M.M.: Risk-based testing techniques: a perspective study. Int. J. Comput. Appl. 65,

33–41 (2013). (0975–8887)
4. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. ACM, Inc.

(2017)
5. Erdogan, G.: Approaches for the combined use of risk analysis and testing: a systematic

literature review. Int. J. Softw. Tools Technol. Transfer 16, 627–642 (2014). Springer-Verlag
Berlin Heidelberg

6. Felderer, M.: A classification for model-based security testing. In: The Third International
Conference on Advances in System Testing and Validation Lifecycle (2011)

7. Felderer, M.: A taxonomy of risk-based testing. Int. J. Softw. Tools Technol. Transfer 16,
559–568 (2014)

8. Micskei, Z.: Model-Based Testing (MBT), Online Dictionary. http://mit.bme.hu/*micskeiz/
pages/modelbased_testing.html

9. Palanivel, M., Selvadurai, K.: Risk-driven security testing using risk analysis with threat
modeling approach, Palanivel and Selvadurai SpringerPlus (2014)

10. Hartman, A.: AGEDIS: Model-Based Test Generation Tools, January 2009. http://www.
agedis.de

11. Dranidis, D.: JSXM: a tool for automated test generation. In: Proceeding SEFM 2012
Proceedings of the 10th International Conference on Software Engineering and Formal
Methods (2012)

12. Aichernig, B.: MoMuT: UML model-based mutation testing for UML. In: 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST) (2015)

13. Pretschner, A.: One evaluation of model-based testing and its automation. In: ICSE 2005,
15–21 May 2005

14. Kristoffer, L.: A Software Tool for Risk-based Testing. http://www.idi.ntnu.no/grupper/su/
fordypningsprosjekt2004/Jorgensen2004.pdf

15. Dalal, S.R., Jain, A., Karunanithi, N.: Model-based testing in practice. In: ICSE 1999, May
1999

16. Dias Neto, A.C., Travassos, G.H.: A survey on model-based testing approaches: a systematic
review. In: WEASEL Tech 2007, November 2007

17. Cristi, M.: Using {log} as a Test Case Generator for Z Specifications. GNCS project PICT
2011-1002

18. Sarma, M., Murthy, P.V.R.: Model-based testing in industry – a case study with two MBT
tools. ACM, 2–8 May 2010

19. Dias Neto, A.C., Travassos, G.H.: Characterization of model-based software testing
approaches, Technical report at PESC/COPPE/UFRJ, Brazil, Published August 2007

20. Amland, S.: Risk-based testing: risk analysis fundamentals and metrics for software testing
including a financial application case study. J. Syst. Softw. 53, 287–295 (2000)

21. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic risk
assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J. (eds.) SWQD
2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012). doi:10.1007/978-3-642-
27213-4_11

A Comparative Study of Software Testing Techniques 387

http://mit.bme.hu/%7emicskeiz/pages/modelbased_testing.html
http://mit.bme.hu/%7emicskeiz/pages/modelbased_testing.html
http://www.agedis.de
http://www.agedis.de
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt2004/Jorgensen2004.pdf
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt2004/Jorgensen2004.pdf
http://dx.doi.org/10.1007/978-3-642-27213-4_11
http://dx.doi.org/10.1007/978-3-642-27213-4_11


22. Felderer, M., Ramler, R.: Experiences and challenges of introducing risk-based testing in an
industrial project. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2013. LNBIP, vol.
133, pp. 10–29. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35702-2_3

23. Redmill, F.: Exploring risk-based testing and its implications. Softw. Test. Verif. Reliab. 14,
3–15 (2004)

24. Redmill, F.: Theory and practice of risk-based testing. Softw. Test. Verif. Reliab. 15, 3–20
(2005)

25. Yoon, H., Choi, B.: A test case prioritization based on degree of risk exposure and its
empirical study. Int. J. Softw. Eng. Knowl. Eng. 21, 191–209 (2011)

26. Gleirscher, M.: Hazard-based selection of test cases. In: Proceeding if the Sixth International
Workshop on Automation of Software Test (AST 2011), pp. 64–70. ACM, New York
(2011)

27. Gleirscher, M.: Hazard analysis for technical systems. In: Winkler, D., Biffl, S., Bergsmann,
J. (eds.) SWQD 2013. LNBIP, vol. 133, pp. 104–124. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-35702-2_8

28. Ray, M., Mohapatra, D.P.: Risk analysis: a guiding force in the improvement of testing. IET
Softw. 7, 29–46 (2013)

29. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safetycritical embedded systems
driven by fault tree analysis. In: Proceeding of the Fourth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2011), pp. 26–33. IEEE,
New York (2011)

30. Nazier, R., Bauer, T.: Automated risk-based testing by integrating safety analysis
information into system behavior models. In: Proceeding of the 23rd International
Symposium on Software Reliability Engineering Workshops (ISSREW 2012), pp. 213–
218. IEEE, New York (2012)

31. Wendland, M.-F., Kranz, M., Schieferdecker, I.: A systematic approach to risk-based testing
using risk-annotated requirements models. In: Proceeding of the Seventh International
Conference on Software Engineering Advances (ICSEA 2012), pp. 636–642. IARA (2012)

32. Xu, D., Tu, M., Sandford, M., Thomas, L., Woodraska, D., Xu, W.: Automated security test
generation with formal threat models. IEEE Trans. Dependable Secure Comput. 9, 526–540
(2012)

33. Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T.: Risk-based statistical testing: a
refinement-based approach to the reliability analysis of safety-critical systems. In:
Proceeding of the 12th European Workshop on Dependable Computing (EWDC 2009),
pp. 1–8 (2009)

34. Chen, Y., Probert, R.L.: A risk-based regression test selection strategy. In: Proceeding of the
14th IEEE International Symposium on Software Reliability Engineering (ISSRE 2003),
Fast Abstract, pp. 305–306. Chillarege Press (2003)

35. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection with risk
analysis. In: Proceeding of the 2002 Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON 2002), pp. 1–14. IBM Press, New York (2002)

36. Entin, V., Winder, M., Zhang, B., Christmann, S.: Introducing model-based testing in an
industrial scrum project. In: Proceeding of the Seventh International Workshop on
Automation of Software Test (AST 2012), pp. 43–49. IEEE, New York (2012)

37. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test case
generation and prioritization. In: Proceeding of the Third International Workshop on
Automation of Software Test (AST 2008), pp. 67–70. ACM, New York (2008)

38. Hosseingholizadeh, A.: A source-based risk analysis approach for software test optimization.
In: Proceeding of the Second International Conference on Computer Engineering and
Technology (ICCET 2010), vol. 2, pp. 601–604. IEEE, New York (2010)

388 M. Atifi et al.

http://dx.doi.org/10.1007/978-3-642-35702-2_3
http://dx.doi.org/10.1007/978-3-642-35702-2_8
http://dx.doi.org/10.1007/978-3-642-35702-2_8


39. Wong, W.E., Qi, Y., Cooper, K.: Source code-based software risk assessing. In: Proceeding
of the 2005 ACM Symposium on Applied Computing (SAC 2005), pp. 1485–1490. ACM,
New York (2005)

40. Kumar, N., Sosale, D., Konuganti, S.N., Rathi, A.: Enabling the adoption of aspects-testing
aspects: A risk model, fault model and patterns. In: Proceeding of the Eighth ACM
International Conference on Aspect-Oriented Software Development (AOSD 2009),
pp. 197–206. ACM, New York (2009)

41. Rosenberg, L., Stapko, R., Gallo, A.: Risk-based object oriented testing. In: Proceeding of
the 24th Annual Software EngineeringWorkshop, pp. 1–6. NASA, Software Engineering
Laboratory (1999)

42. Bai, X., Kenett, R.S.: Risk-based adaptive group testing of semantic web services. In:
Proceeding of the 33rd Annual IEEE International Computer Software and Applications
Conference (COMPSAC 2009), vol. 2, pp. 485–490. IEEE, New York (2009)

43. Bai, X., Kennett, R.S., Yu, W.: Risk assessment and adaptive group testing of semantic web
services. Int. J. Softw. Eng. Knowl. Eng. 22, 595–620 (2012)

44. Casado, R., Tuya, J., Younas, M.: Testing long-lived web services transactions using a
risk-based approach. In: Proceeding of the 10th International Conference on Quality
Software (QSIC 2010), pp. 337–340. IEEE, New York (2010)

45. Casado, R., Tuya, J., Younas, M.: A framework to test advanced web services transactions.
In: Proceeding of the 4th International Conference on Software Testing, Verification and
Validation (ICST 2011), pp. 443–446. IEEE, New York (2011)

46. Murthy, K.K., Thakkar, K.R., Laxminarayan, S.: Leveraging risk based testing in enterprise
systems security validation. In: Proceeding of the First International Conference on
Emerging Network Intelligence (EMERGING 2009), pp. 111–116. IEEE, New York (2009)

47. Zech, P.: Risk-based security testing in cloud computing environments. In: Proceeding of the
Fourth International Conference on Software Testing, Verification and Validation (ICST
2011), pp. 411– 414. IEEE, New York (2011)

48. Zech, P., Felderer, M., Breu, R.: Towards risk-driven security testing of service centric
systems. In: 2012 12th International Conference on Quality Software (QSIC). IEEE (2012)

49. Schneidewind, N.F.: Risk-driven software testing and reliability. Int. J. Reliab. Qual. Saf.
Eng. 14, 99–132 (2007)

50. Souza, E., Gusmão, C., Venâncio, J.: Risk-based testing: a case study. In: Proceeding of the
Seventh International Conference on Information Technology: New Generations (ITNG
2010), pp. 1032–1037. IEEE, New York (2010)

51. Bach, J.: Heuristic Risk-Based Testing. Software Testing and Quality Engineering
Magazine, November 1999

52. Paul, G.: Risk-Based E-Business Testing, pp. 3–29, 51–80 (2002). ISBN: 1580533140
53. Hartman, A.: The AGEDIS tools for model based testing. In: ISSTA 2004 Proceedings of

the 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(2004)

54. Stålhane, T.: Risk Analysis as a Prioritizing Mechanism in EuroSPI (2003)
55. http://promise.cin.ufpe.br/rbttool/
56. Tretmans, J., Brinksma, E.: Côte de Resyste – automated model based testing. In: Progress

2002 – 3rd Workshop on Embedded Systems (2002)
57. Bouquet, F., Legeard, B., Peureux, F., Torreborre, E.: Mastering test generation from smart

card software formal models. In: Proceedings of International Workshop on Construction
and Analysis of Safe, Secure and Interoperable Smart devices (2004)

A Comparative Study of Software Testing Techniques 389

http://promise.cin.ufpe.br/rbttool/


58. Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Harman, M.,
Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies for automated software
test case generation. J. Syst. Softw. 86, 1978–2001 (2013)

59. http://unina.stidue.net/Ingegneria%20del%20Software%202/Materiale/Sommerville%20-%
20Software%20Engineering%208e.pdf

60. https://msdn.microsoft.com/en-us/library/jj159342.aspx
61. https://www.dice.com/skills/Risk-based+testing.html
62. Legeard, B., et al.: Model-based-Testing User Survey: Results (2014). http://model-based-

testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf

390 M. Atifi et al.

http://unina.stidue.net/Ingegneria%20del%20Software%202/Materiale/Sommerville%20-%20Software%20Engineering%208e.pdf
http://unina.stidue.net/Ingegneria%20del%20Software%202/Materiale/Sommerville%20-%20Software%20Engineering%208e.pdf
https://msdn.microsoft.com/en-us/library/jj159342.aspx
https://www.dice.com/skills/Risk-based%2btesting.html
http://model-based-testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf
http://model-based-testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf

	A Comparative Study of Software Testing Techniques
	Abstract
	1 Introduction
	2 MBT and RBT Processes
	2.1 Model-Based Testing
	2.2 Risk-Based Testing

	3 MBT and RBT Approaches Classification
	3.1 Model-Based Testing Approaches Classification
	3.2 Risk-Based Testing Approaches Classification

	4 MBT and RBT Supporting Tools
	5 MBT and RBT Advantages and Limits
	6 Analyse and Discussion
	7 Conclusion and Perspective
	References


