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Abstract. In the past years, researchers developed approaches to detect
spam in Online Social Networks (OSNs) such as URL blacklisting, spam
traps and even crowdsourcing for manual classification. Although previ-
ous work has shown the effectiveness of using statistical learning to detect
spam, existing work employs supervised schemes that require labeled
training data. In addition to the heavy training cost, it is difficult to
obtain a comprehensive source of ground truth for measurement. In con-
trast to existing work, in this paper we present AdaGraph that is a
novel graph-based approach for spam detection. AdaGraph is unsuper-
vised, hence it diminishes the need of labeled training data and training
cost. Particularly, AdaGraph effectively detects spam in large-scale OSNs
by analyzing user behaviors using graph clustering technique. More-
over, AdaGraph continuously updates detected communities to comply
with users dynamic interactions and activities. Extensive experiments
using Twitter datasets show that AdaGraph detects spam with accuracy
92.3%. Furthermore, the false positive rate of AdaGraph is less than
0.3% that is less than half of the rate achieved by the state-of-the-art
approaches.

Keywords: Unsupervised spam detection · Social networks · Distrib-
uted systems · Evolving graphs algorithms · Community detection

1 Introduction

With the widespread usage of user generated content in Online Social Networks
(OSNs), spam has increased and has become an effective vehicle for malware
and illegal advertisement distribution. Spam not only pollutes the content con-
tributed by normal users, resulting in bad user experiences, but also misleads and
even traps legitimate users. Furthermore, OSNs have also led to new methods
of delivering spam, such as spammy apps, social bots, and fake accounts. These
methods result in increasing social media spam to 355% in 2013 over 20121.
Spotting spammers is very challenging especially with the dynamic nature of
social networks where activities and interactions among users evolve rapidly.

1 http://nexgate.com/solutions/nexgate-social-media-security-stat-center/.
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Additionally, the problem becomes more challenging due to the huge amount
of data shared by users. Therefore, researchers have analyzed different spam
strategies to design mechanisms to combat the spam activities from different
prospectives, including studying the redirection chains of embedded URLs [1–3],
analyzing textual content [4–6], as well as analyzing different friendship graph
properties of spammers against those of legitimate users [4–6].

The research community has produced a substantial number of mechanisms
for automated spam detection based on binary classification mechanisms. The
design of such spam detection mechanisms in general is guided by the behavior
dissimilarity exhibited by legitimate users than spammers. The central premise
as proved in the existing work is that spammer behavior appears anomalous rel-
ative to normal user behavior along some features that could be extracted from
textual content (i.e., content-based features such as number of URLs, hash-
tags and mentions used per post) and OSN friendship graph (i.e., graph-based
features that are calculated from the friendship graph such as local clustering
coefficient and betweenness centrality). However, all of the existing techniques
rely on supervised binary classification methods [1,4,6–8].

Although the proposed binary classification methods succeed at detecting
spam content, they implicitly require offline training with statistically sufficient
and representative labeled training set of different user behaviors in order to
achieve good detection coverage. This requirement itself is hard to satisfy, not to
mention the difficulty of adapting to different behavior patterns that emerge in
the future. Furthermore, the number of features required to discriminate spam-
mers increases due to the diverse users activists in OSNs, the evolving spam
patterns, as well as the limited the amount of labeled data. For example, Zhu
et al. [8] use 1,680 different user activities in their supervised detection app-
roach. Additionally, binary classification methods result in false positive rate
that could range between 5.7% and 0.8% [7,9] resulting in some legitimate users
are identified as spammers and get disconnected from the network. Particularly,
derived from the remark that spammers hijack trending topics and include many
URLs in their posts, content-based classification methods distinguish spammers
by the extensive use of URLs, hashtags and mentions. Consequently, legitimate
users such as the official news channels that continuously broadcast posts with
diverse topics containing URLs and hashtags of the trending topics are going to
be classified as spammers.

To address these issues, in this paper we propose AdaGraph2 that is a
novel unsupervised graph-based clustering technique for spam detection. Dif-
ferently from existing work, AdaGraph constructs a user similarity graph that
is created by connecting users with edges having weights that quantify their
behavioral similarity. The essence of AdaGraph is to construct a user simi-
larity graph that encodes within its topology a holistic view of all behavioral
interactions and patterns of OSN users. Afterwards, AdaGraph performs graph
clustering by applying community detection on top of the newly created graph.

2 This work is under the umbrella of the iSocial EU Marie Curie ITN project (FP7-
PEOPLE-2012-ITN).
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In particular, we create a user-based feature vector to summarize both content
and graph features associated with every user. Accordingly, the edges are created
connecting users having weights equal to the cosine similarity of feature vectors
of source and destination nodes3. Afterwards, AdaGraph detects communities
on top of similarity graph to identify different behavioral patterns existing in
the social network, then spots the spam patterns among the detected ones by
applying some lexical analysis. Spam detection using graph-based clustering not
only diminishes the training cost, but also achieves low false positive rate. Graph-
based clustering provides meaningful insights to the existing behavioral patterns,
therefore, categorizes the existing patterns into more homogeneous and accurate
clusters than binary splitting as illustrated in Fig. 1. Hence, grouping users into
multiple communities minimizes the chances of high false positive rates, specially
for legitimate users with diverse and highly active behaviors such as news chan-
nel accounts. Clustering will group such accounts into a separate cluster with a
closer distance to users having legitimate behavior pattern with diverse topics
rather than the spam pattern that exhibit high URL and hashtags rate, yet in
the same time has high similarity in the content. Hence, graph-based cluster-
ing provides more accurate results compared to binary classification without the
need of the repetitive cost of maintaining up-to-date labeled training dataset.

However, centralized graph-based clustering techniques are not realistically
scalable due to the huge number of users in current OSNs. Therefore, graph-
based clustering algorithms must be developed as massively parallel clustering
that eliminates the need of single centralized aggregation point. Even better,
graph-based clustering can be implemented as fully decentralized solution to
be applicable with currently emerging Decentralized Online Social Networks
(DOSNs). DOSNs operate as distributed information management platforms
on top of networks of trusted servers or P2P infrastructures [10]. Thus, DOSNs
provide a privacy preserving alternative to current OSNs, where users have full
control of their data. Accordingly, in AdaGraph we allow every node to indepen-
dently process its data and only communicate with its direct neighbors. Addi-
tionally, AdaGraph adaptively updates similarity connections among nodes in
the detected communities based on the newly received information integrated
with the previously known without the need of recomputing from scratch. Hence,
AdaGraph is capable of monitoring the behavioral changes and dynamically
adapts to the evolving social activities and interactions among users. We have
performed experiments, using Twitter datasets, to show the effectiveness of our
proposed approach. The results show that AdaGraph provides more accurate
spam detection rate with accuracy up to 92.3% and false positive rate less than
0.3%. Thus, AdaGraph outperforms the state-of-the-art techniques not only in
plain performance figures, but also by removing the need of labeled data and
offline training effort (since AdaGraph is unsupervised) as well as removing the
scalability issues due to the fully decentralized and distributed nature of the
algorithm.

3 Users and nodes refer to the same meaning and are used interchangeably.
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Fig. 1. Similarity-based clustering vs. Binary classification. (a) Initial social graph
of OSN users having different behavioral patterns. (b) AdaGraph creates similarity
graph and extracts communities that group users with similar behaviors. (c) Binary
classification organizes all users in feature space to find the best splitting hyperplane.

Accordingly, our work offers the following contributions to the problem of
spam detection:

– We propose unsupervised spam detection approach that requires no a priori
labeling while maintaining low false positive rate,

– We propose a novel graph-based spam detection technique that detects spam
using graph clustering on top of a constructed user similarity graph which
encodes user behavioral patterns within its topology,

– We introduce adaptive algorithms that enable similarity-based community
detection to evolve with respect to the behavioral changes of the users,

– Our proposed graph-based spam detection technique out-performs existing
centralized binary classification,

– All of the above contributions are performed in purely distributed and decen-
tralized manner.

The remainder of this paper is structured as follows. In Sect. 2 we list the
features used for spam detection, whereas, in Sect. 3 we illustrate the core algo-
rithms implemented in AdaGraph. Furthermore, in Section 3 we detail the lexi-
cal analysis method adopted to indicate the spammers communities among the
detected ones. In Sect. 4 we present evaluation of AdaGraph. Finally, Sect. 5
shows the related work, then Sect. 6 concludes the paper.

2 Spam Detection Features

In this section, we first briefly describe the graph-based and content-based used
in AdaGraph to compute user-based feature vectors.
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2.1 Graph-Based Features

In this part we utilize the original social friendship graph connecting users. We
consider the social network as undirected graph G = (V, E), where V is the set
of nodes and E is the set of edges. eij ∈ E denotes a relationship between nodes
vi and vj ∈ V .

Definition 1. Local Clustering Coefficient (LCC). Given vi ∈ V , let DFi =
{vj ∈ V |eij ∈ E} be the direct friends of vi. LCCi represents the local clustering
coefficient of vi, and equals to:

LCC(vi) =
|ejk : vj , vk ∈ DFi, ejk ∈ E|

|DFi|(|DFi| − 1)
(1)

LCC is one of the graph-based features that are hard to fake [6]. LCC of a
node is the ratio between the number of existing links among its direct neighbors
and the number of links that could possibly exist among them [11]. LCC is used
to quantify the extent to which the direct neighbors of a node are connected to
each other. Due to decentralized nature of AdaGraph, we assume that every node
calculates its LCC locally by keeping track of two-hop neighbors (i.e., neighbors
of the neighbors).

Definition 2. Average Neighbors Clustering Coefficient (ANCC). We define
ANCC of node vi as the average of LCCes computed by DFi.

ANCC is used to quantify the connectedness of the neighborhood of a node.
Madden et al. [12] show that majority of OSN users are more skeptical regarding
the acceptance of new friendship requests from strangers. Therefore, it is hard
for spammers to have strongly connected neighborhood surrounding them. Thus,
ANCCes of legitimate users are commonly higher than those of spammers.

2.2 Content-Based Features

A recent study [13] shows that spammers generate posts using complex tem-
plates such as finite-state machines to evade spam detection methods. Although,
finite-state machines increase the number of different spam posts that can be
generated, all of the generated posts follow a structured content, for example
[mentions of other users + some text + URLs + hashtags of trending topics].
Furthermore, spam posts still have some words in common such as “look at this
video” or “gain more”, etc. Therefore, AdaGraph adopts the following content-
based features.

Definition 3. Average Posts Similarity (APS). Let Pi be the set of posts shared
by vi, and pair(j,k) be the pair of two posts pj and pk in Pi. We define the average
posts similarity of vi as follows:

APS(vi) =
1

(|Pi|
2

)
∑

pair(j,k)∈Pi

pj ∩ pk
pj ∪ pk

(2)
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This feature leverages the similarity among the posts shared by a single user. We
define post similarity using jaccard coefficient, such that for every post pair of a
user, we divide the intersection (i.e., the number of common words in the post
pair) by the total number of words in the post pair. Due to decentralized nature
of AdaGraph, we assume that posts are publicly available and can be collected
by other nodes.

Definition 4. Mentions Ratio (MR). Spammers add mentions to random users
to increase the visibility of their content. Accordingly, we define MR of a user
ui as the number of mentions which refer to a username not included in DFi to
the total number of posts generated by ui.

Definition 5. URL Ratio (UR). Spammers embed malicious URLs in their
posts to direct the users to their websites. Thus, we define UR as the the ratio
of the number of posts containing a URL to the total number of posts a user has
(i.e., |URLs|/|Pi|).
Definition 6. Hashtags Ratio (HR). Hijacking trending topics in OSNs has
been a widely adopted strategy among spammers to reach wider audience. There-
fore, we define HR as the number of trending topics associated with user posts
to the total number of posts (i.e., |Hashtahs|/|Pi|).

3 Graph-Based Spam Detection

In this section, we present the core of AdaGraph. First, we illustrate the con-
struction of user similarity graph, followed by the details of the local clustering
algorithm. Afterwards, we present the quick community adaptation algorithm
used for tracing the evolution of users behaviors represented in detected com-
munities over time. Furthermore, we discuss the computational complexity of
AdaGraph and present the adopted lexical analysis approach to spot spammers
communities among detected ones.

3.1 Similarity Graph Construction

The first step of AdaGraph is to construct users similarity graph from the social
graph. To build a massively parallel approach, we allow every node in the social
graph to participate in similarity graph construction. Initially, every node starts
by creating similarity edges among itself and its social neighbors. The edges are
created by connecting any pair of nodes having cosine similarity of their feature
vectors greater than specific threshold. So as, the weight of an edge connecting
node i and node j equals to:

w(eij) =
xi.xj

||xi||.||xj || (3)

where, xi is the feature vector of node i and xj is the feature vector of node j.
Particularity, the feature vector of a node has the following values [LCC, ANCC,



344 A. Soliman and S. Girdzijauskas

APS, MR, UR, HR] as defined in Sect. 2. If the weight w(eij) is greater than the
threshold ε, then an edge connecting node i and node j is added to the graph with
weight equals to w(eij) (see Fig. 1, the thickness of an edge reflects its weight).
Afterwards, every node enlarges the similarity graph further by exploring the
possibility of creating more similarity edges with the neighbors of its currently
direct neighbors.

3.2 Clustering by Community Detection

Our objective is to find the topological communities inside the constructed simi-
larity graph. Let us first define similarity graph as an undirected weighted graph
G = (V, E), where V is the set of nodes and E is the set of similarity edges,
where eij ∈ E denotes cosine similarity between nodes vi and vj ∈ V that is
computed as defined in Eq. 3. Commonly, finding communities is well-know as
community detection and is defined as:

Definition 7. Community Detection. A community detection C, also known as
graph clustering, is a mapping

C : G → G′
1 × . . . × G′

n (4)

that partitions G into n non-empty, node-disjoint subgraphs G′
1 × . . .×G′

n repre-
senting a set of communities or clusters. A widely used quality measure for com-
munity detection is the modularity Q of the clustering C(G) [14], that assigns a
quality value q to the clustering C(G) defined by

q :=
∑

i

(w(eii) − b2i ) (5)

where bi =
∑

j w(eij), where eij represents an edge in community i for which the
target node of the edge lies in community j. The higher the quality value q is, the
better the detected community is. One possible definition for C is to maximize
Q over all clustering C(G) [14].

AdaGraph employs recently developed decentralized diffusion-based commu-
nity detection strategy [15]. In particular, every node in the similarity graph
starts by joining the node with the maximum cosine similarity among its direct
friends to form a community. Afterwards, in successive iterations every node
chooses to quit its current community and join one of its neighbour’s if this
brings some modularity gain. As described in method selectCommunity in Algo-
rithm 1, nodes select the dominant community in their neighborhood to join
(i.e., the community with the highest sum of weights). This step is iteratively
repeated until no node wants to change its community as it already represents
the dominant one of all its neighbors. Thereafter, the topological communities
detected in the similarity graph represent the different user behavioral patterns.
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Algorithm 1. Community Detection Methods
Result: Community Structure Ct+1

Procedure selectCommunity(node u)
forall the C ∈ NeighborCommunity(u) do

q(C) ← sum(weuj )|Cj = C
end
Cu ← Cj |q(Cj) = max(q(C))

Procedure changeCommunity(node u)
Cunew ← selectCommunity(u)
if Cu �= Cunew then

Cu ← Cunew

forall the x ∈ Neighbor(u) do
changeCommunity(x)

end

end

3.3 Community Structure Adaptation

OSNs are dynamic by nature due to rapidly evolving social activities and inter-
actions among users. Therefore, the constructed similarity graph must be contin-
uously updated to cope with evolving users’ behaviors. Thus, we have integrated
adaptive modularity-based methods for identifying and tracing the changes in
the communities structure of the constructed similarity graph. The similarity
graph is updated by either inserting or removing a node or set of nodes, or by
either introducing or deleting an edge or set of edges. We have modeled these
graph changes as a collection of simple events namely: newNode, removeNode,
newEdge and removeEdge. AdaGraph starts by extracting initial community
structure C0, by detecting the communities exist in the first snapshot of the net-
work. Thereafter, this initial structure is continuously updated for the successive
snapshots by applying different adaptation methods as illustrated in Algorithms
2 and 3.

Algorithm 2. Node Simple Events
Result: An updated Community Structure Ct+1

Procedure newNode(node u)
Cu ← selectCommunity(u)
Update Ct+1 : Ct+1 ← (Ct \ Cu) ∪ (Cu ∪ u)

Procedure removeNode(node u)
Cu ← (Cu \ u)
forall the v ∈ Neighbor(u) do

removeEdge(evu)
end
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– newNode(V+u): a new node u with its associated edges are introduced,
such that u could come with no or more than one new edge(s). When u
joins the similarity graph, it assigns itself to the dominant community in its
neighborhood as illustrated in method newNode.

– removeNode(V−u): node u with its adjacent edges are removed from the
graph. As shown in methods removeNode, when an existing node u is of a
community C is removed, all of its adjacent edges are removed as a result.
Consequently, the resulting community structure might change, hence, neigh-
bors of that removed node re-evaluate their community memberships as illus-
trated in the next method removeEdge.

Algorithm 3. Edge Simple Events
Result: An updated Community Structure Ct+1

Procedure newEdge(edge evu)
if v and u are new nodes then

Ct+1 ← Ct ∪ {v, u}
else if Cv = Cu then

Ct+1 ← Ct

else
changeCommunity(u)
changeCommunity(v)

Procedure removeEdge(edge evu)
if (v, u) is a single edge then

Ct+1 ← (Ct \ {v, u}) ∪ {v} ∪ {u}
else if either v (or u) is of degree one then

Ct+1 ← (Ct \ Cv) ∪ {v} ∪ {Cv \ v}
else if Cv �= Cu then

Ct+1 ← Ct

else
changeCommunity(u)
changeCommunity(v)

– newEdge(E+e): a new edge e is introduced, we can divide it further into two
cases: an intra-community edge (both nodes belong to the same community)
or an inter-community edge (connecting two communities). In the first case, no
change happens to the community structure (as detailed in method newEdge).
Yet, the interesting situation happens when e is an inter-community edge, as
its presence could possibly make source and destination nodes change their
community memberships. Consequently, these nodes notify their neighbors in
case of change, so as cascading updates could take place if further changes are
required (as detailed in method changeCommunity).

– removeEdge(E−e): an existing edge e in the graph is removed. Similarly
to edge addition, edge removal can be divided into two case, such that the
edge to be removed e is either an inter-community edge or intra-community
edge. In the first case, the removal of e will strengthen the current com-
munity structure and cause no change to it. However, in the second case,
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edge removal might cause community split. Therefore, the edge source and
destination nodes re-evaluate their community memberships and notify their
neighbors in case of change.

3.4 Lexical Analysis of Posts

As aforementioned, the core of AdaGraph is to detect different behavioral pat-
terns in the user similarity graph by performing community detection. However,
spotting spam patters among detected ones is not straightforward. So as, further
lexical and semantic analysis is required to efficiently spot spammers communi-
ties among extracted ones. Specially, spammers can use automated spinning to
avoid duplicate detection, such that they can create new versions with vaguely
similar meaning but sufficiently different appearance. Therefore, in AdaGraph
we apply lexical analysis of the most frequent words to determine if those words
or their synonyms are commonly used by spammers. AdaGraph integrates Gav-
agai lexicon4 that learns the words synonyms and their related n-grams terms.
Accordingly, we identify a set of trusted nodes in the social graph and these
nodes are responsible for labeling any of detected communities as spam if the
majority of the users belonging to these communities frequently use spam words
or their lexical related terms.

3.5 Complexity Analysis

The model cost is expected to be low given that every node performs its local
computation independently of the other nodes. We discuss the complexity of
AdaGraph in terms of communication traffic among all the nodes in the OSN.
By our adopted work for decentralized community detection, the algorithm com-
plexity is O(N ∗ D ∗ R), where N is the total number of users in the similarity
graph, D is the average node degree, and R is the total number of rounds needed
for the algorithm to converge5 [15]. This step requires that all the nodes are online
at the time of its execution; however, it is also a process that is performed once
and that is incrementally updated only. Moreover, as we demonstrate through
experiments on real OSN data, the convergence time of our solution is very
realistic and achievable (see Sect. 4.3).

4 Evaluation

AdaGraph applies vertex-centric approach which is proved to be scalable, effi-
cient and fast. Our algorithms are implemented in GraphLab6, with two different
distributed execution modules. In the first module, nodes participate in creating
the similarity graph using their feature vectors. Thereafter, the control is moved

4 Available via http://lexicon.gavagai.se/.
5 R depends on the topological properties of the underlying graph.
6 https://turi.com/products/create/.

http://lexicon.gavagai.se/
https://turi.com/products/create/
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Table 1. Twitter datasets used in our experiments.

Twitter dataset US Active UK Active US Passive

Tweets 453,519 489,484 360,927

Legitimate accounts 17,322 19,312 12,128

Suspended accounts 2,072 1,617 3,109

Social-graph edges 1,357,806 1,187,036 2,349,314

Similarity-graph edges 2,149,414 2,297,150 3,339,617

Fig. 2. The tweeting distribution in Twitter datasets in log scale.

to the second module that performs the community detection algorithm. In the
following subsections, we thoroughly evaluate the performance of AdaGraph in
terms of the accuracy of spam detection. We compare AdaGraph with different
centralized and supervised binary classification approaches, utilizing the Weka
tool7, namely: K-means (KM) with number of clusters = 2, Decision Tree (DT)
and Random Forest (RF).

4.1 Datasets

We have collected our dataset from Twitter using Twitter streaming API8

from May 2015 to July 2016. We have accessed Twitter’s API using privileged
accounts, collecting users’ tweets and the social graph connecting these users.
In order to identify the spammers, we have queried the status of all accounts
regularly to check if any got suspended for abusive behavior. Upon suspension,
we identify suspended accounts as spammers. Table 1 lists the details of the
collected datasets. The first two datasets (US Active and UK Active) are col-
lected from users with high level of posting tweets located in United States and
United Kingdom, respectively. Yet, the third dataset (US Passive) is collected
from users located in United States with low level of posting activity. Accord-
ingly, in Fig. 2 we show the tweeting distribution for the collected datasets in
log scale. As shown, tweeting distribution follows power law probability distrib-
ution, such that there is uneven distribution of number of tweets being posted
7 http://www.cs.waikato.ac.nz/ml/weka/.
8 https://dev.twitter.com/rest/public.

http://www.cs.waikato.ac.nz/ml/weka/
https://dev.twitter.com/rest/public
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Fig. 3. The weight distribution in the generated similarity graphs for Twitter datasets
in log scale.

by users. Majority of users post few tweets, whereas there is small number of
highly active users who post large number of tweets.

4.2 Generated Similarity Graph

As aforementioned, the user similarity graph is constructed in a fully decentral-
ized manner, such that each node explores its surrounding neighborhood pro-
gressively to add further similarity edges. Furthermore, as mentioned in Sect. 3.1,
nodes add similarity edges if the similarity weight is greater than the threshold ε.
We allow nodes to determine freely the value of ε, such that each node computes
the average weight of its current edges, and sets the average weight as value
for ε. As shown in Table 1, the average number of added edges in the similarity
graph is almost equal to 50% of the existing edges in the social graph. Accord-
ingly, AdaGraph connects only highly similar nodes instead of creating a fully
connected graphs.

Figure 3 depicts the similarity weight distribution obtained for each dataset
in log scale. As shown, the similarity weight distribution follows power law prob-
ability distribution similarly to the tweeting distribution. Furthermore, the sim-
ilarity weight distribution spans over wider range in US Active and UK Active
compared to US Passive. Particularly, in US Passive 91.5% of the similarity
weight is less than 0.25, and this resulted from the low post frequency of users
in this dataset. Therefore, we can infer that the more active posting behavior
of users, the more strong edges are be added in the similarity graph. Addition-
ally, AdaGraph can successfully adapt to different social activities of the users
and accordingly create the user similarity graph to reflect the underlying user
behavior.

4.3 Adaptive Community Detection

As aforementioned, every node repeatedly runs the community detection, until
communities structure does not change any more (i.e., the convergence is
reached). Figure 4(a) depicts the number of rounds required till convergence, and
number of extracted communities per round. As shown, in the very beginning
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Fig. 4. Community detection results of AdaGraph. (a) Number of iterations required
for convergence. (b) Number of detected communities per each snapshot. (c) The mod-
ularity gain obtained per each snapshot.

the number of communities is very large, every node starts to form a community
with one of its direct neighbors. However, over time nodes join the dominant
communities in their neighborhood, as a result the communities start to merge
and the number of communities continues to decrease. In order to identify the
communities that contain spammers, we have construct a list of 500 words that
are commonly used by spammers associated with their semantically similar terms
and n-grams (see Sect. 3.4). Further, for every node we select the most frequent
words used in its tweets. Accordingly, the collected word list per community
is checked against a list of common spam words. A community is identified as
spam if majority (i.e., more than 50%) of its members use common spam words
in their tweets. The results show that the percentage of spam communities is
17.3%, 21.6% and 23.5% in US Active, UK Active and US Passive, respectively.

Additionally, we study the adaptability of AdaGraph with dynamic and
evolving graphs. We started by loading 50% to form the basic structure, such
that we constructed the similarity graph using only 50% of nodes from the social
graph and 50% of their associated tweets. Afterwards, we simulated the network
evolution by adding the remaining nodes/tweets via a series of 25 growing snap-
shots. Figure 4(b) depicts the number of detected communities per snapshot as
well as Fig. 4(c) shows the resulted modularity of the detected communities per
snapshot. Furthermore, we have noticed that the changes caused by incremen-
tally adding the snapshots are localized, such that on average 15% to 17% of old
nodes got affected by the change and re-evaluate their communities member-
ship. Consequently, AdaGraph dynamically adapts to the topological changes
of evolving graphs. Moreover, AdaGraph adapts incrementally with no need to
start community detection from scratch.

Furthermore, we study the effect of ε as a graph sparsification parameter, as
well as the ability of AdaGraph to extract communities in denser graphs. Accord-
ingly, we have repeated the community detection experiments with another gen-
erated user similarity graphs in which all edges are added even though the
weight is less than ε. Consequently, the new generated user similarity graphs
are denser than those generated having edges with weight greater than ε. The
obtained results show that AdaGraph maintains the same convergence rate and
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Fig. 5. The performance gain achieved by AdaGraph compared with centralized and
supervised methods. The reported values are the average of achieved performance
across the three datasets. (c) AdaGraph performance using only the first month snap-
shot of the data.

structure of detected communities with denser graphs, though the execution
time is almost double the execution time of ε sparsificated graphs. Specifi-
cally, with ε sparsificated graphs the execution time is 15.4, 17.7, and 13 min
for US Active, UK Active and US Passive, respectively. On the other hand,
with denser graphs the execution time is 39, 35.9, and 26.9 min for US Active,
UK Active and US Passive, respectively. Therefore, by disregarding a large frac-
tion of low-weight edges that are insignificant for the task, running times of
community detection algorithms are reduced.

4.4 Performance Comparison

We calculate the accuracy of AdaGraph using True Positive Rate and False
Positive Rate, that are defined as the following: (1) True Positive Rate (TPR):
we calculate TPR as the fraction of spammers that are successfully detected.
(2) False Positive Rate (FPR): we calculate FPR as the fraction of legitimate
users that are identified as spammers.

We have updated all of the supervised machine learning algorithms to be per-
formed in online learning fashion. Instead of executing them in batch learning
manner that uses the entire training dataset at once, we have used the monthly
updates of the data in a sequential order to update the predictors by retrain-
ing them with misclassified data points from future data. On the other hand,
AdaGraph is already developed to capture the evolving changes in social net-
work. For the comparison, we update the user similarity graph with sequence of
monthly data.

Figure 5 depicts the detection performance comparison of AdaGraph with
the different centralized and supervised classification methods. As shown, Ada-
Graph outperforms all binary classification methods especially when limited data
is available. Specifically, the gap between AdaGraph and other methods in pre-
diction accuracy for the first month is around 14,1%. Namely, the performance
of supervised classification methods gets increased as the available training data
increases (i.e., starting from the sixth month). On the other hand, AdaGraph cre-
ates an evolving similarity graph and continuously clusters users more accurately
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from the first timestamp, such that TPR of AdaGraph is the highest (92.3%).
Furthermore, AdaGraph follows a decentralized approach that enables to process
small chunks of data in parallel, as well as AdaGraph requires no retraining as
supervised classification methods do. Thus, AdaGraph rapidly adapts to concept
drift that occurs in the system (user behavior), while other approaches require
retraining with the new emerging patterns.

Furthermore, AdaGraph has the lowest FPR, which means that graph-based
clustering successfully detect spammers with minimum effect on the legitimate
users. Specifically, we can see that FPR in AdaGraph can be steadily main-
tained under 0.3%, as shown in Fig. 5(b), while the rate of RF method (the best
binary classification method) starts with 2% and drops to 0.39% with increase
of the training data. Consequently, the community detection approach adopted
in AdaGraph perfectly categorizes the existing behavioral patterns into more
homogeneous and accurate clusters than binary classification.

Additionally, we have further analyzed AdaGraph considering only the data
collected in the first snapshot. In this experiment, we want to study the minimum
number of posts needed to achieve good TPR meanwhile the FPR is kept low.
Figure 5(c) depicts the weekly detection performance of AdaGraph in the first
month. As shown, lowest TPR of AdaGraph is more than 75% while the FPR is
less than 1.6% during the first week when the average number of available posts is
14 post across the three datasets. Hence, AdaGraph has an acceptable accuracy
with very limited data. The first key reason behind AdaGraph good performance
is the hybrid features that AdaGraph employs, i.e., the graph-based and con-
tent based features. Secondly and most importantly, the community detection
algorithm categorizes user into more homogeneous and accurate clusters than
binary classification.

5 Related Work

The first family of spam detection mechanisms includes techniques using black-
lists to identify URL on OSNs websites directing to spam content [1,2]. How-
ever, URL blacklisting has several practical challenges. First, those blacklists are
publicly available, hence spammers can evade them by changing their domain
names or hiding them behind some redirecting pages. Second, URL blacklisting
becomes ineffective with the spread usage of URL shortening services such as
bit.ly and t.co. Therefore, different techniques have been proposed to analyze
the redirection chains of URLs and their correlations [3]. Yet, those techniques
are not designed as online detection tools, since they either have long lag-time
or limited efficiency.

Furthermore, a rich corpus of research work lies in adopting supervised
machine learning based methods using hybrid features extracted from textual
content and OSN friendship graph. For example, Hongyu et al. [4] propose to
train a binary classifier with hybrid features including user social degree, yet
spammers can increase their social degree by purchasing more followers. Thus,
Yang et al. [6] employ graph-based features that are hard to fake such as local
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clustering coefficient and betweenness centrality. More recently, [16] suggests an
unsupervised solution to spam detection based on sybil defense mechanism. The
proposed scheme starts by identifying non-spammers (i.e., non-sybils) by apply-
ing a clustering algorithm on social graph. The authors focus their analysis on
intensive URL sharing, yet instead of using URL blacklisting, they add new
user-link edges to the social graph by connecting users sharing the same URL.
However, the assumption that sybil nodes form tight-knit communities does not
presist as shown in recent studies [17].

6 Conclusion

In this paper, we have introduced AdaGraph that is a novel decentralized and
unsupervised spam detection framework in contrast to existing centralized and
supervised approaches. AdaGraph resembles graph-based spam detection tech-
nique that detects spam using graph clustering on top of a newly constructed
user similarity graph which encodes within its topology a holistic view of all
behavioral interactions and patterns of OSN users. More importantly, AdaGraph
integrates community detection algorithm that categorizes the existing user
behavioral patterns into more homogeneous and accurate clusters than binary
classification. The proposed approach achieves detection accuracy upto 92.3%
and false positive rate less than 0.3%. Additionally, AdaGraph is scalable and
massively parallel that suitably fits DOSNs and OSNs environments.
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