
Agreement Functions for Distributed
Computing Models

Petr Kuznetsov(B) and Thibault Rieutord

LTCI, Télécom ParisTech, Université Paris Saclay, Paris, France
petr.kuznetsov@telecom-paristech.fr

Abstract. The paper proposes a surprisingly simple characterization of a
large class of models of distributed computing, via an agreement function:
for each set of processes, the function determines the best level of set con-
sensus these processes can reach. We show that the task computability of
a large class of fair adversaries that includes, in particular superset-closed
and symmetric one, is precisely captured by agreement functions.

1 Introduction

In general, a model of distributed computing is a set of runs, i.e., all allowed
interleavings of steps of concurrent processes. There are multiple ways to define
these sets of runs in a tractable way.

A natural one is based on failure models that describe the assumptions on
where and when failures might occur. By the conventional assumption of uniform
failures, processes fail with equal and independent probabilities, giving rise to
the classical model of t-resilience, where at most t processes may fail in a given
run. The extreme case of t = n − 1, where n is the number of processes in the
system, corresponds to the wait-free model.

The notion of adversaries [6] generalizes uniform failure models by defining a
set of process subsets, called live sets, and assuming that in every model run, the
set of correct, i.e., taking infinitely many steps, processes must be a live set. In
this paper, we consider adversarial read-write shared memory models, i.e., sets
of runs in which processes communicate via reading and writing in the shared
memory and live sets define which sets of processes can be correct.

A conventional way to capture the power of a model is to determine its
task computability, i.e., the set of distributed tasks that can be solved in it. For
example, consider the 0-resilient adversary A0-res defined through a single live
set {p1, . . . , pn}: the adversary says that no process is allowed to fail (by taking
only finitely many steps). It is easy to see that the model is strong enough to
solve consensus, and, thus, any task [14].1

T. Rieutord—Supported by ANR project DISCMAT, grant agreement ANR-14-
CE35-0010-01.

1 In the “universal” task of consensus, every process has a private input value, and
is expected to produce an output value, so that (validity) every output is an input
of some process, (agreement) no two processes produce different output values, and
(termination) every process taking sufficiently many steps returns.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 175–190, 2017.
DOI: 10.1007/978-3-319-59647-1 14

176 P. Kuznetsov and T. Rieutord

In this paper, we propose a surprisingly simple characterization of the task
computability of a large class of adversarial models through agreement functions.

An agreement function α maps subsets of processes {p1, . . . , pn} to positive
integers in {0, 1, . . . , n}. For each subset P , α(P) determines, intuitively, the
level of set consensus that processes in P can reach when no other process is
active, i.e., the smallest number of distinct input values they can decide on.

For example, the agreement function of the wait-free shared-memory model
is αwf : P �→ |P | and the t-resilient model, where at most t processes may fail
or not participate, has αt,res : P �→ max(0, |P | − n + t + 1).

The agreement function of an adversary A can be computed using the notion
of set consensus power of an adversary introduced in [13]: αA(P) = setcon(A|P).
Here A|P is the restriction of A to P , i.e., the adversary defined through the
live sets of A that are subsets of P .

To each agreement function α, corresponding to an existing model, we asso-
ciate a particular model, the α-model. The α-model is defined as the set of runs
satisfying the following property: the set P of participating (taking at least one
step) processes in a run is such that α(P) ≥ 1 and is such that at most α(P) − 1
processes take only finitely many steps in it. An algorithm solves a task T in the
α-model if processes taking infinitely many steps produces an output in any run.

We show that, for the class of fair adversaries, agreement functions “tell it
all” about task computability: a task is solvable in a fair adversarial model with
agreement function α if and only if it is solvable in the α-model. Fair adversaries
include notably the class of superset-closed [16,19] and the class of symmetric [23]
adversaries. Intuitively, superset-closed adversaries do not anticipate failures of
processes: if S ∈ A and S ⊆ S′, then S′ ∈ A. Symmetric adversaries do not
depend on processes identifiers: if S ∈ A, then for every set of processes S′ such
that |S′| = |S|, we have S′ ∈ A.

A corollary of our result is a characterization of the k-concurrency model [9,10].
Here we use the fact that the k-concurrency model is equivalent, with respect to
task solvability, to the k-obstruction-freedom [13], a symmetric adversary consist-
ing of live sets of sizes from 1 to k. Thus, the agreement function αk-conc : P �→
min(|P |, k) captures the k-concurrent task computability. An alternative charac-
terization of k-concurrency via a compact affine taskwas recently suggested in [11].

There are, however, models that are not captured by their agreement func-
tions. We give an example of a non-fair adversary that solves strictly more
tasks than its α-model. Characterizing the class of models that can be captured
through their agreement function is an intriguing open question.

The rest of the paper is organized as follows. Section 2 gives model definitions.
In Sect. 3, we formally define the notion of an agreement function. In Sect. 4, we
prove a few useful properties of α-models. In Sect. 5, we present the class of
fair adversary, show that superset-closed and symmetric adversaries are fair and
that fair adversaries are captured by their agreement functions. In Sect. 6, we
give examples of models that are not captured by agreement functions. Section 7
reviews related work, and Sect. 8 concludes the paper.

Agreement Functions for Distributed Computing Models 177

2 Preliminaries

Processes, Runs, Models. Let Π be a system of n asynchronous processes,
p1, . . . , pn that communicate via a shared atomic-snapshot memory [1]. The
atomic-snapshot (AS) memory is represented as a vector of n shared variables,
where each process is associated with a distinct position in this vector, and
exports two operations: update and snapshot. An update operation performed
by pi replaces position i with a new value and a snapshot operation returns the
current state of the vector.

We assume that processes run the full-information protocol: the first value
each process writes is its input value. A process alternates between taking snap-
shots of the memory and writing back the result of its latest snapshot. A run is
thus a sequence of process identifiers stipulating the order in which the processes
take operations: each odd appearance of i in the sequence corresponds to an update
and each even appearance corresponds to a snapshot. A model is a set of runs.

Failures and Participation. A process that takes only finitely many steps
of the full-information protocol in a given run is called faulty, otherwise it is
called correct. A process that took at least one step in a given run is called
participating in it. The set of participating processes in a given run is called its
participating set. Note that, since every process writes its input value in its first
step, the inputs of participating processes are eventually known to every process
that takes sufficiently many steps.

Tasks. In this paper, we focus on distributed tasks [18]. A process invokes a task
with an input value and the task returns an output value, so that the inputs and
the outputs across the processes which invoked the task respect the task specifica-
tion. Formally, a task is defined through a set I of input vectors (one input value
for each process), a set O of output vectors (one output value for each process),
and a total relation Δ : I �→ 2O that associates each input vector with a set of pos-
sible output vectors. An input ⊥ denote a not participating process and an output
value ⊥ denote an undecided process. Check [15] for more details.

In the task of k-set consensus, input values are in a set of values V (|V | ≥
k + 1), output values are in V , and for each input vector I and output vector
O, (I,O) ∈ Δ if the set of non-⊥ values in O is a subset of values in I of size at
most k. The special case of 1-set consensus is called consensus [7].

Solving a Task. We say that an algorithm A solves a task T = (I,O,Δ) in
a model M if A ensures that (1) in every run in which processes start with an
input vector I ∈ I, all decided values form a vector O ∈ O such that (I,O) ∈ Δ,
and (2) if the run is in M , then every correct process decides.

This gives rise to the notion of task solvability, i.e., a task T is solvable in a
model M if and only if there exists an algorithm A which solves T in M .

BGG Simulation. The principal technical tool in this paper is a simulation
technique that we call the BGG simulation, after Borowski, Gafni, Guerraoui,
collecting algorithmic ideas presented in [3,8–10]. The technique allows a system

178 P. Kuznetsov and T. Rieutord

of n processes that communicate via read-write shared memory and k-set con-
sensus objects to simulate a k-process system running an arbitrary read-write
algorithm. In particular, we can use this technique to run an extended BG sim-
ulation [8] on top of these k simulated processes, which gives a simulation of an
arbitrary k-concurrent algorithm. An important feature of the simulation is that
it adapts to the number of currently active simulated processes a: if it goes below
k (after some simulated processes complete their computations), the number of
used simulators also becomes a. We refer to [11] for a detailed description of this
simulation algorithm.

3 Agreement Functions

Definition 1 (Agreement function). The agreement function of a model M
is a function α : 2Π → {0, . . . , n}, such that for each P ∈ 2Π , in the set of runs
of M in which no process in Π \P participates, iterative α(P)-set consensus can
be solved, but (α(P)−1)-set consensus cannot. By convention, if M contains no
(infinite) runs with participating set P , then α(P) = 0.

Intuitively, for each P , we consider a model consisting of runs of M in which
only processes in P participate and determine the best level of set consensus
that can be reached in this model, with 0 corresponding to a model that consists
of finite runs only.

Note the agreement function α of a model M is monotonic: P ⊆ P ′ ⇒
α(P) ≤ α(P ′). Indeed, the set of runs of M where the processes in Π \P do not
take any step is a subset of the set of runs of M where the processes in Π \ P ′

do not take any step. In this paper, we only consider monotonic functions α.

Definition 2 (α-model). Given a monotonic agreement function α, the α-
model is the set of runs in which, the participating set P satisfies: (1) α(P) ≥ 1;
and, (2) at most α(P) − 1 participating processes take only finitely many steps.

We say that a model is characterized by its agreement function α if and only if
it solves the same set of task as the α-model.

Definition 3 (α-adaptive set consensus). The α-adaptive set consensus task
satisfies the validity and termination properties of consensus and the α-
agreement property: if at some time τ , k distinct values have been returned,
then the current participating set Pτ is such that α(Pτ) ≥ k.

We can easily show that any model with agreement function α can solve the
α-adaptive set consensus task, i.e., to achieve the best level of set consensus
without this an priori knowledge of the set of processes that are allowed to
participate [20].

Agreement Functions for Distributed Computing Models 179

4 Properties of the α-model

We now relate task solvability in the α-model and in M . More precisely, we show
that (1) the agreement function of the α-model is α and (2) any task T solvable
in the α-model is also solvable in every model with agreement function α.

Theorem 1. The agreement function of the α-model is α.

Proof. Take P such that α(P) > 1 and consider the set of runs of the α-model in
which no process in Π \P participates and, thus, according to the monotonicity
property, at most α(P)−1 processes are faulty. To solve α(P)-set consensus, we
use the safe-agreement protocol [2], the crucial element of BG simulation. Safe
agreement solves consensus if every process that participates in it takes enough
steps. The failure of a process then may block the safe-agreement protocol. In
our case as at most α(P) − 1 processes in P can fail, so we can simply run α(P)
safe agreement protocols: every process goes through the protocols one by one
using its input as a proposed value, if the protocol blocks, it proceeds to the next
one in the round-robin manner. The first protocol that returns gives the output
value. Since at most α(P) − 1 processes are faulty, at least one safe agreement
eventually terminates, and there are at most α(P) distinct outputs. To see that
(α(P) − 1) cannot be solved in this set of runs, recall that one cannot solve
(α(P) − 1)-set consensus (α(P) − 1)-resiliently [2,18,22].

The following result is instrumental in our characterizations of fair
adversaries:

Theorem 2. For any task T solvable in an α-model, T is solvable in any read-
write shared memory model which solves the α-adaptive set consensus task.

Proof. Using α-adaptive set consensus and read-write shared memory, we can
run BGG-simulation so that, when the participating set is P , at most α(P) BG
simulators are activated and at least one is live (i.e., takes part in infinitely many
simulation steps). Moreover, we make a process provided with a (simulated) task
output to stop proposing simulated steps to BGG simulation. Hence, the number
of active simulators is also bounded by the number of participating processes
without an output, with at least one live BG simulator if there is a correct
process without a task output.

These BG simulators are used to simulate an execution of a protocol solving T
in the α-model. And so, since any finite run can be extended to a valid run of
the α-model, the protocol can only provide valid outputs.

We make BG simulators execute the breadth-first simulation: every BG sim-
ulator executes an infinite loop consisting of (1) updating the estimated partic-
ipating set P , then (2) try to execute a simulation step of every process in P ,
one by one.

Now assume that there exist k ≥ 1 correct processes that are never provided
with a task output. BGG simulation ensure that we eventually have at most
min(k, α(P)) active simulators, with at least one live among them. Let s be such

180 P. Kuznetsov and T. Rieutord

a live simulator. After every process in P have taken their first steps, s tries to
simulate steps for every process of P infinitely often. A process simulation step
can be blocked forever only due to an active but not live BG simulator2, thus
there are at most min(k, α(P))− 1 simulated processes in P taking only finitely
many steps.

As at most α(P) − 1 processes have a finite number of simulated steps, the
simulated run is a valid run of the α-model. Moreover, as at most k−1 processes
have a finite number of simulated steps, there is one process never provided with
a task output simulated as a correct process. But, a protocol solving a task
eventually provides task outputs to every correct process — a contradiction.

Any model can solve its associated α-adaptive set consensus task [20]. Along
with Theorem 2, we derive that:

Corollary 1. Let M be any model, αM be its agreement function, and T be any
task that is solvable in the αM -model. Then M solves T .

5 Characterizing Fair Adversaries

An adversary A is a set of subsets of Π, called live sets, A ⊆ 2Π . An infinite
run is A-compliant if the set of processes that are correct in that run belongs
to A. An adversarial A-model is thus defined as the set of A-compliant runs.

An adversary is superset-closed [19] if each superset of a live set of A is
also an element of A, i.e., if ∀S ∈ A, ∀S′ ⊆ Π, S ⊆ S′ =⇒ S′ ∈ A. Superset-
closed adversaries provide a non-uniform generalization of the classical t-resilient
adversary consisting of sets of n − t or more processes.

An adversary A is a symmetric adversary if it does not depend on process
identifiers: ∀S ∈ A, ∀S′ ⊆ Π, |S′| = |S| =⇒ S′ ∈ A. Symmetric adversaries
provides another interesting generalization of the classical t-resilience condition
and k-obstruction-free progress condition [9] which was previously formalized by
Taubenfeld as its symmetric progress conditions [23].

5.1 Set Consensus Power

The notion of the set consensus power [12] was originally proposed to capture the
power of adversaries in solving colorless tasks [3,4], i.e., tasks that can be defined
by relating sets of inputs and outputs, independently of process identifiers.

Definition 4. The set consensus power of A, denoted by setcon(A), is defined
as follows:

– If A = ∅, then setcon(A) = 0
– Otherwise, setcon(A) = maxS∈A mina∈S setcon(A|S\{a}) + 1.3

2 Note that the extended BG-simulation provides a mechanism which ensures that a
simulation step is not blocked forever by a no longer active BG simulator.

3 A|P is the adversary consisting of all live sets of A that are subsets of P .

Agreement Functions for Distributed Computing Models 181

Thus, for a non-empty adversary A, setcon(A) is determined as setcon(A|S\{a})
+ 1 where S is an element of A and a is a process in S that “max-minimize”
setcon(A|S\{a}). Note that for A �= ∅, setcon(A) ≥ 1.

It is shown in [12] that setcon(A) is the smallest k such that A can solve
k-set consensus.

It was previously shown in [13] that for a superset-closed adversary A, the set
consensus power of A is equal to csize(A), where csize(A) denote the minimal
hitting set size of A, i.e., a minimal subset of Π that intersects with each live
set of A. Therefore if A is superset-closed, then setcon(A) = csize(A). For a
symmetric adversary A, it can be easily derived from the definition of setcon
that setcon(A) = |{k ∈ {1, . . . , n} : ∃S ∈ A, |S| = k}|.
Theorem 3. The agreement function of adversary A is αA(P) = setcon(A|P).

Proof. An algorithm AP that solves αA(P)-set consensus, assuming that the
participating set is a subset of P , is a straightforward generalization of the result
of [12]. It is shown in [12] that setcon(A)-set consensus can be solved in A. But
if we restrict the runs to assume that the processes in Π \P do not take a single
step, then the set of possible live sets reduces to A|P . Thus using the agreement
algorithm of [12] for the adversary A|P , we obtain a setcon(A|P)-set consensus
algorithm, or equivalently, an αA(P)-set consensus algorithm.

It is immediate from Theorem 3 that A ⊆ A′ implies setcon(A) ≤ setcon(A′).

5.2 Fair adversaries

In this paper we propose a class of adversaries which encompasses both classical
classes of super-set closed and symmetric adversaries. Informally, an adversary
is fair if its set consensus power does not change if only a subset of the processes
are participating in an agreement protocol.

More precisely, consider A-compliant runs with participating set P and
assume that processes in Q ⊆ P want to reach agreement among themselves:
only these processes propose inputs and are expected to produce outputs. We
can only guarantee outputs to processes in Q when the set of correct processes
include some process in Q, i.e., when the current live set intersect with Q. Thus,
the best level of set consensus reachable by Q is defined the set consensus power
of adversary A|P,Q = {S ∈ A|P , S ∩ Q �= ∅}, unless |Q| < setcon(A|P).

Definition 5 (Fair adversary). An adversary A is fair if and only if:

∀P ⊆ Π,∀Q ⊆ P, setcon(A|P,Q) = min(|Q|, setcon(A|P)).

Property 1.
setcon(A|P,Q) ≤ min(|Q|, setcon(A|P))

Proof. For any P ⊆ Π and Q ⊆ P , A|P,Q = {S ∈ A|P , S ∩ Q �= ∅} is a subset
of A|P and, thus, setcon(A|P,Q) ≤ setcon(A|P). Moreover, setcon(A|P,Q) ≤ |Q|,
as |Q|-set consensus can be solved in {S ∈ A|P , S ∩ Q �= ∅} as follows: every
process waits until some process in Q writes its input and decides on it.

182 P. Kuznetsov and T. Rieutord

Theorem 4. Any superset-closed adversary is fair.

Proof. Suppose that there exists a superset-closed adversary A that is not
fair, i.e., by Property 1, ∃P ⊆ Π,∃Q ⊆ P, setcon({S ∈ A|P , S ∩ Q �= ∅}) <
min(|Q|, setcon(A|P)). Clearly A|P and A|P,Q are also superset-closed and, thus,
setcon(A|P) = csize(A|P) and setcon(A|P,Q) = csize(A|P,Q).

Since setcon(A|P,Q) < |Q|, a minimal hitting set H ′ of A|P,Q is such that
|H ′| < |Q|, and therefore there exists a process q ∈ Q, q �∈ H ′. Also, since
setcon(A|P,Q) < setcon(A|P), H ′ is not a hitting set of A|P . Thus, there exists
S ∈ A|P such that S ∩ H ′ = ∅. Hence, (S ∪ {q}) ∩ H ′ = ∅. Since A|P is
superset closed, we have S ∪ {q} ∈ A|P and, since q ∈ Q, S ∪ {q} ∈ A|P,Q. But
(S ∪ {q}) ∩ H ′ = ∅—a contradiction with H ′ being a hitting set of A|P,Q.

Theorem 5. Any symmetric adversary is fair.

Proof. The set consensus power of a generic adversary A is defined recursively
through finding S ∈ A and p ∈ S which max-minimize the set consensus power
of A|S\{p}. Let us recall that if A ⊆ A′ then setcon(A) ≤ setcon(A′). Therefore,
S can always be selected to be locally maximal, i.e., such that there is no live set
in S′ ∈ A with S � S′.

Suppose by contradiction that A is symmetric but not fair, i.e., by Property 1,
for some P ⊆ Π and Q ⊆ P , setcon(A|P,Q) < min(|Q|, setcon(A|P)). We show
that if the property holds for P and Q such that A|P,Q �= ∅ then it also holds
for some P ′ � P and Q′ ⊆ Q.

First, we observe that |Q| > 1, otherwise setcon(A|P,Q) = 0 and, thus, we
have A|P,Q = ∅.

Since A is symmetric, A|P is also symmetric. Thus, for every S ∈ A|P and
p ∈ S such that setcon(A|P) = 1 + setcon(A|S\{p}), any S′ such that |S′| = |S|
and for any p′ ∈ S′, we also have setcon(A|P) = 1 + setcon(A|S′\{p′}). Since we
can always choose S to be a maximal set, we derive that the equality holds for
every maximal set S in A|P and every p ∈ S.

Let us recall that, by the definition of setcon, there exists L ∈ A|P,Q and
a ∈ L such that setcon(A|P,Q) = 1 + setcon((A|P,Q)|L\{a}) = setcon(A|L,Q).
Since A|P is symmetric, for all L′, |L′| = |L| and L ∩ Q ⊆ L′ ∩ Q, we have
setcon(A|L′,Q) ≥ setcon(A|L,Q). Indeed, modulo a permutation of process iden-
tifiers, A|L′,Q contains all the live sets of A|L,Q plus live sets in A|L′ that
overlap with (L′ ∩ Q) \ (L ∩ Q). Since setcon(A|L,Q) = setcon(A|P,Q) and
L′ ∈ A|P,Q, we have setcon(A|L′,Q) = setcon(A|L,Q). Therefore, for any a ∈ L′,
setcon(A|L′\{a},Q) < setcon(A|L′\{a}).

In particular, for L′ with L′ ∩ Q ∈ {L′, Q}, setcon(A|L′,Q) = setcon(A|L,Q).
Note that L′ � Q, otherwise, A|L′,Q = A|L′ and, thus, setcon(A|L′,Q) =
setcon(A|L′) = setcon(A|P), contradicting our assumption.

Thus, let us assume that Q � L′. Note that Q′ = Q \ {a} � L′ \ {a},
and since |Q| ≥ 2, Q′ �= ∅, we have setcon(A|P ′,Q′) < setcon(A|P ′) for P ′ =
L′ \ {a} and Q′ ⊆ P ′, Q′ �= ∅. Furthermore, since setcon(A|P,Q) < |Q|, we have
setcon(A|P ′,Q′) < |Q′|.

Agreement Functions for Distributed Computing Models 183

By applying this argument inductively, we end up with a live set P and
Q ⊆ P such that setcon(A|P) ≥ 1, Q �= ∅ and setcon(A|P,Q) = 0. By the
definition of setcon, A|P �= ∅ and A|P,Q = ∅. But A|P is symmetric and Q �= ∅,
so for every S ∈ A|P , there exists S′ ∈ A|P such that |S| = |S′| and S′ ∩ Q �= ∅,
i.e., A|P,Q �= ∅—a contradiction.

Note that not all adversaries are fair. For example, the adversary A =
{{p1}, {p2, p3}, {p1, p2, p3}} is not fair. On the other hand, not all fair adver-
saries are either super-set closed or symmetric. For example, the adversary
A = 2{p1,p2,p3} \ {p1, p2} is fair but is neither symmetric not super-set closed.
Understanding what makes an adversary fair is an interesting challenge.

5.3 Task Computability in Fair Adversarial Models

In this section, we show that the task computability of a fair adversarial A-model
is fully grasped by its associated agreement function αA.

Algorithm 1. Code for BG simulator si to simulate adversary A.
1 Shared variables: R[1, . . . , αA(Π)] ← (⊥, ∅), PMEM [p1, . . . , pn] ← ⊥;

2 Local variables: Scur, Stmp, P, A, W ∈ 2Π , pcur, ptmp ∈ N, Scur ← ∅;

3 Repeat
4 P = {p ∈ Π, PMEM [p] �= ⊥};
5 A = {p ∈ P, PMEM [p] �= �};
6 if i ≥ min(|A|, αA(P)) then
7 W = P ;
8 for j = αA(Π) down to i + 1 do
9 (ptmp, Stmp) ← R[j];

10 if (ptmp �= ⊥) ∧ (Stmp ⊆ W) ∧ ((setcon(A|Stmp,A) ≥ j)) then
11 W ← Stmp \ {ptmp};

12 if (Scur �⊆ W) ∨ (setcon(A|Scur ,A) < i) then
13 if ∃S ∈ A|W , setcon(A|S,A) ≥ i then
14 Scur = S ∈ A|W such that setcon(A|S,A) ≥ i;
15 else Scur = S ∈ A|P ;
16 pcur = Scur.first();
17 R[i] ← (pcur, Scur);

18 if (SimulateStep(pcur) = SUCCESS) then
19 if Outputed(pcur) then PMEM [pcur] = �;
20 pcur = Scur.next(pcur);

21 else AbortStep(pcur) ;

22 Forever;

184 P. Kuznetsov and T. Rieutord

Using BGG simulation, we show that the αA-model can be used to solve any
task T solvable in the A-model. In the simulation, up to α(P) BG simulators
execute the given algorithm solving T , where P is the participating set of the
current run. We adapt the currently simulated live set to include processes not
yet provided with a task output, and ensure that the chosen live set is simulated
sufficiently long until some active processes are provided with outputs of T . The
simulation terminates as soon as all correct processes are provided with outputs.

The code for BG simulator bi ∈ {b1, . . . , bαA(Π)} is given in Algorithm 1.
It consists of two parts: (1) selecting a live set to simulate (lines 7–17), and
(2) simulating processes in the selected live set (lines 18–21).

Selecting a Live Set. This is the most involved part. The idea is to select a
participating live set L ⊆ P such that: (1) the set consensus power of A|L,A =
{S ∈ A|L, S ∩A �= ∅}, with A the set of participating processes not yet provided
with a task output, is greater than or equal to the BG simulator identifier i;
(2) L is a subset of the live sets currently selected by live BG simulators with
greater identifiers; (3) L does not contain the processes currently simulated by
live BG simulators with greater identifiers.

The live set selection in Algorithm 1 consists in two phases. First, BG simu-
lators determine a selection window W , W ⊆ P , i.e., the largest set of processes
which is a subset of the live sets selected by live BG simulators with greater iden-
tifiers, and which excludes the processes currently selected by live BG simulators
with greater identifiers (lines 7–11). This is done iteratively on all BG simulators
with greater identifiers, from the greatest to the lowest. At each iteration, if the
targeted BG simulator bk appears live, the current window is restricted to the
live set selected by bk, but excluding the process selected by bk. Determining if
bk appears live is simply done by checking whether, with the current simulation
status observed, the live set selected by bk is valid, i.e., satisfies conditions (1), (2)
and (3) above.

The second phase (lines 12–17), consists in checking if the currently selected
live set is valid (line 12). If not, the BG simulator tries to select a live set L
which belongs to the selection window W , and hence satisfies (2) and (3), but
also such that the set consensus power of AL,A is greater than i, the BG simulator
identifier (line 14). If the simulator does not find such a live set, it simply selects
any available live set (line 15).

Simulating a Live Set. The idea is that, if the selected live set does not
change, the BG simulator simulates steps of every process in its selected live set
infinitely often. Unlike conventional variations of BG simulations, a BG simulator
here does not skip a blocked process simulation, instead it aborts and re-tries
the same simulation step until it is successful.

Intuitively, this does not obstruct progress because, in case of a conflict,
there are two live BG simulators blocked on the same simulation step, but the
BG simulator with the smaller identifier will eventually change its selected live
set and release the corresponding process.

Agreement Functions for Distributed Computing Models 185

Pseudocode. The protocol executed by processes in the αA-model is the fol-
lowing: Processes first update their status in PMEM by replacing ⊥ with their
initial state. Then, processes participate in an αA-adaptive BGG simulation (i.e.,
BGG simulation runs on top of an αA-adaptive set consensus protocol), where
BG simulators use Algorithm 1 to simulate an algorithm solving a given task T
in the adversarial A-model. When a process p observes that PMEM [p] has been
set to � (“termination state”), it stops to propose simulation steps.

Proof of Correctness. Let Pf be the participating set of the αA-model run,
and let Af be the set of processes p ∈ Pf such that PMEM [p] is never set to �.

Lemma 1. There is a time after which variables P and A in Algorithm1 become
constant and equal to Af and Pf for all live BG simulators.

Proof. Since Π is finite, the set of processes p such that PMEM [p] �= ⊥ eventually
corresponds to Pf as the first step of p is to set PMEM [p] to its initial state and
PMEM [p] can only be updated to � afterwards. As after PMEM [p] is set to �,
it cannot be set to another value, eventually, the set of processes from Pf such
that PMEM [p] �= � is equal to Af . Live BG simulators update P and A infinitely
often, so eventually their values of P and A are equal to Pf and Af respectively.

Lemma 2. If Af contains a correct process, then there is a correct BG simulator
with an identifier smaller or equal to min(|Af |, αA(Pf)).

Proof. In our protocol, eventually only correct processes in Af are proposing
BGG simulation steps. Thus eventually, at most |Af | distinct simulations steps
are proposed. The αA-adaptive set consensus protocol used for BGG simula-
tion ensures that at most αA(Pf) distinct proposed values are decided. But
as there is a time after which only processes in Af propose values, eventually,
min(|Af |, αA(Pf))-set consensus is solved. Thus BGG simulation ensures that,
when this is the case, there is a live BG simulator with an identifier smaller or
equal to min(|Af |, αA(Pf)).

Suppose that Af contains a correct process, and let bm be the greatest live
BG simulator such that m ≤ min(|Af |, αA(Pf)) (by Lemma 2). Let Si(t) denote
the value of Scur and let pi(t) denote the value of pcur at simulator bi at time t.
Let also τf be the time after which every active but not live BG simulators have
taken all their steps, and after which A and P have become constant and equal
to Af and Pf for every live BG simulator (by Lemma1).

Lemma 3. For every live BG simulator bs, with s ≤ min(|Af |, αA(Pf)), even-
tually, bs cannot fail the test on line 13.

Proof. Consider a correct BG simulator bs starting a round after time τf . Let
Ws be the value of W at the end of line 11. Two cases may arise:

– If Ws = Pf , as A is fair, then setcon(A|Ws,Af
) = min(|Af |, setcon(A|Pf

)).
Thus, setcon(A|Ws,Af

) ≥ s.

186 P. Kuznetsov and T. Rieutord

– Otherwise, Ws is set on line 11 to some Starget \ {ptarget} at some itera-
tion l, with setcon(A|Starget,Af

) ≥ l for l > s. We have setcon(A|Ws,Af
) =

setcon((A|Starget,A)|Starget\{ptarget}) which, by the definition of setcon, is
greater or equal to setcon(A|Starget,A) − 1 ≥ l − 1 ≥ s, so we have
setcon(A|Ws,Af

) ≥ s.

By the definition of setcon, as setcon(A|Ws,Af
) ≥ s, there exists S ⊆ Ws such

that setcon(A|S,Af
) ≥ s. So, eventually bs will always succeed the test on line 13.

Lemma 4. For every live BG simulator bs, with s ≤ min(|Af |, αA(Pf)), even-
tually, the value of W computed at the end of iteration m + 1 (at lines 8–11) is
equal to some constant value Wm,f .

Proof. No BG simulator bl, with l > m, executes lines 7–21 after time τf . There-
fore R[l] is constant after time τf , ∀l > m. As the computation of W , on lines 7–
11, only depends on the value of A, P and R[l], for αA(Π) ≥ l > m, all constant
after time τf , then the value of W computed at the end of line 11 for iteration
m+1 is the same at every round initiated after time τf for any live BG simulator
bs, with s ≤ min(|Af |, αA(Pf)).

Lemma 5. If Af contains a correct process, then the set of processes with an
infinite number of simulated steps is a live set of A containing a process of Af .

Proof. As bm is live, it proceeds to an infinite number of rounds. By Lemma4,
eventually bm computes the same window in every round. By Lemma 3, if bm

does not have a valid live set selected, then it eventually selects a valid one
for Wm,f . Thus, eventually bm never changes its selected live set. Let Sm,f be
this live set. Afterwards, in each round, bm tries to complete a simulation step
of pm(t) and, if successfully completed, changes pm(t) in a round robin manner
among Sm,f . Two cases may arise:

– If pm(t) never stabilizes, then the set of processes with an infinite number of
simulated steps includes Sm,f . By Lemma 4, every other live BG simulator
with a smaller identifier computes the same value of W at the end of round
m+1 (of the loop at lines 8–11). Thus, after the Sm,f is selected by bm, as Sm,f

is valid, every BG simulator will select a subset of Sm,f for its window value
in every round. Moreover, by Lemma 3, these BG simulators will always find
valid live sets to select, and so they will eventually simulate only processes in
Sm,f . Thus, the set of processes with infinitely many simulated steps is equal
to Sm,f , a live set intersecting with Af .

– Otherwise, pm(t) eventually stabilizes on some pm,f . Therefore, bm attempts
to complete a simulation step of pm,f infinitely often. Two sub-cases may
arise:

– Either |Sm,f | = 1 and, therefore, bm is the only one live BG simulator per-
forming simulation steps, and thus, the set of processes with an infinite
number of simulated steps is equal to Sm,f , a live set intersecting with Af .

Agreement Functions for Distributed Computing Models 187

– Otherwise, by Lemma 4, every live BG simulator with a smaller identifier
eventually selects a window, and thus a live set (Lemma 3), which is a
subset of Sm,f \ {pm,f}. Thus every live BG simulator with a smaller
identifier eventually selects processes to simulate distinct from pm,f and,
thus, cannot block bm infinitely often—a contradiction.

Lemma 6. If A is fair, then any task T solvable in the A-model is solvable in
the αA-model.

Proof. Let us assume that it is not the case: there exists a task T and a fair
adversary A such that T is solvable in the adversarial A-model but not in the αA-
model. As every finite run of the A-model can be extended to and A-compliant
run, the simulated algorithm can only provide valid outputs to the simulated
processes. Thus, it can only be the case that a correct process is not provided
with a task output, i.e., belongs to Af .

Therefore, by Lemma 5, the simulation provides an A-compliant run, i.e., the
set of processes with an infinite number of simulated steps is a live set. As the
run is A-compliant then each process p with an infinite number of simulated
steps is eventually provided with a task output and thus pMEM [p] is set to �.
Thus, they cannot belong to Af — a contradiction.

Combining Corollary 1 and Lemma 6 we obtain the following result:

Theorem 6. For any fair adversary A, the adversarial A-model and the αA-
model are equivalent regarding task solvability.

6 Agreement Functions Do not Always Tell it All

We observe that agreement functions are not able to characterize the task com-
putability power of all models. In particular there are non-fair adversaries not
captured by their agreement functions.

Consider for example the adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}. It is
easy to see that setcon(A) = 2, but that setcon(A|Π,{p2,p3}) = 1 which is strictly
smaller than min(|{p2, p3}|, setcon(A)) = 2. Therefore, A is non-fair.

Consider the task Cons2,3 consisting in consensus among p2 and p3: every
process in {p2, p3} proposes a value and every correct process in {p2, p3} decides
a proposed value, so that p2 and p3 cannot decide different values. Cons2,3

is solvable in the adversarial A-model: every process in {p2, p3} simply waits
until p2 writes its proposed value and decides on it. Indeed, this protocol solves
Cons2,3 in the A-model as if p3 is correct, p2 is also correct.

The agreement function of A, αA, is equal to 0 for {p2} or {p3}, to 2 for
{p1, p2, p3}, and to 1 for all other values. It is easy to see that αA only differs
from α1−res, the agreement function of the 1-resilient adversary, for {p1} where
αA({p1}) = 1 > α1−res({p1}) = 0. Therefore, ∀P ⊆ Π,αA(P) ≥ α1−res(P),
and thus any task solvable in the A-model is solvable in the 1-resilient model.

The impossibility of solving such a task 1-resiliently can be directly derived
from the characterization of task solvable t-resiliently from [8]. Indeed, let p1

188 P. Kuznetsov and T. Rieutord

wait for some process to output in order to decide the same value. Processes p2
and p3 use the ability to solve consensus among themselves to output a unique
value. As there are two correct processes in the system, p2 or p3 will eventually
terminate and thus p1 will not wait indefinitely. This gives a 3-process 1-resilient
consensus algorithm—a contradiction [7,21]. Thus, the A-model is not equivalent
with the αA-model, even though they have the same agreement function.

7 Related Work

Adversarial models were introduced by Delporte et al. in [6]. With respect to col-
orless tasks, Herlihy and Rajsbaum [17] characterized a class superset-closed [19]
adversaries (closed under the superset operation) via their minimal core sizes.
Still with respect to colorless tasks, Gafni and Kuznetsov [12] derived a charac-
terization of general adversary using its consensus power function setcon. A side
result of this present paper is an extension of the characterization in [12] to any
(not necessarily colorless) tasks.

Taubenfeld [23] introduced the notion of symmetric progress conditions,
equivalent to our symmetric adversaries.

The BG simulation establishes equivalence between t-resilience and wait-
freedom with respect to task solvability [3,4,8]. Gafni and Guerraoui [10] showed
that if a model allows for solving k-set consensus, then it can be used to simulate
a k-concurrent system in which at most k processes are concurrently invoking
a task. In our simulation, we use the fact that a model M associated to an
agreement function αM allows to solve an α-adaptive set consensus, using the
technique proposed in [5], which enables a composition of the ideas in [3,4,8]
and [10]. Running BG simulation on top of a k-concurrent system, we are able
to derive the equivalence between fair adversaries and their corresponding α-
models.

8 Concluding Remarks

By Theorem 6, task computability of a fair adversary A is characterized by its
agreement function α: a task is solvable with A if and only if it is solvable in
the α-model. The result implies characterizations of superset-closed [16,19] and
symmetric [23] adversaries and, via the equivalence result established in [9], the
model of k-concurrency.

As a corollary, for all models M and M ′ characterized by their agreements
functions, such that ∀P ∈ Π,αM ′(P) ≥ αM (P), we have that M is stronger
than M ′, i.e., the set of tasks solvable in M contains the set of tasks solvable
in M ′. In particular, if the two agreement functions are equal, then M and M ′

solve exactly the same sets of tasks. Note that if a model M is characterized by
its agreement function α, then it belongs to the weakest equivalence class among
the models whose agreement function is α.

Agreement Functions for Distributed Computing Models 189

An intriguing open question is therefore how to precisely determine the scope
of the approach based on agreement functions and if it can be extended to
capture larger classes of models.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100. ACM Press, May 1993

3. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In:
PODC, pp. 41–51. ACM Press, New York (1993)

4. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation
algorithm. Distrib. Comput. 14(3), 127–146 (2001)

5. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Kuznetsov, P.: Wait-freedom with
advice. Distrib. Comput. 28(1), 3–19 (2015)

6. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagree-
ment power of an adversary. Distrib. Comput. 24(3–4), 137–147 (2011)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

8. Gafni, E.: The extended BG-simulation and the characterization of t-resiliency. In:
STOC, pp. 85–92 (2009)

9. Gafni, E., Guerraoui, R.: Simulating few by many: limited concurrency = set con-
sensus. Technical report (2009). http://web.cs.ucla.edu/eli/eli/kconc.pdf

10. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23217-6 2

11. Gafni, E., He, Y., Kuznetsov, P., Rieutord, T.: Read-write memory and k-set con-
sensus as an affine task. In: OPODIS (2016). Technical report. https://arxiv.org/
abs/1610.01423

12. Gafni, E., Kuznetsov, P.: Turning adversaries into friends: simplified, made con-
structive, and extended. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS
2010. LNCS, vol. 6490, pp. 380–394. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17653-1 28

13. Gafni, E., Kuznetsov, P.: Relating L-resilience and wait-freedom via hitting sets.
In: ICDCN, pp. 191–202 (2011)

14. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1), 123–
149 (1991)

15. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann, Burlington (2014)

16. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: PODC,
pp. 105–113 (2010)

17. Herlihy, M., Rajsbaum, S.: Simulations and reductions for colorless tasks. In:
PODC, pp. 253–260 (2012)

18. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(2), 858–923 (1999)

19. Kuznetsov, P.: Understanding non-uniform failure models. Bull. EATCS 106, 53–
77 (2012)

http://web.cs.ucla.edu/eli/eli/kconc.pdf
http://dx.doi.org/10.1007/978-3-642-23217-6_2
https://arxiv.org/abs/1610.01423
https://arxiv.org/abs/1610.01423
http://dx.doi.org/10.1007/978-3-642-17653-1_28
http://dx.doi.org/10.1007/978-3-642-17653-1_28

190 P. Kuznetsov and T. Rieutord

20. Kuznetsov, P., Rieutord, T.: Agreement functions for distributed computing mod-
els. CoRR, abs/1004.4701 (2017)

21. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)

22. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. Comput. 29, 1449–1483 (2000)

23. Taubenfeld, G.: The computational structure of progress conditions. In: Lynch,
N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 221–235. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15763-9 23

http://dx.doi.org/10.1007/978-3-642-15763-9_23

	Agreement Functions for Distributed Computing Models
	1 Introduction
	2 Preliminaries
	3 Agreement Functions
	4 Properties of the -model
	5 Characterizing Fair Adversaries
	5.1 Set Consensus Power
	5.2 Fair adversaries
	5.3 Task Computability in Fair Adversarial Models

	6 Agreement Functions Do not Always Tell it All
	7 Related Work
	8 Concluding Remarks
	References

