
Aspect-Oriented State Machines for Resolving
Conflicts in XACML Policies

Meryeme Ayache1(B), Mohammed Erradi1, Bernd Freisleben2,
and Ahmed Khoumsi3

1 ENSIAS, Mohammed V University, Rabat, Morocco
meryemeayache@gmail.com, mohamed.erradi@gmail.com
2 Department of Mathematics and Computer Science,
Philipps-Universität Marburg, Marburg, Germany

freisleb@informatik.uni-marburg.de
3 Department of Electrical and Computer Engineering,

University of Sherbrooke, Sherbrooke, Canada
ahmed.khoumsi@usherbrooke.ca

Abstract. Authorization in collaborative systems is defined by a global
policy that represents the combination of the collaborators’ access poli-
cies. However, the enforcement of such a global policy may create con-
flicting authorization decisions. In this paper, we categorize two types of
conflicts that may occur in such policies. Furthermore, to resolve these
conflicts and to reach a unique decision for an access request, we present
an approach that uses XACML policy combining algorithms and consid-
ers the category of the detected conflicts. The approach is implemented
using aspect-oriented finite state machines.

1 Introduction

XACML (eXtensible Access Control Markup Language) [7] is one of the access
control policy languages that support the combination of multiple sub-policies.
This combination may create several conflicting decisions. Therefore, XACML
proposes four policy combining algorithms (PCAs) [4] to avoid conflicts between
multiple policies, namely: deny-overrides, permit-overrides, first applicable, and
only one applicable. These algorithms take, as input, the authorization decision
from each policy matching the request and apply some standard logic to come
up with a final decision.

The PCAs are currently chosen in advance by the policy administrator and
hence they are static and remain available for all kinds of requests. However,
in dynamic environments such as hospitals, there is a need to select the PCAs
dynamically depending on the context of the request [5]: emergencies, normal
interventions, etc. For emergencies, for example, we usually need to adopt permit-
overrides in order to grant access to different doctors to save lives. In this paper,
we propose a strategy to dynamically choose the adequate PCA based on the
type of the detected conflicts and the request’s context.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 166–171, 2017.
DOI: 10.1007/978-3-319-59647-1 13



Aspect-Oriented State Machines for Resolving Conflicts in XACML Policies 167

The paper is organized as follows. Section 2 presents the conflicts’ categoriza-
tion. In Sect. 3, we present our conflict resolution strategy. Section 4 discusses
some aspects of the implementation using aspect-oriented finite state machines.
Section 5 concludes the work and outlines future work.

2 Conflict Categorization

A security policy consists of a set of filtering rules, where each rule is specified
as a triplet (S, O, aA), S is a set of subjects (human resources: e.g., doctors),
O is a set of objects (physical resources: e.g., patient records), a ∈ {p, d} denotes
a permission (if a = p) or prohibition (if a = d, for deny), and A contains the
permitted/prohibited actions among read (r), write (w), create (c) and delete
(del). Consider, for example, the rule (S, O, pr), where S represents the generalist
doctor of a hospital H1, and O represents the medical record of a given patient
of another hospital H2. This rule means that S is permitted to read O.

The composition of many security policies may produce a set of conflicts.
A conflict occurs when two policies with different decisions are applicable to
the same request. We identify two types of conflicts: conflict of modalities, and
conflict of fraction permissions [2]. The first type occurs when two different rules
assign contradictory authorizations to the same subject to perform an action
over a given object. For example, a conflict of modalities occurs between the
following two rules: “The generalist doctor of hospital H1 is permitted to read
the medical records (MR) of the patient x in hospital H2” and “The generalist
doctor of hospital H1 is forbidden to read the medical record (MR) of all the
patients of hospital H2”. The second type represents an ambiguity to make a
decision. This ambiguity occurs if two rules with different permitted actions
(e.g., read and write) match the same request. For instance, “The radiologists
can read the electroencephalogram (EEG) of all the patients” and at the same
time “The radiologists can write into the EEG of all the patients”. In this case, we
have a conflict of fraction permissions, because we do not know which policy to
apply since the write permission overlaps with the read permission. The overlap
means if the write permission is granted, then obviously the read permission is
granted, too.

3 Conflict Resolution Strategy

In distributed environments, each organization has its own Policy Decision Point
(PDP) that decides which permission is granted to a given subject to perform
a specific action on a given object. In collaborative systems, a master PDP
combining the collaborative policies is used. Our proposed conflict resolution
strategy is associated to the master PDP. The approach consists of three main
steps: (a) select the match policies (policies that match the request), (b) combine
the policies into one global policy, and (c) detect and resolve the conflicts. If a
conflict of fraction permissions is detected, we resolve it by a prioritization of
permissions approach (see Sect. 3.1). If a conflict of modality is detected, we



168 M. Ayache et al.

Fig. 1. Workflow representing the conflict resolution strategy

resolve it by a context-based approach (see Sect. 3.2). A workflow representing
the conflict resolution strategy is presented in Fig. 1.

3.1 Prioritization of Permissions Approach

In this approach, the access permissions have distinct priorities. Therefore, for
each policy decision associated to several access permissions, we select the one
with the highest priority. Table 1 presents two ways of prioritizing permissions,
where > denotes has higher priority than. The most secure approach is restrictive
prioritization. For instance, to resolve the conflict detected in a policy with two
different permissions (pr,w; pr) using restrictive prioritization, we eliminate pr,w
and keep pr. If, on the other hand, we use the permissive conflict prioritization,
we eliminate pr and keep pr,w.

Table 1. Prioritization of permissions.

Restrictive prioritization p∅ > pr > pr,w > pr,w,c,del

Permissive prioritization pr,w,c,del > pr,w > pr > p∅



Aspect-Oriented State Machines for Resolving Conflicts in XACML Policies 169

3.2 Context-Based Approach

In the case of a conflict of modality, we need to check the request’s context.
According to the most frequent cases of healthcare, we propose three types of
context: “emergency”, “sensitive” and “normal”. The first context corresponds
to the case of emergencies where the patient needs a quick intervention of the
doctors to save his life. The sensitive context corresponds to patients with sen-
sitive political positions who need to keep their health state secret and there are
no emergencies. The normal context corresponds to general health cases.

In the case of emergency, the master PDP chooses Permit-Overrides as the
appropriate PCA: if one of the policies returns the permit decision, then the
master PDP permits the access to the required object. If the context is sensitive,
the chosen PCA is Deny-Overrides. Finally, if the context is evaluated to normal,
the PCA is First-Applicable, the master PDP always evaluates the first policy
that matches the request.

4 Implementation

To represent security policies, we adopt the automata-based approach that we
proposed in our previous work [1]. The approach consists of modeling each secu-
rity policy by a finite state automaton (or briefly: automaton). We model each
rule (S, O, aA) of a policy by a simple automaton with 3 or 4 states that has
two types of transitions: an S-transition is labeled by a set of subjects, and an
O-transition is labeled by a set of objects. The authorization aA is associated
with the final state of the automaton. We combine simple automata using the
synchronous product. The resulting automaton models the security policy.

In this paper, we use aspect-oriented finite state machines (AO-FSM) defined
in our previous work [3] to implement our dynamic conflict resolution strategy.
An AO-FSM defines a set of states and transition patterns where pointcuts and
advices are used to adopt domain-specific language (DSL) [6] state machine arti-
facts. The pointcuts define matching state (final states) patterns that correspond
to the conflicts that may occur in a security policy. For instance, the example of
a pointcut in Fig. 2 represents a final state with a fraction permission conflict.
As for the advice in Fig. 2, it implements the adequate resolution strategy that
consists of removing one of the permissions to avoid the conflict.

Basically, pointcut sub-classes match the current state parameters with the
context of a corresponding point of execution in the base code (joinpoint).

Fig. 2. Examples of aspect artifacts: pointcut and advice



170 M. Ayache et al.

It returns “true” if the pointcut matches, and “false” if not. For instance, the
pointcut FinalState2PermPC, shown in Listing 1.1, checks if the current state
in the pointcut pattern is final. If it is the case, it compares its name with the
labels passed in the context. If they are equal, the pointcut matches and returns
“true”, otherwise it returns “false”.

The advice language deals with making changes to FSMs to which pointcuts
have been matched. The advices implement the resolution strategies of Sect. 3.

Listing 1.1. Excerpt of FinalState2PermPC to define final states with two permissions
(pointcut (a) in Fig. 2)

public class FinalState2PermPC extends Pointcut {
...

public FinalState2PermPC(String Label1, String Label2) {
super(”pFinalState”);

...
@Override
public boolean match(JoinPoint jp) {

return ((jp instanceof FinalStateMachineJoinPoint)&&
(((FinalStateMachineJoinPoint) jp).getFinalStateNames().contains(Label1) &&
((FinalStateMachineJoinPoint) jp).getFinalStateNames().contains(Label2)));}}

5 Conclusion

In this paper, we have presented two categories of conflicts: fraction of permis-
sions and conflict of modality. We have also presented a conflict resolution strat-
egy that consists of two different approaches: prioritization of permissions and
a context-based approach. The selection of the appropriate strategy depends on
the type of the detected conflict. The approach uses aspect-oriented finite state
machines to intercept, prevent, and dynamically manipulate rules that cause
conflicts.

As future work, we intend to integrate the proposed resolution strategy in a
cloud environment to evaluate its performance in detecting and resolving con-
flicts within a large set of policies.

References

1. Ayache, M., Erradi, M., Khoumsi, A., Freisleben, B.: Analysis and verification of
XACML policies in a medical cloud environment. Scalable Comput. Pract. Experi-
ence 17(3), 189–206 (2016)

2. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). doi:10.1007/
3-540-44898-5 4

3. Dinkelaker, T., Erradi, M., Ayache, M.: Using aspect-oriented state machines for
detecting and resolving feature interactions. Comput. Sci. Inf. Syst. 9(3), 1045–1074
(2012)

4. Lorch, M., Proctor, S., Lepro, R., Kafura, D., Shah, S.: First experiences using
XACML for access control in distributed systems. In: Proceedings of the 2003 ACM
Workshop on XML Security, pp. 25–37. ACM (2003)

http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4


Aspect-Oriented State Machines for Resolving Conflicts in XACML Policies 171

5. Matteucci, I., Mori, P., Petrocchi, M.: Prioritized execution of privacy policies. In:
Pietro, R., Herranz, J., Damiani, E., State, R. (eds.) DPM/SETOP 2012. LNCS, vol.
7731, pp. 133–145. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35890-6 10

6. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

7. Moses, T., et al.: Extensible access control markup language XACML version 2.0.
Oasis Standard (2005)

http://dx.doi.org/10.1007/978-3-642-35890-6_10

	Aspect-Oriented State Machines for Resolving Conflicts in XACML Policies
	1 Introduction
	2 Conflict Categorization
	3 Conflict Resolution Strategy
	3.1 Prioritization of Permissions Approach
	3.2 Context-Based Approach

	4 Implementation
	5 Conclusion
	References


