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Abstract. The spanning tree entropy of a complex network provides
a useful insight about its robustness. The most robust network is the
network that has the highest entropy. In this paper, we represent con-
struction of a complex network called Flower Network by using two
combinatorial approaches: (1) Bipartition and (2) Reduction. We based
both methods on geometrical transformation. We also develop topologi-
cal properties of the network, obtain analytical expression for its number
of spanning trees. In the end, we calculate and compare its spanning tree
entropy with those for other networks having the same average degree of
nodes for estimating a robust network.
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1 Introduction

In nature, most of the complex systems in real life are represented by networks,
where the nodes denote the basic constituents of the system and links describe
their interaction. The Internet, electric, imaging, telephone calls, social networks
and many other systems are now represented by complex networks [1]. There
are many different types of these networks and this classification depends on the
properties such as nodes degrees, clustering coefficients, shortest paths. Another
concern in studying complex network is how to evaluate the robustness of a
network and its ability to adapt to changes [2]. In general, the robustness of a
network is correlated to its ability to deal with internal feedbacks within the net-
work and to avoid malfunctioning when a fraction of its constituents is damaged.

In this work, we suggest a structural characterization of robustness in terms
of network entropy [3], a structural property of the network. This concept is
widely used in thermodynamics to measure the systems’ efficiency. For com-
plex networks, we use the entropy of spanning trees or what is called the
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asymptotic complexity [4] in order to quantify the robustness and to characterize
the structure. It is related to the capacity of the network to withstand random
changes in its structure. Graph theory has provided powerful combinatorial tool
to calculate this entropy. This tool represented by spanning tree [5] helps us
to focus on the relationship between the structure and the function of networks.
To obtain the entropy of a complex network, first of all, we have to determine its
number of spanning trees (The complexity). This number gives us an idea about
how many possible topologies that a network can have. It is obtained by comput-
ing the determinant of a submatrix of the Laplacian matrix corresponding to the
network (Kirchhoff’s matrix-tree theorem) [6,7]. However, for a large network,
the evaluation of this determinant is very difficult and even impossible. Most of
the recent works have tried to find some alternative methods in order to avoid
the arduous calculations of the largest determinant as needed by the algebraic
method and enumerate the spanning trees for large and complex networks.

In this paper, we perform a process on a specific self-similar complex network,
which is called the Flower network [8]. It consists of self-repeating patterns on
all length scales. This network can be constructed by using two combinatorial
approaches, which highlight the self-similarity of a complex network at differ-
ent iterations. These techniques are based on geometrical transformations of the
original network, by multiplying the number of nodes in the case of the Bipar-
tition approach [9], or by multiplying the number of links in the case of the
Reduction approach [9]. First, we define these combinatorial methods, we cite
their properties, we study their complexity and we generalize these results to the
case of k-partite and k-reduced networks. Then, we present two models of the
Flower network, the first is characterized by two dimensions of self-similarity
denoted by 2-Flower network and the second is the general case denoted by
k-Flower network. We examine their construction, we analyze their topolog-
ical properties and we evaluate their complexity by combining Our approaches.
Finally, we calculate their spanning trees entropy and we compare it with those
for other networks having the same average degree of nodes in order to determine
the most robust network between them.

2 Related Work

In this section, we present our approaches and we quote all the theorems, the
definitions and the properties which we need to construct the network and calcu-
late its complexity. We use the standard terminologies indistinctly as: “network”
and “graph”, “node” and “vertex” and “link” and “edge”. Let G = (VG, EG, FG)
be a simple planar connected graph with VG is the set of vertices, EG is the set
of edges and FG is the set of faces. Our approaches are presented as follows:

2.1 The Bipartition Approach

The bipartite graphs belong to one of the simplest families in the graph theory [9]
and their representation helps to study and use in various areas such as semantic
web, data mining and segmentation of images, etc.
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Fig. 1. A graph G, its bipartite graph and its 3-partite graph

Definition 1. A graph becomes bipartite when we add a new vertex between two
directly connected vertices, denoted by B2(G) (See Fig. 1).

Lemma 1. Let G be a planar graph and B2(G) its bipartite graph. The number
of vertices in B2(G) is given by VB2(G) = VG + EG, its number of edges is given
by EB2(G) = 2EG, its number of faces is FB2(G) = FG and its average degree is

< z >B2(G)=
2EB2(G)

VB2(G)
= 4EG

VG+EG
.

Theorem 1. Let B2(G) be a bipartite graph of a planar graph G. The number
of spanning trees in B2(G) is given by:

τ(B2(G)) = 2FG−1τ(G) (1)

The main objective of the bipartite approach is to reduce the number of
nodes of a network before finding its complexity.

Definition 2. A k-partite graph of a planar graph G is defined by adding k − 1
new vertices in each edge, denoted by Bk(G) (See Fig. 1).

Lemma 2. Let G be a planar graph and Bk(G) its k-partite graph. The number
of vertices in Bk(G) is given by VBk(G) = VG +(k −1)EG, its number of edges is
given by EBk(G) = k × EG, its number of faces is FBk(G) = FG and its average

degree is < z >Bk(G)=
2EBk(G)

VBk(G)
= 2k×EG

VG+(k−1)EG
.

Theorem 2. Let Bk(G) be a k-partite graph of a planar graph G. The number
of spanning trees in Bk(G) is given by:

τ(Bk(G)) = kFG−1τ(G) (2)

2.2 The Reduction Approach

The reduction approach is another concept that is characterized by the presence
of multiple edges [9]. It is an implementation method for functional programming
languages.
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G R2(G) R3(G)

Fig. 2. A graph G, its reduced graph and its 3-reduced graph

Definition 3. A graph becomes reduced when we add a new edge connecting two
existing vertices of a planar graph G. It is denoted by R2(G) (See Fig. 2).

Lemma 3. Let G be a planar graph and R2(G) its reduced graph. The number
of vertices in R2(G) is given by VR2(G) = VG, its number of edges is given by
ER2(G) = 2EG, its number of faces is FR2(G) = FG + EG and its average degree

is < z >R2(G)=
2ER2(G)

VR2(G)
= 4EG

VG
.

Theorem 3. Let R2(G) be a reduced graph of a planar graph G. The number
of spanning trees in R2(G) is given by:

τ(R2(G)) = 2VG−1τ(G) (3)

The main objective of the reduction approach is to reduce the number of
links of a network and that makes the complexity easy for computation.

Definition 4. Let G be a planar graph. The k-reduced graph of G noted Rk(G) is
obtained when for each pair of vertices of G, we have k multiple edges connecting
them (See Fig. 2).

Lemma 4. Let G be a planar graph and Rk(G) its k-reduced graph. The number
of vertices in Rk(G) is given by VRk(G) = VG, its number of edges is given by
ERk(G) = k×EG, its number of faces is FRk(G) = FG+(k−1)EG and its average

degree is < z >Rk(G)=
2ERk(G)

VRk(G)
= 2k×EG

VG
.

Theorem 4. Let Rk(G) be a k-reduced graph of a planar graph G. The number
of spanning trees in Rk(G) is given by:

τ(Rk(G)) = kVG−1τ(G) (4)

3 The Construction and the Topological Properties
of the Flower Network

In this section, we introduce the construction of the Flower network which are
built in an iterative way. We treat two types of flower graphs: The 2-Flower
graph based on the reduced and the bipartite approaches (see Fig. 3) and
the k-Flower graph based on the k-reduced and the k-partite approaches
(see Fig. 4). Then, we discuss their topological properties.
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3.1 The 2-Flower Graph

The 2-Flower graph denoted by Cn are constructed as follows: For the iteration
n = 0, we have a simple edge that connects two vertices. For n ≥ 1, first, we
apply the reduced approach by adding a new multiple link for each edge of the
graph in the previous iteration. Then, we apply the bipartite approach to this
last obtained graph by adding a new vertex in the middle of each edge. We
can denote this process by Cn = hn

2 (C0) = h2(Cn−1) = B2 ◦ R2(Cn−1). For
illustration, in Fig. 3, we present 3 iterations of the 2-Flower graph.

Fig. 3. The 3 iterations of the 2-Flower graph.

According to this construction, the number of edges of Cn is calculated as
follows:

ECn
= Ehn

2 (C0) = Eh2(Cn−1) = EB2◦R2(Cn−1)

Using Lemma 1, we obtain: ECn
= 2ER2(Cn−1)

And using Lemma 2, we obtain:

ECn
= 4ECn−1 = 42ECn−2 = 43ECn−3 = ... = 4nEC0

So the number of edges of Cn is: ECn
= 22n

Similarly, we find:

The number of vertices of Cn: VCn
= 2 + 2

3 (22n − 1)

The number of faces of Cn: FCn
= 1 + 22n−1

3

The average degree of Cn: < z >Cn
= 2ECn

VCn
= 22n+1

4
3+

22n+1
3
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3.2 The k-Flower Graph:

The k-Flower graph denoted by Gn with n is a number of iterations can be
created using the following iterative way: For n = 0, we have a simple edge that
connects two vertices. For n ≥ 1, first, we apply the k-reduced approach to
obtain k multiple edges connecting each pair of vertices of the graph in the
previous iteration. Then, we apply the k-partite approach to this last obtained
graph by adding k−1 vertices in each edge. This process can be denoted by
Gn = hn

k (G0) = hk(Gn−1) = Bk ◦ Rk(Gn−1). In Fig. 4, we illustrate 3 iterations
of the k-flower graph with k = 3.

G0 G1 G2

Fig. 4. The 3 iterations of the 3-Flower graph.

Using this construction, it is possible to give the exact values for the proper-
ties of the k-Flower graph. The number of edges of Gn is calculated as follows:

EGn
= Ehn

k (G0) = Ehk(Gn−1) = EBk◦Rk(Gn−1)

Using Lemma 2, we obtain: EGn
= k × ERk(Gn−1)

And using Lemma 4, we obtain:

EGn
= k2 × EGn−1 = k4 × EGn−2 = k6 × EGn−3 = ... = k2n × EG0

So the number of edges of Gn is EGn
= k2n

Similarly, we find:

The number of vertices of Gn: VGn
= 2 + k(k2n−1)

k+1
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The number of faces of Gn: FGn
= 1 + k2n−1

k+1

The average degree of Gn: < z >Gn
= 2EGn

VGn
= 2k2n

2+
k(k2n−1)

k+1

4 The Number of Spanning Trees of a Flower Network

Due to the large size of self-similar networks, their complexity is very difficult to
compute, even if we use the theorem of Kirchhoff. For this reason, we use these
combinatorial approaches that facilitate this computation. We choose the Flower
network as a self-similar network because of its interesting topological structure.
Using the above theorems and the proposed methods in the last section, we
obtain the exact number of spanning trees in the 2-Flower network and the
k-Flower network:

4.1 The Number of Spanning Tree of a 2-Flower Graph:

We combine Our approaches: First, we apply the reduction approach, then the
bipartite approach to calculate the number of spanning trees of the 2-Flower
graph.

Theorem 5. Let Cn denote a 2-Flower graph where n is the number of itera-
tions. The number of spanning trees of Cn is given by the following formula:

τ(Cn) = 22[
22n−1

3 ] (5)

Proof: This process can be presented as:

τ(Cn) = τ(hn
2 (C0)) = τ(h2(Cn−1)) = τ(B2(R2(Cn−1))).

Using Theorem 1, we obtain:

τ(Cn) = 2FR2(Cn−1)−1 × τ(R2(Cn−1)) with FR2(Cn−1) = FCn

Using Theorem 3, we obtain:

τ(Cn) = 2FCn−1 × 2VCn−1−1 × τ(Cn−1).

Using the properties of the 2-Flower graph in Sect. 3, we obtain:

τ(Cn) = 2
22n−1

3 × 21+
2
3 (2

2(n−1)−1) × τ(Cn−1)

τ(Cn) = 22
2n−1 × τ(Cn−1)

τ(Cn) = 22
2n−1+22n−3 × τ(Cn−2)

τ(Cn) = 22
2n−1+22n−3+22n−5 × τ(Cn−3)

...
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τ(Cn) = 22
2n−1+22n−3+22n−5+...+21 × τ(C0) with τ(C0) = 1

τ(Cn) = 22[(2
2)n−1+(22)n−2+(22)n−3+...+(22)0]

τ(Cn) = 22[
22n−1

3 ].

4.2 The Number of Spanning Tree of a k-Flower Graph:

We combine Our approaches: First, we apply the k-reduced approach, then the
k-partite approach to evaluate the number of spanning trees of the k-Flower
network.

Theorem 6. Let Gn denote a k-Flower graph where n is the number of itera-
tions. The number of spanning trees of Gn is given by the following formula:

τ(Gn) = k
k[ k

2n−1
k2−1

] (6)

Proof: This process can be presented as:

τ(Gn) = τ(hn
k (G0)) = τ(hk(Gn−1)) = τ(Bk(Rk(Gn−1))).

Using Theorem 2, we obtain:

τ(Gn) = kFRk(Gn−1)−1 × τ(Rk(Gn−1)) with FRk(Gn−1) = FGn

Using Theorem 4, we obtain:

τ(Gn) = kFGn−1 × kVGn−1−1 × τ(Gn−1).

Using the properties of the k-Flower graph in Sect. 3, we obtain:

τ(Gn) = k
k2n−1
k+1 × k1+

k(k2(n−1)−1)
k+1 × τ(Gn−1)

τ(Gn) = kk2n−1 × τ(Gn−1)

τ(Gn) = kk2n−1+k2n−3 × τ(Gn−2)

τ(Gn) = kk2n−1+k2n−3+k2n−5 × τ(Gn−3)
...

τ(Gn) = kk2n−1+k2n−3+k2n−5+...+k1 × τ(G0) with τ(G0) = 1

τ(Gn) = kk[(k2)n−1+(k2)n−2+(k2)n−3+...+(k2)0]

τ(Gn) = k
k[ k

2n−1
k2−1

]
.

Based on the Eqs. 5 and 6, we calculate the complexity of the k-Flower net-
work based on its size:
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Table 1. The numerical result of the complexity of the k-Flower network Gn.

k n τ(Gn)

2 10 1, 0434 × 10210435

3 7 7, 67435 × 10855770

4 5 1, 0346 × 10168348

5 4 1, 5099 × 1056882

6 4 1, 5927 × 10224056

7 4 8, 3606 × 10710473

The numerical result: The below table presents some values of the number
of spanning trees or the complexity of the k-Flower network Gn. These com-
putations were performed using Maple by changing the value of the number of
iterations n and the dimension of the Flower network k (Table 1).

5 The Spanning Tree Entropy in Flower Network

The entropy of spanning trees of a network or the asymptotic complexity is a
quantitative measure of the number of spanning trees and it characterizes the
network structure. We use this entropy to quantify the robustness of networks.
The most robust network is the network that has the highest entropy. When
the spanning trees number of networks grows exponentially with the number of
vertices of Gn as VGn

→ ∞, there exist a constant ρk describing this exponential
growth, which is defined as:

ρk = lim
VGn→∞

ln τ(Gn)
VGn

. (7)

with τ(Gn) is the number of spanning trees of Gn and VGn
is the number of

vertices of Gn.

This formula provides the computation of the spanning tree entropy for the
k-Flower graph.

Corollary 1. The spanning trees entropy of the k-Flower graph is given by:

ρk =
ln(k)
k − 1

(8)

Proof: We calculate the spanning trees entropy of a k-Flower network by: ρk =

lim
VGn→∞

ln |τ(Gn)|
|VGn | = lim

VGn→∞
ln(k

k[ k
2n−1
k2−1

]
)

2+
k(k2n−1)

k+1

= lim
VGn→∞

ln(k)×(k+1)
k2−1 .

Then, the result. Similarly, we can find the entropy of the 2-Flower graph:

ρ2 = ln2 = 0.6931
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Fig. 5. The spanning tree entropy of the k-Flower graph

.
Knowing the number of spanning trees for the Flower network allows us to

calculate its spanning tree entropy. In Fig. 5, we show that the entropy of span-
ning trees of the k-Flower graph varies with the dimension k and the increasing
of this value leads to decrement the entropy of spanning trees. From this result,
we deduce that the Flower networks with a higher dimension are less robust than
those with a lower dimension.

6 Comparison with Other Networks Having the Same
Average Degree

The value of ρ2 is compared with the entropy of other networks having the same
average degree (See the table below). The bigger the entropy value, the more
the number of spanning trees, the network is more robust with the stronger
heterogeneous topology because the increase of the number of spanning trees
provides more possibilities of connecting two nodes related by defective links,
that ensures a good reliability, robustness and availability of communication
networks.

From the Table 2, we compare the entropy of the spanning trees of the
2-Flower network Cn with those of other networks with the same average degree.
We notice the value of the entropy of the spanning trees of the 2-Flower network
is the highest reported for the Koch networks and the Hanoi networks and it
is the lowest reported for the 3-2-12 lattices, the 4-8-8 bathroom tile and Hon-
eycomb lattice. This reflects the fact that the 2-Flower network has an average
spanning tree rate compared to other networks with the same average degree.
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Table 2. The entropy of several networks having the same average degree.

Type of network < z > ρ

Koch network [10] 3 0.549

Hanoi networks [11] 3 0.677

2-Flower networks 3 0.6931

The 3-2-12 lattices [12] 3 0.721

The 4-8-8 bathroom tile [12] 3 0.787

Honeycomb lattice [13] 3 0.807

This result proves that the 2-Flower network is more robust than the Koch net-
works and the Hanoi networks, on the other hand, the 2-Flower network is less
robust than the 3-2-12 lattices, the 4-8-8 bathroom tile and Honeycomb lattice.

7 Conclusion

The concept of spanning tree entropy of a network is used to measure network
robustness. In this paper, we have investigated a family of self-similar complex
networks: A Flower network. We proposed two combinatorial approaches: The
bipartition and the reduction to construct this network, to determine its topolog-
ical properties and calculate its number of spanning trees. Finally, we evaluated
its spanning tree entropy and compared it with those for other studied networks
with the same average degree in order to estimate the most robust network
between them.
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