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Preface

In May 2017, the 5th edition of the International Conference on Networked Systems
(NETYS) took place in Marrakech (Morocco). For this edition, we received 81 sub-
missions, which were reviewed by a Program Committee of 47 international experts in
various fields related to networked and distributed computing systems. Out of these
submissions, the Program Committee decided to accept 28 regular papers and six short
papers. In addition, three renowned researchers accepted to give keynote presentations:

– Michel Raynal, from the University of Rennes
– Sergio Rajsbaum, from the National Autonomous University of Mexico
– Alexander A. Schwarzmann, from the University of Connecticut

As program chairs of NETYS 2017 and editors of these proceedings, we want to
warmly thank again all the authors for their high-quality contributions and all the
Program Committee members and external reviewers for their invaluable hard work.
We also sincerely thank our three keynote speakers for sharing their precious insights
and expertise. In particular, we are very grateful and happy that Michel Raynal
accepted to give a keynote this year, since he will be officially retiring in 2017, after a
rich academic career spanning more than four decades in the area of distributed
computing! Last but not least, our special thanks go to the Organizing Committee and
to all the local arrangements coordinators, and of course to Ahmed Bouajjani
(Université Paris Diderot, France), Mohammed Erradi (ENSIAS, Rabat, Morocco), and
Rachid Guerraoui (EPFL, Lausanne, Switzerland), the conference general chairs,
without whom NETYS would simply not exist.

May 2017 Amr El Abbadi
Benoît Garbinato
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Keynote Presentations



Another Look at the Implementation
of Read/Write Registers in Crash-Prone
Asynchronous Message-Passing Systems

Michel Raynal

University of Rennes, Rennes, France
michel.raynal@irisa.fr

Abstract. Yet another work on the implementation of read/write registers in
crash-prone asynchronous message-passing systems! Yes…, but, differently
from its predecessors, this talk presents a communication abstraction which
captures the essence of such an implementation in the same sense that total order
broadcast can be associated with consensus. To this end, the talk introduces a
new communication abstraction, named SCD-broadcast (SCD stands for “Set
Constrained Delivery”), which, instead of a single message, delivers to pro-
cesses sets of messages (whose size can be arbitrary), such that the sequences of
message sets delivered to any two processes satisfies some constraints. The talk
will then show that: (a) SCD-broadcast allows for a very simple implementation
of a snapshot object (and consequently also of atomic read/write registers) in
crash-prone asynchronous message-passing systems; (b) SCD-broadcast can be
built from snapshot objects (hence SCD-broadcast and snapshot objects –or
read/write registers– are “computationally equivalent”); (c) SCD-broadcast can
be built in message-passing systems where any minority of processes may crash
(which is the weakest assumption on the number of possible process crashes
needed to implement a read/write register).

Reference

Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Another look at the implementation of
read/write registers in crash-prone asynchronous message-passing systems (extended version).
Technical report, arXiv: ArXiv-1702.08176v1.pdf, 21 pages (2017)

Biography

Michel Raynal is a Professor of Informatics, IRISA, University of Rennes, France. His
main research interests are the basic principles of distributed computing systems.
Recognized as a world leading researcher in distributed computing, he is the author of
numerous papers on this topic (more than 150 in int’l scientific journals, and more than

Joint work with Damien Imbs, Achour Mostéfaoui and Matthieu Perrin.

http://arxiv.org/abs/1702.08176v1.pdf


330 papers in int’l conferences). He is also well-known for his books on distributed
computing. From a “purely numeric” point of view, his h-index is 54 and his i-10 index
is 254. Michel Raynal is a senior member of the prestigious “Institut Universitaire de
France”, and a member of Academia Europaea. He was the recipient of the 2015 Int’l
Award “Innovation in Distributed Computing” (also known as SIROCCO Prize).
Michel Raynal is also “Chair Professor on Distributed Algorithms” at the Polytechnic
University (PolyU) of Hong Kong.

XII M. Raynal



Tasks, Objects, and the Notion
of a Distributed Problems

Sergio Rajsbaum

National Autonomous University of Mexico (UNAM), Mexico City, Mexico
rajsbaum@matem.unam.mx

Abstract. The universal computing model of Turing, which was central to the
birth of modern computer science, identified also the essential notion of a
problem, as an input output function to be computed by a Turing machine. In
distributed computing, tasks are the equivalent of a function: each process gets
only part of the input, and computes part of the output after communicating with
other processes. In distributed computing tasks have been studied from early on,
in parallel, but independently of sequential objects. While tasks explicitly state
what might happen when a set of processes run concurrently, sequential objects
only specify what happens when processes run sequentially. Indeed, many
distributed problems considered in the literature, seem to have no natural
specification neither as tasks nor as sequential objects. I will concentrate on our
recent work on interval-linearizability, a notion we introduced to specify objects
more general than the usual sequential objects. I will describe the bridges we
establish between these two classical paradigms, and our discussions about what
is a distributed problem, and what it means to solve it.

Biography

Sergio Rajsbaum received a degree in Computer Engineering from the National
Autonomous University of Mexico (UNAM) in 1985, and a PhD in the Computer
Science from the Technion, Israel, in 1991. Since then he has been a faculty member at
the Institute of Mathematics at UNAM. His research interests are in the theory of
distributed computing, especially issues related to coordination, complexity and
computability. He has also worked in graph theory, algorithms, and content manage-
ment systems. He has published over 100 papers and book on the use of topology for a
distributed computing theoretical foundation, a topic on which he is one of the world
leading experts.



Atomic Shared Objects for Distributed
Systems: Consistency, Latency,

Reconfigurations

Alexander A. Schwarzmann

University of Connecticut, Storrs, USA
aas@uconn.edu

Abstract. Consistent shareable data services supporting atomic (linearizable)
objects provide convenient building blocks for distributed systems. In general it
is notoriously challenging to combine provable correctness guarantees with
efficiency in networked systems subject to delays and processor crashes. To deal
with crashes one must replicate objects at multiple network locations, and this
creates the challenge of guaranteeing consistency. We survey work on specifi-
cation and implementation of consistent read/write data objects and algorithms,
focusing on fault-tolerance and latency. Then we describe a framework for
dynamic consistent data services that can be tailored to yield implementations
for various target network settings and that incorporates on-the-fly reconfigu-
ration that only modestly interferes with on-going read and write operations.
Here the goal is to guarantee safety (atomicity) for arbitrary patterns of asyn-
chrony, crashes, and message loss, while enabling practical implementations.
We describe examples of specification, reasoning about correctness, provable
optimizations, and implementations of consistent data services in distributed
systems.

Biography

Alexander A. Schwarzmann earned his B.S. from Stevens Institute of Technology in
1979, M.S. from Cornell University in 1981, and Ph.D. from Brown University in
1992, all in Computer Science, and he did his post-doctoral work at MIT from 1995 to
1997. His research is in fault-tolerant distributed computing and security of electronic
election systems. Prior to pursuing his academic career he worked at Bell Labs and
Digital Equipment Corp. From 1997 he is at the University of Connecticut, where he is
now serving the Department Head of Computer Science & Engineering. He chaired and
served on the Program Committees of more than 50 leading conferences, and he served
as the Steering Committee Chair of both the ACM Symposium on Principles of Dis-
tributed Computing (PODC 2012–2015) and EATCS Symposium on Distributed
Computing (DISC 2004–2007). Since 2006 he is also the Director of the UConn Center
for Voting Technology Research (VoTeR). The Center provides technological exper-
tise in security and integrity of electronic election systems. Schwarzmann is an
Associate Editor of Information & Computation. He is an author of over 150 technical
publication and three books.
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An Innovative Combinatorial Approach
for the Spanning Tree Entropy

in Flower Network

Raihana Mokhlissi1(B), Dounia Lotfi1, Joyati Debnath2,
and Mohamed El Marraki1

1 LRIT Associated Unit with CNRST (URAC No 29), Faculty of Sciences,
Mohammed V University in Rabat, 1014 Rabat, Morocco

mokhlissiraihana@gmail.com, {lotfi,marraki}@fsr.ac.ma
2 Winona State University, Winona, MN 55987, USA

jdebnath@winona.edu

Abstract. The spanning tree entropy of a complex network provides
a useful insight about its robustness. The most robust network is the
network that has the highest entropy. In this paper, we represent con-
struction of a complex network called Flower Network by using two
combinatorial approaches: (1) Bipartition and (2) Reduction. We based
both methods on geometrical transformation. We also develop topologi-
cal properties of the network, obtain analytical expression for its number
of spanning trees. In the end, we calculate and compare its spanning tree
entropy with those for other networks having the same average degree of
nodes for estimating a robust network.

Keywords: Entropy · Complex network · Flower network · Bipartition ·
Reduction · Number of spanning trees

1 Introduction

In nature, most of the complex systems in real life are represented by networks,
where the nodes denote the basic constituents of the system and links describe
their interaction. The Internet, electric, imaging, telephone calls, social networks
and many other systems are now represented by complex networks [1]. There
are many different types of these networks and this classification depends on the
properties such as nodes degrees, clustering coefficients, shortest paths. Another
concern in studying complex network is how to evaluate the robustness of a
network and its ability to adapt to changes [2]. In general, the robustness of a
network is correlated to its ability to deal with internal feedbacks within the net-
work and to avoid malfunctioning when a fraction of its constituents is damaged.

In this work, we suggest a structural characterization of robustness in terms
of network entropy [3], a structural property of the network. This concept is
widely used in thermodynamics to measure the systems’ efficiency. For com-
plex networks, we use the entropy of spanning trees or what is called the
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 3–14, 2017.
DOI: 10.1007/978-3-319-59647-1 1



4 R. Mokhlissi et al.

asymptotic complexity [4] in order to quantify the robustness and to characterize
the structure. It is related to the capacity of the network to withstand random
changes in its structure. Graph theory has provided powerful combinatorial tool
to calculate this entropy. This tool represented by spanning tree [5] helps us
to focus on the relationship between the structure and the function of networks.
To obtain the entropy of a complex network, first of all, we have to determine its
number of spanning trees (The complexity). This number gives us an idea about
how many possible topologies that a network can have. It is obtained by comput-
ing the determinant of a submatrix of the Laplacian matrix corresponding to the
network (Kirchhoff’s matrix-tree theorem) [6,7]. However, for a large network,
the evaluation of this determinant is very difficult and even impossible. Most of
the recent works have tried to find some alternative methods in order to avoid
the arduous calculations of the largest determinant as needed by the algebraic
method and enumerate the spanning trees for large and complex networks.

In this paper, we perform a process on a specific self-similar complex network,
which is called the Flower network [8]. It consists of self-repeating patterns on
all length scales. This network can be constructed by using two combinatorial
approaches, which highlight the self-similarity of a complex network at differ-
ent iterations. These techniques are based on geometrical transformations of the
original network, by multiplying the number of nodes in the case of the Bipar-
tition approach [9], or by multiplying the number of links in the case of the
Reduction approach [9]. First, we define these combinatorial methods, we cite
their properties, we study their complexity and we generalize these results to the
case of k-partite and k-reduced networks. Then, we present two models of the
Flower network, the first is characterized by two dimensions of self-similarity
denoted by 2-Flower network and the second is the general case denoted by
k-Flower network. We examine their construction, we analyze their topolog-
ical properties and we evaluate their complexity by combining Our approaches.
Finally, we calculate their spanning trees entropy and we compare it with those
for other networks having the same average degree of nodes in order to determine
the most robust network between them.

2 Related Work

In this section, we present our approaches and we quote all the theorems, the
definitions and the properties which we need to construct the network and calcu-
late its complexity. We use the standard terminologies indistinctly as: “network”
and “graph”, “node” and “vertex” and “link” and “edge”. Let G = (VG, EG, FG)
be a simple planar connected graph with VG is the set of vertices, EG is the set
of edges and FG is the set of faces. Our approaches are presented as follows:

2.1 The Bipartition Approach

The bipartite graphs belong to one of the simplest families in the graph theory [9]
and their representation helps to study and use in various areas such as semantic
web, data mining and segmentation of images, etc.
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Fig. 1. A graph G, its bipartite graph and its 3-partite graph

Definition 1. A graph becomes bipartite when we add a new vertex between two
directly connected vertices, denoted by B2(G) (See Fig. 1).

Lemma 1. Let G be a planar graph and B2(G) its bipartite graph. The number
of vertices in B2(G) is given by VB2(G) = VG + EG, its number of edges is given
by EB2(G) = 2EG, its number of faces is FB2(G) = FG and its average degree is

< z >B2(G)=
2EB2(G)

VB2(G)
= 4EG

VG+EG
.

Theorem 1. Let B2(G) be a bipartite graph of a planar graph G. The number
of spanning trees in B2(G) is given by:

τ(B2(G)) = 2FG−1τ(G) (1)

The main objective of the bipartite approach is to reduce the number of
nodes of a network before finding its complexity.

Definition 2. A k-partite graph of a planar graph G is defined by adding k − 1
new vertices in each edge, denoted by Bk(G) (See Fig. 1).

Lemma 2. Let G be a planar graph and Bk(G) its k-partite graph. The number
of vertices in Bk(G) is given by VBk(G) = VG +(k −1)EG, its number of edges is
given by EBk(G) = k × EG, its number of faces is FBk(G) = FG and its average

degree is < z >Bk(G)=
2EBk(G)

VBk(G)
= 2k×EG

VG+(k−1)EG
.

Theorem 2. Let Bk(G) be a k-partite graph of a planar graph G. The number
of spanning trees in Bk(G) is given by:

τ(Bk(G)) = kFG−1τ(G) (2)

2.2 The Reduction Approach

The reduction approach is another concept that is characterized by the presence
of multiple edges [9]. It is an implementation method for functional programming
languages.
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G R2(G) R3(G)

Fig. 2. A graph G, its reduced graph and its 3-reduced graph

Definition 3. A graph becomes reduced when we add a new edge connecting two
existing vertices of a planar graph G. It is denoted by R2(G) (See Fig. 2).

Lemma 3. Let G be a planar graph and R2(G) its reduced graph. The number
of vertices in R2(G) is given by VR2(G) = VG, its number of edges is given by
ER2(G) = 2EG, its number of faces is FR2(G) = FG + EG and its average degree

is < z >R2(G)=
2ER2(G)

VR2(G)
= 4EG

VG
.

Theorem 3. Let R2(G) be a reduced graph of a planar graph G. The number
of spanning trees in R2(G) is given by:

τ(R2(G)) = 2VG−1τ(G) (3)

The main objective of the reduction approach is to reduce the number of
links of a network and that makes the complexity easy for computation.

Definition 4. Let G be a planar graph. The k-reduced graph of G noted Rk(G) is
obtained when for each pair of vertices of G, we have k multiple edges connecting
them (See Fig. 2).

Lemma 4. Let G be a planar graph and Rk(G) its k-reduced graph. The number
of vertices in Rk(G) is given by VRk(G) = VG, its number of edges is given by
ERk(G) = k×EG, its number of faces is FRk(G) = FG+(k−1)EG and its average

degree is < z >Rk(G)=
2ERk(G)

VRk(G)
= 2k×EG

VG
.

Theorem 4. Let Rk(G) be a k-reduced graph of a planar graph G. The number
of spanning trees in Rk(G) is given by:

τ(Rk(G)) = kVG−1τ(G) (4)

3 The Construction and the Topological Properties
of the Flower Network

In this section, we introduce the construction of the Flower network which are
built in an iterative way. We treat two types of flower graphs: The 2-Flower
graph based on the reduced and the bipartite approaches (see Fig. 3) and
the k-Flower graph based on the k-reduced and the k-partite approaches
(see Fig. 4). Then, we discuss their topological properties.
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3.1 The 2-Flower Graph

The 2-Flower graph denoted by Cn are constructed as follows: For the iteration
n = 0, we have a simple edge that connects two vertices. For n ≥ 1, first, we
apply the reduced approach by adding a new multiple link for each edge of the
graph in the previous iteration. Then, we apply the bipartite approach to this
last obtained graph by adding a new vertex in the middle of each edge. We
can denote this process by Cn = hn

2 (C0) = h2(Cn−1) = B2 ◦ R2(Cn−1). For
illustration, in Fig. 3, we present 3 iterations of the 2-Flower graph.

Fig. 3. The 3 iterations of the 2-Flower graph.

According to this construction, the number of edges of Cn is calculated as
follows:

ECn
= Ehn

2 (C0) = Eh2(Cn−1) = EB2◦R2(Cn−1)

Using Lemma 1, we obtain: ECn
= 2ER2(Cn−1)

And using Lemma 2, we obtain:

ECn
= 4ECn−1 = 42ECn−2 = 43ECn−3 = ... = 4nEC0

So the number of edges of Cn is: ECn
= 22n

Similarly, we find:

The number of vertices of Cn: VCn
= 2 + 2

3 (22n − 1)

The number of faces of Cn: FCn
= 1 + 22n−1

3

The average degree of Cn: < z >Cn
= 2ECn

VCn
= 22n+1

4
3+

22n+1
3
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3.2 The k-Flower Graph:

The k-Flower graph denoted by Gn with n is a number of iterations can be
created using the following iterative way: For n = 0, we have a simple edge that
connects two vertices. For n ≥ 1, first, we apply the k-reduced approach to
obtain k multiple edges connecting each pair of vertices of the graph in the
previous iteration. Then, we apply the k-partite approach to this last obtained
graph by adding k−1 vertices in each edge. This process can be denoted by
Gn = hn

k (G0) = hk(Gn−1) = Bk ◦ Rk(Gn−1). In Fig. 4, we illustrate 3 iterations
of the k-flower graph with k = 3.

G0 G1 G2

Fig. 4. The 3 iterations of the 3-Flower graph.

Using this construction, it is possible to give the exact values for the proper-
ties of the k-Flower graph. The number of edges of Gn is calculated as follows:

EGn
= Ehn

k (G0) = Ehk(Gn−1) = EBk◦Rk(Gn−1)

Using Lemma 2, we obtain: EGn
= k × ERk(Gn−1)

And using Lemma 4, we obtain:

EGn
= k2 × EGn−1 = k4 × EGn−2 = k6 × EGn−3 = ... = k2n × EG0

So the number of edges of Gn is EGn
= k2n

Similarly, we find:

The number of vertices of Gn: VGn
= 2 + k(k2n−1)

k+1



An Innovative Combinatorial Approach for the Spanning Tree Entropy 9

The number of faces of Gn: FGn
= 1 + k2n−1

k+1

The average degree of Gn: < z >Gn
= 2EGn

VGn
= 2k2n

2+
k(k2n−1)

k+1

4 The Number of Spanning Trees of a Flower Network

Due to the large size of self-similar networks, their complexity is very difficult to
compute, even if we use the theorem of Kirchhoff. For this reason, we use these
combinatorial approaches that facilitate this computation. We choose the Flower
network as a self-similar network because of its interesting topological structure.
Using the above theorems and the proposed methods in the last section, we
obtain the exact number of spanning trees in the 2-Flower network and the
k-Flower network:

4.1 The Number of Spanning Tree of a 2-Flower Graph:

We combine Our approaches: First, we apply the reduction approach, then the
bipartite approach to calculate the number of spanning trees of the 2-Flower
graph.

Theorem 5. Let Cn denote a 2-Flower graph where n is the number of itera-
tions. The number of spanning trees of Cn is given by the following formula:

τ(Cn) = 22[
22n−1

3 ] (5)

Proof: This process can be presented as:

τ(Cn) = τ(hn
2 (C0)) = τ(h2(Cn−1)) = τ(B2(R2(Cn−1))).

Using Theorem 1, we obtain:

τ(Cn) = 2FR2(Cn−1)−1 × τ(R2(Cn−1)) with FR2(Cn−1) = FCn

Using Theorem 3, we obtain:

τ(Cn) = 2FCn−1 × 2VCn−1−1 × τ(Cn−1).

Using the properties of the 2-Flower graph in Sect. 3, we obtain:

τ(Cn) = 2
22n−1

3 × 21+
2
3 (2

2(n−1)−1) × τ(Cn−1)

τ(Cn) = 22
2n−1 × τ(Cn−1)

τ(Cn) = 22
2n−1+22n−3 × τ(Cn−2)

τ(Cn) = 22
2n−1+22n−3+22n−5 × τ(Cn−3)

...
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τ(Cn) = 22
2n−1+22n−3+22n−5+...+21 × τ(C0) with τ(C0) = 1

τ(Cn) = 22[(2
2)n−1+(22)n−2+(22)n−3+...+(22)0]

τ(Cn) = 22[
22n−1

3 ].

4.2 The Number of Spanning Tree of a k-Flower Graph:

We combine Our approaches: First, we apply the k-reduced approach, then the
k-partite approach to evaluate the number of spanning trees of the k-Flower
network.

Theorem 6. Let Gn denote a k-Flower graph where n is the number of itera-
tions. The number of spanning trees of Gn is given by the following formula:

τ(Gn) = k
k[ k

2n−1
k2−1

] (6)

Proof: This process can be presented as:

τ(Gn) = τ(hn
k (G0)) = τ(hk(Gn−1)) = τ(Bk(Rk(Gn−1))).

Using Theorem 2, we obtain:

τ(Gn) = kFRk(Gn−1)−1 × τ(Rk(Gn−1)) with FRk(Gn−1) = FGn

Using Theorem 4, we obtain:

τ(Gn) = kFGn−1 × kVGn−1−1 × τ(Gn−1).

Using the properties of the k-Flower graph in Sect. 3, we obtain:

τ(Gn) = k
k2n−1
k+1 × k1+

k(k2(n−1)−1)
k+1 × τ(Gn−1)

τ(Gn) = kk2n−1 × τ(Gn−1)

τ(Gn) = kk2n−1+k2n−3 × τ(Gn−2)

τ(Gn) = kk2n−1+k2n−3+k2n−5 × τ(Gn−3)
...

τ(Gn) = kk2n−1+k2n−3+k2n−5+...+k1 × τ(G0) with τ(G0) = 1

τ(Gn) = kk[(k2)n−1+(k2)n−2+(k2)n−3+...+(k2)0]

τ(Gn) = k
k[ k

2n−1
k2−1

]
.

Based on the Eqs. 5 and 6, we calculate the complexity of the k-Flower net-
work based on its size:
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Table 1. The numerical result of the complexity of the k-Flower network Gn.

k n τ(Gn)

2 10 1, 0434 × 10210435

3 7 7, 67435 × 10855770

4 5 1, 0346 × 10168348

5 4 1, 5099 × 1056882

6 4 1, 5927 × 10224056

7 4 8, 3606 × 10710473

The numerical result: The below table presents some values of the number
of spanning trees or the complexity of the k-Flower network Gn. These com-
putations were performed using Maple by changing the value of the number of
iterations n and the dimension of the Flower network k (Table 1).

5 The Spanning Tree Entropy in Flower Network

The entropy of spanning trees of a network or the asymptotic complexity is a
quantitative measure of the number of spanning trees and it characterizes the
network structure. We use this entropy to quantify the robustness of networks.
The most robust network is the network that has the highest entropy. When
the spanning trees number of networks grows exponentially with the number of
vertices of Gn as VGn

→ ∞, there exist a constant ρk describing this exponential
growth, which is defined as:

ρk = lim
VGn→∞

ln τ(Gn)
VGn

. (7)

with τ(Gn) is the number of spanning trees of Gn and VGn
is the number of

vertices of Gn.

This formula provides the computation of the spanning tree entropy for the
k-Flower graph.

Corollary 1. The spanning trees entropy of the k-Flower graph is given by:

ρk =
ln(k)
k − 1

(8)

Proof: We calculate the spanning trees entropy of a k-Flower network by: ρk =

lim
VGn→∞

ln |τ(Gn)|
|VGn | = lim

VGn→∞
ln(k

k[ k
2n−1
k2−1

]
)

2+
k(k2n−1)

k+1

= lim
VGn→∞

ln(k)×(k+1)
k2−1 .

Then, the result. Similarly, we can find the entropy of the 2-Flower graph:

ρ2 = ln2 = 0.6931
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Fig. 5. The spanning tree entropy of the k-Flower graph

.
Knowing the number of spanning trees for the Flower network allows us to

calculate its spanning tree entropy. In Fig. 5, we show that the entropy of span-
ning trees of the k-Flower graph varies with the dimension k and the increasing
of this value leads to decrement the entropy of spanning trees. From this result,
we deduce that the Flower networks with a higher dimension are less robust than
those with a lower dimension.

6 Comparison with Other Networks Having the Same
Average Degree

The value of ρ2 is compared with the entropy of other networks having the same
average degree (See the table below). The bigger the entropy value, the more
the number of spanning trees, the network is more robust with the stronger
heterogeneous topology because the increase of the number of spanning trees
provides more possibilities of connecting two nodes related by defective links,
that ensures a good reliability, robustness and availability of communication
networks.

From the Table 2, we compare the entropy of the spanning trees of the
2-Flower network Cn with those of other networks with the same average degree.
We notice the value of the entropy of the spanning trees of the 2-Flower network
is the highest reported for the Koch networks and the Hanoi networks and it
is the lowest reported for the 3-2-12 lattices, the 4-8-8 bathroom tile and Hon-
eycomb lattice. This reflects the fact that the 2-Flower network has an average
spanning tree rate compared to other networks with the same average degree.
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Table 2. The entropy of several networks having the same average degree.

Type of network < z > ρ

Koch network [10] 3 0.549

Hanoi networks [11] 3 0.677

2-Flower networks 3 0.6931

The 3-2-12 lattices [12] 3 0.721

The 4-8-8 bathroom tile [12] 3 0.787

Honeycomb lattice [13] 3 0.807

This result proves that the 2-Flower network is more robust than the Koch net-
works and the Hanoi networks, on the other hand, the 2-Flower network is less
robust than the 3-2-12 lattices, the 4-8-8 bathroom tile and Honeycomb lattice.

7 Conclusion

The concept of spanning tree entropy of a network is used to measure network
robustness. In this paper, we have investigated a family of self-similar complex
networks: A Flower network. We proposed two combinatorial approaches: The
bipartition and the reduction to construct this network, to determine its topolog-
ical properties and calculate its number of spanning trees. Finally, we evaluated
its spanning tree entropy and compared it with those for other studied networks
with the same average degree in order to estimate the most robust network
between them.
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Abstract. The problem of the universal mobile telecommunication sys-
tem (UMTS) network assignment is divided into two assignment sub-
problems: the assignment of a set of Nodes Bs to a set of radio network
controllers (RNCs), and the assignment of those RNC concurrently to
a set of Mobile Switching Centers (MSCs) and a set of Serving GPRS
Support Nodes (SGSNs). The objective is to find an assignment that
minimizes the cost of such implementation.

This paper proposes, first, an improvement of the existing mathemat-
ical modelling. Second, it presents a solution method to the problem
based on genetic algorithms with a dynamic approach. To compare our
proposed model to the existing one, some numerical examples are given.
The obtained results show the efficiency of our model and our approach.

Keywords: UMTS · Optimization · Cell assignment · Genetic
algorithms

1 Introduction

The deployment of Universal Mobile Telecommunications System (UMTS) net-
work involves a huge investment mainly related to the cost of infrastructure.
It is therefore necessary to optimize these networks to reduce the cost of its
investments, and ensure a good quality of service to users. In UMTS networks,
the assignment problem takes into account three levels of equipments. The first
level consists of Node Bs (one Node B per cell), whereas the second level consists
of Radio Network Controllers (RNC), and the third level includes both Mobile
Switching Centers (MSCs) and Serving GPRS Support Nodes (SGSNs) (see for
instance [1]). As illustrated in Fig. 1, each Node B is connected with an RNC,
and each RNC is permanently connected with an MSC and an SGSN. In this
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 15–26, 2017.
DOI: 10.1007/978-3-319-59647-1 2
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Fig. 1. Example of UMTS assignment problem

context, the cell assignment problem consists of assigning first, Node Bs to RNCs
in an optimal way, then RNCs to MSCs and SGSNs in order to provide mobile
users with simultaneous voice and data services.

On the other hand, two types of handoff are taken into account in UMTS
networks.

– Simple handoff. It occurs when a user moves from one Node B to another
Node B′, as both Nodes B and B′ are connected with RNCs that are served
by the same MSC and the same SGSN.

– Complex handoff. It occurs when a user moves from one Node to another,
and two MSCs and two SGSNs are involved in the process. So this type of
handoff needs transferring data from one MSC to another MSC and from one
SGSN to another SGSN.

Complex handoff is more costly than a simple handoff.

1.1 Related Work

UMTS networks planning problems have been the interest of many researchers.
Indeed, Kumar et al. (2002) [2] presented a multi-objective genetic algorithm
approach to design telecommunication networks while simultaneously minimiz-
ing network performance and design costs under a reliability constraint. Jut-
tner et al. (2005) [3] used a combination of simulated annealing and a specific
b-matching method to determine the cost-optimal number and location of the
Radio Network Controller (RNC) nodes and their connections to the Radio Base



A Dynamic GAs to the UMTS Network Assignment Problem 17

Stations (RBS) according to a number of planning constraints. Hashemi et al.
(2008) [4] examined the same problem but this time by using the hybrid ant
colony algorithm. Amaldi et al. (2003) [5] studied the UMTS base station (BS)
location problem based on propagation models with power control. To solve the
problem, authors proposed two randomized greedy procedures and a tabu search
algorithm. St-Hilaire et al. (2006) [6] proposed a global approach for planning
UMTS networks in the uplink direction using local search heuristic. Gabli et al.
(2013) [7] proposed a genetic algorithm approach and a dynamic trade-off para-
meter to solve the UMTS base station (BS) location planning problem. To deal
with the imprecise and uncertain information of prices (costs), Gabli et al. (2014
and 2016) addressed the same problem using fuzzy logic [8] and a possibility the-
ory approach [9], respectively. However, all those approaches have only solved
the problem of assigning Node Bs to RNCs. For solving the global problem,
Mamadou et al. [1] among other, considered in the same formulation not only
the assignment of Node Bs to radio network controllers (RNCs), but also the
assignment of RNCs to Mobile Switching Centers (MSCs) and Serving GPRS
Support Nodes (SGSNs). Moreover in [1], authors propose a model formulation
and a solution which take the mobility aspects into account by integrating the
handoff costs into the cost function.

In this paper we focus on the last problem which is divided into two assign-
ment sub-problems: the assignment of a set of Nodes Bs to a set of RNCs, and
the assignment of those RNC concurrently to a set of MSCs and a set of SGSNs.
We describe, in Sect. 2, the problem and we present its mathematical modelling.
In Sect. 2.2, we propose an improvement of the existing mathematical modelling.
In Sect. 3, we present a dynamic approach using genetic algorithm. To compare
our proposed model to the existing one, we give in Sect. 4 some applications of
our approach, then we present the obtained numerical results. Finally, in Sect. 5
we give some concluding remarks.

2 Problem Statement and Model Presentation

Consider a territory to be covered by an UMTS service. Let I = {1, ..., n} be a
set of Nodes Bs, J = {1, ..., r} a set of RNCs, K = {1, ...,m} a set of MSCs and
L = {1, ..., s} a set of SGSNs. In this paper, we consider the same assumptions
as presented in [1].

– The locations of Nodes Bs, RNCs, MSCs and SGSNs are known;
– Each Node B is connected with one RNC and each RNC is simultaneously

connected with one MSC and one SGSN ;
– The costs, types and capacities of links used to connect a pair of equipments

are known;
– The connection costs between a pair of equipments are known. Such costs

include both link and installation costs;
– The total capacities of the links connected with an equipment cannot exceed

the capacity of that equipment, in terms of circuits, bits per second, and
maximum number of interfaces that can be installed on that equipment.
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Table 1. Notations

cij12 Cost of connecting Bi to RNCj

cjk23 Cost of connecting RNCj to MSCk

cjl24 Cost of connecting RNCj to SGSNl

wvj
2 Circuit switching capacity of RNCj

wdj
2 Packet switching capacity of RNCj (in bps)

wvk
3 Capacity of MSCk (number of calls per unit of time)

wdl
4 Capacity of SGSNl (in bps)

fvi
12 Amount of voice traffic from Node Bi

fdi
12 Amount of data traffic from Node Bi

fvj
23 Amount of voice traffic from RNCj

fdj
24 Amount of data traffic from RNCj

hii′
3 Reduced costs per unit of time of complex handoffs involving two MSCs

hii′
4 Reduced costs per unit of time of complex handoffs involving two SGSNs

In this section we will need the notations presented in Table 1. We see that

fvj
23 =

n∑

i=1

fvi
12, ∀j ∈ J such as Bi is assigned to RNCj

and

fdj
24 =

n∑

i=1

fdi
12, ∀j ∈ J such as Bi is assigned to RNCj

2.1 Model Presentation

Let us define the three following classes of decision variables:

xij
12 =

{
1 if Bi is assigned to a RNCj ,
0 otherwise. for i ∈ I and j ∈ J. (1)

xjk
23 =

{
1 if RNCj is assigned to a MSCk,
0 otherwise. for j ∈ J and k ∈ K. (2)

xjl
24 =

{
1 if RNCj is assigned to a SGSNl,
0 otherwise. for j ∈ J and l ∈ L. (3)

Let zii
′j

12 and yii′
12 be defined as:

zii
′j

12 = xij
12 × xi′j

12 and yii′
12 =

∑

j∈J

zii
′j

12 .
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It is clear that zii
′j

12 = 1 if Node Bi and Node B′
i are both assigned to the RNCj ;

and yii′
12 = 1 if Node Bi and Node B′

i are both assigned to one and only one
RNC. In the same way, we define zjj

′k
23 , yjj′

23 , zjj
′l

24 and yjj′
24 :

zjj
′k

23 = xjk
23 × xj′k

23 , yjj′
23 =

∑

j∈J

zjj
′k

23 , zjj
′l

24 = xjl
24 × xj′l

24 and yjj′
24 =

∑

j∈J

zjj
′l

24 .

Since we must consider two assignment sub-problems, the total cost function
will be divided into two parts: the cost of assigning Nodes Bs to RNCs, which
is denoted f1, and the cost of assigning RNCs to MSCs and SGSNs, which is
denoted f2. In this case, f1 and f2 are expressed in [1] as follows:

f1 =
∑

i∈I

∑

j∈J

cij12x
ij
12 (4)

and

f2 =
∑

j∈J

∑

k∈K

cjk23x
jk
23 +

∑

j∈J

∑

l∈L

cjl24x
jl
24

+
∑

i∈I

∑

i′∈I

∑

j∈J

∑

j′∈J

hii′
3 × (1 − yii′

12 ) × (1 − yjj′
23 )

+
∑

i∈I

∑

i′∈I

∑

j∈J

∑

j′∈J

hii′
4 × (1 − yii′

12 ) × (1 − yjj′
24 ) (5)

subject to:
∑

j∈J

xij
12 = 1, i ∈ I, (6)

which means that each Bi must be assigned to only one RNCj .
∑

k∈K

xjk
23 = 1, j ∈ J, (7)

∑

l∈L

xjl
24 = 1, l ∈ L, (8)

which means that each RNCj must be assigned to only one MSCk and only one
SGSNl, respectively.

∑

i∈I

fvi
12.x

ij
12 ≤ wvj

2 j ∈ J, (9)

∑

i∈I

fdi
12.x

ij
12 ≤ wdj

2 j ∈ J, (10)

which means that the traffic generated by all Nodes Bs connected with RNCj

cannot exceed the RNC capacities in terms of voice and data traffic.
∑

j∈J

fvj
23 .xjk

23 ≤ wvk
3 k ∈ K, (11)

∑

j∈J

fdj
24.x

jl
24 ≤ wdl

4 l ∈ L, (12)
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which means that voice traffic from the RNCs to MSCk and data traffic from the
RNCs to SGSNl cannot exceed the MSC and the SGSN capacities, respectively.

According to [1], among others, the global problem consists in minimizing
the objective function f1 + f2 subject to the constraints (6), (7), (8), (9), (10),
(11) and (12).

2.2 Improvement of Mathematical Modeling

As we saw in the previous section, to minimize f1 and minimize f2, the authors
in [1] choose to oversimplify the problem by minimizing f1 + f2.

In our view, this simplification is not always reasonable. Indeed, minimizing
f1 and minimizing f2 generate a multi-objective problem. A reasonable solution
to a multi-objective problem is to determine an entire Pareto optimal solution
set, or to transform this multi-objective problem into an appropriate mono-
objective one. In this section, we will show the drawback of the existing model,
then we present our improved mathematical modeling.

Assume that f1 is much greater than f2. When applying genetic algorithm
(GA) to minimize the objective function f1+f2, there is a great risk that the GA
selection procedure chooses only solutions which improve f1 by neglecting f2,
since the function f1 dominates f2. Now, we present our mathematical modeling
of the global assignment problem.

Consider the two sub-problems (4) and (5) subject to the con-
straints (6), (7), (8), (9), (10), (11) and (12). Since we wish to minimize f1
and minimize f2 simultaneously, then the global assignment problem can be
expressed as a multi-objective problem. In our approach, we transform this multi-
objective problem into a mono-objective one as follows:

Minimize w1f1 + w2f2, (13)

subject to the constraints (6), (7), (8), (9), (10), (11) and (12), where the weights
w1 and w2 are positive values satisfying w1 + w2 = 1.

In the literature, the weights are usually taken as constants. In [10], authors
show that, when using genetic algorithm (GA) to solve problem (13), it is not
always appropriate to take w1 and w2 as constants. Instead, they introduce
dynamic weights. Therefore, our problem (13) becomes:

{
Minimize w1(t)f1 + w2(t)f2
|w1(t)f1 − w2(t)f2| ≺ ε,

(14)

subject to the constraints (6), (7), (8), (9), (10), (11) and (12), where ε is a
positif number in the vicinity of 0, t is a time-step (in this paper it is an iteration
step of the genetic algorithm), and wi(t), i = 1, 2, are dynamic weights satisfying
w1(t) + w2(t) = 1.

Since the global assignment problem is NP-hard (see for instance [1,11]),
then it is more appropriate to use metaheuristics method in order to find good
solutions in reasonable computing time. In this paper, we use genetic algorithm
(GA) method. In the next section, we describe how to use GA method and we
present a dynamic approach to choose the weights w1 and w2.
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3 Dynamic Genetic Algorithm Approach

Genetic algorithm (GA) is a search and optimization technique that mimics
natural evolution. GA has already a relatively old history since the first work of
John Holland on the adaptive systems goes back to 1962 [12]. The work of David
Goldberg [13] largely contributed to popularize the GA. GA is inspired by the
evolutionist theory explaining the origin of species. In GA terminology, a solution
x is called an individual or a chromosome. Chromosomes are made of discrete
units called genes. The main components of a GA are: selection, crossover and
mutation.

3.1 Proposed Solution Method Using Genetic Algorithms

Consider the problem presented in Sect. 2.2 and described by Eq. (14).

Chromosome Representation
To code the chromosome we use integer coding as follows. If we have n nodes
Bs, r radio network controllers (RNCs), m Mobile Switching Centers (MSCs)
and s Serving GPRS Support Nodes (SGSNs), then the chromosome will have
(n+2× r) genes, where the first n genes present the assignment of Bs to RNCs,
the second r genes present the assignment of RNCs to MSCs and the remanning r
genes present the assignment of RNCs to SGSNs. For example, if we have n = 6,
r = 3, m = 2 and s = 2, then the chromosome 213121122112 means that the B1

is assigned to RNC2, · · · , B6 to RNC1, RNC1 to MSC1, · · · , RNC3 to MSC2

and RNC1 to SGSN1,· · · , RNC3 to SGSN2.

Initial Population
Suppose we have n nodes Bs, r RNCs, m MSCs and s SGSNs. To define each
chromosome of the population we generate (n + 2 × r) random genes; the first
n genes are integers in the set {1, . . . , r}, the second r genes are integers in the
set {1, . . . , m} and the remaining r genes are integers in the set {1, . . . , s}.

Fig. 2. Illustration of crossover operator
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Crossover and Mutation
For crossover operator, a single crossover point on both parents’ chromosomes is
selected. All data beyond that point in either chromosome is swapped between
the two parent chromosomes. The resulting organisms are the new chromosomes
(children). Figure 2 illustrates this operator.

For mutation, we choose a random position. If the gene to mutate is a Bs, we
replace it by an integer chosen randomly from the set {1, 2, . . . , r}. If the mutation
position is between (n+1) and (n+ r), we replace the selected gene by an integer
chosen randomly from the set {1, 2, . . . ,m}. Finally, if the mutation position is
between (n + r + 1) and (n + 2 × r), we replace the selected gene by an integer
chosen randomly from the set {1, 2, . . . , s}. Figure 3 illustrates this operator.

Fig. 3. Illustration of mutation operator

3.2 Genetic Algorithm and Dynamic Weights

In this section we present a GA approach using dynamic weights, as proposed by
Gabli et al. in [10]. Let g(x, t) = w1(t)f1(x)+w2(t)f2(x), be the fitness function
of the GA. In each iteration t of the GA we take:

w1(t) =
|f2(xt−1)|

|f1(xt−1)| + |f2(xt−1)| and w2(t) =
|f1(xt−1)|

|f1(xt−1)| + |f2(xt−1)| ,

where xt−1 is the best solution of the iteration (t − 1) of the GA; if f1(xt−1) =
f2(xt−1) = 0, then we take w1(t) := w1(t − 1) and w2(t) := w2(t − 1). It is
easy to see that 0 ≤ wi(t) < 1, i = 1, 2, and w1(t) + w2(t) = 1. In this case, the
fitness function becomes

g(x, t) =
|f2(xt−1)|

|f1(xt−1)| + |f2(xt−1)|f1(x) +
|f1(xt−1)|

|f1(xt−1)| + |f2(xt−1)|f2(x).

Then the algorithm is outlined as follows (see [10]):

Step 0. At the initialization step of the GA, we assign arbitrary positive real
numbers to wi(0), i = 1, 2, satisfying w1(0) + w2(0) = 1;

Step 1. Run an iteration t of the GA, with the fitness function g;
Step 2. Let xt be the best solution among solutions of the current population;
Step 3. Calculate fi(xt), i = 1, 2;
Step 4. If |f1(xt)| + |f2(xt)| �= 0 then take

w1(t + 1) :=
|f2(xt)|

|f1(xt)| + |f2(xt)| , w2(t + 1) :=
|f1(xt)|

|f1(xt)| + |f2(xt)| ;
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Step 5. t := t + 1;
Step 6. Repeat steps 1 through 5 until a stopping criterion is satisfied.

This algorithm has two immediate advantages:

– It automates the choice of the weights.
– It ensures an equitable treatment of each objective function, so we have an

equitable chance to minimize both functions f1, and f2. For more detail, see
[10].

4 Application

4.1 Data Description

To evaluate the performance of the proposed algorithm, we consider three
instances of the problem. For each instance, four discrete parameters are speci-
fied: the number of Nodes Bs, the number of RNCs, the number of MSCs and the
number of SGSNs. Using a pseudorandom number generator, each parameter is
assigned a position in the service area. The simulation instances are presented
in Table 2.

Table 2. Number of Bs, RNCs, MSCs and SGSNs for each instance of problem.

Number of Number of Number of Number of

Bs RNCs MSCs SGSNs

First instance 6 3 2 2

Second instance 15 8 3 3

Third instance 100 20 4 4

For each instance of problem, we consider the following simulation data:

– Node B to RNC connection cost;
– RNC to MSC connection cost;
– RNC to SGSN connection cost;
– Handoff costs (involving MSCs) between each pair of Nodes Bs;
– Handoff costs (involving SGSNs) between each pair of Nodes Bs;
– Voice traffic from each Node B;
– Data traffic from each Node B;
– Capacity of each equipment.

Throughout this application, input costs are taken randomly.
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4.2 Computational Results

The algorithms were coded in JAVA programming language and implemented
on a machine of CPU Intel Core2Duo-2GHz and memory RAM 2Go. In the GA
approaches we have used three selection methods; roulette, scaling and sharing.
After several experiments, we decided to take the parameters of GA as follows:
crossover probability pc = 0.5, mutation probability pm = 0.01, population size
ps = 10, ps = 15 and ps = 20 for first, second and third instance, respectively,
and maximum number of generations is respectively 50, 300 and 1000. In the
sharing selection method, the threshold of dissimilarity between two parents is
taken as σs = ps/2, and α = 1. Each experiment were conducted on ten times.
Tables 3, 4 and 5 show average and best cost with the simple method (f1 + f2)
and with our dynamic method for the three instances of problem, respectively.

Table 3. First instance of assignment problem: comparison between f1+f2 and w1f1+
w2f2 with dynamic weights.

Method of Average cost Average cost Best cost Best cost Time in

selection (f1 + f2) (dynamic (f1 + f2) (dynamic second

weights) weights)

Roulette 85.35 70.62 59.66 55.3 1.49

Scaling 65.06 62.38 56.41 52.23 1.52

Sharing 67.96 59.2 50.25 48.5 1.52

Table 4. Second instance of assignment problem: comparison between f1 + f2 and
w1f1 + w2f2 with dynamic weights.

Method of Average cost Average cost Best cost Best cost Time in

selection (f1 + f2) (dynamic (f1 + f2) (dynamic second

weights) weights)

Roulette 775.85 774.07 720.32 660.59 2.83

Scaling 844.88 812.62 754.37 710.88 2.92

Sharing 861.65 830.73 761.52 712.89 2.93

Table 5. Third instance of assignment problem: comparison between f1 + f2 and
w1f1 + w2f2 with dynamic weights.

Method of Average cost Average cost Best cost Best cost Time in

selection (f1 + f2) (dynamic (f1 + f2) (dynamic second

weights) weights)

Roulette 61166.25 60648.88 57933.70 56314.04 9.8

Scaling 60208.42 60176.74 57173.52 55997.48 10.5

Sharing 61236.90 60896.4 58698.95 57598.68 10.6
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Fig. 4. Presentation of a solution to the first instance of problem.

When we compare the average costs and the best costs with our method and
with the simple method, we find that our method gives the best solutions in the
three instances of problem. In the details, the best solution in the first instance
is given by the sharing selection method with a cost equal to 48.5 (see the third
line in Table 3), the best solution in the second instance is given by the roulette
selection method with a cost equal to 660.59 (see the first line in Table 4) and the
best solution in the third instance is given by the scaling selection method with
a cost equal to 55997.48 (see the second line in Table 5). Figure 4 presents the
best assignment solution to the first instance of problem, using roulette method
which is 231231111222.

5 Conclusion

In this paper we have considered the problem of the universal mobile telecom-
munication system (UMTS) network assignment. In this context, the total cost
function will be divided into two parts: the cost of assigning a set of Nodes Bs to
a set of radio network controllers (RNCs), which is denoted f1, and the cost of
assigning those RNC concurrently to a set of Mobile Switching Centers (MSCs)
and a set of Serving GPRS Support Nodes (SGSNs), which is denoted f2. The
objective is to find an assignment that minimizes the cost of such implementa-
tion, i.e. that minimizes f1 and minimizes f2.

In the literature, authors choose to oversimplify the problem by minimizing
f1+f2. In our view, this simplification is not always reasonable. Indeed, minimize
f1 and minimize f2 generate a multi-objective problem. A reasonable solution to
a multi-objective problem is to determine an entire Pareto optimal solution set,
or to transform this multi-objective problem into an appropriate mono-objective
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one. In this paper, we presented the drawback of the existing model, then we
described our improved mathematical modeling.

In order to solve the problem we have proposed a solution method based on
genetic algorithms with a dynamic approach. To compare our proposed model
to the existing one, we have applied our method to three instances of problem.
The obtained results show the efficiency of our model and our approach.
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Abstract. One of the very serious problems facing a MANET (Mobile Ad hoc
Network) is very limited life of its mobile nodes. Most MANET routing
protocols use hop count as the cost metric, so the nodes along shortest paths
may be used more often and exhaust their batteries faster, these protocols do
not consider the energy problem because there is no exchange of information
on the state of mobile nodes between the MAC protocol (Medium Access
Control) and the routing protocols in order to support the power saving
mechanisms. In this paper we propose the improvements of one of the most
important routing protocols that is AODV (Ad hoc On demand Distance
Vector). These improvements take into account a metric based on energy
consumption during route discovery, thereby increasing the network lifetime,
packet delivery ratio and decreasing load of control packets. Most researches in
this domain are based on an ideal radio channel, in which a successful
transmission is guaranteed if the distance between nodes is less than a certain
threshold. However, wireless communication links normally suffer from the
characteristics of realistic physical layer. So in order to give credibility to our
work we use a realistic physical layer by modeling transmission errors by the
Gilbert-Elliot model.

Keywords: Mobile Ad-hoc Network � Routing protocols � AODV � Energy
consumption � NS2(Simulator) � Radio channel � Control overhead � Quality of
Service (QoS) � Markov chain � Gilbert-Elliot model

1 Introduction

Ad-hoc network is a collection of mobile nodes forming a network topology, operating
without alternative base station and without centralized administration. For MANET
the most important is probably to establish optimization criteria for energy conservation
because the energy depletion of a node does not only affect its ability to communicate
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but could actually cause network partitioning. MANET routing protocols use in general
the same metric (number of hops) so the choice of a route can deplete some nodes
because they do not take into consideration the energy consumption in the choice of
route. Our work is a part of the study of the routing problem in mobile ad hoc networks
in which we propose an improvement of AODV [1] protocol using a metric based on
the energy in order to prolong the nodes lifetime and thus the network lifetime. Our
proposition will be implemented and simulated in NS2 [2] to show the impact on QoS
including the consumption of energy in the network.

The rest of this paper is organized as follows: Sect. 2 gives a brief description of the
AODV protocol. Section 3 presents a discussion on the related works in this area,
Sect. 4 the details working of the proposed E-AODV, Sect. 5 shows the simulation
environment, Experimental Results and Discussions. Conclusion and future work are
given in Sect. 6.

2 AODV Protocol

AODV is essentially an improved proactive DSDV [3] algorithm. It is an on demand
algorithm, meaning that it builds routes between nodes only as desired by source nodes.
The AODV protocol reduces the number of broadcasts of messages. A node broadcasts
a route request (RREQ) if it would need to know a route to a destination and that this
route is not available. It can happen in one of three cases: if the destination is not
known beforehand, it became defective or if the existing path to the destination has
expired its lifetime. After the broadcast of RREQ, the source waits for the route reply
packet (RREP) if it is not received after some time (called RREP_WAIT_TIME), the
source can resume the process of looking for destination by a new request RREQ.
A node receiving the RREQ may send a route reply (RREP) if it is either the desti-
nation or if it has a matching route in its routing table. In this last case the RREQ is not
forwarded but a RREP is sent to make the discovery more efficient less delay and less
overhead. To maintain consistent route, periodic transmission of the message
“HELLO” (which is a RREP with TTL (Time To Live) 1) is performed. If three
messages “HELLO” are not consecutively received from a neighboring node, the link
in question is considered failed. The process of execution the RREQ, RREP and
HELLO message of AODV protocol is presented in Fig. 1.

When choosing a route, AODV routing protocol only considers the path that is the
shortest without considering the energy of the nodes. So when AODV routing protocol
chooses the routes, it is very necessary to consider the residual energy of nodes, so it is
necessary to improve this protocol to solve the problem of energy consumption in
MANET routing nodes.
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3 Related Works

This section delivers some of the many energy efficient schemes based on AODV
developed by researchers in the field, in [4] the authors propose an improvement for the
AODV protocol to maximize the networks lifetime by applying an Energy Mean Value
algorithm which considerate node energy-aware.

In [5] a mechanism involving the integration of load balancing approach and trans-
mission power control approach is introduced to maximize the lifetime of MANETs.

Fig. 1. The process of execution the RREQ, RREP and HELLO messages of AODV protocol
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The load balancing approach on-demand protocols select a route at any time based on the
minimum energy availability of the routes and the energy consumption per packet of the
route at that time. As per the transmission power control approach once a route is selected,
transmission power will be controlled on a link by link basis to reduce the power con-
sumption per node. In [6] the authors propose a multipath minimum energy routing
mechanism to minimize the overall energy consumption of the network. They model an
ad hoc network by a set of nodes and links. Each link is associated with an energy cost
function which is a function of the total traffic flowing over this link. They focus on the
problem of how to split traffic among multiple paths to minimize the sum of the links’
energy cost.

In [7] the authors propose an EE-AODV routing protocol which is an enhancement
in the existing AODV routing protocol. The routing algorithm which is adopted by
Energy Efficient Ad Hoc Distance Vector protocol (EE-AODV) has enhanced the
RREQ and RREP handling process to save the energy in mobile devices. EE-AODV
considers some levels of energy as the minimum energy which should be available in
the node to be used as an intermediary node (or hop). When the energy of a node
reaches to or below that level the node should not be considered as an intermediary
node, until and unless no alternative path is available. Manickam et al. [8] suggested a
new protocol AODV Energy Based Routing (AODV-EBR) protocol for energy con-
strained mobile ad hoc Networks. This protocol optimizes Ad hoc on demand distance
vector routing protocol (AODV) by creating a new route for routing the data packets in
the active communication of the network. The proposed protocol efficiently manages
the energy weakness node and delivers the packets to destination with minimum
number of packets dropped. This protocol has two phases such as Route discovery and
Route maintenance. The operation of AODV-EBR is similar to AODV considering the
energy of a node during the establishment of route.

El Fergougui et al. [9] implemented a new approach AODV-ROE (AODV
Reduction Overhead and Energy), whose routing metric is based on the consumption of
energy to reduce the number of control messages needed to discover and maintain a
route. This new protocol has the main objective to ensure that network connectivity is
maintained as long as possible, and that the energy level of the entire network is
similar. They have grouped these two goals in the deployment of several scenarios
ad-hoc. So their goal is to reduce as possible the energy problem and minimizing the
overload in the network.

4 Proposed Work: Algorithm for Energy Efficient AODV

In order to implement residual energy in AODV protocol, two new vectors, called
Residual Energy vector (RE) and node label vector (LB) are added to the RREQ and
RREP messages. To find a route to a destination node, a source node floods a RREQ
packet over the network. When neighbors nodes receive the RREQ packet, they update
the RE and LB by adding their residual energy, their index and it triggers the data
collection timer in order to receive all RREQ messages forwarded through other routes,
after this process each node has a complete database of energy of all links connecting
the nodes which are inserted in the LB vector, when time expires each node finds the
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shortest paths between it and all other nodes in LB vector using Dijkstra algorithm and
rebroadcast the packet to the next nodes until the packet arrives at a destination node.

NB: we fix the threshold value (Th) for the nodes on the network when the energy
(Ei) of the node is less than the threshold value (Th) that node does not forward the
RREQ, but drops it.

4.1 Graph Construction

The graph G(V, E) is represented by an N � N (N is the number of nodes in LB vector)
the weights of the edges are calculated by:

wij ¼
0 if i ¼ j

H
means ðENi;ENjÞ if i 6¼ j and ði; jÞ 2 E
1 if i 6¼ j and ði; jÞ 62 E

8
<

:
ð1Þ

where:
ENi is the current remaining energy of the node i
ENj is the current remaining energy of the node j
H: The number of hops from the current node to the node that transmits the request.

Figure 2 shows the processes of constructing the weighted graph during a broad-
casting RREQ packet from the source node (s) to the destination node (d).

4.2 Running Dijkstra Algorithm

Using the Dijkstra algorithm, the nodes can determine the shortest distance between
them and any other node in LB vector. The idea of the algorithm is to continuously
calculate the shortest distance beginning from a starting point, and to exclude longer
distances when making an update. So here is the pseudo code of function for this
algorithm:

Fig. 2. Processes of constructing the weighted graph
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function Dijkstra(Graph, source): 
 for each vertex v in Graph: // Initialization 
dist[v] := infinity // initial distance from source //to 
//vertex v is set to infinite 
previous[v] := undefined // Previous node in optimal 
//path from source 
dist[source] := 0// Distance from source to source 
Q := the set of all nodes in Graph  
while Q is not empty:  
 u := node in Q with smallest dist[ ] 
 remove u from Q 
for each neighbor v of u: // where v has not yet been 
//removed from Q. 
 alt := dist[u] + dist_between(u, v) 
 if alt < dist[v] // Relax (u,v) 
 dist[v] := alt 
 previous[v] := u 
return previous[ ] 

4.3 Media Transmission Error

We consider the 2-state Markov approach as introduced by Gilbert and Elliott [10, 11],
which is widely used for describing error patterns in transmission channels. This model
is shown below in Fig. 3, where at time k, zk ¼ 1 represents the bad state and zk ¼ 0
represents the good state. The probability of moving from state zk ¼ i to zkþ 1 ¼ j is
denoted by pig.

Let tg and tb the mean duration in good state and in bad state, respectively.
The steady state probability for being in good state can be obtained as follows:

pg=g ¼ tg
tg þ tb

ð2Þ

In same way, the steady state probability for being in bad state can be obtained as
follows:

pb=b ¼ tb
tg þ tb

ð3Þ

Fig. 3. Gilbert-Elliot model
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The probability of a transition occurs from good to bad state is computed as:

pb=g ¼ 1� pg=g ð4Þ

The probability of a transition occurs from bad to good state is computed as:

pg=b ¼ 1� pb=b ð5Þ

The parameters p and q can be derived from experimental observations measure-
ments of errors on the wireless link, given in [12], show pb=g ¼ 0:3820 and
pg=b ¼ 0:0060:

5 Simulation and Results

5.1 Simulation Environment

We have created several scenarios to evaluate E-AODV protocol. The topology of
simulation varies with the number of nodes (35, 40, 45, 50, 55, 60) which are placed
uniformly and forming a Mobile Ad-hoc Network with nodes over a 1000 � 1000 m
area for 600 s of simulated time in NS2. Using this simulator (NS2) the complex
scenarios can be easily tested and results can be quickly obtained. For network traffic
we create a CBR connection pattern between nodes, having random of connections,
with a seed value of 1.0 and a rate of 5.0 pkts/s. The Table 1 show the parameters used
in the simulation:

Table 1. Parameters settings for the simulation

Simulator NS2 Version 2.35
Simulator network size 500 m � 500 m
Number of nodes 35, 40, 45, 50, 55, 60
Duration 600 s

Physical layer Signal propagation Two-ray ground
Antenna model
Omni antenna

Omni antenna

Mac layer MAC protocol 802.11
Mac layer link bandwidth 1 MB (by default)

Traffic model Traffic type CBR
Queue Queue type DropTail/PriQueue

Size 50
Error model Uniform, Two state (Markov)
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5.2 Performance Metric

We use four different quantitative metrics to compare the performance of the original
AODV and the improvement AODV(E-AODV):

• Normalized Routing Load: This is the number of routing packets per data packets
delivered at the destination.

• Packet delivery ratio: The ratio of the data packets delivered to the destinations to
those generated by the CBR sources.

• Total Energy Consumption: This metric gives the energy consumption in the net-
work at the end of simulation.

• Number of Alive Nodes (AN): This efficiency metric gives the number of nodes
have a non-zero energy at the end of the simulation.

5.3 Results

For each performance metric two experiments were carried out. In the first experiment,
the impact of network density on the performance of AODV and E-AODV was tested
by varying the number of nodes. In the second experiment, the effect of the pause times
on the performance of the protocol was studied.

• Normalized Routing Load.

Figures 4 and 5 show the simulation results of Normalized Routing Load of
E-AODV and AODV in the different number of nodes and different Pause time. We
can observe that E-AODV demonstrates significantly lower routing load than AODV
due to the nodes of the more residual energy are selected on the route in E-AODV, so
the route will not quickly come into force, thus it reduces the number of routing
discovery.

Fig. 4. Comparison of normalized routing load with number of nodes
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We can also see that the value of Normalized Routing Load is increasing when we
raise the number of nodes because adding nodes will automatically increase the number
of periodic messages (HELLO messages) and the broadcast messages like RREQ. Less
pause time indicate high mobility scenario which leads to frequent link failures and
more pause time indicates less mobility scenario, so the number of route discoveries is
directly proportional to the number of link failures.

• Packet Delivery Ratio.

When looking at the packet delivery ratio in Fig. 6 and 7, it can be seen that
E-AODV perform much better than AODV. The reason is that the nodes of the less
residual energy can be selected on the route in AODV so if these packets are sent, and
the route chosen is not satisfying the requirements energy, packets have more proba-
bility to be dropped at the intermediate nodes. In other words, the E-AODV decreases
the probability for dropping packets by selecting the paths which have more energy. It
helps to save the data rate as well.

From the Fig. 7 it is observed that as the pause time increases the PDR increases
too. The reason for this is, since the network is static there is more probability of the
source and destination nodes staying in transmission range of each other, the source
node doesn’t need the intermediate nodes to transfer the data packets, so the probability
for dropping packets decreases.

• Total Energy Consumed.

The consumed energy for E-AODV is lesser than AODV is clearly illustrated in
Figs. 8 and 9 due to AODV considers the hop count as the metric for choosing the best
route, while our protocol considers a metric based on residual energy in the best route
selection. When we only consider the hop count in route selection, a lot of data packets
will share the same path simultaneously and will result in a quick diminution of the
battery power of the nodes along this path.

Fig. 5. Comparison of normalized routing load with pause time
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• Number of Alive Nodes.

Figures 10 and 11 show the comparison between the number of nodes have a
non-zero energy after the end of the simulation versus the number of the nodes in the
network and in different pause time for the original AODV and E-AODV. As seen in
Fig. 10, the number of alive nodes decreases with the number of nodes in the network
because the network load is increased.

Figure 11 gives the number of alive nodes with varying pause time, with increase
in pause time the network is less mobile and the packets control become fewer. That’s
why there is an increasing number of alive nodes.

Fig. 6. Comparison of packet delivery ratio with number of nodes

Fig. 7. Comparison of packet delivery ratio with pause time
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Fig. 8. Comparison of total energy consumed with number of nodes

Fig. 9. Comparison of total energy consumed with pause time

Fig. 10. Comparison of number of alive nodes with number of nodes
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6 Conclusion

We examine the performance differences of AODV and E-AODV. We measure Nor-
malized Routing Load, Packet delivery ratio, Total Energy Consumption and Number
of Alive Nodes as QoS parameters. AODV always uses shortest hop route, so con-
gestion occurs and distribution of load is not considered. Also, AODV does not con-
sider available node energy of nodes for path selection and communication purposes. In
this paper, algorithm with the addition of energy metric is given and simulation is
performed using NS2.

Our simulation results show that E-AODV outperforms AODV for number of alive
nodes by 25 to 30% with considering performance parameters as pause time and node
density. The E-AODV decreases the probability for dropping packets by selecting the
paths which have more energy. So it helps to save the data rate as well.

The present research work can be extended to design and develop new routing
protocols to meet the following additional desirable features.

Robust Scenario- A routing protocol must work with robust scenarios where
mobility is high, area is large and with the both TCP and UDP traffic.

Probabilistic Route Maintenance- A more research in the field like probabilistic
route maintenance is required to identify the probability of route failure before the
occurrences of route failures.

References

1. Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc On-Demand Distance Vector (AODV)
Routing. Internet Request for Comments RFC 3561, Internet Engineering Task Force, July
2003

2. http://www.isi.edu/nsnam/ns/
3. Perkins, C.E., Bhagwat, P.: Highly dynamic destination sequenced distance-vector routing

(DSDV) for mobile computers. In: ACM SIGCOMM, pp. 234–244, August 1994

Fig. 11. Comparison of number of alive nodes with pause time

38 H. Faouzi et al.

http://www.isi.edu/nsnam/ns/


4. Kim, J.-M., Jang, J.-W.: AODV based energy efficient routing protocol for maximum
lifetime in MANET. IEEE (2006)

5. Tamilarasi, M., Palanivelu, T.G.: Integrated energy-aware mechanism for MANETs using on
demand routing. Int. J. Comput. Inf. Eng. 2, 212–216 (2008)

6. Yin, S., Lin, X.: Multipath minimum energy routing in ad hoc network. In: Proceedings of
the International Conference on Communications (ICC), pp. 3182–3186. IEEE (2005)

7. Singh, R., Gupta, S.: EE-AODV: energy efficient AODV routing protocol by optimizing
route selection process. Int. J. Res. Comput. Commun. Technol. 3(1), 158–163 (2014)

8. Manickam, P., Manimegalai, D.: A highly adaptive fault tolerant routing protocol for energy
constrained mobile ad hoc networks. J. Theor. Appl. Inf. Technol. 57(3), 388–397 (2013)

9. El Fergougui, A., Jamali, A., Naja, N., El Ouadghiri, D., Zyane, A.: Improved aodv routing
protocol based on the energy model. J. Theor. Appl. Inf. Technol. 76(3), 366–372 (2015)

10. Elliott, E.O.: Estimates of error rates for codes on burst-error channels. Bell Syst. Tech. J. 42,
1977–1997 (1963)

11. Gilbert, E.: Capacity of a burst-noise channel. Bell Syst. Tech. J. 39, 1253–1266 (1960)
12. Janevski, T.: Book Traffic Analysis and Design of Wireless IP. Artech House, Boston (2003)

Improving Network Lifetime of Ad Hoc Network 39



A Fuzzy-Based Routing Strategy to Improve
Route Stability in MANET Based on AODV

Mohamed Er-rouidi1(B), Houda Moudni1, Hassan Faouzi1, Hicham Mouncif2,
and Abdelkrim Merbouha1

1 Faculty of Sciences and Technology,
Sultan Moulay Slimane University, Beni Mellal, Morocco
{m.errouidi,h.moudni,h.faouzi,merbouha}@usms.ma

2 Faculty Polydisciplinary, Sultan Moulay Slimane University Beni Mellal,
Beni Mellal, Morocco
hmouncif@yahoo.fr

Abstract. In recent years, mobile ad hoc network (MANET) is becom-
ing more and more useful in many domains. While MANETs still suffer
from several problems. Among these problems, the energy conservation.
Where the energy presents one of the greatest restriction, and has a mas-
sive effect on others metrics like packet delivery ratio, overhead, end-to-
end delay and the lifetime of the network. As most of mobile ad hoc
stations based on a limited battery in their mission. For these reasons,
we propose in this paper a fuzzy logic system (FLS) to enhance the per-
formance of one of the reactive routing protocols Ad hoc On-demand
Distance Vector (AODV) by avoiding nodes with low amount of energy
and select the more stable path. Our fuzzy system uses three input para-
meters that have a large impact on the stability of the links: energy
drain rate, mobility of the node and the distance between two communi-
cating nodes. Simulation results show that our protocol gives good result
by reducing significantly the energy dissipation, also certain parameters
affected by the energy issue.

Keywords: MANET · AODV · Routing protocol · Fuzzy logic system ·
Energy

1 Introduction

With the increase of using wireless terminals, mobile ad-hoc networks receive
significant attention in recent years as a technique to offer the communications
between these terminals without the existing of any fixed infrastructure or cen-
tralized administration. Each node in this network operates as a host and also
as a router, by forwarding packets of other nodes whose destinations are not in
their direct transmission range. Based on a routing protocol nodes can select the
next node and forward the packets. Various routing protocols have been submit-
ted to the Internet Engineering Task Force Mobile Ad Hoc Networking group
[1], based on different assumptions, such as AODV [2], Dynamic Source Routing
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 40–48, 2017.
DOI: 10.1007/978-3-319-59647-1 4
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(DSR) [3], Destination Sequenced Distance-Vector (DSDV) [4] and Temporally
Ordered Routing Algorithm (TORA) [5]. Most of these protocols take the short-
est path as the main metric in building routes. While this selection method
presents several effects on the network. Among this effects traffic, concentration
on certain part of nodes, which results in the consumption of large amount of
resource of selected nodes. Energy is one of valuable resource in mobile ad-hoc
networks, since most nodes in such network are powered by battery which cannot
be recharged in most cases. In order to keep the network functional as long as
possible, energy-efficient routing algorithms should be developed. In this paper,
we propose an enhancement of the routing protocol AODV by introducing a fuzzy
logic system that use as inputs parameters three important metrics that have a
large impact on the stability of the routs which are the average energy of the
route, mobility of the node and the distance between two communicating nodes
in order to select routs with more stability. The rest of the paper is organized as
follows. In Sect. 2, we address the related work Sect. 3 gives a brief description of
AODV routing protocol and the fuzzy logic theory. Section 4 describe the pro-
posed solution. The performance of the proposed protocol evaluated in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related Work

To face these problems, many improvements to these protocols are proposed. In
[6] the authors propose a fuzzy inference system as an adaptive computational
approach to compute a node’s trust value based on the residual energy level
and speed of node. Also, introduce an efficient routing scheme by selecting the
most trustworthy nodes to establish a stable route. In order to decreases the
probability of route breaks during the data relay period. During this process,
intermediate node initiates a timer if the RREQ packet has not been previously
received, in purpose of waiting another RREQ from node with best trust value.
But this technique leads to a higher latency. In other hand authors of [7] propose
the same technique. However, only the destination node who apply the fuzzy logic
system and wait for the best route. As well, authors in [8] Propose a dynamic
fuzzy energy state based AODV (DFES-AODV) routing protocol for MANETs,
based on fuzzy logic and reinforcement learning [9]. In route discovery phase of
this protocol, each node uses a Mamdani [10] fuzzy logic system (FLS) and use
like inputs the residual battery level and energy drain rate of mobile node to
decide its Route REQuests (RREQs) forwarding probability.

3 Applied Methods and Routing Protocol

3.1 Fuzzy Logic

We use Fuzzy Logic theory [11] to combine some metrics in order to make good
routing decisions. In general, Fuzzy Logic can be seen as a generalization of
classical set theory. By introducing the notion of degree in the verification of
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a condition, thus enabling a condition to be in a real value in [0, 1] other than
true or false. Let U be a nonempty set and x an element in U, A is a set in
U characterized by the membership function μA, In classical set theory, the
membership function of x in A is evaluated by 1 or 0 (1). But in fuzzy set, the
membership function of x in A will be a real value in [0, 1] (2). Fuzziness is a
language concept; its main strength is its valuable flexibility for reasoning, which
makes it possible to take into account inaccuracies and uncertainties.

∀x ∈ U, μA (x) =
{

1 x ∈ A
0 x /∈ A

(1)

μA (x) : U → [0, 1] (2)

3.2 Ad Hoc On-Demand Distance Vector (AODV) Routing
Protocol

AODV [2] routing protocol is an adaptation of the Destination Sequenced
Distance-Vector (DSDV) [4] and Dynamic Source Routing (DSR) [3] algorithms.
It is belonging to on-demand protocol family: only the node that requires a route
toward a given destination launch the route discovery process, if it has no fresher
route in its routing table. During the construction of the routes AODV protocol
take the shortest path as the main metric, and does not take into consideration
the capabilities of intermediate nodes, which play an important role in achieving
the quality of service.

4 Fuzzy AODV

To deal with the problem of route selection in AODV protocol, in our pro-
posed solution we are introduce three new parameters in the selection criteria
of AODV. These parameters have a large impact on the stability of the links,
which are residual energy, the mobility of the node and the distance between two
communicating nodes. In [12,13] authors show that the distance between two
communicating nodes and their mobility can affect the link stability between
these nodes. The packet transmission error rate becomes higher if the distance
of the link is longer, as it approaches the transmission range of mobile nodes. In
this case, a small movement of one of the involved nodes can result in packet loss
due to a link failure. As the link has a high probability of being broken, if one of
the intermediate nodes have a low amount of energy [14]. Furthermore, packets
are more likely to be lost due to external environmental factors like white noise
and wireless interference if the signal strength is not very strong. For this reason,
in our approach we try to investigate these parameters to enhance the perfor-
mance of the network. We propose a system that contains two fuzzy logic system.
The first FLS1 has three inputs: harmonic mean of the energy of the traversed
nodes by the route request message, the distance between the two communicat-
ing nodes and the variation of the distance between nodes. This FLS1 executed
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at each intermediate node, does not have the route to the destination. And it is
executed when the intermediate node receives the route request message. FLS1
calculates and makes a suitable adaptation decisions of a stability values that
measure the quality of the links between source and the intermediate node. The
second FLS2 take two inputs parameters: stability (the output of FLS1) and
the hope count number of the route. FLS2 executed at each intermediate node
knows the route to the destination node or the destination node itself. The out-
put of FLS2 give us the weight of the route, based on the stability and the length
of the route. According to this value intermediate and destination node, select
the right route between available routes (Fig. 1). The process of the fuzzy logic
system is composed of three parts (Fig. 2): firstly, the crisp set of input data
are gathered and converted to a fuzzy set using fuzzy linguistic variables and
membership functions as shown in (Fig. 3); this part is known as Fuzzification;
afterwards, an inference engine is made based on a set of IF-THEN rules as
shown in Table 1; finally, the fuzzy output is mapped to a crisp output using the
membership functions, in the Defuzzification part (Fig. 3). The main advan-
tages of using the fuzzy logic system are ease to model our reasoning, the ability
to deal with uncertainty and non-linearity, the ease of implementation, the use
of linguistic variables and it requiring less computing power [15,16].

The estimated remaining energy is computed periodically as follows in each
node:

REi (t) = max
{

CEt − Σj=Nbr−pkts
j=1 Et (j) , 0

}
(3)

where ECt is the current energy value of the node. For more accurate estimation
of this residual energy, we reduce the value of the power that will be consumed to
transmit the remaining packets in the buffer noted by Nbr-pkts. The parameter
ECt(j) represents the energy needed for transmitting the packet number j. Our
fuzzy system take as input the harmonic mean of the energy of traversed nodes
by the route request message and is computed as follows:

Hmean =
Nbr of Hops

ΣNbr Hops
i=1

1
REi

(4)

FIS 1
Executed in each 
intermediate route FIS 2

Executed in the 
destination node 
or intermediate 
node has the 
route to the 
destination

Stability

Hop Count number

Energy

Distance

Mobility
Weight of the route

Fig. 1. Proposed fuzzy logic system
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Fig. 3. Fuzzy membership sets of the input and output variables of FLS1. (a) Mem-
bership function of the energy input. (b) Membership function of mobility input. (c)
Membership function of the distance input. (d) Output membership function of Sta-
bility

The distance between two nodes can be predicted by using signal strength para-
meter during route discovery process. This value is calculated using two ray
ground model defined in MAC layer of ns-2.35.

Pr = Pt ∗ Gt ∗ Gr
λ2

(4 ∗ π ∗ d)2
(5)
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Table 1. The Fuzzy inference rules of FLS1.

Energy Distance Mobility Stability Energy Distance Mobility Stability

Low Near Low VLow Medium Medium High Medium

Low Near High VLow Medium Far Low High

Low Medium Low VLow Medium Far High VLow

Low Medium High VLow High Near Low Medium

Low Far Low Low High Near High Low

Low Far High VLow High Medium Low High

Medium Near Low Medium High Medium High Low

Medium Near High Low High Far Low High

Medium Medium Low Medium High Far High VLow

where Pr = received power, Pt = transmitted power, Gt = antenna gain of
the transmitter, Gr = antenna gain of the receiver, λ = wavelength, and d =
distance. For the third input parameter of our fuzzy system. We measure the
variation of the distance between nodes over time in order to estimate the relative
mobility of two nodes. To calculate this value, we compute the difference of the
distance at time t and the distance at time t − 1. Relative mobility at node X
with respect to node Y at t is calculated as follows:

RMXY = Dt
XY − Dt−1

XY (6)

Then the variation of the distance is defined as the changes of estimated distances
between node. Each node in the network has a series of estimated distance
values from its neighbors, measured at certain time interval for n times where
n ≤ 10 [17].
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Fig. 4. Packet Delivery Ratio vs number of connection
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5 Simulation and Results

The performance of our proposed protocol is evaluated and compared with the
basic AODV and the Fuzzy AODV protocol proposed in [6]. Simulator NS-2
was used during these simulations. In these simulations, we consider 100 mobile
nodes move within a square field of 1000 m× 1000 m in size. Nodes max moving
is 10.0 m/s and the pause time between movements is 5 s with 200 s of simulated
time. Every plot is taken as the average of twenty different runs. Each run is
executed with a random sources and destinations pairs, and a random destina-
tion mobility. Our protocol is evaluated using four metrics Packet delivery ratio,
Normalized routing load, End-to-End delay and energy consumption. Figure 4
present the variation of packet delivery ratio with the modification of the con-
nection number. As we can see our approach perform better especially when the
number of connection increases. Also, the normalized routing load that represent
the ratio of control message per the packet received. We observe that the NRL
generated by the Enhanced AODV is less than Fuzzy-AODV by 1% and 4%
than AODV protocol, and that with 25 connections. These improvements are
due to the decrease in the number of retransmissions of control packets (RREP
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and RREQ) to construct a new route after link breakage, which engendered by
the bad selection of intermediate nodes that have a low remaining energy Fig. 5.
Figure 6 depicts the average end-to-end delay. All protocols have higher end-
to-end delay with high number of connections. Mostly because frequent route
breaks due to the dead of intermediate nodes and mobility. Our protocol reduces
this problem and still perform better than AODV and Fuzzy-AODV, Even if the
traffic load increases. This is due to our protocol decrease the number of link
failure, as the time lost during the reconstruction of the route after link failure
are eliminated. The average of energy consumption of the three protocols are
presented in Fig. 7. Energy consumption increases respectively with the increase
of the number of connection. However, our protocol performs better than others
with more 15 connections. This is because the our modified AODV tends to avoid
intermediate nodes with low remaining energy in its construction of the route.
As our protocol leads to decrease the number of link failure, the energy lost
during the broadcast of the route request packet are minimized. Consequently,
the lifetime is significantly improved.

6 Conclusion

Given the problems that face mobile ad-hoc network, especially that use reac-
tive routing protocols. As the stability of the route is very important. In this
paper, we are proposed an enhancement protocol of the reactive routing pro-
tocol AODV. In our solution, we added three parameters among the selection
criteria of AODV. These parameters have an important impact on the stability
of the route, which are energy, the mobility of the node and distance between
two communicating nodes. We are used fuzzy logic theory that combines these
parameters, in order to produce a value that represent the stability of the route.
Our enhanced protocol take this value in consideration with the number of hope
during the selection of the route, to select a route with more stability. Our proto-
col show significant performance improvements in terms of packet delivery ratio,
normalized routing load, end-to-end delay and average of energy consumption



48 M. Er-rouidi et al.

compared with AODV and fuzzy AODV, especially in a network with more con-
nections. Taking into account the benefit of the solution proposed in this paper,
in future work we will try to expand the solution by proposing fuzzy system with
dynamic function membership for more accuracy.

References

1. Abolhasan, M., Wysocki, T., Dutkiewicz, E.: A review of routing protocols for
mobile ad hoc networks. Ad hoc Netw. 2(1), 1–22 (2004)

2. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (aodv)
routing. Technical report (2003)

3. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Imielinski, T., Korth, H.F. (eds.) Mobile computing, pp. 153–181. Springer,
New York (1996)

4. Perkins, C.E., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (dsdv) for mobile computers. In: ACM SIGCOMM Computer Communi-
cation Review, vol. 24, pp. 234–244. ACM (1994)

5. Park, V., Corson, M.S.: Temporally-ordered routing algorithm (tora) ver-
sion 1 functional specification. Technical report, Internet-Draft (1997).
draft-ietf-manet-tora-spec-00.txt

6. Abbas, N.I., Ilkan, M., Ozen, E.: Fuzzy approach to improving route stability of the
aodv routing protocol. EURASIP J. Wirel. Commun. Netw. 2015(1), 235 (2015)

7. Torshiz, M.N., Amintoosi, H., Movaghar, A.: A fuzzy energy-based extension to
aodv routing. In: International Symposium on Telecommunications 2008, IST 2008,
pp. 371–375. IEEE (2008)

8. Chettibi, S., Chikhi, S.: Dynamic fuzzy logic and reinforcement learning for adap-
tive energy efficient routing in mobile ad-hoc networks. Appl. Soft Comput. 38,
321–328 (2016)

9. Al-Rawi, H.A.A., Ng, M.A., Alvin Yau, K.-L.: Application of reinforcement learn-
ing to routing in distributed wireless networks: a review. Artif. Intell. Rev. 43(3),
381–416 (2015)

10. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguis-
tic synthesis. In: Proceedings of the Sixth International Symposium on Multiple-
Valued Logic, pp. 196–202. IEEE Computer Society Press (1976)

11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
12. Sarma, N., Nandi, S.: Route stability based qos routing in mobile ad hoc networks.

Wirel. Pers. Commun. 54(1), 203–224 (2010)
13. Youssef, M., Ibrahim, M., Latif, M.A., Chen, L., Vasilakos, A.V.: Routing metrics

of cognitive radio networks: a survey. IEEE Commun. Surv. Tutorials 16(1), 92–
109 (2014)

14. Fotino, M., De Rango, F.: Energy issues and energy aware routing in wireless ad
hoc networks. INTECH Open Access Publisher (2011)

15. De Reus, N.M.: Assessment of benefits and drawbacks of using fuzzy logic, espe-
cially in fire control systems. Technical report, DTIC Document (1994)

16. Driankov, D., Saffiotti, A.: Fuzzy logic techniques for autonomous vehicle naviga-
tion. Physica 61, 392 (2013)

17. Er, I.I., Seah, W.K.G.: Mobility-based d-hop clustering algorithm for mobile ad hoc
networks. In: Wireless Communications and Networking Conference 2004, WCNC
2004, vol. 4, pp. 2359–2364. IEEE (2004)

https://tools.ietf.org/html/draft-ietf-manet-tora-spec-00


Distributed Algorithms



Self-stabilizing Reconfiguration

Shlomi Dolev1, Chryssis Georgiou2, Ioannis Marcoullis2(B),
and Elad M. Schiller3

1 Department of Computer Science,
Ben-Gurion University of the Negev, Be’er Sheva, Israel

2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
imarcoullis@cs.ucy.ac.cy

3 Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

Abstract. Current reconfiguration techniques depend on starting the
system in a consistent configuration, in which all participating entities
are in a predefined state. Starting from that state, the system must pre-
serve consistency as long as a predefined churn rate of processors joins
and leaves is not violated, and unbounded storage is available. Many sys-
tems cannot control this churn rate and lack access to unbounded storage.
System designers that neglect the outcome of violating the above assump-
tions may doom the system to exhibit illegal behaviors. We present the
first automatically recovering reconfiguration scheme that recovers from
transient faults, such as temporal violations of the above assumptions.
Our self-stabilizing solutions regain safety automatically by assuming
temporal access to reliable failure detectors (FDs). Once safety is estab-
lished, the FD reliability is no longer needed. Still, liveness is conditioned
by the FD’s unreliable signals. Our self-stabilizing reconfiguration tech-
niques can serve as the basis for the implementation of several dynamic
services over message passing systems. Examples include self-stabilizing
reconfigurable virtual synchrony, extendable to a self-stabilizing recon-
figurable state machine replication.

1 Introduction

Motivation. We consider distributed systems working in dynamic asynchronous
environments, such as a shared storage system [17]. Quorum configurations [19],
i.e., sets of active processors (servers or replicas), are typically used to provide
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service to the system’s participants. A configuration may gradually lose active
participants due to voluntary leaves or stop failures, rendering service provi-
sion poor or impossible. It is important to instate a new configuration, i.e., to
reconfigure, on time, based on a more recent participation set. In recent years,
several reconfiguration techniques were proposed, mainly for state machine repli-
cation and atomic memory emulation (e.g., [1–4,13–16,18]). Such reconfigura-
tion techniques depend on initiating the system in a consistent configuration,
with all processors in a predefined state. Continuing from this state, the sys-
tem must preserve consistency assuming a predefined churn rate is not violated
and unbounded storage availability. Also, they do not claim to tolerate transient
faults that may arbitrarily alter the system’s variables.

Many working systems cannot control their churn rate and do not have access
to unbounded storage. System designers that neglect the outcome of violating the
above assumptions may doom the system to forever exhibit a behavior that does
not satisfy the system requirements. Furthermore, the dynamic and difficult-to-
predict nature of distributed systems gives rise to many fault-tolerance issues
and requires efficient solutions. Large-scale message passing networks are asyn-
chronous and they are subject to transient faults due to hardware or software
temporal malfunctions, short-lived violations of the assumed failure rates or vio-
lation of correctness invariants, such as the uniform agreement among all current
participants about the current configuration. Fault tolerant systems that are self-
stabilizing [6] can recover after the occurrence of transient faults as long as the
program’s code is still intact.

Contributions and Approach. We present the first automatically recovering
reconfiguration scheme that recovers from transient faults, such as temporal
violations of the predefined churn rate or the unexpected activities of processors
and communication channels. Our blueprint for self-stabilizing reconfigurable
distributed systems can withstand a temporal violation of such assumptions, and
recover once conditions are resumed, using a bounded amount of local storage
and message size. Our self-stabilizing solutions regain safety automatically by
assuming temporal access to reliable failure detectors1 (FDs). Once safety is
established, the FDs’ reliability is no longer needed; liveness is conditioned by
the FDs’ unreliable signals. We now overview our approach.

Reconfiguration scheme. Our scheme comprises of two layers that appear as a
single “black-box” module to any application that uses the reconfiguration ser-
vice. The objective is to provide the application with a conflict-free configuration,
such that no two alive processors consider different configurations.

The first layer, called Reconfiguration Stability Assurance (recSA) and
detailed in Sect. 3.1, is mainly responsible for detecting configuration conflicts
(possibly the result of transient faults). It deploys a brute-force technique for
converging to a conflict-free new configuration. It also employs a delicate config-
uration replacement technique when a processor notifies that it wishes to replace

1 Transient faults pose challenges in managing dynamic membership that justify the
use of FDs; see discussion in Related work.
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the current configuration with a new set of participants. For both techniques,
processors use an implementable FD (cf. Section 2) to obtain membership infor-
mation. Configuration convergence is reached when the FDs have temporal reli-
ability. Once a uniform configuration is installed, the FDs’ reliability is no longer
needed. Liveness conditions thereafter consider unreliable FDs.

The decision for requesting a delicate reconfiguration is controlled by the
other layer, called Reconfiguration Management or recMA for short (detailed in
Sect. 3.2). Specifically, if a processor suspects that the dependability of the cur-
rent configuration is under jeopardy, it seeks to obtain a majority approval from
the alive members of the current configuration, and requests a (delicate) reconfigu-
ration from recSA. Moreover, in the absence of such a majority (e.g., configuration
replacement was not activated “on time” or the churn assumptions were violated),
the recMA can aim to control the recovery via a recSA reconfiguration request.
The current participant set can, over time, become different than the configura-
tion member set. As new members arrive and others go, changing the configuration
based on system membership would imply a high frequency of (delicate) reconfig-
urations, especially in the presence of high churn. Note that we avoid unnecessary
reconfiguration requests by requiring a weak liveness condition: if a majority of
the configuration set has not collapsed, then there exists at least one processor
that is known to trust this majority in the FD of each alive processor. Such active
configuration members can aim to replace the current configuration with a newer
one (that would provide an approving majority for prospective reconfigurations)
without the use of the brute-force stabilization technique.

Joining mechanism. We complement our reconfiguration scheme with a self-
stabilizing joining mechanism JoinMec (detailed in Sect. 3.3) that manages and
controls the introduction of new processors into the system. It is crucial to ensure
that newly joining processors do not carry stale information (due to arbitrary
faults) into the system state. To this end, we employ several techniques along with
a snap-stabilizing data link protocol (see Sect. 2). We have designed JoinMec to
grant the application the control on whether to allow new processors to join the
system or not. In this way, the churn (regarding new arrivals) can be “fine-tuned”
based on the application requirements; we have modeled this by having joining
processors obtaining approval from a majority of the current configuration’s mem-
bers given no reconfiguration is taking place. These, in turn, provide such approval
if the application’s (among other) criteria are met. We note that in the event of
transient faults, such as unavailable approving majority, recSA assures recovery
via brute-force stabilization that includes all alive processors.

Applications. The presented reconfiguration scheme is modular and can be used
to extend the capabilities of algorithms designed for more static environments,
i.e., for environments where processors are aware of a single set of processors
that can fail by crashing. The reconfiguration scheme allows for this set to be
renewed and thus service can continue. We have used our reconfiguration scheme
to obtain dynamic versions of a multipurpose counter increment algorithm and
a self-stabilizing virtual synchrony algorithm that also leads to a self-stabilizing
replicated state machine (cf., Sect. 4).



54 S. Dolev et al.

Related Work. Existing solutions for providing reconfiguration in dynamic
systems, such as [1,14], do not consider transient faults and self-stabilization,
as their correctness proofs (implicitly) depend on a coherent start [17] and also
assume that fail-stops can never prevent the (quorum) configuration to facilitate
configuration updates. They also often use unbounded counters for ordering
consensus messages (or for shared memory emulation) and by that facilitate
configuration updates, e.g., [14]. Our self-stabilizing solution recovers after the
occurrence of transient faults, which we model as an arbitrary starting state,
and guarantees a consistent configuration that provides (quorum) services, e.g.,
allowing reading from and writing to distributed shared memory, and at the
same time managing the configuration that provides these services.

In existing non self-stabilizing solutions, dynamic membership is usually
maintained by the exchange of “membership sets” (e.g., the set World in [14]).
But when dealing with transient faults, it is possible that local membership
sets may change arbitrarily resulting in sets with large numbers of identifiers of
processors that are not present in the system. Given the asynchronous environ-
ment, this would result in a deadlock if the processors wait for some majority (or
quorum) of these non-existing processors to respond while they have no means
for detecting their non-existence. To this respect, our self-stabilizing solution
makes use of failure detectors (cf. Sect. 2).

There exists a significant amount of research to characterize the fault-tolerance
guarantees that different quorum system designs can provided; see [19] for an in
depth discussion. In this paper we use majorities, generally regarded as the sim-
plest quorum system (each set composed of a majority of the processors is a quo-
rum). One can modify our reconfiguration scheme to support more complex, quo-
rum systems, as long as processors have access to a mechanism (that is a function)
that, given a set of processors, can generate the specific quorum system. The when
a reconfiguration (delicate in our case) should take place is another important
design decision; see related discussion in [17]. A simple approach is to reconfig-
ure when a fraction (e.g., 1/4th) of the members of a configuration appear to have
failed. More complex decisions use prediction mechanisms (possibly based on sta-
tistics). This issue is beyond the scope of this work; however, we have designed our
reconfiguration scheme (specifically the recMA layer) to use any decision mecha-
nism imposed by the application (via an application interface).

2 System Settings

Processing Entities. We consider an asynchronous message-passing system
of processors. Each processor pi has a unique identifier, i, taken from a totally-
ordered set of identifiers P . The number of live and connected processors at any
time of the computation is bounded by some integer N such that N � |P |. We
refer to such processors as active. We assume that processors have knowledge of
the upper bound N , but not of the actual number of active processors. Proces-
sors may stop-fail by crashing at any point without warning. A crashed processor
takes no further steps and never rejoins the computation. (For readability’s sake,
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we model rejoins as transient faults rather than considering them explicitly. Self-
stabilization inherently deals with rejoins by regarding the past join information
as possibly corrupted.) New processors may join the system (using a joining pro-
cedure) at any point in time with an identifier drawn from P , such that this identi-
fier is only used by this processor forever. A participant is an active processor that
has joined the computation and sends configuration-related messages. Note that
N accounts for all active processors, both the participants and those still joining.

Communication. The network topology is that of a fully connected graph, and
links have a bounded capacity cap. Processors exchange low-level messages called
packets to enable a reliable delivery of high level messages. Packets sent may be
lost, reordered, or duplicated but not arbitrarily created, although the channels
may initially (after transient faults) contain stale packets, which due to the
boundedness of the channels are also bounded in a number that is in O(N2cap).
We assume the availability of self-stabilizing protocols for reliable FIFO end-to-
end message delivery (over unreliable channels with bounded capacity), e.g., [9],
and that channels provide fair communication, i.e., a packet sent infinitely often
is received infinitely often.

Using the underlying packet exchange protocol described, a processor pi that
has received a packet from some processor pj which did not belong to pi’s FD,
engages in a two phase protocol with pj in order to clean their intermediate
link. This is done before any messages are delivered to the reconfiguration and
joining services or the applications. We follow the snap-stabilizing data link
protocol of [12]. A snap-stabilizing protocol allows the system (after faults cease)
to behave according to its specification upon its first invocation. We require that
every data-link between any two processors is initialized and cleaned straight
after it is established. In contrast to [12] where the protocol runs on a tree
we require that each pair of processors takes the responsibility of cleaning their
intermediate link. Snap-stabilizing data links do not ignore signals indicating the
existence of new connections (such as physical carrier signal from the port). In
fact, when such a connection signal is received by the newly connected parties,
they start a communication procedure that uses the bound on the packet in
transit (possibly in buffers too) to clean all unknown packets in transit, possibly
repeatedly sending the same packet until more than the round trip capacity
acknowledgments arrive.

(N,Θ)-Failure Detector. It extends the Θ-FD used in [5]. It allows each proces-
sor pi to order other processors according to how recently they have communi-
cated. To achieve this, pi maintains an ordered vector nonCrashed where every
other communicating processor pk is ranked according to the message exchanges
that it has performed with pi and relative to the communication it has with some
other processor pj . Specifically, when pi receives a message from pj , it sets pj ’s
corresponding counter to 0, and increments the counters of any other processor
pk by one. Since there are at most N processors in the computation at any given
time, we can ignore any processors that rank below the N th vector entry. Each
processor pi uses the nonCrashed vector to get an estimate on the number of
processors ni that pi believes to be active in the system; ni ≤ N . Processor pi
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will find that between the last processor that is still communicating with, and
the first processor that has not communicated for some time, there is a signif-
icant difference in their counter. Thus, the last processor is the ni

th processor
and provides an estimate on the number of active processors. If, for example,
the first 30 processors in the vector have corresponding counters of up to 30,
then the 31st will have a counter much greater than that, say 100; so ni will be
estimated at 30. This estimation mechanism is suggested in [10] and in [11]. (For
implementation details see [8].)

The Interleaving Model and Self-stabilization. A program is a sequence of
(atomic) steps. Each atomic step starts with local computations and ends with a
communication operation, i.e., packet send or receive. We assume the standard
interleaving model where at most one step is executed in every given moment.
An input event can either be the arrival of a packet or a periodic timer triggering
pi to (re)send. Note that the system is asynchronous and the rate of the timer
is totally unknown. The state, ci, consists of pi’s variable values and the content
of pi’s incoming communication channels. A step executed by pi can change pi’s
state. The tuple of the form (c1, c2, · · · , cn) is used to denote the system state.
An execution (or run) R = c0, a0, c1, a1, . . . is an alternating sequence of system
states cx and steps ax, such that each cx+1, except the initial system state c0,
is obtained from cx by the execution of ax. A practically infinite execution is an
execution with many steps, where many is defined to be proportional to the time
it takes to execute a step and the life-span time of a system. The system’s task is
a set of executions called legal executions (LE) in which the task’s requirements
hold. An algorithm is self-stabilizing with respect to LE when every (unbounded)
execution of the algorithm has a suffix that is in LE.

3 Self-stabilizing Reconfiguration Scheme

Fig. 1. Module Interaction.

We now describe the reconfigura-
tion scheme and joining mecha-
nism. Figure 1 depicts the interaction
between the modules and the appli-
cation. The Reconfiguration Stability
Assurance (recSA) layer ensures that
participants eventually have a com-
mon configuration. It provides infor-
mation on the current configuration
and on whether a reconfiguration
is not taking place using interfaces
getConfig() and noReco() respec-
tively. This is based on local informa-
tion. The Reconfiguration Management (recMA) layer uses the (application-
based) prediction mechanism evalConf() to evaluate if a reconfiguration is
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required. If a reconfiguration is necessary, recMA initiates it with estab(). Join-
ing only proceeds if no reconfiguration is taking place. A joiner becomes a par-
ticipant via participate() only if passQuery() of a majority of configuration
members is reported as True. Arrows directed from module A to B show the
transfer of specified information from A to B. We proceed with details.

3.1 The Reconfiguration Stability Assurance Layer

This layer uses Algorithm 1 for assuring correct configuration while allowing
updates from the recMA layer (next section). Algorithm 1 guarantees that (1)
all active processors have eventually identical copies of a single configuration,
(2) when participants notify the system that they wish to replace the current
configuration with another, the algorithm selects one proposal and replaces the
current configuration with it, and (3) joining processors can become participants
eventually.

The Algorithm Structure. The algorithm combines two techniques: one for
brute force stabilization that recovers from stale information and a complemen-
tary technique for delicate (configuration) replacement, where participants jointly
select a single new configuration that replaces the current one.

Combining the two techniques. As long as a given processor is not aware of
ongoing configuration replacements, Algorithm 1 merely monitors the system
for stale information, e.g., that the config fields hold the same non-⊥ value. Dur-
ing these periods the algorithm allows the invocation of configuration replace-
ment processes (via the estab(set) interface) as well as the acceptance of joining
processors as participants (via the participate() interface). During the process of
configuration replacement, the algorithm selects a single configuration proposal
and replaces the current one with that proposal before returning to monitor for
configuration disagreements.

Blocking joins to the participants’ set during reconfiguration periods. While the
system reconfigures, there is no immediate need to allow joining processors to
become participants. By temporarily disabling this functionality, the algorithm
can focus on completing the configuration replacement using the current partici-
pant set. To that end, only participants broadcast their state when finishing the
do forever loop (line 17) and only their messages arrive to the other active proces-
sors (line 18). Moreover, we assume that the only way for a joining processor to
start executing Algorithm 1 is by responding to an interrupt call (line 19), where
the assignment of � to config nullifies the configuration. Thus, joining processors
cannot broadcast (line 17) before their safe entry to participant set via the func-
tion participate() (line 2), which enables broadcasting. Note that non-participants
monitor the intersection between the current configuration and the set of active
participants (line 8). In case it is empty, the processors (participants or not) call
configSet(⊥) and start a reset process that ends with a brute-force stabilization,
which we explain below. Thus, the � values are removed from config and there is
no more blocking of joining processors to become participants.
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Algorithm 1. Stabilizing Reconfiguration Stability Assurance; pi’s code
1 Variables: Each field is held in an array that stores pi’s own values and pj ’s most recently

received ones. For example, in the case of the config[] field, config[i] is pi’s view on the
current configuration and config[j] stores the most recently received one. Note that pi

assigns ⊥ (the empty configuration) after receiving a conflicting (different) non-empty
configuration value. FD[i] and FD[i].part represent pi’s failure detector, and respectively, an
alias to {pj ∈ FD[i] : config[j] �= �}. Note that we consider only the trusted (unsuspected)
processors. Namely, crashed processors are eventually suspected and the FD field of every
message encodes also this participation info. The field prp[i] = 〈phase ∈ {0, 1, 2}, set ⊆ P 〉,
where prp[i] refers to pi’s configuration replacement proposal. The case of no proposal is
denoted by 〈0, ⊥〉. The field all[i] is true when pi observes that all trusted nodes notice its
current (max) proposal and they hold the same value. The variable allSeen stores the set of
nodes pk for which pi received the all = true indication.

2 Interfaces: function participate() replaces pi’s configuration (possibly set to �) with
chsConfig(). Only allowed when no reconfiguration is taking place.

3 function chsConfig() is the current config value, or ⊥ when there is no single non-� value.
4 function getConfig() {if noReco() then return(chsConfig()) else return(config[i])};
5 function noReco() test (locally) whether pi runs a reconfiguration process.
6 function estab(set) = {if (noReco() ∧ (set /∈ {config[i], ∅})) then prp[i] ← 〈1, set〉};
7 do forever begin
8 if stale info present, e.g., different (non-⊥ or-�) config values or empty intersection

between config and participant set then reset, i.e., call configSet(⊥);
9 if there is no proposal for configuration replacement then

10 if |{config[k]}pk∈FD[i] \ {⊥, �}| > 1 then configSet(⊥) // once a trusted processor

has sent a different (non-⊥ or �) configuration, ⊥-nullify the stored one – i.e.,
nullify the configuration upon conflict;

11 if (config[i] = ⊥ ∧ |{FD[j] : pj ∈ FD[i]}| = 1) then configSet(FD[i]) // once all
trusted nodes trust the same nodes, use this node set as the new configuration;

12 else
13 if all trusted participants report the same proposals and participation sets and

they echo back the sent values of these fields then all[i] ← true;
14 else if trusted participant pk reports all[i] = true then
15 add pk to allSeen;
16 if allSeen includes all trusted participants then run the automaton (Fig. 2)

and empty allSeen ← ∅;

17 if config[i] �= � then send to pj the state of pi (including pj ’s recently received info.);

18 upon receive m from pj do store m’s fields as the recently received values from pj ;
19 upon interrupt pi’s booting do foreach pk do (config[k], prp[k], all[k]) ←

(�, 〈0, ⊥〉, false) // during boot, nullify the stored fields and disable message transmissions;

Fig. 2. The automaton

Brute-force Stabilization. The proposed
algorithm detects the presence of stale infor-
mation and recovers from these transient
faults. Configuration conflicts are one of sev-
eral kinds of such stale information and
they refer to differences in the field config,
which stores the configuration values. Proces-
sor pi can signal to all processors that it
has detected stale information by assigning ⊥
to configi and by that starts a reset process
that nullifies all config fields in the system
(lines 8 and 10). Algorithm1 uses the brute-
force technique for letting processor pi to
assign to configi its set of trusted processors (line 11), which the failure detec-
tor FDi provides. Note that brute-force stabilization removes any � value from
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config and allows all processors (joining or participants) to become a participant
at the end of the brute-force process. Theorem 1 together with Lemma 2 show
that eventually all active processors share identical (non-⊥) config values.

Delicate (configuration) Replacement. Participants can propose to replace
the current configuration with a new set, via the estab(set) interface. This
replacement uses the configuration replacement automaton (Fig. 2) that a self-
stabilizing mechanism for (phase transition) coordination emulates.

The configuration replacement automaton. When the system is free from stale
information, the configuration uniformity invariant (of the config field values)
holds. Then, any number of calls to the estab(set) interface starts the automaton,
which controls the configuration replacement using the following three phases:
(1) selecting uniformly a single proposal (while verifying the eventual absence of
“unselected” proposals), (2) replacing uniformly all config fields with the jointly
selected proposal, and (3) bringing the system back to a state where it merely
tests for stale information.

A self-stabilizing mechanism for phase transition coordination. The configura-
tion replacement automaton, requires coordinated phase transition. Algorithm1
lets processor pi represent proposals as prpi[j] = (phase, set), where pj is the
processor from which pi received the proposal, phase ∈ {0, 1, 2} and set is a
processor set or the null value, ⊥. The default proposal, 〈0,⊥〉, refers to the
case in which prp encodes “no proposal” (line 1). When pi calls the function
estab(set), it changes prp to 〈1, set〉 (line 6) as long as pi is not aware of an
ongoing configuration replacement process, i.e., noReco() returns true. Upon
this change, the algorithm disseminates prpi[i] and by that guarantees that even-
tually noReco() returns false for any processor that calls it. Once this happens,
no call to estab(set) adds a new proposal for configuration replacement and no
call to participate() lets a joining processor to become a participant (line 2).
Algorithm 1 can then use the lexical value of the prpi[]’s tuples to deterministi-
cally select one of them (Fig. 2). To that end, each participant ensures that all
other participants report the same tuples by waiting until they “echo” back the
same values as the ones it had sent them. After this, participant pi makes sure
that the communication channels do not include other “unselected” proposals,
by raising a flag alli = true (line 13) and waiting for the echoed values of these
three fields, i.e., participant set, prpi[i] and alli. This waiting continues until the
echoed values match the values of any other active participant in the system
(while monitoring their well-being). Before this participant proceeds, it makes
sure that all active participants have noticed its phase completion (line 15). Each
processor maintains the allSeen variable; a set of participants that have noticed
its phase completion and has thus added them to the set allSeen.

The above self-stabilizing mechanism for phase transition coordination allows
progression in a unison fashion. Namely, no processor starts a new phase before
it has seen that all other active participants have completed the current phase
and have noticed that all others have done so (because they have identical par-
ticipant set, prp and all values). This is the basis for emulating every step of the
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configuration replacement automaton (line 16) and making sure that the phase
2 replacement occurs correctly before returning to phase 0, in which the sys-
tem simply tests for stale information. Since the FDs monitor the participants’
well-being, this process terminates.

Correctness. We here highlight the main steps of the proof, starting with some
key definitions. An execution R is admissible when throughout R the FD values
of active processors are identical, do not change and consist of only themselves
(the set of active processors). I.e., ∀c ∈ R, pi, pj ∈ P that are active in R, we
have FDi[i] = FDj [j] and pk ∈ FDi[i] ⇐⇒ pk is active. Furthermore, we say
that system state c has no stale information when (1) all (quorum) configura-
tion proposals are valid, e.g., the proposal 〈0, set〉 is not valid when set �= ⊥, (2)
all config values are non-⊥ and the same, (3) the phase information (including
allSeen) is in synch, and (4) the config set includes active participants. The cor-
rectness proof shows that eventually there is no stale information (Theorem1),
because they are all detected and cleaned eventually (lines 8 and 10), as proces-
sors run configuration reset processes (by calling configSet(⊥)). To guarantee
the success of such reset processes (Lemma 2), we assume that the system reaches
eventually an admissible execution until the reset process terminates.

Failure Detector Usage: The above assumption implies that Algorithm1 com-
pletes the reset process by having a temporal access to reliable FDs. However,
once it completes this process, safety holds forever thereafter because, as The-
orem 1 shows, the system cannot introduce stale information (or start another
reset process) after the process terminates. In other words, once the reset process
establishes safety, the FD reliability is no longer needed, because the success of
Algorithm 1 to achieve its task does not require that the system reaches admissi-
ble executions, and liveness is conditioned by the FD’s unreliable signals. Since
Theorem 1 shows that no stale information eventually exists, all the processors
pi for which the field configi[i] /∈ {⊥, �} store the same value in that field. We
now give the main result and a proof sketch. (For the full proof see [8]).

Theorem 1 (Convergence). Let R be an admissible execution of Algorithm1.
R has no stale information eventually.

Proof Sketch. Lines 8 and 10 detect stale information and start the configuration
reset, which by Lemma 2 terminates. The proof uses Claim 5 and Lemma 6 to
imply the theorem’s correctness, the first assuming that R does not include
(notifications about) replacement proposals, and the second that it does.

Lemma 2. During admissible executions R, reset processes terminate, eventu-
ally leading to no configuration conflicts.

Proof Sketch. Suppose that R’s starting system state does include a detec-
tion (line 8), does not include a conflict, i.e., ∃pi, pj ∈ P : (configi[i] =
⊥) ∨ (configi[i] �= configi[j]) ∨ (configi[i] �= configj [j]) or there is a mes-
sage, mi,j , in the communication channel from pi to pj , such that the field
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(mi,j .config[k] = ⊥) : pk ∈ FDi[i] ∨ (mi,j .config �= configi[i]), where both pi

and pj are active processors. We use Claims 3 and 4 to show that in all of these
cases, eventually ∀pi ∈ P : configi[i] ∈ {⊥,FDi[i]} before using Claim 5 to show
that eventually there are no configuration conflicts. Claims 3 and 4 consider the
values in the field config that are either held by an active processor pi ∈ P or
in its outgoing communication channel to another active processor pj ∈ P . We
define the set S = {Si ∪ S outi}pi∈P to be the set of all these values, where
Si = {configi[j]}pj∈FDi[i] and S outi = {mi,j .config}pj∈FDi[i].

Claim 3. Suppose that in R’s starting system state, there are proces-
sors pi, pj ∈ P that are active in R, for which |S \ {⊥, �}| > 1.
(1) ∃S′ ⊆ S : S′ ∈ {{configi[i], configi[j]}, {configi[i],mi,j .config}} implies that
eventually the system reaches a state in which configi[i] ∈ {⊥,FDi[i]} holds.
(2) ∃S′ ⊆ S : S′ ∈ {{configi[i], configj [j]}} implies that eventually the system
reaches a state in which configi[i] ∈ {⊥,FDi[i]} or configj [j] ∈ {⊥,FDi[i]} holds.

Claim 4. Suppose that configi[i] ∈ {⊥,FDi[i]} : pi ∈ P in R’s starting system
state. (1) For any system state c ∈ R : configi[i] ∈ {⊥,FDi[i]}, and (2) R =
R′ ◦ R′′ has a suffix, R′′, such that ∀c′′ ∈ R′′,∀pi, pj that are active in R :
({mi,j .config, configj [i], configj [j]} \ {⊥,FDi[i]}) = ∅.
Claim 5. Suppose for any two active pi, pj ∈ P , we have that ({configi[i],
configj [i],mi,j .config} \ {⊥,FDi[i]}) = ∅. Eventually configi[i] = FDi[i].

Lemma 6. Let R be an admissible execution (wrt the participant sets) of
Algorithm1. Let n be a configuration replacement notification in R. Eventually
n leaves the system.

Proof Sketch. We assume, towards a contradiction, that notification n never
leaves the system and it has a maximal lexical value among all the notifications in
R. We begin by assuming that all of R’s notifications appear in its starting state
before removing this assumption. We use the fact that only lines 15 to 16 change
the notifications and by that we show the non-decrease property of their lexical
values. A contradiction is achieved by showing that the following invariants hold.
suppose that prpi[i] = n holds in every system state c′ ∈ R. Eventually the sys-
tem reaches a state c′′ ∈ R, such that for any pj ∈ P that is an active participant
in R, it holds that: (1) prpj [i] = n and FDj [i] = FDi. Moreover, prpj [j] = n and
FDj [j] = FDi in c′′ eventually, (2) echoi[j].prp = n, echoi[j].part = FDi[i].part
and prpi[j] = n in c′′, (3) alli[i] = true in c′′. (4) allj [i] = true in c′′. (5)
echoi[j] = (FDi[i].part,prpi[i], alli[i]) in c′′. (6) pi ∈ allSeenj in c′′. (7) the if-
statement condition of line 16 holds in c′′. Note that there exists a system state
c∃n ∈ R in which there are no notifications, because of invariant (7) there is
a step ai that immediately follows c′′ and in which pi for any n.phase value
contradicts the assumption that n is of maximal value or that it never leave the
system. We complete the proof by showing that even in executions in which not
all of R’s notifications appear in its starting state, the above eventually holds.
To that end, the proof considers all notifications that appeared in R’s starting
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state and shows that they must leave the system eventually because their (con-
tinuous) presence causes noReco() to return false and by that disable the effect
of the function estab(set) (line 6). Once this is true for every active processor
in the system, the conditions for invariants (1) to (7) hold and all notifications
leave the system eventually.

3.2 Reconfiguration Management

The Reconfiguration Management (recMA) layer (Algorithm 2), bears the
weight of initiating (or “triggering”) a reconfiguration when either the major-
ity has been lost, or when the prediction function evalConf() indicates to a
majority of processors that a reconfiguration is needed to preserve the majority.
To achieve this, it uses the estab() interface of Algorithm 1. In spite of using
majorities, the algorithm is generalizable to other (more complex) quorum sys-
tems, while the prediction function evalConf() (used as a black box) can be
either very simple, e.g., asking for reconfiguration once 1/4th of the members
appear to have failed, or more complex, based on application criteria or net-
work considerations. More elaborate methods may also be used to define the set
of processors that Algorithm 2 proposes as the new configuration. Our current
implementation, aiming at simplicity of presentation, defines the set of trusted
participants of the proposer as the proposed set for the new configuration.

Algorithm Description. Each processor executing the algorithm maintains
two variables, noMaj and needReconf . The first stores True/False on whether
pi’s FD considers a majority of the configuration members as alive. needReconf
stores the outcome of the last call to the prediction function evalConf(). These
two variables are sent to all participating processors in every iteration of the
algorithm and the received variables are stored for every participating processor.
All decisions on whether a reconfiguration should take place or not, is based on
the received values for the two flags.

Algorithm 2 persistently refrains from triggering a reconfiguration if one is
already taking place, by the check of line 9. If a reconfiguration is not taking
place, two cases can force the algorithm to reconfigure.

(i) Processor pi sees that a majority of members suggests a reconfiguration.
If a majority of active configuration members exists and locally they see that
evalConfig() = True, each propagates needReconf = True. Any such processor,
that locally sees a majority of needReconf = True (lines 14–15), will proceed to
propose FDi[i] as the new configuration (line 15). We note that this will be a
delicate reconfiguration.

(ii) Processor pi sees a loss of majority also seen by pi’s core. If a processor pi

suspects that the majority has collapsed, it propagates noMaj = True. Given
that FDs are not required to be always perfect (this is only required by Algo-
rithm1 to converge to a new configuration), local information may inaccurately
at times present a loss of majority. In order to prevent unnecessary reconfigu-
rations, we require that a processor considers a “core” of information from the
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Algorithm 2. Self-stabilizing Reconfiguration Management; code for
processor pi

1 Interfaces: evalConf() returns True/False on whether a reconfiguration is required or not
by based on a user-defined prediction function. The rest of the interfaces are specified in
Algorithm 1. noReco() returns True if a reconfiguration is not taking place, else False.
estab(set) initiates the creation of a new configuration based on the processor set
provided. getConfig() returns the current local configuration.

2 Variables: needReconf [] is an array of size at most N , composed of booleans {True, False},
where needReconfi[j] holds the last value of needReconfj [j] that pi received from pj as a
result of exchange (lines 16 and 17) and needReconf is an alias to needReconfi[i] i.e., of
pi’s last reading of evalConf(). Similarly, noMaji[] is an array of booleans of size at most
N on whether some trusted processor of pi detects a majority of members that are active
per the reading of line 11. noMaji[j] (for i �= j) holds the last value of noMajj [j] that pi

received from pj . prevConfig holds pi’s believed previous config.
3 Macros: core() =

⋂
pj∈FDi[i].part FD[j].part;

4 flushFlags(): foreach pj ∈ FD[i] do needReconf [j] ← (noMaj[j] ← False);
5 Do forever begin
6 if pi ∈ FD[i].part then
7 curConf = getConfig(); needReconf [i] ← (noMaj[i] ← False);
8 if prevConfig �∈ {curConf, ⊥} then flushFlags();
9 if noReco() = True then

10 prevConfig ← curConf ;

11 if |{pj �∈ curConf ∩ FD[i]}| < (
|curConf|

2 + 1) then noMaj[i] ← True;

12 if (noMaj[i] = True) ∧ (|core()| > 1) ∧ (∀pk ∈ core() : noMaj[k] = True)
then

13 estab(FD[i].part); flushFlags();
14 else if (needReconf [i] ← evalConf(curConf)) ∧

|{pj ∈ curConf ∩ FD[i] : needReconf [j] = True}| >
|curConf|

2 then
15 estab(FD[i].part); flushFlags();

16 foreach pj ∈ FD[i].part do send(〈noMaj[i], needReconf [i]〉);

17 Upon receive m from pj do if pi ∈ FD[i].part then 〈noMaj[j], needReconf [j]〉 ← m;

processors that seem to be regarded active by all the processors. We thus intro-
duce the notion of the local core as the intersection of the FDs of participating
processors in pi’s FD (line 3). If every processor in pi’s core appears to have
noMaj = True based on pi’s local information (collected via the exchange of
line 17) then a reconfiguration is triggered by pi with FDi[i] as the new config-
uration (lines 12–13). The core is required to have size greater than 1 to prevent
pi from triggering if it is the only processor of its core. Using the notion of the
core, we also place the following liveness assumption on the FDs.

Majority-supportive core assumption. If a majority (of the configuration) has
not collapsed, then in the core of every participant pi, there exists at least one
processor that is known (by pi) to trust this majority in its FD.

In triggering a reconfiguration, Algorithm2 uses the estab(set) interface with
Algorithm 1. In this perspective the two algorithms display modularity as to their
workings. Several processors may trigger reconfiguration simultaneously, but by
the correctness of Algorithm 1 this does not affect the delicate reconfiguration,
and by the correctness of Algorithm 2, a processor can only trigger once when
this is needed.
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Correctness. Algorithm 2 achieves correctness based on the ability of delicate
reconfiguration in Algorithm1 to converge to a single configuration even if many
proposals are given. We use the term steady config state to indicate a system
state were recSA has imposed a conflict-free state at least once. We refer to a
system state csafe during an execution Rsafe of Algorithm 2, as one which con-
tains no stale information. We first show that the algorithm eventually cleans
stale information from an initial arbitrary state (in variables and program coun-
ters) after a bounded number of reconfiguration triggerings that may be the
result of this arbitrary state. We then proceed to prove that recMA prevents
processors that are already reconfiguring to trigger a new reconfiguration.

Lemma 7. Starting from an arbitrary initial state in an execution R, where
stale information exists, Algorithm2 eventually converges to a steady config
state, where local stale information is removed.

Lemma 8. Starting from an Rsafe execution, any call to estab() (lines 13
and 15) related to a specific event (majority collapse or agreement of major-
ity to change config), can only cause a one per participant trigger. After the
config has been established, no triggering that relates to this event takes place.

A legal execution R′ of Algorithm 2, refers to an execution composed of
conflict-free states and delicate configurations triggered due to loss of major-
ity of members, or due to the need of a majority of the members to reconfigure.
Given the above lemmas, the proof concludes that a reconfiguration will take
place when required and only when it is necessary, if the majority-supportive
core assumption holds. This provides liveness to the application and leads to the
following theorem.

Theorem 9. Let R be an execution of Algorithm2 starting from an arbitrary
system state. R has an execution suffix R′ which is a legal execution.

3.3 Joining Mechanism (JoinMec)

Every processor that wants to become a participant, uses the snap-stabilizing
data-link protocol (cf. Sect. 2) so as to avoid introducing stale information before
establishing a connection with the system’s processors. Algorithm 1 enables a
joiner to obtain the agreed config when no reconfiguration is taking place. In
spite of eventually acquiring knowledge of this config via recSA, a processor
should only be able to participate in the computation if the application allows it.
In order to sustain the self-stabilization property, it is also important that a new
processor initializes its application-related local variables to either default values
or to the latest values that a majority of the configuration members suggest. The
joining protocol, Algorithm3, illustrates the above and introduces joiners to the
system as participants and not as config members.

Algorithm Description. Both non-participants and participants execute the
algorithm.
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Algorithm 3. Self-stabilizing Joining Mechanism (JoinMec); code for
processor pi

1 Interfaces. The algorithm uses following interfaces from Algorithm 1. noReco() returns True
if a reconfiguration is not taking place. participate() makes pi a participant. getConfig()
returns the agreed configuration from Algorithm 1 or ⊥ if reconfiguration is taking place.
The passQuery() interface to the application, returns a True/False in response to granting
a permission to a joining processor.

2 Variables. FD[] as defined in Algorithm 1. state[] an array of application states, where
state[i] represents pi’s local variables and state[j] the state that pi most recently received
from pj . pass[] a boolean array of passes that pi receives from configuration members.

3 Functions. resetV ars() initializes all variables related to the application based on default
values. initV ars() initializes all variables related to the application based on states
exchanged with the configuration members.

4 procedure join() begin
5 foreach pj �∈ FD do pass[j] ← False;
6 do forever begin
7 if pi ∈ FD[i].part then
8 resetV ars();
9 repeat

10 let conf = getConfig();

11 if noReco() ∧ (|{pj : pj ∈ conf ∩ FD[i] ∧ pass[j] = True}| >
|conf|

2 ) then

initV ars(); participate();
12 foreach pj ∈ FD[i] do send(“Join”);

13 until pi ∈ FD[i].part;

14 upon receive (“Join”) from pj ∈ FD \ FD[i].part do begin
15 if pi ∈ config ∧ noReco() = True then send(〈passQuery(), statei〉);
16 upon receive m = 〈pass, state〉 from pj ∈ FD do if pi �∈ FD[i].part then

〈pass[j], state[j]〉 ← m;

The joiner’s side. Upon a call to the join() procedure, a joiner sets all the
entries of its pass[] array to False (line 5) and resets application-related vari-
ables to default values, (lines 8). The processor then enters a do-forever loop,
the contents of which it executes only while it is not a participant (line 7).
Joiners enter an inner loop in which they try to gather enough support from
a majority of configuration members in order to become participants. In every
iteration, the joiner sends a “Join” request (line 12) and stores the responses by
any configuration member pj in pass[j], along with the latest application state
that pj had. If a majority of active members has granted a pass = True and
there is no reconfiguration taking place, then application-related variables are
initialized and participate() is called to allow the joining processor to become a
participant (line 11).

The participant’s side. A participant only executes the do–forever loop (line 6)
but none of its contents since it always fails the condition of line 7. Participants
however respond to join requests, by checking whether a joining processor has
the correct configuration, and whether a reconfiguration is not taking place, as
well as if the application can accept a new processor (line 15). If the above are
satisfied, then the participant sends a pass = True and its application state,
otherwise it responds with False.

Correctness. The proof first considers safety, by establishing that a proces-
sor becomes a participant through JoinMec only while a reconfiguration is not
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taking place. In the case of a pending delicate reconfiguration, joining proces-
sors running Algorithm 3 can only wait. In case of brute force reconfiguration,
recSA was shown to bypass the JoinMec in order to introduce more processors
to the configuration. The proof proceeds to show that eventually a processor will
become a participant if the application permits it, unless it crashes. Theorem 10
summarizes the correctness.

Theorem 10. Given an execution R of Algorithm3 with an arbitrary initial
state, R has a suffix in which every joining processor p eventually becomes a
participant if the application grants permission. Moreover, p respects the installed
configuration and does not affect a LE as defined by Theorem 9.

4 Applications of the Reconfiguration Scheme

Our self-stabilizing reconfiguration scheme allows applications built for static
crash-prone systems to endure more adverse system dynamics. When a config-
uration exists and no reconfiguration is running, applications work in the same
way as in their static version, since they run their service on the configuration set
as in the original static setting. A main consideration, however, is functionality
during and after reconfiguration.

A general framework for adapting the static algorithm to form a reconfig-
urable one, involves developing an interface between the application and the
reconfiguration scheme to adapt the applications structures and data to the new
configuration set. We note that using this framework, the algorithms are sus-
pending, i.e., they do not provide service during reconfiguration, albeit we believe
that it is possible with more elaborate frameworks and under certain conditions
to sustain service even during reconfiguration. It is an interesting open question
whether this is achievable, but in the meanwhile we refer the reader to [4] for
tradeoffs between suspending and non-suspending services.

Due to space limitations (and to focus on presenting the reconfiguration
mechanism) we omit details of how this adaptation is performed and refer the
reader to [8]. There, we show how the self-stabilizing algorithms of [7] can be
adapted to be reconfigurable and prove that the algorithms remain correct and
extend their capabilities after this adaptation. Specifically, we present a self-
stabilizing counter algorithm that is multipurpose (e.g., for Paxos ballot num-
bers, or view identifiers in group communication services). This forms the basis
for virtually synchronous state machine replication (SMR).

5 Conclusion

We presented the first self-stabilizing reconfiguration scheme that recovers auto-
matically from transient faults, such as temporal violations of the predefined
churn rate or the unexpected activities of processors and communication chan-
nels, using a bounded amount of local storage and message size. We use a number
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of bootstrapping techniques for allowing the system to always recover from arbi-
trary transient faults, even in cases where the current configuration includes no
active processors. We believe that the presented techniques provide a generic
blueprint for different solutions that are needed in the area of self-stabilizing
high-level communication and synchronization primitives, which need to deal
with processor joins and leaves as well as transient faults.
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Abstract. The design of distributed gathering and convergence algo-
rithms for tiny robots has recently received much attention. In particular,
it has been shown that the convergence problem, that is, the problem of
moving robots close to each other (i.e., inside an area of some maximum
size, where the position of the area is not fixed beforehand), can even
be solved for very weak, oblivious robots: robots which cannot maintain
state from one round to the next. The oblivious robot model is hence
attractive from a self-stabilization perspective, where the state is subject
to adversarial manipulation. However, to the best of our knowledge, all
existing robot convergence protocols rely on the assumption that robots,
despite being “weak”, can measure distances.

We in this paper initiate the study of convergence protocols for even
simpler robots, called monoculus robots: robots which cannot measure
distances. In particular, we introduce two natural models which relax the
assumptions on the robots’ cognitive capabilities: (1) a Locality Detec-
tion (LD) model in which a robot can only detect whether another
robot is closer than a given constant distance or not, (2) an Orthogonal
Line Agreement (OLA ) model in which robots only agree on a pair of
orthogonal lines (say North-South and West-East, but without knowing
which is which).

The problem turns out to be non-trivial, as simple strategies like
median and angle bisection can easily increase the distances among
robots (e.g., the area of the enclosing convex hull) over time. Our main
contribution is deterministic self-stabilizing convergence algorithms for
these two models. We also show that in some sense, the assumptions
made in our models are minimal: by relaxing the assumptions on the
monoculus robots further, we run into impossibility results.
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1 Introduction

1.1 The Context: Tiny Robots

In the recent years, there has been a wide interest in the cooperative behavior
of tiny robots. In particular, many distributed coordination protocols have been
devised for a wide range of models and a wide range of problems, like conver-
gence, gathering, pattern formation, flocking, etc. At the same time, researchers
have also started characterizing the scenarios in which such problems cannot be
solved, deriving impossibility results.

1.2 Our Motivation: Even Simpler Robots

An interesting question regards the minimal cognitive capabilities that such tiny
robots need to have for completing a particular task. In particular, researchers
have initiated the study of “weak robots” [6]. Weak robots are anonymous (they
do not have any identifier), autonomous (they work independently), homoge-
neous (they behave the same in the same situation), and silent (they also do not
communicate with each other). Weak robots are usually assumed to have their
own local view, represented as a Cartesian coordinate system with origin and
unit length and axes. The orientation of axes, or the chirality (relative order of
the orientation of axes or handedness), is not common among the robots. The
robots move in a sequence of three consecutive actions, Look-Compute-Move:
they observe the positions of other robots in their local coordinate system and
the observation step returns a set of points to the observing robot. The robots
cannot distinguish if there are multiple robots at the same position, i.e., they
do not have the capability of multiplicity detection. Importantly, the robots are
oblivious and cannot maintain state between rounds (essentially moving steps).
The computation they perform are always based on the data they have collected
in the current observation step; in the next round they again collect the data.
Such weak robots are therefore interesting from a self-stabilizing perspective:
as robots do not rely on memory, an adversary cannot manipulate the memory
either. Indeed, researchers have demonstrated that weak robots are sufficient to
solve a wide range of problems.

We in this paper aim to relax the assumptions on the tiny robots further. In
particular, to the best of our knowledge, all prior literature assumes that robots
can observe the positions of other robots in their local view. This enables them
to calculate the distance between any pair of robots. This seems to be a very
strong assumption, and accordingly, we in this paper initiate the study of even
weaker robots which cannot locate other robots positions in their local view,
preventing them from measuring distances. We define these kinds of robots as
monoculus robots.

In particular, we explore two natural, weaker models for monoculus robots
with less cognitive capabilities, those are Locality Detection and Orthogonal Line
Agreement. The locality detection model is motivated by, e.g., capacitive sensing
or sensing differences in temperature or vibration. The orthogonal line model is
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practically motivated by robots having a simple compass align for orthogonal
line agreement.

1.3 The Challenge: Convergence

We focus on the fundamental convergence problem for monoculus robots and
show that the problem is already non-trivial in this setting.

In particular, many naive strategies lead to non-monotonic behaviors. For
example, strategies where boundary robots (robots located on the convex hull)
move toward the “median” robot (i.e., the median in the local ordering of the
robots) they see, may actually increase the area of the convex hull in the next
round, counteracting convergence as shown in Fig. 1(a). A similar counterexam-
ple exists for a strategy where robots move in the direction of the angle bisector
as shown in Fig. 1(b).

Fig. 1. The 4 boundary robots are moving (a) towards the median robot (b) along the
angle bisector. The discs are the old positions and circles are the new positions. The
old convex hull is drawn in solid line, the new convex hull is dashed. The arrows denote
the direction of moving.

But not only enforcing convex hull invariants is challenging, also the fact that
visibility is restricted and we cannot detect multiplicity: We in this paper assume
that robots are not transparent, and accordingly, a robot does not see whether
and how many robots may be hidden behind a visible robot. As robots are also
not able to perform multiplicity detection (i.e., determine how many robots are
collocated at a certain point), strategies such as “move toward the center of
gravity” (the direction in which most robots are located), are not possible.

1.4 Our Contributions

This paper studies distributed convergence problems for anonymous,
autonomous, oblivious, non-transparent, monoculus, point robots under a most
general asynchronous scheduling model and makes the following contributions.

1. We initiate the study of a new kind of robot, the monoculus robot which
cannot measure distances. The robot comes in two natural flavors, and we
introduce the Locality Detection (LD) and the Orthogonal Line Agreement
(OLA ) model accordingly.
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2. We present and formally analyze deterministic and self-stabilizing distributed
convergence algorithms for both LD and OLA .

3. We show our assumptions in LD and OLA are minimal in the sense that
robot convergence is not possible for monoculus robots.

4. We report on the performance of our algorithms through simulation.
5. We show that our approach can be generalized to higher dimensions and,

with a small extension, supports termination.

1.5 Related Work

The problems of gathering [13], where all the robots gather at a single point, con-
vergence [2], where robots come very close to each other and pattern formation
[5,13] have been studied intensively in the literature.

Flocchini et al. [6] introduced the CORDA or Asynchronous (ASYNC)
scheduling model for weak robots. Suzuki et al. [12] have introduced the ATOM
or Semi-synchronous (SSYNC) model. In [13], the impossibility of gathering for
n = 2 without assumptions on local coordinate system agreement for SSYNC
and ASYNC is proved. Also, for n > 2 it is impossible to solve gathering with-
out assumptions on either coordinate system agreement or multiplicity detection
[10]. Cohen and Peleg [1] have proposed a center of gravity algorithm for conver-
gence of two robots in ASYNC and any number of robots in SSYNC. Flocchini et
al. [7] propose algorithm to gather robots with limited visibility and agreement
in coordinate system in ASYNC model. Souissi et al. have proposed an algo-
rithm to gather robots with limited visibility if the compass achieves stability
eventually in SSYNC in [11]. For two robots with unreliable compass Izumi et al.
[9] investigate the necessary conditions required to gather them under SSYNC
and ASYNC setting.

In many of the previous works, the mathematical models assume that the
robots can find out the location of other robots in their local coordinate system
in the Look step. This in turn implies that the robots can measure the distance
between any pair of robots albeit in their local coordinates. All the algorithms
exploit this location information to create an invariant point or a robot where all
the other robots gather. But in this paper, we deprive the robots of the capabil-
ity to determine the location of other robots. This leads to robots incapable of
finding any kind of distance or angles. Note that any kind of pattern formation
requires these robots to move to a particular point of the pattern. Since the
monoculus robots cannot figure out locations, they cannot stop at a particular
point. Hence any kind of pattern formation algorithm described in the previous
works which require location information as input are obsolete. Gathering prob-
lem is nothing but the point formation problem [13]. Hence gathering is also not
possible for the monoculus robots.

1.6 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the necessary
background and preliminaries. Section 3 introduces two algorithms for conver-
gence. Section 4 presents an impossibility result which shows the minimality of
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our assumptions. We report on simulation results in Sect. 5 and discuss exten-
sions in Sect. 6. We finally conclude in Sect. 7.

2 Preliminaries

2.1 Model

We are given a system of n robots, R = {r1, r2, · · · , rn}, which are located in the
Euclidean plane. We consider anonymous, autonomous, homogeneous, oblivious
point robots with unlimited visibility. The robots are non-transparent, so any
robot can see at most one robot in any direction. The robots have their local
coordinate system, which may not be the same for all the robots. The robots in
each round execute a sequence of Look-Compute-Move steps: First, each robot
r ∈ R observes other robots and obtains a set of directions LC = {θ1, θ2, · · · , θk}
where k ≤ n − 1 (Look step). Each θ ∈ LC is the angle of a robot in the local
coordinate system of robot r with respect to the positive direction of the x-
axis with the robot itself as the origin. Second, on the basis of the observed
information, it executes an algorithm which computes a direction (Compute
step); the robot then moves in this direction (Move step), for a fixed distance
b (the step size). The robots are silent, cannot detect multiplicity points, and
can pass over each other. We ignore the collisions during movement. We name
this kind of robots as monoculus robots. We also consider the following two
additional capability of the monoculus robots.

Locality Detection (LD): Locality detection is the ability of a robot to deter-
mine whether its distance from any visible robot is greater than a predefined
value c or not.

A robot with locality detection capability can divide the visible robots into
two sets based on the distance from itself. So a monoculus robot with locality
detection can partition the set LC to two disjoint sets LClocal and LCnon−local,
where LClocal and LCnon−local are the set of directions of robots with distances
less than equal to c and more than c respectively.

Orthogonal Line Agreement (OLA ): The robots agree on a pair of orthog-
onal lines, but can neither distinguish the two lines in a consistent way nor have
a common sense of direction.

Robots with orthogonal line agreement capability agree on the direction of
two perpendicular lines, but the lines themselves are indistinguishable: the robots
neither agree on a direction (e.g., North) nor can they mark a line as, e.g., the
North-South or East-West line. In other words, any two robots agreeing on the
pair of orthogonal lines, either have their x-axis parallel or perpendicular to the
other. In case of parallel orientation, the plus/minus direction of the x-axis may
point to the same or the opposite direction, and in the case of a perpendicular
orientation, the rotation of the axis can be clockwise or counter-clockwise.

We consider the most general CORDA or ASYNC scheduling model known
from weak robots [6] as well as the ATOM or Semi-Synchronous (SSYNC)
model [12]. These models define the activation schedule of the robots: the SSYNC
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model considers instantaneous computation and movement, i.e., the robots can-
not observe other robots in motion, while in the ASYNC model any robot can
look at any time. In SSYNC the time is divided into global rounds and a subset
of the robots are activated in each round which finish their Look-Compute-Move
within that round. In case of ASYNC, there is no global notion of time. The
Fully-synchronous (FSYNC) model is a special case of SSYNC, in which all
the robots are activated in each round. The algorithms presented in this paper,
work in both the ASYNC and the SSYNC setting. For the sake of generality, we
present our proofs in terms of the ASYNC model.

2.2 Notation and Terminology

A Configuration (C) is a set containing all the robot positions in 2D. At any
time t the configuration (the mapping of robots in the plane) is denoted by Ct.
The convex hull of configuration Ct is denoted as CHt. We define Augmented
Configuration at time t (ACt) as Ct augmented with the destinations of each
robot from the most recent look state on or before t. If all the robots are idle
at time t, then ACt is the same as Ct. The convex hull of ACt is denoted as
ACHt as shown in Fig. 2. Convergence is achieved when the distance between
any pair of robots is less than a predefined value ζ (and subsequently does not
violate this). Our multi-robot system is vulnerable to adversarial manipulation,
however, the algorithms presented in this paper are self-stabilizing [4] and robust
to state manipulations. Since the robots are oblivious, they only depend on the
current state: if the state is perturbed, the algorithms are still able to converge
in a self-stabilizing manner [8].

Fig. 2. r′
4 is the destination of robot r4 from the most recent look state on or before

time t, and analogously for r5. At t, �r1r2r3r4r5 is both the CHt and ACHt. At t′

(> t), �r1r2r3r4r
′
5 is CHt′ , while �r1r2r3r4r

′
4r

′
5 is ACHt′ . ACHt contains both r4 and

r′
4 because r4 has not moved. ACHt′ contains r′

4 as a corner which is outside CHt′ ,
because r5 moved to r′

5.
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3 Convergence Algorithms

The robot convergence is the problem of moving all the robots inside a suffi-
ciently small non-predefined area. In this section, we present distributed robot
convergence algorithms for both our models, LD and OLA . We converge the
robots inside a disc and a square, respectively, for the two models.

3.1 Convergence for LD

In this section, we consider the convergence problem for the monoculus robots
in the LD model. Our claims hold for any c ≥ 2b, where c is the predefined
distance of locality detection and b is the step size a robot moves each time it
is activated. The step size b and locality detection distance c is common for all
the robots. Algorithm 1 distinguishes between two cases: (1) If the robot only
sees one other robot, it infers that the current configuration must be a line (of 2
or more robots), and that this robot must be on the border of this line; in this
case, the boundary robots always move inside (usual step size b). (2) Otherwise,
a robot moves towards any visible, non-local robot (distance at least c), for a b
distance (the step size). The algorithm works independent of n, the number of
robots present, but depends on D, the diameter of smallest enclosing circle in
the initial configuration.

Our proof unfolds in a number of lemmas followed by a theorem. First,
Lemma 1 shows that it is impossible to have a pair of robots with distance
larger than 2c in the converged situation. Lemma2 shows that our algorithm
ensures a monotonically decreasing convex hull size. Lemma 3 then proves that
the decrement in perimeter for each movement is greater than a constant (the
convex hull decrement is strictly monotonic). Combining all the three lemmas,
we obtain the correctness proof of the algorithm. In the following, we call two
robots neighboring if they see each other (line of sight is not obstructed by
another robot).

Algorithm 1. ConvergeLocality

Input : Any arbitrary configuration LC
Output: A direction θ towards the robot moves

1 if |LC| = 1 then
2 Move distance b in the direction θ, where θ ∈ LC
3 else
4 if |LCnon−local| ≥ 1 then
5 Move distance b towards any θ, where θ ∈ LCnon−local

6 else
7 Do not move // All neighbor robots are within a distance c
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Lemma 1. If there exists a pair of robots at distance more than 2c in a non-
linear configuration, then there exists a pair of neighboring robots at distance
more than c.

Proof. Proof by contradiction. If there is a pair of robots with distance more than
2c, then they themselves are the neighboring pair with more than c distance. To
prevent them from being a neighboring pair with more than c distance, there
should be at least two robots on the line joining them positioned such that each
neighboring pair has a distance less than c. Since the robots are non-transparent,
the end robots cannot look beyond their neighbors to find another robot at a
distance more than c. In Fig. 3, r1 and r4 are 2c apart. So r2 and r3 block the view
such that r1r2 < c, r2r3 < c and r3r4 < c. Since it is a non-linear configuration,
say robot r5 is not on the line joining r1 and r4. l is the perpendicular bisector of
r1r4. If r5 is on the left side of l, then it is more than c distance away from r4 and
if it is on the right side of l then it is more than c distance away from r1. If there
is another robot on r4r5, then consider that as the new robot in a non-linear
position, and we can argue similarly considering that robot to be r5. If r5 is on l,
then r1r5 = r4r5 > c. Hence there would at least be a single robot similar to r5
in a non-linear configuration for which the distance is more than c. ��

Fig. 3. A non-linear configuration with a pair of robots at a distance 2c

Lemma 2. For any time t′ > t before convergence, ACHt′ ⊆ ACHt.

Proof. The proof follows from a simple observation. Consider any robot ri. If ri

decides to move towards some robot, say rj , then it moves on the line joining
two robots. There are two cases.

Case 1: If all the robots are on a straight line, then the boundary robots move
monotonically closer in each step. The distance between the end robots is a
monotonically decreasing sequence until it reaches c.

Case 2: For a non-linear configuration the robot moves when the distance
between ri and rj is more than c and it moves only a distance b, where c ≥ 2b.
The movement path at the time when it looks, is always contained inside the
CHt, and CHt ⊆ ACHt. So the ACHt contains its entire movement path
and it continues to do so until the robot has reached its destination. For any
t′ > t, parts of the path traversed by the robot and outside CHt′ are removed
from ACHt.
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Fig. 4. On activation, ri and rj will move outside the solid circle inside the convex
hull. The radius of the solid circle is b/2. The robot rk moves a distance b towards
ri because the distance between them is more than 2b and stops at D. In the second
figure the shadowed area is the decrement considered for each corner and the central
convex hull inside solid lines is the new convex hull after every robot moves.

Hence ACHt′ ⊆ ACHt. ��

Lemma 3. After each robot is activated at least once, the decrement in the

perimeter of the convex hull is at least b
(
1 −

√
1
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(
1 + cos
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2π
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)))
, where b is the

step size and n is the total number of robots.

Proof. Suppose the n robots form a k (k ≤ n) sided convex hull. The sum of
internal angles of a k-sided convex polygon is (k − 2)π. So there exists a robot
r at a corner A (ref. Fig. 4) of the convex hull such that the internal angle is
less than

(
1 − 2

n

)
π, where n is the total number of robots. Let B and C be

the points where the circle centered at A with radius b/2 intersects the convex
hull. Any robot lying outside the circle will not move inside the circle according
to Algorithm 1, because the maximum distance between any two points in the
circle is b and all the robots move towards a robot which is more than c distance
apart, and c � 2b. All the robots inside the circle will eventually move out once
they are activated, because the robot which is activated will have to move at
least b distance, and since the distance between any two points in the b/2 radius
circle is less than or equal to b, the robot will find itself outside the b/2 radius
circle inside the convex hull. After all the robots are activated at least once, the
decrement in the perimeter is at least AB + AC − BC. From cosine rule,
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Fig. 5. Robots on the boundary of a square moving along the boundary (a) all in
the clockwise direction, (b) not all in the same direction. The dotted line represent
the configuration before movement and the solid line represents the configuration after
movement.

Remark 1. Let us consider a special case of the execution of the algorithm. Here
all n robots are on the boundary of the convex hull with side length more than
c and move only on the boundary of the convex hull. Then the n-sided polygon
will again become an n-sided polygon, but the perimeter will decrease overall as
a consequence of Lemma 3 as shown in Fig. 5.

Theorem 1 (Correctness). Algorithm1 always terminates after at most Θ
(

D
b

)
fair scheduling rounds and for any arbitrary but fixed n, where D is the diameter
of smallest enclosing circle in initial configuration and b is the step size. After
termination all the robots converge within a c radius disc.

Proof. If a corner robot on the boundary of convex hull is activated, then the
perimeter of the convex hull decreases from Lemma 3. If non-corner robots are
activated, then the perimeter of the convex hull remains the same. If we have a
fair scheduler, the idle time for robots are unpredictable but finite. Consequently,
the time between successive activations is also finite. So we can always assume
a time step which is large enough for each robot to activate at least once. The
total number of robots n is finite and invariant throughout the execution, so

1 −
√

1
2

(
1 + cos

(
2π
n

))
= δ is constant. Hence the decrement of perimeter is

at least bδ according to Lemma 3. Notice that the perimeter of convex hull is
always smaller than the perimeter of the smallest enclosing circle. According to
Lemma 1, eventually there will not be a pair of robots with more than 2c distance.
Note that the distance between any two points in a disc of radius c is less than
or equal to 2c. In other words, ζ = 2c. Hence the robots will converge within a
disc of radius c. So the perimeter of the circle at termination is 2πc. Now the
decrement in the perimeter is πD−2πc. Total time required is π(D−2c)

δb = Θ
(

D
b

)
.

��

3.2 Convergence for OLA

In this section, we consider monoculus robots in the OLA model. Our algo-
rithm will distinguish between boundary-, corner- and inner-robots, defined in
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the canonical way. We note that robots can determine their type: From the
Fig. 6, we can observe that for r2, all the robots lie below the horizontal line.
That means, one side of the horizontal line is empty and therefore r2 can figure
out that it is a boundary robot. Similarly all ri, i ∈ {3, 4, 5, 6, 7, 8} are bound-
ary robots. Whereas, for r1, both horizontal and vertical lines have one of the
sides empty, hence r1 is a corner robot. Other robots are all inner robots. Con-
sequently, we define boundary robots to be those, which have exactly one side of
one of the orthogonal lines empty.

Fig. 6. Movement direction of the boundary robots

Algorithm 2 (ConvergeQuadrant) can be described as follows. A rectan-
gle can be constructed with lines parallel to the orthogonal lines passing through
boundary robots such that, all the robots are inside this rectangle. In Fig. 6, each
boundary robot always moves inside the rectangle perpendicular to the bound-
ary and the inside robots do not move. Note that the corner robot r1 has two
possible directions to move. So it moves toward any robot in that common quad-
rant. Gradually the distance between opposite boundaries becomes smaller and
smaller and the robots converge. In case all the robots are on a line which is
parallel to either of the orthogonal lines, then the robots will find that both
sides of the line are empty. In that case, they should not move. But the robots
on either end of the line would only see one robot. So they would move along
the line towards that robot.

Theorem 2 (Correctness). Algorithm2 moves all the robots inside some 2b-
sided square in finite time, where b is the step size.

Proof. Consider the distance between the robots on the left and right boundary.
The horizontal distance between them decreases each time either of them gets
activated. The rightmost robot will move towards the left and the leftmost will
move towards the right. The internal robots do not move. So in at most n acti-
vation rounds of the boundary robot, the distance between two of the boundary
nodes will decrease by at least b. Hence the distance is monotonically decreasing
until 2b. Afterward, the total distance will never exceed 2b anymore.
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Algorithm 2. ConvergeQuadrant

Input : Any arbitrary configuration and robot r
Output: All robots are inside a square with side 2b

1 if only one robot is visible then
2 Move towards that robot
3 else if r is a boundary robot then
4 Move perpendicular to the boundary to the side with robots
5 else if r is a corner robot then
6 Move towards any robot in the non-empty quadrant
7 else
8 Do not move // It is an inside robot

If there is a corner robot present in the configuration, that robot will move
towards any robot in the non-empty quadrant. So, the movement of the corner
robot contributes to the decrement in distance in both directions. If an inside
robot is very close to one of the boundaries and the corner robot moves towards
that robot, then the decrement in one of the dimensions can be small (an ε > 0).
Consider for example the configuration of a strip of width b, then the corner
robot becomes the adjacent corner in the next round; this can happen only
finitely many times. Each dimension converges within a distance 2b, so in the
converged state the shape of the converged area would be 2b-sided square, i.e.,
ζ = 2

√
2b. ��

Remark 2. If the robots have some sense of angular knowledge, the corner robots
can always move in a π/4 angle, so the decrement in both dimension is significant,
hence convergence time is less on average.

4 Impossibility and Optimality

Given these positive results, we now show that the assumptions we made on the
capability of monoculus robots are minimal for achieving convergeability: the
following theorem shows that monoculus robots by themselves cannot converge
deterministically.

Theorem 3. There is no deterministic convergence algorithm for monoculus
robots.

Proof. We prove the theorem using a symmetry argument. Consider the two
configurations C1 and C2 in Fig. 7. In C1, all the robots are equidistant from
robot r, while in C2, the robots are at different distances, however, the relative
angle of the robots is the same at r. Now considering the local view of robot r, it
cannot distinguish between C1 and C2. Say a deterministic algorithm φ decides
a direction of movement for robot r in configuration C1. Since both C1 and C2

are the same from robot r’s perspective, the deterministic algorithm outputs the
same direction of movement for both cases.
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Fig. 7. Locally indistinguishable configurations with respect to r

Now consider the convex hull CH1 and CH2 of C1 and C2 respectively. The
robot r moves a distance b in one round. The distance from any point inside CH1

is more than b but we can skew the convex hull in the direction of movement,
so to make it like CH2, where if the robot r moves a distance b it exits CH2.
Therefore there exists a situation for any algorithm φ such that the area of the
convex hull increases. Hence it is impossible for the robots to converge. ��

5 Simulation

We now complement our formal analysis with simulations, studying the average
case. We assume that robots are distributed uniformly at random in a square
initially, that b = 1 and c = 2, and we consider fully synchronous (FSYNC)
scheduling [13]. As a baseline to evaluate performance, we consider the optimal
convergence distance and time if the robots had the capability to observe posi-
tions, i.e., they are not monoculus. Moreover, as a lower bound, we compare
to an algorithm which converges all robots to the centroid, defined as follows:
{x̄, ȳ} =

{∑n
i=1 xi

n ,
∑n

i=1 yi

n

}
where {xi, yi}∀i ∈ {1, 2, · · · , n} are the robots’ coor-

dinates. We calculate the distance di from each robot to the centroid in the initial
configuration. The optimal distance we have use as convergence distance is the
sum of distances from each robot to the unit disc centered at the centroid. So the
sum of the optimal convergence distances dopt is given by dopt =

∑n
i=1(di − 1),

if di > 1.
In the simulation of Algorithm 1, we define dCL as the cumulative number of

steps taken by all the robots to converge (sometimes also known as the work).
Now we define the performance ratio, ρCL as ρCL = dCL

dopt
. Similarly for Algo-

rithm2 we define dCQ and ρCQ.
We have used BoxWhiskerChart [3] to plot the distributions. The

BoxWhiskerChart in the Figs. 8 and 9 show four quartiles of the distribution
notched at the median taken from 100 executions of the algorithms. Figures 8,
and 9 show the comparison between the performance ratio (PR) for distance. We
can observe that the distance traveled compared to optimal distance increases
for same size region as the number of robots increase for Algorithm 1 but it
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Fig. 8. ρCL vs ρCQ for the same size of
region

Fig. 9. ρCL vs ρCQ for the same num-
ber of robots

Fig. 10. τCL vs τCQ for the same number
of robots

Fig. 11. τCL vs τCQ for the same size of
region

remains almost the same for Algorithm 2. We can observe that Algorithm 2 per-
forms better. This is due to the fact that, in Algorithm2 only boundary robots
move.

Let dmax be the distance of farthest robot from the centroid and tCL

be the number of synchronous rounds taken by Algorithm1 for convergence.
We define τCL as follows τCL = tCL

dmax
. Similarly for Algorithm2, we define tCQ

and τCQ. τCL and τCQ show performance ratio for convergence time of Algo-
rithms 1 and 2 respectively. In Figs. 10 and 11, we can observe that τCL is very
close to 1, so Algorithm 1 converges in almost the same number of synchronous
rounds (proportional to distance covered, since step size b = 1) as the max-
imum distance from the centroid of the initial configuration. We can observe
that Algorithm 2 takes more time as the number of robots and the side length
of square region increases. Since Algorithm 2 only boundary robots move, the
internal robots wait to move until they are on the boundary. As expected, this
creates a chain of dependence which in turn increases the convergence time.

6 Discussion

This section shows that our approach supports some interesting extensions.
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6.1 Termination for OLA Model

While we only focused on convergence and not termination so far, we can show
that with a small amount of memory, termination is also possible in the OLA
model.

Algorithm 3. ConvergeQuadrantTermination

Input : Any arbitrary configuration and robot r with 4-bit memory
Output: All robots are inside a square with side 2b

1 if the robot is on a boundary(ies) then
2 set the corresponding bit(s) to 1
3 else
4 Do nothing // r is an inside robot

5 if r is a boundary robot and the bits corresponding to that dimension are not 1
then

6 Move perpendicular to the boundary to the side with robots
7 else if r is a corner robot then
8 if Both bits corresponding to a dimension is 1 then
9 Move in other dimension to the side with robots

10 else
11 Move towards any robot in the non-empty quadrant

12 else
13 Do not move // r is not on boundary OR all four bits are 1

To see this, assume that each robot has a 2-bit persistent memory in the
OLA model for each dimension, total 4-bits for two dimensions. Algorithm2
has been modified to Algorithm 3 such that it can accommodate termination. All
the bits are initially set to 0. Each robot has its local coordinate system, which
remains consistent over the execution of the algorithm. The four bits correspond
to four boundaries in two dimensions, i.e., left, right, top and bottom. If a robot
finds itself on one of the boundaries according to its local coordinate system, then
it sets the corresponding bit of that boundary to 1. Once both bits corresponding
to a dimension become 1, the robot stops moving in that dimension. Consider
a robot r. Initially, it was on the left boundary in its local coordinate system.
Then it sets the first bit of the pair of bits corresponding to x-axis. It moves
towards right. Once it reaches the right boundary, then it sets the second bit
corresponding to x-axis to 1. Once both the bits are set to 1, it stops moving
along the x-axis. Similar movement termination happens on the y-axis also. Once
all the 4-bits are set to 1, the robot stops moving.

6.2 Extension to d-Dimensions

Both our algorithms can easily be extended to d-dimensions. For the LD model,
the algorithm remains exactly the same. For the proof of convergence, similar
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arguments as Lemma 3 can be used in d dimensions. We can consider the convex
hull in d-dimensions and the boundary robots of the convex hull always move
inside. The size of convex hull reduces gradually and the robots converge.

Analogously for the OLA model, the distance between two robots in the
boundary of any dimension gradually decreases and the corner robots always
move inside the d-dimensional cuboid. Hence it converges. Here the robot would
require 2d number of bits for termination.

7 Conclusion

This paper introduced the notion of monoculus robots which cannot measure
distance: a practically relevant generalization of existing robot models. We have
proved that the two basic models still allow for convergence (and with a small
memory, even termination), but with less capabilities, this becomes impossible.

The LD model converges in an almost optimal number of rounds, while
the OLA model takes more time. But the cumulative number of steps is less
for the OLA model compared to the LD model since only boundary robots
move. Although we found in our simulations that the median and angle bisector
strategies successfully converge, finding a proof accordingly remains an open
question. We see our work as a first step, and believe that the study of weaker
robots opens an interesting field for future research.
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M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

10. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007)

http://reference.wolfram.com/language/ref/BoxWhiskerChart.html
http://reference.wolfram.com/language/ref/BoxWhiskerChart.html
http://dx.doi.org/10.1007/3-540-46632-0_10
http://dx.doi.org/10.1007/3-540-46632-0_10


Convergence of Even Simpler Robots without Position Information 85
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Abstract. Attribute-based access control (ABAC) represents a generic
model of access control that provides a high level of flexibility and pro-
motes information and security sharing. Since ABAC considers a large
set of attributes for access decisions, using it might get very complicated
for large systems. Hence, it is interesting to offer techniques to reduce
the number of rules in ABAC policies without affecting the final deci-
sion. In this paper, we present an approach based on K-nearest neighbors
algorithms for clustering ABAC policies. To the best of our knowledge,
it is the first approach that aims to reduce the number of policy rules
based on similarity computations. Our evaluation results demonstrate
the efficiency of the suggested approach. For instance, the reduction rate
can reach up to 10% for an ABAC policy with more than 9000 rules.

Keywords: Clustering · K-nearest neighbors · Access control · ABAC

1 Introduction

Collaborative computing environments (i.e., cloud computing) bring numerous
benefits, such as flexibility, scalability and reliability. While benefiting from these
advantages, such systems entail multiple security risks, by exercising limited
control to make information accessible to only those who are allowed to access it.
In this direction, access control models represent a key component for providing
security features.

Access control is concerned with determining the allowed activities of legiti-
mate users, mediating every attempt by a user to access a resource in the system
[10]. Traditionally, access control was based on user identities (Access Control
Lists - ACL), or through predefined roles or groups assigned to that user (Role-
based Access Control - RBAC) [18]. In the ACL model, a user is allowed to
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 86–100, 2017.
DOI: 10.1007/978-3-319-59647-1 7
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perform an access depending on whether that user appears in the list of autho-
rized users or not. In the RBAC model, the access decision is based on the role
of the requestor (i.e., the roles associated with a hospital can include doctor,
nurse, clinician, etc.). One of the advantages of the RBAC model is the fact
that a given user might have multiple roles. Therefore, such a user might have
different permissions according to the selected role.

Several variants of access control models have been proposed as extended ver-
sion of the RBAC model. For instance, Rule-based RBAC [1] provides a mech-
anism to dynamically assign users to roles based on a finite set of authorization
rules. The Task-Role-based Access Control (T-RBAC) model [16] is based on the
concept of classification of tasks, where a task is a fundamental unit of business
activity. Another variant of RBAC is the context-aware access control model
[6], where the access control takes into account the context-sensitive require-
ments (such as time, location, or environmental state). Besides these works, the
Attribute-based Access Control (ABAC) model has been suggested as a generic
access control model [25]. ABAC considers a set of attributes, based on which
the access decision will be taken. An attribute is assigned to a subject (e.g., user,
application or process), resource (e.g., data structure, web service or system com-
ponent) and environment (e.g., current time, location). These attributes may be
considered as characteristics of anything that may be defined and to which a
value may be assigned.

ABAC policy representation is more expressive and fine-grained, because it
might consider any combination of subject, resource and environment attributes.
However, in distributed environments such as cloud computing, deploying and
managing an ABAC model to ensure access control might become more complex
and hard to manage. This is due to the massive amount of information that
should be considered as attributes. For example, considering an e-health use case,
each piece of data related to the patients’ medical records should be taken into
account as an attribute to help deciding the types of person (determined by their
attributes) having access to each individual piece of data in a given environment
(location, time, etc.). In fact, an ABAC policy in distributed applications may
be aggregated from multiple parties and can be managed by more than one
administrator. Therefore, it may contain several redundant rules, which may
lead to high implementation complexity. Hence, reducing the number of rules
in ABAC policies without affecting the final decision in large sets of complex
policies is primordial.

Following the idea of using K-nearest neighbors (KNN) algorithms to reduce
the number of ABAC policy rules to enhance the policy analysis [4], in this paper
we propose a new approach referred to as ABAC-PC (ABAC Policy Clustering).
ABAC-PC works as follows: (1) First, the policy rules are grouped according
to their decision effects (i.e., permit rules, deny rules), and for each group, the
similarity scores of each pair of rules are computed; (2) clusters of rules are
created based on the similarity scores; (3) finally, given the set of clusters, ABAC-
PC produces the minimum set of rules that represent each cluster. Regarding the
algorithmic complexity, the computation time is in O(n2) where n is the number
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of rules. ABAC-PC has been tested on a synthetic dataset of up to 9000 rules, and
the obtained results show that ABAC-PC can successfully reduce the number
of policy rules up to 10% for a policy with more than 9000 rules. In a nutshell,
given an ABAC policy, ABAC-PC produces a reduced policy and guarantees the
policy’s conformity. Furthermore, our approach can be extended and integrated
with other policy analysis tools in order to enhance managing authorization
policies, such as detecting and resolving anomalies among XACML (eXtensible
Access Control Markup Language) policies (since XACML is the most convenient
way to express ABAC policies).

The paper is organized as follows. Section 2 presents related work. Section 3
presents the ABAC model. Section 4 gives an overview on the KNN algo-
rithms. ABAC-PC is described in Sect. 5. Section 6 reports experimental results.
Section 7 concludes the paper and outlines areas for future work.

2 Related Work

To the best of our knowledge, this paper presents the first approach specifically
designed to reduce the number of ABAC policy rules. ABAC-PC is based on
KNN, which has been often used in data mining. In the following, we present
existing work that considers data mining techniques to resolve some of the access
control related issues.

In the literature, several works have considered the usage of data mining for
role mining to discover roles from existing system configuration data [7,13,19].
Role mining refers to the process of mining data about the actual user-to-resource
permission assignments to extract role definitions. Molloy et al. [14] consider the
problem of migrating a non-RBAC system to an RBAC system. Then, a role
mining algorithm constructs an RBAC state with low cost and complexity, while
maintaining the semantic meaning of roles.

Ni et al. [15] have investigated the role adjustment problem. It consists of
how to automate the process that provisions existing roles with entitlements
from newly deployed applications. In this direction, the authors have suggested
the use of supervised machine learning algorithms to automate the process of
providing users with access to data and resources.

Xu and Stoller [20] attempt to produce small RBAC policies (i.e., with low
weighted structural complexity) with meaningful roles. The same authors [22]
present a parameterized RBAC (PRBAC) framework, in which users and per-
missions have attributes, i.e., implicit parameters of the roles that can be used
in role definitions.

An ABAC policy mining algorithm has been suggested by Xu and Stoller
[21,24]. This algorithm aims to reduce the cost of migration to an ABAC policy
from an ACL or from an RBAC policy with accompanying attributes. Another
variant of the ABAC policy mining algorithm has been presented by Xu and
Stoller [23], where the authors consider the logs as attribute data. These works
might be considered to detect either roles or attributes during RBAC and ABAC
policies construction, whereas in our work, we consider the optimization of the
ABAC policies themselves.
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3 Attribute-Based Access Control

In this section, we briefly present the ABAC model [25]. An ABAC policy defines
permissions based on predefined attributes. Attributes describe any character-
istics that should be taken into account for the authorization decisions. These
attributes are associated to three different entities: Subject (i.e., the user or the
process that takes an action on a resource), Resource (i.e., the entity that is
acted upon by a subject) and Environment (i.e., the operational, technical or
situational context in which the information access occurs). Thus, the attributes
are Subject attributes, Resource attributes and Environment attributes.

Regarding the ABAC policy formulation, we consider the following notation:

– S: Set of subjects.
– RS: Set of resources.
– E: Set of environments.
– For a given subject with M attributes: SAm is a subject attribute with

1 ≤ m ≤ M .
– For a given resource with N attributes: RSAn is a resource attribute with

1 ≤ n ≤ N .
– For a given environment with O attributes: EAo is a environment attribute

with 1 ≤ o ≤ O.
– ATTR(s) ⊆ SA1 × ...× SAm: Attribute assignment relations for a subject s.
– ATTR(rs) ⊆ RSA1 × ... × RSAn: Attribute assignment relations for a

resource rs.
– ATTR(e) ⊆ EA1 × ...×EAo: Attribute assignment relations for an environ-

ment e.

A policy P = {r1, r2, ..., rn} is made up of a set of rules. A rule r decides
whether a subject s can access a resource rs in an environment e. To this end,
a Boolean function is evaluated based on the values of all the attributes of s, rs
and e. Thus, the Policy rule that regulates this access is expressed as follows:

Rule : can access(s, rs, e) ← f(ATTR(s), ATTR(rs), ATTR(e))

The next section gives an overview of the KNN algorithm that will be used
in ABAC-PC.

4 K-Nearest Neighbors

The K-nearest neighbor algorithm (KNN) is widely used in pattern recognition,
text categorization, ranking models, and so on. The KNN algorithm classifies
objects based on closest training examples in the feature space [5]. Given a sys-
tem with N objects, where each object has a specific profile, a KNN algorithm
provides each object with its K most similar objects, based on a given similar-
ity metric. This results in a KNN graph where there is an edge between each
object and its K most similar objects (based on the comparison of profiles).
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Such a graph can be useful in the context of many applications such as similarity
search [2], data mining [17] and machine learning [8]. To illustrate the use of the
KNN algorithm, assume that a web-based platform is visited by multiple users to
listen to different kinds of music. It would be interesting to provide a given user
with items matching its interest. One approach is to look for K different users
sharing similar profiles (i.e., users with the same music tastes). Then, recommend
the most popular songs among the music liked by the K selected users.

The most straightforward way to construct the KNN graph is to rely on a
brute-force solution computing the similarity between each pair of nodes. The
similarity between nodes can be computed by several metrics, such as the cosine
similarity metric or Jaccard similarity. These similarities are computed as follows:

– The cosine similarity: It is represented using the dot product and the magni-
tude of two vectors:

Cosine(v1, v2) =
v1.v2

‖ v1 ‖ . ‖ v2 ‖
– The Jaccard similarity: Given two sets of attributes, this measure is defined

as the cardinality of the intersection divided by the size of the union of the
two sets:

Jaccard(s1, s2) = |s1 ∩ s2
s1s2

|

After the presentation of the basic idea of the KNN algorithm, the next section
shows how such algorithms are useful for ABAC policy optimization. Therefore,
we present the suggested ABAC Policy Clustering Approach (ABAC-PC).

5 ABAC-PC: ABAC Policy Clustering

Let us recall that the aim of the suggested approach is to reduce the number
of rules in ABAC policies. To achieve this goal, we create clusters of rules that
share similar characteristics based on similarity scores. Then, for each cluster, we
compute the minimum set of rules that represent each cluster. The ABAC-PC
process is depicted in Fig. 1. In this section, we will first present the steps of
ABAC-PC and then prove its correctness.

5.1 Rule Profiling

Without loss of generality, we consider that an ABAC policy consists of two
categories of decision effects (permit and deny rules). Therefore, the policy base
is split into two categories. Rules from each category are extracted and expressed
as profiles. The general format of a profile is as follows:

Decision effect(attr name1 = attr value1, ..., attr namen = attr valuen)

The profile represents the combination of the whole sets of subject, resource
and environment attributes (ATTR(s), ATTR(rs) and ATTR(e)). For instance,
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Fig. 1. ABAC-PC steps

the profile of a given rule with permit access between 12:00 and 16:00 to an MRI
scan for a female nurse belonging to the oncology team, the nursing department
and the Steatl organization might be expressed as:

permit access (position = {nurse}, team = {oncology}, gender = {female},
department = {Nursing}; type = {MRI}, formatType = {TXT}; Organization
= {Steatl}, time in {{12–16}}).

5.2 Similarity Computation

The similarity measures adopted in ABAC-PC are inspired by Lin et al. [11].
The rule similarity measure assigns a similarity score Srule for any two given
rules, which reflects how similar these rules are with respect to subject, resource
and environment attributes values. The formal definition of the rule similarity
measure is given in Eq. (1), the score for each rule pair is the sum of the similarity
scores of all the subject, resource and environment attributes of these rules.

Srule(ri, rj) = WsSs(ri, rj) + WrsSrs(ri, rj) + WeSe(ri, rj) (1)

where Ss, Srs and Se are functions to compute similarity scores based on the
Subject, Resource, and Environment attributes respectively. Ws, Wrs and We

are weights that can be chosen to reflect the relative importance to be given
to the similarity computation. The weight values should satisfy the constraint:
Ws + Wrs + We = 1.

The similarity score is a value between 0 and 1. Two equivalent rules are
expected to obtain a similarity score that equals 1. The rule similarity measure
algorithm is shown in Algorithm 1. Given two rules, the algorithm, first computes
the similarity score regarding the same rule elements (subject, resource and envi-
ronment). Then, the obtained scores for the different rule elements are combined
according to the weights chosen in order to produce an overall similarity score.
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Algorithm 1. Rule similarity measure algorithm
Require: Elm: Rule Element (Subject, Resource, Environment)
1: ForEach attribute ai ∈ Elmri

2: ForEach attribute aj ∈ Elmrj

//Compute similarity of Rule Element ¡Elm¿
3: S<Elm>(ri, rj)+ = wElmS<Elm>(ai, aj)

//Compute similarity for each rule elements
4: Ss(ri, rj) ← similarity score of Subject attributes
5: Srs(ri, rj) ← similarity score of Resource attributes
6: Se(ri, rj) ← similarity score of Environment attributes

//Compute the overall similarity score
7: Srule(ri, rj) = WsSs(ri, rj) + WrsSrs(ri, rj) + WeSe(ri, rj)

Similarity Score of Rule Elements: Each rule element Subject, Resource,
and Environment are represented as a set of predicates in the form of:

(attr name1 = attr value1, attr name2 = attr value2, ...)

The similarity score between two rules and regarding the same element is denoted
as S<Elm>(ri, rj), where <Elm> refers to Subject, Resource, or Environment.
The S<Elm> is computed as the sum of the similarity scores of attribute elements
(Eq. (2)).

S<Elm>(ri, rj) =
|ATTR(Elm)|∑

k=1

wk,ElmSElm(ai, aj) (2)

where wk,Elm is the weight assigned to each attribute element. ai, aj are
attributes for ri, rj , respectively, regarding the same element, and |ATTR(Elm)|
is the number of attribute elements being computed.

Similarity Score of Attribute Elements: The similarity score of attribute
elements for two rules is computed only for sets of attribute elements having the
same attribute names (Eq. (3)).

S<Elm>(ai, aj) =
| ANi ∩ ANj |
| ANi ∪ ANj |

∑

ANi=ANj

S<att typ>(vi, vj) (3)

where ANi and ANj denote the attribute names for ai, aj respectively.
|ANi ∩ ANj | denote the common number of attribute names and |ANi ∪ ANj |
the total number of attribute names. S<att typ>(vi, vj) denotes the similarity
score of attribute values, where vi, vj are the attribute values for ai, aj respec-
tively. The condition ANi = ANj ensures that the similarity score is only com-
puted for sets of attribute elements having the same attribute names for both
rules (i.e. |ANi∩ANj |

|ANi∪ANj | �= 0).
The similarity score of attribute elements algorithm ispresented inAlgorithm2.

Given two attribute elements, we compute the similarity score of attribute values
for attribute elements having the same attribute names.
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Algorithm 2. Attribute Elements Similarity Algorithm
Require: ANi, ANj : set of attribute names for ri, rj respectively, AttrElm: Attribute

element
1: ForEach attribute value vi ∈ AttrElmai

2: ForEach attribute value vj ∈ AttrElmaj

3: if ANi = ANj then
//Compute similarity of Attribute Element

4: S<Elm>(ai, aj)+ = Satt typ(vi, vj)
5: end if
6: return

|ANi∩ANj |
|ANi∪ANj | × S<Elm>(ai, aj)

Algorithm 3. Attribute Values Similarity Algorithm
1: if v1 and v2 are single values then
2: if v1 = v2 then
3: return 1
4: else
5: return 0
6: end if
7: else if v1 and v2 are bounded intervals then
8: return

len|vi∩vj |
len|vi∪vj |

9: else v1 and v2 are Categorical values

10: return
|vi∩vj |
|vi∪vj |

11: end if

The similarity score between attribute values differs, depending on whether
their type is categorical (i.e., the string data type) or numerical (i.e., integer,
real, or date/time data types). For the categorical values, we only consider the
exact match of two values. The similarity is computed based on Jaccard measure
(Algorithm 3).

5.3 Clustering

The results obtained in the similarity measures are used to classify rules into
clusters, where similar rules are grouped together, while different rules belong
to different groups.

Two rules ri and rj are similar if their similarity score is no less than a
predefined threshold: Srule(ri, rj) ≥ threshold. The value of the threshold is set
to 0.8, based on previous works regarding recommender systems and a similarity
measure for security policies [9,11]. Lowe [12] has proposed to use the value 0.8
reporting that this threshold allows to eliminate 90% of the false matches while
discarding less than 5% of the correct matches.

Given a policy with n rules, the clustering method constructs k sets of rules
with k≤n. Rules are classified into k clusters, which satisfy the following require-
ments:
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– Each cluster contains at least one rule.
– Each rule must belong to exactly one cluster.

Formally, a policy P is represented as a set of clusters, where P=
k⋃

i=1

Ci, such

that Ci ∩ Cj = ∅ for i �= j.

5.4 Generalization

After constructing clusters of rules, the purpose of this step is to compute the
minimum set of rules that represent each cluster. To this end, a generalization
function is applied in each cluster. This function attempts to reduce the number
of policy rules, by removing redundant rules and merging pairs of rules.
Let Rulesc denotes the rules in a cluster c.

Redundancy Removal: A rule ri ∈ Rulesc is redundant if Rulesc contains
another rule rj such that:

– ri = rj (i.e. Srule(ri, rj) = 1): for all the shared attribute elements of sub-
ject, resource and environment are identical. In this case, the generalization
function will remove one of these two rules, or

– ri ⊆ rj : Some of the shared attribute elements of subject, resource and envi-
ronment are identical, i.e. ri ∪rj = rj . In this case, the subset rule is removed
(i.e. ri is removed).

For instance, let us consider the following rules r1 and r2:

– r1: permit access (Designation = {Professor, Student}; FileType = {Source,
Documentation}; time = [8:00, 18:00])

– r2: permit access (Designation = {Professor}; FileType = {Source, Docu-
mentation}; time = [8:00, 18:00])

In this case, r2 will be removed because r2 represents the subset rule of r1
(i.e. r2 ⊆ r1).

Rule Merging: For the merging process, two policy rules ri and rj are merge-
able if one of their shared attribute elements of subject, resource and environment
do not intersect, while the rest of the attribute elements are identical:

ATTR(sri) ∩ ATTR(srj ) = ∅ or ATTR(rsri) ∩ ATTR(rsrj ) = ∅ or
ATTR(eri) ∩ ATTR(erj ) = ∅

Given two rules ri and rj , the merging process consists of the union of the
subject, resource and environment attributes.

ATTR(srmerge
) = ATTR(sri) ∪ ATTR(srj )

ATTR(rsrmerge
) = ATTR(rrsi) ∪ ATTR(rsrj )

ATTR(ermerge
) = ATTR(eri) ∪ ATTR(erj )
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Algorithm 4. Generalization Algorithm
1: ForEach rule ri ∈ clusteri
2: // Remove subset of rules
3: subRules= {ri ∈ clusteri|∃rj ∈ clusteri \ ri.ri ⊆ rj}
4: clusteri.removeAll(subRules)
5: // merge of rules
6: subRules= {(ri, rj)|ri ∈ clusteri ∧ rj ∈ clusteri}
7: if (Ss(ri, rj) = 1∧Srs(ri, rj) = 1)∨ (Ss(ri, rj) = 1∧Se(ri, rj) = 1)∨ (Srs(ri, rj) =

1 ∧ Se(ri, rj) = 1) then
8: rmerge = (ATTR(sr1)∪ATTR(sr2), ATTR(rsr1)∪ATTR(rsr2), ATTR(er1)∪

ATTR(er2))
// Add the merged rule to clusteri

9: clusteri.add(rmerge)
// remove rules that become subset of rmerge

10: subRules= {rk ∈ clusteri|rk ⊆ rmerge}
11: clusteri.removeAll(subRules)
12: end if
13: return clusteri

rmerge, which is the merging rule, is added to Rulesc, while rules being merged
(i.e., ri and rj) are removed from Rulesc.

For instance, let us consider the following rules r1 and r2:

– r1: permit access (Designation = {Professor, Student}; FileType = {Source,
Documentation};time = [8:00, 12:00])

– r2: permit access (Designation = {Professor, Student}; FileType = {Source,
Documentation};time = [12:00, 18:00])

– rmerge: permit access (Designation = {Professor, Student}; FileType =
{Source, Documentation}; time = [8:00, 12:00]∪[12:00, 18:00])

Given a cluster of rules clusteri, the generalization function in Algorithm 4
attempts to update rules in clusteri. It eliminates redundant rules and merges
pairs of rules. If there is a valid generalization, the algorithm outputs an updated
cluster with minimum rules. Otherwise, the algorithm outputs the same cluster.

5.5 Correctness

The aim of this subsection is to prove the correctness of the suggested approach.

Given an original policy base OP where OP =
n⋃

i=1

ri, we want to find a reduced

policy base RP =
m⋃

j=1

rj which is conform to OP with n ≥ m. In order to

prove the correctness of the suggested approach, first, we define the concepts of
Conformity and Access Domain.
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Definition 1 (Conformity).
An original policy OP conforms to a reduced policy RP if OP ’s access domain
is equivalent to RP ’s access domain: ADOP ≡ ADRP .

Definition 2 (Access Domain).
Given a rule r(s, rs, e) ← f (ATTR(s), ATTR(rs), ATTR(e)), the access
domain of r denoted ADr is defined as the set of all possible combinations of
ATTR(s), ATTR(rs) and ATTR(e). Therefore, the access domain of the global
policy P is ADP , defined by the union of the access domains of the individual
rules of P .

Theorem 1. Consider an original policy base OP with n rules. ABAC-PC pro-
duces a reduced policy base RP with m rules conforming to OP with n ≥ m.

Proof. ABAC-PC is composed of four steps (i.e., rules profiling, similarity com-
putation, clustering and generalization). During the first three steps, the policy
conformity holds, since no change is performed on attribute values. In the fourth
step, two actions are performed: (1) redundancy removal and (2) rule merging.

Let ri and rj be two rules in OP . Thus, the union of their access domains
belong to OP ’s access domain.

(ri, rj) ⊆ OP =⇒ ADri ∪ ADrj ⊆ ADOP

(1) Redundancy removal
In case ri = rj (i.e. ADri = ADrj ), either ri or rj is removed. Let rj be the
removed one.

ri ⊆ RP =⇒ ADri ⊆ ADRP

While ADri = ADrj , the access domain represented by the reduced policy RP
is the same as OP ’s access domain.

In case ri ⊆ rj (i.e. ADri ⊆ ADrj ), ri represents the subset of rj . Thus, ri is
the removed rule.

rj ⊆ RP =⇒ ADrj ⊆ ADRP

Since our function keeps the superset of rules (i.e., rj), the access domain selected
is the general one. Therefore, the access domain represented by the reduced
policy RP is the same as OP ’s access domain.

(2) Rule merging
Let ri and rj are good candidates for the merging process (i.e., two of their
attribute elements are matched) and rmerge be the merging rule. rmerge represents
the union of the subject, resource and environment attributes of ri and rj :

ATTR(srmerge
) = ATTR(sri) ∪ ATTR(srj )

ATTR(rsrmerge
) = ATTR(rsri) ∪ ATTR(rrj )

ATTR(ermerge
) = ATTR(eri) ∪ ATTR(erj )
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While rmerge = ri ∪ rj , the access domain specified by rmerge is the union of
the access domains of ri and rj (i.e., ADrmerge

= ADri ∪ ADrj ). ri and rj are
removed from the resulting policy. Thus, the access domain represented by the
reduced policy RP is the same as OP ’s access domain.

rmerge ⊆ RP =⇒ ADrmerge
⊆ ADRP

Therefore, for all performed actions we guarantee that the access domain
specified by the OP is the same specified by RP , Thus, the policy RP conforms
to OP .

Complexity analysis: Let n be the number of rules of a policy, K the number
of clusters and nk the number of rules in a cluster k. The running time of the
rule profiling step is in O(n). During the similarity computation step, we use
brute force approach to compute to the rules similarities. Thus, the complexity
is O(n2). The running time of the clustering step is in O(C2

n) since every pair
of n rules is explored to construct clusters. The running time of the last step
(generalization) in the worst is O(K×n2

k). Therefore, the overall time complexity
for constructing a reduced policy is in O(n2).

6 Experimental Results

To evaluate ABAC-PC, we consider a synthetic dataset composed of the combi-
nation of eight subject attributes, four resource attributes and two environment
attributes. Evaluation on policies from real organization would be perfect. Unfor-
tunately, no benchmarks have been published in this area and real medical data
are hard to obtain because of confidentiality constraints.

The number of rules varies between 1000 and 10000. ABAC-PC has been
implemented in Java and the experiments were made using a laptop with a 2.7
GHz Intel Core i5 CPU, 8 Gb RAM.

As comparison metrics, we mainly consider the running time, the size of
the resulted policy and the reduction rate. Figure 2 shows the running time
as a function of policy size. The graph explicitly shows that the running time
increases with the number of policy rules in a quadratic way. This is related
to the number of the combinations generated and being treated for policy rules
during the ABAC-PC steps, especially in the similarity computation.

Figure 3 shows the size of reduced policy based on the similarity threshold.
The obtained results represent the evaluation of the ABAC-PC on three bases
with different number of policy rules (1000, 3000 and 5000 rules). As depicted
in this figure, the lowest threshold (i.e., 0.6) returns a very reduced policy. The
threshold effect is negligible from the value 0.8, where the reduced policy size
is close to the original policy size. Therefore, the default value of the threshold
selected for our experiments is 0.8.

Figures 4 and 5 show the reduction rate for five policy bases with different
number of rules. The reduction rate increases significantly for large policies. The
obtained results can be explained by the fact that the probability of having
redundant and mergeable rules increases.
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Fig. 2. Running time Fig. 3. Reduced policy size vs. threshold

Fig. 4. Original and reduced policy sizes Fig. 5. Reduction rate

Fig. 6. Policy decision evaluation time

In order to evaluate the impact of the reduced policy on the functionality of
ABAC, we consider the policy decision time (i.e., the time required for sending
the final decision regarding a given request). The policy decision time is directly
related to the size of the overall policy. Hence, reducing the number of rules will
be beneficial for the policy decision performance.
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The policy decision evaluation is depicted in Fig. 6. The obtained results
represent the time evaluation for a request on four policies (original and reduced
policies). The experiments were made on Balana [3] as the Open source XACML
3.0 implementation. As depicted in this figure, the time required for the decision
on original policies is higher than the one on reduced policies. The difference can
be explained by the fact that our approach reduces the policy size by eliminating
redundant rules and merging pairs of rules. Therefore, the PDP takes more time
to evaluate the request in a policy that contains more rules.

7 Conclusion

Since an ABAC policy is based on combination of subject, resource and environ-
ment attributes for access decisions, its policy representation is rich and expres-
sive. However, using the ABAC model for large systems might generate a large
number of security policy rules. In this direction, we have presented an approach
that reduces the number of the ABAC policy rules. The suggested approach
is mainly based on the K-nearest neighbors algorithm. The evaluation results
demonstrate the efficiency of the proposed approach. Directions for future work
include the integration of the suggested ABAC-PC in a real world policy analysis
project.
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Abstract. Recommender systems are designed to find items in which
each user has most likely the highest interest. Items can be of any type
such as commercial products, e-learning resources, movies, songs, and
jokes. Successful web and mobile applications can collect easily thou-
sands of users, thousands of items, and millions of item ratings in only
few months. A solution to store and to process these continuously grow-
ing data is to build distributed recommender systems. The challenging
task is to find the appropriate distribution strategy allowing an effi-
cient retrieval of needed information. Considering the similarity between
the task of predicting a rating, and the task of predicting a member-
ship grade in graded multi-label classification (GMLC), we propose an
adapted distribution strategy to efficiently build a decentralized recom-
mender system based on GMLC.

Keywords: Recommender system · Graded multi-label classification

1 Introduction

A recommender system collect available users’ item-ratings, along with users and
items informations to predict ratings for unrated items, and then recommends
to each active user the items with the highest predicted ratings. Indeed, there
are three main strategies for making item recommendation that may be com-
bined together [19]: the first strategy is content-based filtering which is based
on item descriptive attributes such as the weight and the price. The second is
collaborative filtering which is based on item ratings made by users similar to
the active user [23]. The third is demographic filtering which is based on user
descriptive attributes such as age and gender.

Recommender systems can be memory-based or model-based. Memory-based
methods [3] act directly on collected data and rely on similarity measures to
find the k-nearest neighbours of the active user. Model-based methods [26] avoid
querying the entire database by building a model to predict item ratings and
output recommendations.
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 101–108, 2017.
DOI: 10.1007/978-3-319-59647-1 8
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A recommender system is designed to work in an infinite streaming context
where new users, new items, and new ratings can be added at any time. Consider-
ing the fact that continuously growing data may affect the recommender system
performance, the actual tend in recommender systems is to use decentralized
and distributed architectures [1,6].

In fuzzy classification each data can be associated to multiple labels with
membership degrees ranging from 0 to 1 [2]. However, it is easier for users to
rate items using discrete ordered values such as the one-to-five star ranking.
Graded multi-label classification (GMLC) [5,13,15] is the task of assigning to
each data a set of labels with corresponding membership grades. Predicting the
membership grade associated to a label is similar to predicting the rating value
for an item.

The main idea of this paper is to build a distributed recommender system
based on GMLC. The underlying advantage is that GMLC can be easily decom-
posed into a set of parallel binary classification tasks.

The paper is organized as follows: in Sect. 2, a review of main approaches for
distributed recommender systems and GMLC is done. In Sect. 3, we describe our
proposed distributed recommender system. Experiment results are discussed in
Sect. 4. Conclusions and perspectives are presented in Sect. 5.

2 State of the Art

One way of tackling the problem of big data is to use a decentralized architec-
ture [14]. Hadoop framework based on the concept of map reduce facilitates the
task of building distributed recommender systems [6,16]. Peer to peer (P2P)
recommender systems [10] are less easier to implement since they are based on
communication between servers (peers). Each peer stores a subset of the data
and a routing table to find the location of the data needed by the recommender
algorithm. One drawback of the first recommender systems is that some peers
may be under-used while others may be over-used. Multi-agent systems can be
combined with P2P strategies to reduce the impact of cooperative peer false
assumption [24].

Another way of answering the challenge of big data in recommender systems
is to use a predictive model instead of computing neighbours over the entire
database. GMLC is a predictive model which can be decomposed into a set
of ordinal classification (OC) models [9], that can be decomposed into a set
of binary classification models. GMLC models are usually used in static data
contexts. Recommender systems can be built based on GMLC if the binary
classifiers forming the GMLC model are incremental classifiers [8,18] that handle
data streams.

Decision tree models are intuitive and fast at making predictions, but they are
slower at the learning step and can not handle data streams. Very fast decision
trees (VFDT) [7] where introduced to tackle those limitations. The idea is to
update leaf statistics for each received data, and to grow the tree by splitting a
leaf when its statistics meet some conditions [12]. Some stopping criteria should
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be fixed to avoid growing the tree indefinitely. The tree may become inefficient for
prediction if the underlying distribution of data changes over time. This problem
is known as concept-drift and can be answered using different strategies. The
simplest strategy is to use a sliding window to rebuild the tree using only the
last N received instances [25]. Another strategy is to rank instances according to
a reward or a loss measure, and to rebuild the tree using the N highest ranked
instances [17].

Some applications generate only ratings as data for recommender systems.
Other applications also provide users and items attributes. Other applications
start with collecting only ratings and, afterwards, incorporate users and items
attributes. Hence, learning data for recommender systems depends on the asso-
ciated application. In the next section, we introduce a distributed recommender
system that can handle the fact that new items, new users, and new attributes
may be added at any time.

3 Proposed Distributed Recommender System

Data integration: Users and items are identified by positive ids. Users’ attributes
and items’ attributes are also identified by positive ids. Usually, to prevent over-
laps between ids, the matrix of ratings is separated from attributes’ values. The
drawback of this separation approach is that it is difficult to build a classifier
that combines attributes’ values and ratings to make predictions.

The idea of our proposed recommender system is to consider user attributes
as items with negative ids, and item attributes as users with negative ids.
Attributes’ values are then considered as ratings (Fig. 1). The reason of using
negative ids is to allow new collected attributes to be added in the negative
region, while new users and new items are to be added in the positive region so
that attributes, users and items never overlap. This data integration step han-
dles new added attributes, users, and items. It results in a set of entries where
for each entry (u, i, r): r can be either a rating or an attribute value for the user
u or for the item i.

Predictive meta-model: There are two straightforward approaches to build a
predictive model for ratings using the integrated data. The first approach is to
consider each set of ratings with the same user id as one sparse instance. The
prediction is then based on user attributes and ratings. The second approach is to
build a predictive model considering each set of ratings with the same item id as
one sparse instance. The prediction is then based on item attributes and ratings.
We propose to combine both the first and the second method by predicting the
average rating. The underlying advantage is to combine demographic, content-
based, and collaborative filtering strategies.

Distributed architecture: The distributed architecture of our approach works as
follows: the main server S is both a database and an aggregation server that
keeps all sparse user instances and item instances. Each other server s is a smart
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Fig. 1. Mapping user attributes, item attributes, and ratings

server that handles data and predictive models for a range of users’ ids and a
range of items’ ids (Fig. 2). The main server receives continuously a new rating
tuple (u, i, r) where u is the user id, i is the item id, and r is the rating value.
After receiving each rating, the main server should communicate with the smart
servers and aggregate their answers to output the next recommendations.

Main server role (Database part): For each tuple (u, i, r), the main server finds
the corresponding user sparse instance au and item sparse instance bi. The main
server updates the user instance au by adding the rating of the ith item, and
do the same with the item instance bi. The main server determines the corre-
sponding servers to all items rated by the instance user au, and then sends au
to them so that the corresponding classifier to each item rated by au can be
updated. The main server does the same with the instance item bi so that the
corresponding classifier to each user who rated the item bi can be updated.

Smart server role: For each received instance au, the smart server updates
the corresponding classifiers. A classifier is a binary decision tree that predicts
whether the rating for an item i is greater or equals to a specific rating value
R. Updating a classifier consists of giving the received instance au a weight 1,
and letting au fell down to the bottom of the decision tree. Since au is a sparse
instance, it may not have a value for the attribute at a specific node. When such
case occurs data fells down to all child nodes but with different weights as in
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the C4.5 decision tree [21]. When au reaches a leaf node, either the number of
positive instances or the number of negative instances is increased by the weight
of au depending on whether the rating of the item i is greater or equals to R
or not. A threshold is used to determine the number of instances a leaf should
receive before trying to split data using the entropy measure. Another threshold
is used to determine the number of instances the tree should receive before it is
rebuilt using only the last received instances.

Complexity of the smart server role: A smart server handles a range of users’ ids
and items’ id, and for each id there is an ordinal classifier [20] which consists of as
much decision trees as the number of possible ratings minus one. Actually there
is no need to build a decision tree for the lowest rating because if no decision
trees predicts the positive class (the rating is greater or equals to some value)
then the ordinal classifier predicts the lowest rating. Let E be the number of
rated items by a received user instance au that are in the items’ ids range of the
smart server. Let F be the number of possible ratings minus one. The number of
classifiers that are updated after receiving au is E×F . The update can concern
just statistics, a node split in a worst case, and a tree rebuild in the most worst
case, but in practice trees are very rarely or never rebuilt at the same time.

Main server role (Aggregation part): For the main server to predict the rating
for an item i by a user u, it collects both the prediction of the ordinal classifier
responsible of predicting ratings for the item i, and the prediction of the one
responsible of predicting ratings for the user u. Then the main server predicts the
average of those two ratings. Other aggregations may be used such as discarding
the predicted rating with the lowest confidence, or a weighted average according
to the uncertainty of each prediction.

4 Experiments

In our experiment we used a subset of the MovieLens dataset1 [11]. It is composed
of three files: the first one contains attribute values (gender, age, occupation, and
zip-code) for 6040 users, the second one contains attribute values (title, year, and
a set of categories like ‘action’, ‘drama’, ‘comedy’, . . . etc.) for 3883 movies, and
the third one contains 391384 ‘one to five’ star ratings.

We used our implementation of incremental binary decision trees in order to
implement easily the wanted decision tree behaviour. Each decision tree receives
instances one by one and updates leaf statistics. After each 100 instances The
decision tree can grow by splitting nodes according to the minimum description
length pre-pruning strategy [22], and after each new 500 instances the tree is
rebuilt using only the last 1000 received data [25].

The centralized approach has been stopped after 104549 ratings due to mem-
ory insufficiency. The proposed distributed architecture with five servers having a
memory capacity of 4Go has completed successfully the experiment in about 5 h.
1 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/
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Fig. 2. The distributed architecture

The average of maximal memory use has been maintained under 1.1Go. The
prediction is evaluated using Hamming-loss measure [4]. It is defined for an
instance x as the mean of absolute error to the maximum absolute error:

HammingLoss(x) =
1
k

k∑

l=0

|yl − zl|
|maximumRating −minimumRating| where yl

and zl are the actual and the predicted values of the lth attribute for the instance
x, and k is the number of target attributes. Table 1 illustrates collected results
averaged over all instances for each rating value.

Hamming-loss evaluation is higher for the ratings 1 because the rating value 1
is predicted only if binary decision trees predicting whether the rating is greater
than 2, 3, 4, 5 give negative predictions. Hamming-loss is also higher for the rating

Table 1. Experiment results using Movielens dataset

Rating Count Hamming-loss average Hamming-loss standard deviation

1 23864 0.4336 0.2404

2 46244 0.2462 0.2617

3 108280 0.1451 0.2023

4 135574 0.2147 0.2645

5 77422 0.4437 0.2799

All 391384 0.2578 0.2749
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5 due to the class imbalance because the majority class is the negative one (77422
positive examples and 313962 negative examples).

5 Conclusion and Future Work

In this paper, a distributed architecture is proposed for recommender systems
based on graded multi-label classification. The proposed approach combines
demographic, content-based, and collaborative filtering to output recommen-
dations. The experiment on MovieLens dataset gives promising results that can
be enhanced by handling the class imbalance problem. For future work we plan
to answer this issue and to validate our approach using different datasets.
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Abstract. K-Nearest Neighbors algorithm (KNN) is the core of a con-
siderable amount of online services and applications, like recommenda-
tion engines, content-classifiers, information retrieval systems, etc. The
users of these services change their preferences over time, aggravating the
computational challenges of KNN. In this work, we present UpKNN : an
efficient thread-based out-of-core approach to take the updates of users
preferences into account while it computes the KNN efficiently.

1 Introduction

K-Nearest Neighbors (KNN) has been one of the most important classifica-
tion techniques, specially used on recommender systems [1,2], and information
retrieval applications.

KNN is a process of finding the most similar neighbors of a node/entity from
a dataset. Each node of the dataset is represented for some data, commonly
known as profile. We consider two data entities as neighbors if their profiles are
similar based on a similarity metric as cosine or Jaccard.

Unfortunately, the main bottleneck of KNN is its huge memory requirements.
Besides, some of the KNN applications witness high rate of changes in pro-
files over time, making very difficult to take these changes into account. These
updates only increase the computation time considerably, making the algorithm
less and less scalable. Due to this cost, many current approaches [2–4] simplify
the processing assuming the dataset remains static throughout the computation.
Consequently, the computation of KNN on static datasets does not consider
data’s dynamism, relying on content that is always outdated. Unfortunately,
nowadays data changes continuously [7,8] at unimaginable rates, specially on
those web-based, or recommendation systems’ applications [5,6].

Hence, we propose UpKNN, a multithreading approach for processing real-
time profile updates in KNN algorithms. UpKNN is designed to perform well on
a single commodity PC, through an efficient out-of-core approach that leverages
disk and main memory efficiently. The use of a single commodity PC, instead of
a more complex computing platform, is motivated by its lower cost and ease of
access for a vast majority of potential users, compared to a distributed system.

c© Springer International Publishing AG 2017
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2 Background

Given N entities with their profiles in a D-dimensional space, the K-Nearest
Neighbors (KNN) algorithm finds the K closest neighbors for each entity. The
distance between two entities is computed based on a well-defined metric that
takes into account their profiles. To compute KNN efficiently we adopt an
approximate approach as proposed in [1].

Let us consider a set of entities U (|U | = N), associated with a set of
items denoted by I. Each entity u has a profile UPu, composed of items in I.
UpKNN assumes that the N entities are randomly partitioned into M parti-
tions, in such a way that at least one partition can be processed in memory at
a time.

Corresponding to each of the M partitions there is a partition file PFj in
disk, storing the profiles UP of all the entities belonging to partition j.

To update the profiles, UpKNN receives an unsorted set of updates S con-
sisting of entity-item tuples: S = {< u, i > |u ∈ U, i ∈ I}.

3 UpKNN Algorithm

3.1 Classify

UpKNN classifies each update of the set S per its entity’s partition, such that
all updates for the entities of a partition are applied at once, avoiding further
IO operations. For a fast classification, we use a set of in-memory buffers, which
are read and written in parallel. UpKNN performs the expensive read operations
from S (on disk) in parallel with the classification, achieving a higher throughput.

Figure 1 depicts the classify phase. The classification separates the updates
and stores them into M update files, UFm. To do so, we have pairs of reader-
classifier threads (Tri and Tci). Each pair shares a unique communication chan-
nel Ci.

Each reader thread Tri reads one of the equal-sized slices of S at a time. Once
the Tri has read a slice from S, it puts that slice in the communication channel
Ci and notifies the corresponding Tci. When Tci receives the notification, it reads
data from Ci, freeing it for new data (from Tri).

To classify the updates into the update files UFm, each classifier thread Tci

has access to its M partitioned local buffer LBi of size M × 4[mb].

Fig. 1. Classify. Reader threads in continuous lines, classifier threads in dashed lines
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Keeping the large size of updates in mind, we implement a second level of
buffer called Global buffer, mostly to reduce synchronizations and IO operations.
This buffer of size M×8[mb] is common to all the classifier threads, consequently
is protected by a mutex, preventing multiple classifiers to access the same par-
tition concurrently. The size of the buffer is experimentally selected to achieve
the best performance.

Each thread Tci classifies the updates and stores them into their correspond-
ing local buffer partitions: LBij . As soon as a partition j of the local buffer LBi

becomes full, its data is put into the corresponding partition of the global buffer
by Tci. Once the global buffer partition is full, the data of that particular par-
tition j is written into the update profile file UFj . The thread Tci∗, who made
j’s partition in the global buffer full, writes the update profile file UFj . As only
one thread has access to the global buffer of some partition j, when this is full,
there is no need of synchronization to write UFj file.

In UpKNN a key factor to achieve high performance is the overlap of com-
putations and IO operations. While a reader thread obtains data from S (IO
request), a classifier thread classifies updates in partitions, preliminarily stored
on in-memory buffers and later written into the corresponding update files.

3.2 Merge

The phase merges the updates from these UFm files with the already existing M
profile files PFm in disk. We use a set of M threads Tme to process the updates
from these files in parallel. We have enough threads Tme so that each file is read
and merged in parallel, leveraging IO parallelism observed on modern SSDs.

To merge, each thread Tme loads the updates from the corresponding update
profile file UFi into memory. These updates are inserted sequentially into a heap
to sort them by entities’ id. The purpose of sorting the updates by entities’ id
is to have all the occurrences of a particular user continuously. Now that the
updates are sorted by id, Tme proceeds to read sequentially from disk the profile
file PFi (obtained from the underlying KNN approach) and to merge them with
the updates from the heap. The process of merging old profiles with new items
is performed in-memory. Finally, Tme writes the updated profiles back to PFi.
Using the same thread for reading and writing, avoids synchronization operations
and related costs, and hence, achieves full parallelism in IO operations.

4 Evaluation

UpKNN is implement in C++, clang-omp++ 3.5.0, −O2 optimization. Openmp
and Pthreads enable multithreading computation. We ran our experiments on a
MacBook Pro laptop, Intel Core i7 4 cores, 16 GB RAM and a 500 GB SSD.

Although UpKNN is independent of the underlying KNN algorithm, we show
a particular instance of its implementation on Pons [3]. UpKNN is evaluated
on Movielens, which provides the movie-rating data from the Movielens website.
Users’ profiles are composed of their affinities for some movies. Additionally, we
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Table 1. Datasets

Dataset Users Items #Up (80% items) M

Movielens (MOV) 138,493 20,000,263 16,000,210 2

Mediego (MED) 4,130,101 7,954,018 6,363,214 2

use Mediego (MED)’s dataset, which consists of users and the webpages they
visit from various websites. In both cases, each user activity has a timestamp,
which is used to divide the profiles into initial profiles (20% of the items) and
the update set S (80% of the items) (Table 1).

Baseline. To the best of our knowledge, there are no out-of-core algorithms
updating profiles while computing the KNN. To overcome this, we choose a nat-
ural baseline, which also uses a multithreading approach, where several threads
read the updates from the update set and add them to the respective profiles.

4.1 UpKNN ’s Performance

Runtime. Table 2 shows UpKNN ’s and baseline’s wall-time and speedup for
computing the corresponding #Up (20/80% division, 10 M and 100 M randomly
generated updates).

UpKNN considerably outperforms the baseline on both the datasets.
UpKNN achieves a speedup of 49.5X on Movielens, taking only 3.687 s for about
16 million updates. We obtain a speedup of 47X on Mediego’s dataset.

We notice from Table 3, that UpKNN processes more than 4 million
[updates/second], for both the datasets, being consistent with the motivation
of our work. UpKNN not only performs the computation on a single commodity
PC, but also does it in real-time, making it a novel approach in itself.

In Fig. 2, we verify UpKNN ’s scalability in terms of updates processed. Even
after increasing the number of updates from 10 M to 100 M, the execution time
increases only by a factor of 10.

Number of Threads. Figure 3 presents the wall-time of executing 100 M
updates, varying the numbers of threads. We observe near-linear decrease in

Table 2. UpKNN ’s performance

Data #Up UpKNN [s] Base.[s] Speedup

MOV 10M 3.635 105.747 29.08X

MOV 20/80 3.687 184.513 49.5X

MOV 100M 39.662 1055.804 26.61X

MED 20/80 1.543 72.576 47X

MED 10M 17.665 198.658 11.24X

MED 100M 47.329 1931.154 40.80X

Table 3. #Up/second

Dataset and #Up Time[s] #Up/sec

MOV 20/80 (16M) 3.678 4.33M

MED 20/80 (6.3M) 1.543 4.12M

MOV 100M 39.662 2.52M

MED 100M 46.329 2.11M
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Fig. 2. Updates Scalability Fig. 3. Threads Scalability

the runtime when the number of threads increases. This small difference is due
to the increase in threads synchronization, and to some small pieces of sequential
code.

Disk Operations. As evident from Table 4, UpKNN reduces considerably the
number of disk operations performed throughout the process. In the case of
ordering the updates in time, we obtain better results than the case where the
updates are randomly put in the set. In the former case, UpKNN takes only
0.0006% of the seeks performed by the baseline. The bytes written in our app-
roach are reduced to only 1.98% of those of the baseline, and the bytes read are
reduced to 3.88% of those of the baseline. These differences are explained by
UpKNN ’s capability to apply all the updates for a profile at once. Conversely,
the baseline reads/writes the whole profile each time there is an update for it.

UpKNN ’s performance relies on its capacity to reduce disk operations
throughout each phase of the computation. For instance, the updates (read from
disk) are accessed only once on the classification. In addition, the heap reduces
the need of multiple profile readings/writings.

Table 4. Disk Operations

MOV 20/80 MED 20/80

UpKNN Baseline % UpKNN Baseline %

Disk seeks 29 48 M 0.0006 27 19 M 0.0001

Written [bytes] 128M 6400 M 1.98 50 M 2570 M 1.98

Write op. [#] 12 16 M 0.0001 10 6 M 0.0001

Read [bytes] 256M 6592 M 3.88 101 M 2621 M 3.88

Read op. [#] 127 32 M 0.0004 55 12 M 0.0004

MOV 100M MED 100 M

Disk seeks 277K 300 M 0.092 8 M 300 M 2.753

Written [bytes] 856M 40 KM 2.118 2468 M 40 KM 6.110

Write op. [#] 138K 100 M 0.138 4.1 M 100 M 4.130

Read [bytes] 1656M 41 KM 4.019 3268 M 41 KM 7.933

Read op. [#] 139K 200 M 0.069 4.1 M 200 M 2.065
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5 Conclusions

We presented UpKNN, a multithreading out-of-core approach to handle updates
on users-profiles, while the K -Nearest Neighbors computation is performed. The
performance of our novel approach relies on a carefully designed set of in-memory
buffers. UpKNN uses these buffers to overlap IO requests and CPU computation
throughout the processing. This optimization goes together with a significant
reduction in IO operations, the main bottleneck on out-of-core algorithms.
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el Extranjero Folio 72140173 and Google Focused Award Web Alter-Ego.
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Abstract. Implementing atomic read/write shared objects in a
message-passing system is an important problem in distributed com-
puting. Considering that communication is the most expensive resource,
efficiency of read and write operations is assessed primarily in terms of
the needed communication and the associated latency. Attiya, Bar-Noy,
and Dolev established that two communication round-trip phases involv-
ing in total four message exchanges are sufficient to implement atomic
operations when a majority of processors are correct. Subsequently Dutta
et al. showed that one round involving two communication exchanges is
sufficient as long as the system adheres to certain constraints with respect
to crashes on the number of readers and writers in the system. It was
also observed that three exchanges are sufficient in some settings.

This extended abstract presents work that explores algorithms where
operations are able to complete in three message exchanges without
imposing constraints on the number of participants, i.e., the aim is One
and half Round Atomic Memory, hence the name Oh-RAM! Recently
Hadjistasi et al. showed that three-exchange implementations are impos-
sible in the MWMR (multi-writer/multi-reader) setting. This paper
shows that this is achievable in the SWMR (single-writer/multi-reader)
setting, and also achievable for read operations in the MWMR setting
by “sacrificing” the performance of write operations. In particular, a
SWMR implementation is presented, where reads complete in three and
writes complete in two exchanges. Next, a MWMR implementation is
given, where reads involve three and writes involve four exchanges. In
light of the impossibility result these algorithms are optimal in terms
of the number of communication exchanges. Both algorithms are then
refined to allow some reads to complete in just two exchanges. These
algorithms are evaluated and compared using the NS3 simulator with
different topologies and operation loads.

1 Introduction

Emulating atomic [9] (or linearizable [8]) read/write objects in message-passing
environments is an important problem in distributed computing. Atomicity is

Supported in part by FP7-PEOPLE-2013-IEF grant ATOMICDFS No: 629088.
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the most intuitive consistency semantic as it provides the illusion of a single-
copy object that serializes all accesses such that each read operation returns
the value of the latest preceding write operation. Solutions to this problem are
complicated when the processors are failure-prone and when the environment
is asynchronous. To cope with processor failures, distributed object implemen-
tations use redundancy by replicating the object at multiple network locations.
Replication introduces the problem of consistency because operations may access
different object replicas possibly containing obsolete values.

The seminal work of Attiya, Bar-Noy, and Dolev [2] provided an algorithm,
colloquially referred to as ABD, that implements single-writer/multiple-reader
(SWMR) atomic objects in message-passing crash-prone asynchronous environ-
ments. The operations are ordered with the help of logical timestamps associated
with each value. Here each operation is guaranteed to terminate as long as some
majority of replica servers do not crash. Each write operation takes one commu-
nication round-trip phase, or round, involving two message exchanges and each
read operation takes two rounds involving in total four message exchanges. Sub-
sequently, [11] showed how to implement multi-writer/multiple-reader (MWMR)
atomic memory where both read and write operations involve two communica-
tion round trips involving in total four message exchanges.

The work by Dutta et al. [3] introduced a SWMR implementation where
both reads and writes involve a single round consisting of two communication
exchanges. Such an implementation is called fast, and it was shown that this is
possible only when the number of readers r is bounded with respect to the num-
ber of servers s and the number of server failures f , viz. r < s

f −2. An observation
made in [3] suggests that atomic memory may be implemented (using a max/min
technique) so that each read and write operation complete in three communica-
tion exchanges. The authors did not elaborate on the inherent limitations that
such a technique may impose on the distributed system.

Subsequent works, e.g., [4,5], focused in relaxing the bound on the number
of readers and writers in the service by proposing hybrid approaches where
some operations complete in one and others in two rounds. Tight bounds were
provided in [4] on the number of rounds that read and write operations require
in the MWMR model.

A natural question arises whether one can devise implementations where all
operations complete in at most three communication exchanges without imposing
any restrictions on the numbers of participants in the service. A recent work by
Hadjistasi, Nicolaou, and Schwarzmann [7] showed that such implementations
are impossible in the MWMR setting. It is not known whether there is an SWMR

implementation and whether there exists some trade off that allows operations
to complete in three communication exchanges in the MWMR setting.
Contributions. We focus on the gap between one-round and two-round algo-
rithms by presenting atomic memory algorithms where read operations can take
“one and a half rounds,” i.e., complete in three message exchanges. We also pro-
vide SWMR and MWMR algorithms where read operations complete in either
two or three communication exchanges. We rigorously reason about the correct-
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Table 1. Summary of communication exchanges and communication complexities.

Model Algorithm Read Exch. Write Exch. Read Comm. Write Comm.

SWMR ABD [2] 4 2 4|S| 2|S|
SWMR Oh-SAM 3 2 |S|2 + 2|S| 2|S|
SWMR Oh-SAM’ 2 or 3 2 |S|2 + 3|S| 2|S|
MWMR ABD [2,11] 4 4 4|S| 4|S|
MWMR Oh-MAM 3 4 |S|2 + 2|S| 4|S|
MWMR Oh-MAM’ 2 or 3 4 |S|2 + 3|S| 4|S|

ness of the algorithms. To assess the practicality of these implementations we
simulate them and compare their performance. Additional details are as follows.

1. We present a new SWMR algorithm (Oh-SAM) for atomic objects in the asyn-
chronous message-passing model with processor crashes. Write operations
take two communication exchanges and are similar to the write operations of
ABD. Read operations take three communication exchanges: (1) the reader
sends a message to servers, (2) the servers share this information, and (3) once
this is “sufficiently” done, servers reply to the reader. A key idea of the algo-
rithm is that the reader returns the value that is associated with the mini-
mum timestamp (cf. the observation in [3]). The read operations are optimal
in terms of communication exchanges in light of [7] (Sect. 3).

2. We extend the SWMR algorithm to yield a MWMR algorithm (Oh-MAM). In
the new algorithm the write operations are more complicated, taking four
communication exchanges (cf. [11]). Read operations complete as before in
three communication exchanges (Sect. 4).

3. We then present a revised SWMR algorithm (Oh-SAM’) and a revised MWMR

algorithm (Oh-MAM’), where read operations complete in either two or three
communication exchanges. The original and the revised versions of each algo-
rithm are presented for pedagogical reasons: for ease of understanding and
reasoning about the algorithms (Sect. 5).

4. We simulate our algorithms using the NS3 simulator and assess their perfor-
mance under practical considerations. We note that the relative performance
of our algorithms depends on the simulation topologies and object server
placement; this is another reason for presenting both versions of each algo-
rithm (Sect. 6).

Table 1 summarizes the results. Improvements in the latency (in terms of the
number of exchanges) are obtained in a trade-off with communication complex-
ity. We note that increases in the communication complexity need not necessarily
have negative consequences in some practical settings, such as data centers,
where servers communicate over high-bandwidth links.
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2 Models and Definitions

The system consists of a collection of crash-prone, asynchronous processors with
unique identifiers from a totally-ordered set I partitioned into: set W of writer
identifiers, set R of reader identifiers, and set S of replica server identifiers with
each server maintaining a copy of the object. Any subset of writers and readers,
and up to f servers, f < |S|

2 , may crash at any time. Processors communicate by
exchanging messages via asynchronous point-to-point reliable channels; messages
may be reordered. For convenience we use the term broadcast as a shorthand
denoting sending point-to-point messages to multiple destinations.
Executions. An algorithm A is a collection of processes, where process Ap

is assigned to processor p ∈ I. The state of processor p is determined over a
set of state variables, and the state of A is a vector that contains the state of
each process. Algorithm A performs a step, when some process p (i) receives a
message, (ii) performs local computation, (iii) sends a message. Each such action
causes the state at p to change. An execution is an alternating sequence of states
and actions of A starting with the initial state and ending in a state. A process
p crashes in an execution if it stops taking steps; otherwise p is correct.
Atomicity. An implementation of a read or a write operation contains an invo-
cation action (such as a call to a procedure) and a response action (such as a
return from the procedure). An operation π is complete in an execution ξ, if
ξ contains both the invocation and the matching response actions for π; oth-
erwise π is incomplete. An execution is well formed if any process invokes one
operation at a time. We say that an operation π precedes an operation π′ in an
execution ξ, denoted by π → π′, if the response step of π appears before the
invocation step in π′ in ξ. Two operations are concurrent if neither precedes the
other. The correctness of an atomic read/write object implementation is defined
in terms of atomicity (safety) and termination (liveness) properties. Termination
requires that any operation invoked by a correct process eventually completes.
Atomicity is defined following [10]. For any execution ξ, if all invoked read and
write operations are complete, then the operations can be partially ordered by
an ordering ≺, so that the following properties are satisfied:

P1. The partial order ≺ is consistent with the external order of invocation
and responses, that is, there do not exist operations π and π′, such that π
completes before π′ starts, yet π′ ≺ π.

P2. All write operations are totally ordered and every read operation is ordered
with respect to all writes.

P3. Every read operation returns the value of the last write preceding it in the
partial order, and any read operation ordered before all writes returns the
initial value of the object.

Efficiency and Message Exchanges. Efficiency of implementations is assessed
in terms of operation latency and message complexity. Latency of each operation
is determined by the computation time and the communication delays. Com-
putation time accounts for the computation steps that the algorithm performs
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in each operation. Communication delays are measured in terms of communi-
cation exchanges. The protocol implementing each operation involves sends (or
broadcasts) of typed messages and the corresponding receives. Communication
exchange within an execution of an operation is the set of sends and receives
for the specific message type within the protocol. With this definition, tradi-
tional implementations in the style of ABD are structured in terms of rounds,
cf. [2,5], where each round consists of two message exchanges, the first, a broad-
cast, is initiated by the process executing an operation, and the second consists
of responses to the initiator. The number of messages that a process expects dur-
ing a convergecast depends on the implementation. Message complexity measures
the worst-case total number of messages exchanged during an operation.

3 SWMR Algorithm Oh-SAM

We now present our SWMR algorithm Oh-SAM: One and a half Round Single-
writer Atomic Memory. The write operation takes two communication exchanges
(similarly to ABD). Read operations take three communication exchanges: (1) the
reader sends message to servers, (2) each server that receives the request relays
the request to all servers, and (3) once a server receives the relay for a particular
read from a majority of servers, it replies to the reader. The read completes once
it collects a majority of these replies. A key idea of the algorithm is that the
reader returns the value that is associated with the minimum timestamp. The
code is given in Algorithm 1. Now we give additional details.

Counter variables read op, operations and relays are used to help processes
identify “new” read and write operations, and distinguish “fresh” from “stale”
messages (since messages can be reordered). The value of the object and its
associated timestamp, as known by each process, are stored in variables v and ts
respectively. Variable minTS holds the minimum timestamp discovered in the
received messages.
Writer Protocol. Writer w increments its local timestamp ts and broadcasts
request writeReq to servers S (lines 19–20). It terminates when at least |S|/2+1
replies are collected (lines 21–22).
Reader Protocol. Reader r creates request readReq, with its id r and its local
operation counter read op, and broadcasts it to servers S (line 7). It then awaits
at least |S|/2 + 1 messages from servers. When “fresh” messages are collected
from a majority of servers, the reader returns the value v associated with the
minimum ts among the received messages (lines 11–14).
Server Protocol. (1) Upon receiving message 〈readReq, r, op〉, the server broad-
casts a readRelay message, containing its ts and v, to servers S (lines 28–29).

(2) Upon receiving message 〈readRelay, ts′, v′, r, op〉, if ts < ts′, then s
updates its local timestamp and value. (lines 36–37). Next, s checks if the
received readRelay indicates a new read operation by r, i.e., op > operations(r)
(line 38). If so, then it a) sets its local counter for r to the received counter,
i.e., operations(r) = op; and b) initializes the relay counter for r to zero, i.e.,
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Algorithm 1. Reader, Writer, and Server Protocols for SWMR algorithm Oh-

SAM

1: At each reader r in R
2: Variables:
3: ts ∈ N init 0, minTS ∈ N init 0
4: read op ∈ N init 0, v ∈ V
5: function Read
6: read op ← read op + 1
7: bcast(〈readReq , r, read op〉) to S
8: await |S|/2 + 1 server messages m
9: with (m.read op = read op)

10: Let Q = {〈s,m〉|m received from s}
11: minTS ← min{m.ts′|m ∈ Q}
12: v = m.val such that
13: m ∈ Q ∧ m.ts′ = minTS
14: return(v)

15: At writer w
16: Variables:
17: ts ∈ N

+ init 0, v ∈ V
18: function Write(val : input)
19: (ts, v) ← (ts + 1, val)
20: bcast (〈writeReq , ts, v, w〉) to S
21: await |S|/2 + 1 writeAck messages
22: m with (m.ts = ts)
23: return

24: At server s in S
25: Variables:
26: ts ∈ N init 0, v ∈ V init ⊥
27: operations, relays : R→N, init {0}|R|

28: Upon receive(〈readReq, r, op〉)
29: bcast(〈readRelay , ts, v, r, op〉) to S
30: Upon receive(〈writeReq , ts′, v′, w〉)
31: if (ts < ts′) then
32: (ts, v) ← (ts′, v′)

33: send(〈writeAck , ts, v〉) to w

34: Upon
35: receive(〈readRelay , ts′, v′, r, op〉)
36: if (ts < ts′) then
37: (ts, v) ← (ts′, v′)

38: if (operations(r) < op) then
39: operations(r) ← op
40: relays(r) ← 0

41: if (operations(r) = op) then
42: relays(r) ← relays(r) + 1

43: if (relays(r) = |S|/2 + 1) then
44: send(〈readAck , ts, v, op〉) to r

relays(r) = 0 (lines 38–40). Server s also updates the number of collected read-
Relay messages regarding the read request created by reader r (lines 41–42).
When s receives 〈readRelay, ts, v, read op〉 from a majority of servers, it sends
message 〈readAck, ts, v, read op〉 to reader r (lines 43–44).

(3) Upon receiving message 〈writeReq, ts′, v′, w〉, if ts < ts′, then the server
updates its local timestamp and value (lines 31–32). In any other case, no update
takes place. Finally, the server sends an acknowledgment to writer w.

Correctness. To prove correctness of algorithm Oh-SAM (Algorithm 1) we rea-
son about its liveness (termination) and atomicity (safety). Termination holds
with respect to our failure model: up to f servers may fail, where f < |S|/2
and each operation waits for messages from some majority of servers. We now
outline the proof (the details appear in the full paper).

To prove the atomicity we order operations by means of the timestamps used
by each operation, expressing the required (to be proved) partial order as follows.

A1. If a read ρ succeeds a write ω, where ω writes value with timestamp ts and
ρ returns the value for timestamp ts′, then ts′ ≥ ts.

A2. If a write operation ω1 that writes the value with timestamp ts1 precedes
a write operation ω2 that writes the value with timestamp ts2, i.e., ω1 → ω2,
then ts2 > ts1.
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A3. If ρ1 and ρ2 are two read operations such that ρ1 → ρ2 and ρ1 returns the
value with timestamp ts1 and ρ2 returns the value with timestamp ts2, then
ρ2 returns ts2 ≥ ts1.

Property A2 follows from well-formedness of the sole writer in the system
and the fact that the writer always increments the timestamp. It is easy to see
that the ts variable in each server s is monotonically increasing. This leads to
the following lemma.

Lemma 1. In any execution ξ of the algorithm, the variable ts maintained by
any server s in the system is non-negative and monotonically increasing.

Proof. When a server s receives a timestamp ts then s updates its local
timestamp tss if and only if ts > tss (lines 31–32 and 36–37). Thus the local
timestamp of the server monotonically increases and the lemma follows. �	

As a next step we show how atomicity Property A3 is satisfied.

Lemma 2 (Property A3). In any execution ξ of the algorithm, if ρ1 and ρ2 are
two read operations such that ρ1 precedes ρ2, i.e., ρ1 → ρ2, and ρ1 returns the
value for timestamp ts1, then ρ2 returns the value for timestamp ts2 ≥ ts1.

Proof. Let the two operations ρ1 and ρ2 be invoked by processes with identifiers
r1 and r2 respectively (not necessarily different). Also, let RSet1 and RSet2 be
the sets of servers that sent a readAck message to r1 and r2 during ρ1 and ρ2.

Assume by contradiction that read operations ρ1 and ρ2 exist such that ρ2
succeeds ρ1, i.e., ρ1 → ρ2, and the operation ρ2 returns a timestamp ts2 that is
smaller than the ts1 returned by ρ1, i.e., ts2 < ts1. According to our algorithm,
ρ2 returns a timestamp ts2 that is smaller than the minimum timestamp received
by ρ1, i.e., ts1, if ρ2 obtains ts2 and v in the readAck message of some server
sx ∈ RSet2, and ts2 is the minimum timestamp received by ρ2.

Let us examine if sx replies with ts′ and v′ to ρ1, i.e., sx ∈ RSet1. By
Lemma 1, and since ρ1 → ρ2, then it must be the case that ts′ ≤ ts2. According
to our assumption ts1 > ts2, and since ts1 is the smallest timestamp sent to
ρ1 by any server in RSet1, then it follows that r1 does not receive the readAck
message from sx, and hence sx /∈ RSet1.

Now let us examine the actions of the server sx. From the algorithm, server
sx collects readRelay messages from a majority of servers in S before sending a
readAck message to ρ2 (lines 43–44). Let RRSetsx denote the set of servers that
sent readRelay to sx. Since, both RRSetsx and RSet1 contain some majority of
the servers then it follows that RRSetsx ∩ RSet1 �= ∅.

Thus there exists a server si ∈ RRSetsx ∩ RSet1, which sent (i) a readAck
to r1 for ρ1, and (ii) a readRelay to sx during ρ2. Note that si sends a readRelay
for ρ2 only after it receives a read request from ρ2 (lines 28–29). Since ρ1 → ρ2,
then it follows that si sent the readAck to ρ1 before sending the readRelay to sx.
By Lemma 1, if si attaches a timestamp tssi in the readAck to ρ1, then si
attaches a timestamp ts′

si in the readRelay message to sx, such that ts′
si ≥ tssi .

Since ts1 is the minimum timestamp received by ρ1, then tssi ≥ ts1, and hence
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ts′
si ≥ ts1 as well. By Lemma 1, and since sx receives the readRelay message

from si before sending a readAck to ρ2, it follows that sx sends a timestamp
ts2 ≥ ts′

si . Thus, ts2 ≥ ts1 and this contradicts our initial assumption. �	
Using standard arguments about the non-empty intersections of majority

sets of processor identifiers in any execution we show in the full paper [6] that
any read operation following a write operation receives readAck messages from
servers where each timestamp is at least as large as one returned by any complete
write operation. Likewise, we show that if a read operation succeeds a write
operation, then it returns a value at least as recent as the one that was written,
proving Property A1. Having shown liveness and atomicity of algorithm Oh-SAM

the result follows.

Theorem 1. Algorithm Oh-SAM implements an atomic SWMR object.

Performance. In algorithm Oh-SAM write operations take 2 exchanges and read
operations take 3 exchanges. The (worst case) message complexity of read oper-
ations is |S|2 +2|S| and the (worst case) message complexity of write operations
is 2|S|. This follows directly from the structure of the algorithm.

4 MWMR Algorithm Oh-MAM

Given the impossibility result [7], we seek a solution that involves three or four
communications exchanges per operation, and we present our MWMR algorithm
Oh-MAM: One and a half Round Multi-writer Atomic Memory . To impose an
ordering on the values written by the writers we associate each value with a tag
defined as the pair 〈ts, id〉, where ts is a timestamp and id is the identifier of a
writer. Tags are ordered lexicographically (cf. [11]). The read protocol is identical
to the SWMR setting (except that tags are used instead of timestamps), thus in
Algorithm 2 we give only the code for writer and server processes.
Writer Protocol. This protocol is similar to [11]. When a write operation is
invoked, writer w broadcasts a discover message to all servers (line 55), and
awaits |S|/2 + 1 discAck acknowledgments. When these messages are collected,
writer w determines the maximum timestamp maxTS from the tags (line 59)
and sets its local tag to 〈maxTS + 1, w〉 (line 60). The writer then broadcasts
request writeReq that includes this tag, the value to be written, and its write
operation counter write op to all servers (line 62). It then awaits |S|/2 + 1
writeAck messages (line 63) and terminates.
Server Protocol. Servers react to messages from the readers exactly as in
Algorithm 1. Here we describe server actions for discover and writeReq messages.

(1) Upon receiving message 〈discover, write op, w〉, server s sends message
discAck that includes its local tag and local value to writer w.

(2) Upon receiving a writeReq request, if the message is not stale and
tags < tag′, the server updates its local timestamp and local value to those
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Algorithm 2. Writer and Server Protocols for MWMR algorithm Oh-MAM

49: At each writer w in W
50: Variables:
51: tag ∈ 〈N, I〉 init 〈0, w〉, v ∈ V init ⊥
52: write op,maxTS ∈ N

+ init 0
53: function Write(val : input)
54: write op ← write op + 1
55: bcast(〈discover ,write op,w〉) to S
56: await |S|/2 + 1 discAck messages
57: m with (write op = m.write op)
58: Let Q = {〈s,m〉|m received from s}
59: maxTS ← max{m.tag.ts′|m ∈ Q}
60: (tag, v) ← (〈maxTS + 1, w〉, val)
61: write op ← write op + 1
62: bcast(〈writeReq , tag, v,write op, w〉)

to S
63: await |S|/2 + 1 writeAck messages
64: m with (write op = m.write op)
65: return

66: At each server s in S
67: Variables:
68: tag ∈ 〈N, I〉 init 〈0, s〉, v ∈ V init ⊥
69: write ops : W → N init {0}|W|

70: Upon receive(〈discover ,write op, w〉)
71: send(〈discAck ,tag, v,write op,s〉)

to w

72: Upon
73: receive(〈writeReq , tag′, v′,write op,w〉)
74: if ((tag < tag′)
75: ∧(write op(w) < write op)) then
76: (tag, v) ← (tag′, v′)
77: write ops(w) ← write op

78: send(〈writeAck , tag , v ,write op〉)
to w

received (lines 75–77). Otherwise, no update takes place. The server then sends
acknowledgment writeAck to writer w. (line 78).

Correctness. Termination of Algorithm 2 is satisfied with respect to our failure
model as in Sect. 3. Atomicity is reasoned about on the basis of the lexicographi-
cal order on the tags (instead of timestamps) in properties A1, A2, and A3 given
in Sect. 3. Properties A1 and A3 are proved following the approach in Sect. 3 (the
complete development is found in the full paper). It is easy to see that the tag
variable in each server s is monotonically increasing. This leads to the following
lemma.

Lemma 3. In any execution ξ of the algorithm, the variable tag maintained by
any server s in the system is non-negative and monotonically increasing.

Proof. When server s receives a tag tag then s updates its local tag tags iff
tag > tags (Algorithm 1 in lines 36–37 and Algorithm 2 in lines 75–77). Thus
the local tag of the server monotonically increases and the lemma follows. �	
Lemma 4 (Property A2). In any execution ξ of the algorithm, if a write oper-
ation ω1 writes a value with tag tag1 then for any succeeding write operation ω2

that writes a value with tag tag2 we have tag2 > tag1.

Proof. Let WSet1 be the set of servers that send a writeAck message within
write operation ω1. Let Disc2 be the set of servers that send a discoverAck
message within write operation ω2.

Based on the assumption, write operation ω1 is complete. By Lemma 3, we
know that if a server s receives a tag tag from a process p, then s includes tag
tag′ s.t. tag′ ≥ tag in any subsequently message. Thus the servers in WSet1
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send a writeAck message within ω1 with tag at least tag tag1. Hence, every
server sx ∈ WSet obtains tag tagsx ≥ tag1.

When write operation ω2 is invoked, it obtains the maximum tag, max tag,
from the tags stored in at least a majority of servers. This is achieved by sending
discover messages to all servers and collecting discAck replies from a majority
of servers forming set Disc2 (lines 55–59 and 70–71).

Sets WSet1 and Disc2 contain a majority of servers, and so WSet1∩Disc2 �=
∅. Thus, by Lemma 3, any server sk ∈ WSet ∩ Disc2 has a tag tagsk s.t.
tagsk ≥ tagsx ≥ tag1. Furthermore, the invoker of ω2 discovers a max tag s.t.
max tag ≥ tagsk ≥ tagsx ≥ tag1. The invoker updates its local tag by increasing
the maximum tag it discovered, i.e., tag2 = 〈max tag + 1, v〉 (line 60), and asso-
ciating tag2 with the value to be written. We know that, tag2 > max tag ≥ tag1,
hence local tag > tag1.

Now the invoker of ω2 includes its tag local tag with writeRequest message
to all servers, and terminates upon receiving writeAck messages from a majority
of servers. By Lemma 3, ω2 receives writeAck messages with a tag tag2 s.t.
tag2 ≥ local tag > tag1 hence tag2 > tag1, and the lemma follows. �	

Having shown liveness and atomicity of algorithm Oh-MAM the result follows.

Theorem 2. Algorithm Oh-MAM implements an atomic MWMR object.

Performance. In algorithm Oh-MAM write operations take 4 exchanges and
read operations take 3 exchanges. The (worst case) message complexity of read
operations is |S|2 + 2|S| and the (worst case) message complexity of write oper-
ations is 4|S|. This follows directly from the structure of the algorithm (the
complete development is given in the full paper).

5 Reducing the Latency of Read Operations

We next revise the protocol implementing read operations of algorithms Oh-SAM

and Oh-MAM to yield protocols that implement read operations that terminate
in either two or three communication exchanges. The key idea here is to let the
reader determine “quickly” that a majority of servers hold the same timestamp
(or tag) and its associated value. This is done by having the servers send relay
messages to each other as well as to the readers. While a reader collects the
relays and the read acknowledgment messages, if it observes in the set of the
received relay messages that a majority of servers holds the same timestamp
(or tag), then it safely returns the associated value and the read operation ter-
minates in two communication exchanges. If that is not the case, then the reader
proceeds similarly to algorithm Oh-SAM and terminates in three communication
exchanges. We name the revised algorithms Oh-SAM’ and Oh-MAM’. The code
for the changes to algorithm Oh-SAM is given in Algorithm 3.

The code in lines 81–83 replaces the code in lines 8–9 of the original algorithm,
and the code in lines 84–85 replaces the code in lines 28–29.
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Algorithm 3. Read Protocol Changes for SWMR algorithm Oh-SAM’

81: await (|S|/2+1 readAck messages m)
OR (|S|/2+1 readRelay messages m

with same timestamp ts)
with (m.read op = read op)

82: if |S|/2+1 readRelay messages received
with same timestamp ts then

83: return(v associated with ts)

84: Upon receive(〈readReq , r, op〉)
85: bcast(〈readRelay , ts, v, r, op〉)

to S and r

Revised Server Protocol. The server sends a readRelay message to all servers
and to the invoker of the read operation (line 85).
Revised Reader Protocol. Here the reader awaits either (a) readAck messages
from a majority of servers, or (b) readRelay messages from a majority of servers
that include the same timestamp ts (line 81). In either case we check the enclosed
read op values to ensure “freshness” as before. For case (b) the reader returns the
value v associated with the timestamp ts from the readRelay messages (lines 82–
83). Otherwise case (a) holds and the readed proceeds as in Oh-SAM. Algorithm
Oh-MAM’ is obtained similarly by using tags instead of timestamps.

Liveness and atomicity of the revised algorithms Oh-SAM’ and Oh-MAM’ is
shown similarly to algorithms Oh-SAM and Oh-MAM (the complete development
is in the full paper).

Theorem 3. Algorithm Oh-SAM’ implements an atomic SWMR object.

Proof sketch. The modifications do not affect the update of timestamp ts, thus
ts grows monotonically at any server s and process p. Since only the writer incre-
ments the value of timestamp ts, Property A2 follows from the well-formedness
of the sole writer.

In Oh-SAM all read operations terminate in 3 communication exchanges. Thus
from Lemma 2 we know that any two non-concurrent 3-exchange read operations
satisfy Property A3. Additionally for algorithm Oh-SAM’ we show that Property
A3 holds for the cases where (i) a 2-exchange read operation ρ1 precedes a
2-exchange read operation ρ2; (ii) a 2-exchange read operation ρ1 precedes a
3-exchange read operation ρ2; and (iii) a 3-exchange read operation ρ1 precedes
a 2-exchange read operation ρ2.

Using the same approach we can prove Property A1. In particular, borrowing
from the analysis of algorithm Oh-SAM we know that Property A1 is satisfied if
a 2-exchange read operation succeeds a write operation. Thus for Oh-SAM’ we
show that the same holds for 2-exchange read operations. �	

We show the following for algorithm Oh-MAM’ (similarly to Theorem 3).

Theorem 4. Algorithm Oh-MAM’ implements an atomic MWMR object.

Performance. In algorithm Oh-SAM’ write operations take 2 exchanges and
read operations take 2 or 3 exchanges. The (worst case) message complexity of
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read operations is |S|2 + 3|S| and the (worst case) message complexity of write
operations is 2|S|.

In algorithm Oh-MAM’ write operations take 4 exchanges and read operations
take 2 or 3 exchanges. The (worst case) message complexity of read operations is
|S|2 + 3|S| and the (worst case) message complexity of write operations is 4|S|.

These results follows directly from the structure of the algorithms.

6 Empirical Evaluations

Here we present a comparative study if our algorithms by simulating them using
the NS3 discrete event simulator [1]. We implemented the following three SWMR

algorithms: ABD [2], Oh-SAM, and Oh-SAM’. We also implemented the corre-
sponding three MWMR algorithms: ABD-MW (following the multi-writer exten-
sion [11]), Oh-MAM, and Oh-MAM’. For comparison we also implemented two
algorithms, SW and MW, that mimic the minimum message requirements for
the SWMR and MWMR settings respectively, but without performing any com-
putation or ensuring consistency. SW performs two communication exchanges for
read and write operations and MW performs three exchanges for read and write
operations, thus providing a lower bound on performance in simulated scenarios.

Fig. 1. Simulated topologies.

Experimentation Setup. The
experimental configuration con-
sists of a single (SWMR) or mul-
tiple (MWMR) writers, a set of
readers, and a set of servers. We
assume that at most one server
may fail. This is done to sub-
ject the system to a high com-
munication burden. Communica-
tion among the nodes is estab-
lished via point-to-point bidirec-
tional links implemented with a
DropTail queue.

For our evaluation, we use sim-
ulations representing two different
topologies, Series and Star, that
include the same array of routers
but differ in the deployment of server nodes. In both topologies clients are con-
nected to routers over 5 Mbps links with 2 ms delay, the routers are connected
over 10 Mpbs links with 4 ms delay. In the Series topology in Fig. 1(a), a server
is connected to each router over 10 Mbps bandwidth with 2ms delay. This topol-
ogy models a network where servers are separated and appear to be in different
networks. In the Star topology in Fig. 1(b) all servers are connected to a single
router over 50 Mbps links with 2 ms delay, modeling a network where servers
are in a close proximity and are well-connected, e.g., as in a datacenter. In
both topologies readers and writer(s) are located uniformly with respect to the
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Fig. 2. SWMR simulation results.

routers. We ran NS3 on a Mac OS X with 2.5 Ghz Intel Core i7 processor. The
results are compiled as averages over five samples per each scenario.

Performance. We assess algorithms in terms of operation latency that depends
on communication delays and local computation delays. NS3 supports simulated
time events, but does not measure delays due to local computation. In order
to measure operation latency we combine two clocks: the simulation clock to
measure communication delays, and a real time clock to measure computation
delays. The sum of the two times yields operation latency.

Scenarios. To measure performance we define several scenarios. The scenar-
ios are designed to test (i) the scalability of the algorithms as the number of
readers, writers, and servers increases; (ii) the contention effect on efficiency, by
running different concurrency scenarios; and (iii) the effects of chosen topolo-
gies on the efficiency. For scalability we test with the number of readers |R|
from the set {10, 20, 40, 80, 100} and the number of servers |S| from the set
{10, 15, 20, 25, 30}. For the MWMR setting we use at most 80 readers and we
range the number of writers |W| over the set {10, 20, 40}. To test contention
we set the frequency of each read and write operation to be constant and we
define two different invocation schemes. We issue reads every rInt = 2.3 s and
write operations every wInt = 4 s. We define two invocation schemes: fixed and
stochastic. In the fixed scheme all operations are scheduled periodically at a
constant interval. In the stochastic scheme read and write operations are sched-
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uled randomly from the intervals [1, rInt] and [1, wInt] respectively. To test the
effects of topology we run our simulations using the Series and Star topologies.

Results. We generally observe that the proposed algorithms outperform algo-
rithms ABD and ABD-MW in most scenarios by a factor of 2. A closer examina-
tion yields the following observations.

Scalability: As seen in Figs. 2(b) and (c), increasing the number of readers and
servers increases latency in the SWMR algorithms. The same observation holds
for the MWMR algorithms. When the number of the participating readers and
writers is reduced then not surprisingly the latency improves, but the relative
performance of the algorithms remains the same.

Contention: We examine the efficiency of our algorithms under different concur-
rency schemes. We set the operation frequency to be constant and we observe
that in the stochastic scheme read operations complete faster than in the fixed
scheme; see Figs. 2(c) and (d) for the SWMR setting, and Figs. 3(c) and (d)
for the MWMR setting. This is expected as the fixed scheme causes congestion.
For the stochastic scheme the invocation time intervals are distributed uniformly,
this reduces congestion and improves latency.

Fig. 3. MWMR simulation results.



Oh-RAM! One and a Half Round Atomic Memory 131

Topology: Figs. 2(a) and (b) for the SWMR setting, and Figs. 3(a) and (b)
for the MWMR setting show that topology substantially impacts performance.
For both the SWMR and MWMR settings our algorithms outperform algorithms
ABD and ABD-MW by a factor of at least 2 in Star topology where servers
are well-connected. Our SWMR algorithms perform much better than ABD also
in the Series topology. For the MWMR setting and Series topology, we note
that ABD-MW generally outperforms algorithm Oh-MAM, however the revised
algorithm Oh-MAM’ noticeably outperforms ABD-MW.

Lastly we compare the performance of algorithms Oh-SAM and Oh-MAM with
revised versions Oh-SAM’ and Oh-MAM’. We note that Oh-SAM’ and Oh-MAM’

outperform all other algorithms in Series topologies. However, and perhaps not
surprisingly, Oh-SAM and Oh-MAM outperform Oh-SAM’ and Oh-MAM’ in Star
topology. This is explained as follows. In Star topology readRelay and readAck
messages are exchanged quickly at the servers and thus delivered quickly to
the clients. On the other hand, the bookkeeping mechanism used in the revised
algorithms incur additional computational latency, resulting in worse latency.

An important observation is that while algorithms Oh-SAM’ and Oh-MAM’

improve the latencies of some operations (allowing some reads to complete in
two exchanges), their performance relative to algorithms Oh-SAM and Oh-MAM

depends on the deployment setting. Simulations show that Oh-SAM and Oh-MAM

are more suitable for datacenter-like deployment, while in the “looser” settings
algorithms Oh-SAM’ and Oh-MAM’ perform better.

7 Conclusions

We focused on the problem of emulating atomic read/write shared objects in
message-passing settings with the goal of using three communication exchanges
(to the extent allowed by the impossibility result [7]). We presented algorithms
for the SWMR and MWMR models. The algorithms do not impose any con-
strains on the number of readers (SWMR and MWMR) and on the number of
the writers for the MWMR model. Finally we performed an empirical study of
the performance of algorithms using simulations.
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Abstract. Robustness is a correctness notion for concurrent programs
running under relaxed consistency models. The task is to check that
the relaxed behavior coincides (up to traces) with sequential consistency
(SC). Although computationally simple on paper (robustness has been
shown to be PSPACE-complete for TSO, PGAS, and Power), building
a practical robustness checker remains a challenge. The problem is that
the various relaxations lead to a dramatic number of computations, only
few of which violate robustness.

In the present paper, we set out to reduce the search space for robust-
ness checkers. We focus on store-atomic consistency models and estab-
lish two completeness results. The first result, called locality, states that a
non-robust program always contains a violating computation where only
one thread delays commands. The second result, called singularity, is even
stronger but restricted to programs without lightweight fences. It states
that there is a violating computation where a single store is delayed.

As an application of the results, we derive a linear-size source-to-
source translation of robustness to SC-reachability. It applies to gen-
eral programs, regardless of the data domain and potentially with an
unbounded number of threads and with unbounded buffers. We have
implemented the translation and verified, for the first time, PGAS algo-
rithms in a fully automated fashion. For TSO, our analysis outperforms
existing tools.

1 Introduction

Performance drives the design of computer architectures. The computation time
of a task depends on the time it takes to access the memory. To reduce the access
time, the idea is to place the data close to the compute unit. This idea is applied
on virtually all design layers, from multiprocessors to high-performance comput-
ing clusters. Yet, the realization is different. Multiprocessors like Intel’s x86 [39]
and Sparc’s PSO [43] implement thread-local instruction buffers that allow to
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execute store commands without waiting for the memory. The effect of buffered
stores will be visible to other threads only when the multiprocessor decides to
batch process the buffer, thus leading to a reordering of instructions. Clusters
often implement a programming model called partitioned global address space
(PGAS), either in terms of APIs like SHMEM [20], ARMCI [36], GASNET [11],
GPI [33], and GASPI [26], or by HPC languages like UPC [21], Titanium [27],
and Co-Array Fortran [37]. The PGAS model joins the partitioned memories of
the cluster nodes into one (virtual) global memory. The selling point of PGAS
is one-sided communication: A thread can modify a part of the global memory
that resides in another node, without having to synchronize with that node.
The drawback is the network delay. Although already computed, it may take a
moment to install a value in the memory of another node.

Moving the data to the computation is delicate. When the data is shared,
it has to be split into copies, one copy for each thread holding the datum. But
then, in the interest of performance, updates to one copy cannot be propagated
immediately to the other copies. This means the computations have to relax the
guarantees given by an atomic memory and captured by the notion of sequential
consistency (SC) [32]. The commands no longer take effect on the global mem-
ory in program order but may be reordered by the architecture. An important
guarantee of SC, however, remains true in all the above models: Store atomicity.
Once a store command arrives at the global memory, it is visible to all threads.

Programming a shared memory is difficult. Having to take into account
the reorderings of the architecture makes programming in the presence of
relaxed consistency close to impossible. SC-preserving compilers have been
proposed as an approach to the problem and receive considerable atten-
tion [6,14,25,34,40,41]. The idea is to let the developer implement for SC, and
make it the task of the compiler to insert synchronization primitives that justify
the SC-assumption for the targeted architecture. Algorithmically, justifying the
SC-assumption amounts to checking a problem known as robustness (against
the architecture of interest): For every relaxed computation there has to be an
SC-computation with the same behavior. The notion of behavior to be preserved
typically (and also in this work) is the happens-before traces [31]. When devel-
oping an SC-preserving compiler, checking robustness is the main task. Inferring
synchronization primitives from indications of non-robustness is better under-
stood [1–3,5,7,13,28,30,35,42].

An SC-preserving compiler needs an over-approximate robustness analysis
that should be as precise as possible. Under-approximations like bounded model
checking [5,15,16], simulation [8], or monitoring [17,18] may miss non-robust
computations and insert too few fences. Over-approximations, if too coarse, lead
to over-fencing. Although decision procedures for robustness exist [14,19,23],
building an efficient and yet precise robustness checker remains a challenge. The
problem is the immense degree of non-determinism brought by the instruction
reorderings that is hard to reflect in the analysis. This non-determinism forces
over-approximations into explicitly modeling architectural details like instruction
buffers [1,4,22,29] (operational approaches) or right-away operating on the code
(axiomatic approaches) [3,6,40].
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In this paper, we contribute two semantical results about robustness that
limit the degree of non-determinism that has to be taken into account by algo-
rithmic analyses. Both results state that robustness violations can be detected —
in a complete way — with a restricted form of reorderings. The first result, called
locality, states that only one thread needs to make use of instruction reorder-
ings. The other threads operate as if they were running under SC: A program
is not robust if and only if there is a violating computation where exactly one
thread delays stores. The second result, called singularity, is even stronger: A
program without lightweight fence instructions is not-robust if and only if there
is a violating computation with exactly one delayed store. Note that a program
without delays is robust. This means the result is an optimal characterization of
non-robustness. Singularity only holds in the absence of lightweight fences. We
do not consider this a severe limitation. Robustness is meant as a subroutine
for fence inference inside an SC-preserving compiler. In that setting, programs
naturally come without fences.

Our third contribution shows that the development of specialized robustness
analyses can be avoided. Utilizing locality and singularity, we give an instrumen-
tation that reduces robustness to reachability under SC. By instrumentation, we
mean a source-to-source translation of a given program P into a program P ′

so that the former is robust if and only if the latter does not reach under SC
a designated state. This allows us to employ for the analysis of robustness all
techniques and tools that have been developed for SC-reachability. As a side-
effect, we obtain the decidability of robustness for parameterized programs over
a finite data domain. The restriction to finite data domains is not necessary for
the instrumentation itself, but for the back-end SC-reachability analysis.

Concerning the model, we show that locality holds for virtually all store-
atomic consistency models (singularity holds in the absence of dependencies).
Inspired by [9], we introduce a programming language for concurrent programs
that is meant to act as a programming framework for store-atomic models. The
syntax of our language is an assembly dialect enriched with a variety of fence
commands. The semantics is defined weak enough to support the relaxations
found in the models discussed above. What makes our programming language a
programming framework is that, given a program, we can add appropriate fences
to obtain the behavior under SC, TSO, PSO, and PGAS. The motivation for
having a programming framework is that we can show locality and singularity
once for this model, and it will then hold for all instances of the framework.

Due to space constraints, this paper contains only a high-level explanation
of our techniques. Further details and examples can be found in [24].

2 Related Work

Robustness checks that the relaxed behavior of a program is the same as the
behavior under SC. The definition is relative to a notion of behavior, and
there are various proposals in the literature [1,2,40]. To make the most of the
consistency model in terms of performance, the notion of behavior should be
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Fig. 1. Normal-form results for violating computations under relaxed consistency.

liberal enough to equate quite distinct computations. On the other hand, it
should be strong enough to be easy to check algorithmically. Equivalence of the
happens-before traces [40] appears to be a good compromise between expres-
siveness and algorithmics, and is the favored notion in the literature on robust-
ness [6,13,14,17–19]. Abdulla et al. recently proposed an alternative that is
incomparable with the happens-before traces [2]. The idea is to preserve the total
ordering of all stores and drop the relations for loads. This equivalence leads to
efficient algorithmics for TSO but does not seem to fit well with consistency
models beyond TSO. State-space equivalence from [1] leads to non-primitive
recursive lower bounds for robustness, and will therefore also not be our choice.

In our earlier work on TSO [13], PGAS [19], and Power [23], we established
normal form results similar to locality and singularity and also made use of
the combinatorial proof principle. We elaborate on why the reasoning in this
paper is substantially different from our earlier efforts. Figure 1 summarizes the
comparison. The results about PGAS [19] and Power [23] rely on a normal form
(Ordered in Fig. 1) for violating computations where all threads delay commands.
As the normal form gives weak guarantees, it can be established with a cost
function that simply measures the length of violating computations. The value
of these earlier results is in that they apply to all consistency models which
forbid out-of-thin-air values, while giving the precise complexity (but no useful
algorithms). For TSO, we proved locality in [14]. As TSO architectures have
one buffer per thread, we were able to apply a cost function that only measures
delays, i.e., the number of commands that are processed while a store is being
buffered (Fig. 1). In this paper, we also have to account for overtakes of stores
in different buffers. Another aspect is that, for TSO, we managed to leave the
happens-before trace unchanged. We tried to lift this strategy to PGAS but
failed. Instead, we show how to construct a different computation that still is a
violation. Taking apart the computation was a big step.

The instrumentation we present in Sect. 7 is related to our work on TSO [13].
To be precise, we adapt the instrumentation of the attacker (that delays com-
mands) to the assumption of singularity and to the more relaxed consistency
model. The instrumentation of the helper threads (that close the happens-before
cycle) is the one from ESOP’13. Since our earlier work assumes locality, the new
instrumentation (for singularity) is more compact (we save a linear number of
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auxiliary addresses). An alternative instrumentation-based robustness analysis
is presented in [4]. The instrumentation precomputes an optimized cycle and
then checks robustness wrt. that cycle. The idea can be understood as trading
one complex verification task (robustness) for a number of tasks (robustness wrt.
a cycle) that can be solved more efficiently. A strong point is that the approach
is general enough to apply to non-store-atomic consistency models, including
Power. For TSO, PSO, and PGAS, also that instrumentation will benefit (in
terms of size) from locality and singularity. Related is also the instrumentation
in [2]. Atig et al. only have to add two variables to the program, which means
the instrumentation is more compact than ours. But, as explained above, the
approach does not seem to be generalizable beyond TSO.

Instrumentations that mimic the effect of instruction buffers can also be
found in reachability analyses for relaxed consistency models. Bouajjani et al.
apply the idea of bounded context switching to TSO [10]. Vechev et al. [22]
precompute the utilization of the instruction buffers in TSO and PSO, and show
how to mimic them under SC without having to shift content between variables.
Common to both works is that they eagerly simulate the effect of buffers. In [12],
we show how to introduce store buffering lazily, and only where needed to satisfy
a TSO reachability query: The idea is to guide the store buffering by non-robust
computations. Hence, also reachability analyses benefit from the improvements
for robustness presented here.

In this paper, we focus on store-atomic memory models. Although store
atomicity feels like a natural requirement, important multiprocessors like
Power [8,23,38] or ARM [8] are known to be non-store atomic. There, stores
to independent variables may arrive in independent threads in a different order.
What remains true is coherence. All threads see the stores to each variable in
the same order. A major challenge for future work is to understand whether a
locality result can be established for Power, potentially under mild assumptions
on the programs. With the results in this paper, singularity can be shown not
to hold, Fig. 1.

3 Concurrent Programs

Syntax. The syntax of our programming language is defined below. A concurrent
program is identified by a name and consists of a finite set of named threads. The
threads share a global memory. Moreover, each thread defines a finite set of local
registers. The code is given as a finite set of labelled instructions. Each instruc-
tion includes a command and the label of the instruction to be executed next. To
model non-deterministic choices, several instructions can have the same label.
The instruction set includes loads from memory, stores to memory, local assign-
ments, asserts, and two kinds of fences. SC-fences forbid relaxations altogether.
The second fence command is parameterized by a set of addresses. To be more
precise, the program comes with a domain DOM the elements of which model
the data values as well as the addresses in the global memory. We assume the
domain contains a distinguished value 0 ∈ DOM that will be used for initializa-
tion purposes. Besides DOM, there is also a function domain FUN that contains
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elements from DOM∗ → DOM. All functions that are used in expressions have
to stem from FUN.

Semantics. Under SC, a store command takes immediate effect on the global
memory. We consider consistency models that relax the program order but pre-
serve store atomicity. This means the effect of a store command may not become
visible immediately (to the other threads), but later commands may overtake the
store and hit the memory earlier than the store. What is guaranteed, however,
is that once the store is visible it is visible to all threads.

The semantics specifies C(P), i.e., the set of computations for program P. We
define the relaxed semantics of our assembly language in an operational style, in
terms of a hardware architecture that processes instructions. In this model, out-
of-program-order computations result from the use of instruction buffers inside
the architecture. To provide an umbrella for different store-atomic models, the
architecture has two types of buffers. Buffers of the first type are per thread and
per address FIFO buffers that only hold stores of one thread to one address.
Buffers of the second type are per thread FIFO buffers that hold stores of one
thread to potentially different addresses. The per-address buffers emulate PGAS.
An all-addresses buffer mimics TSO.

When a thread issues a store, the instruction is put into the corresponding
per-address buffer. From the per-address buffers, the store non-deterministically
advances to the all-addresses buffer of that thread. From the all-addresses buffer,
the store eventually arrives at the global memory. Due to the per-address buffers,
stores of the same thread to different addresses may enter the memory in an order
different from the order in which they were issued.

When doing a load, a thread checks whether there is a store to the address
of interest kept in one of the store buffers. If not, the thread loads the current
value from the main memory. If so, the thread loads the value of the most recent
store in the buffers (where stores in the per-address buffers are more recent than
stores in the all-addresses buffer). The definition ensures that the thread sees its
own stores in issue order. Even more, for a sequential program the architecture
appears to implement SC.

To synchronize different threads, the language offers two fence instructions.
The scfence instruction can only be executed if all buffers of the executing
thread are empty. Additionally, we have the fence instruction that carries a
list of addresses. It can be executed if the buffers for the given addresses in the
executing thread are empty.

We show that the framework encompasses the consistency models we aim at.
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Sequential consistency. Lamport’s SC [32] is the intuitive consistency model
that reflects an atomic shared memory. Formally, the SC-computations are the
valid interleavings of the computations of all threads. We can mimic SC in our
framework by letting stores directly go to memory. To enforce this, one can insert
an scfence after each store. We avoid this modification and just write CSC(P)
to mean the set of SC-computations of program P.

Total Store Ordering. TSO implements the store-to-load relaxation. Each
thread has a single buffer for stores, and loads may overtake buffered stores
when early reads fail. Notably, the thread-local total order of stores is preserved.
Intel’s x86 architecture implements TSO [39].

The all-addresses buffers in our framework are meant to mimic TSO. To
preserve the total order of stores, the per-address buffers must not be used. We
can insert fence instructions after each store command to enforce TSO.

Partial Store Ordering. For PSO [43], there are two kinds of relaxation, the
store-to-load relaxations of TSO and the store-to-store relaxation. The latter
means that stores of the same thread to different addresses can be reflected in
the global memory in an order that is different from the program order.

The per-address-buffers enable the additional store-to-store relaxation. As
long as a store resides in its per-address buffer, stores to other addresses can be
executed faster and the buffered store gets delayed. A program that is executed
unmodified (without further fences) in our framework will run with PSO seman-
tics. The benefit of PSO is that it approximates well the behavior of PGAS.

Partitioned Global Address Space. In a PGAS clusters, the cluster nodes
create FIFO buffers to transfer data to and request data from neighboring nodes.
The transfer itself is handled by the network infrastructure. PGAS APIs allow
the user to specify the buffer that should be used for a transfer. A comparison
and precise model of PGAS APIs can be found in [19]. The model presented here
is designed as an approximation of PGAS that is less complex and hence easier
to handle wrt. the theory we develop. Rather than assigning stores to buffers, we
give each store a separate buffer, like in PSO. The user defined sharing of buffers
is mimicked by the parameterized fences. The approximation is a bit weak as it
forces different buffers into a total ordering.

4 Robustness

We first define the happens-before relation and, based on this, the notion of
robustness. As a first step towards locality and singularity, we then work out
properties of computations that violate robustness.

Given τ ∈ C(P), the happens-before relation highlights the crucial control
and data-flow dependencies in the computation. Crucial means that an alterna-
tive computation with the same relations and valid delays is guaranteed to be
executable in the program. In particular, all asserts will receive the same val-
ues. Technically, the happens-before relation →hb = →po ∪ →st ∪ →src ∪ →cf

is the union of different dependencies between two actions. The program order
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→po denotes the control flow between actions of the same thread. The remaining
orders can be summarized as follows. Whenever two actions x and y operate on
the same address in the shared memory, follow each other in τ , and at least
one of them is a store, then we have x →hb y. It is common to distinguish the
relations according to the commands. The store order →st denotes the order in
which two stores to the same address reach the memory. The source relation
→src goes from a store action to a load action of the same address and denotes
the fact that the load reads the value written by that store. The conflict relation
→cf is a derived relation and says that a load has to happen before a store that
potentially overwrites the value to be read.

The happens-before trace Tr(τ) associated with computation τ ∈ C(P) is the
directed graph where the nodes are the actions from τ . To be precise, isux and
store or fence x are represented by the same node x. The edges are given by the
four happens-before relations. Note that each computation induces a trace but
several computations can have the same trace.

The robustness problem is to check, given a concurrent program, whether the
traces obtained from the computations in the model from the previous section
are included in the traces of the SC computations:

Given program P, does Tr(C(P)) ⊆ Tr(CSC(P)) hold?

Algorithmically, the task is to look for violations of robustness, computations
τ ∈ C(P) with Tr(τ) /∈ Tr(CSC(P)). Shasha and Snir observed that violating
computations are precisely those with a cyclic happens-before relation.

Lemma 1 ([40]). Consider τ ∈ C(P). Then Tr(τ) ∈ Tr(CSC(P)) if and only if
Tr(τ) is acyclic.

To see this, consider an acyclic trace. It will have a linearization that forms
an SC computation. In turn, every SC computation will have an acyclic trace.
Under SC, all commands execute atomically and there is no chance for delays.
The following development can be understood as strengthening the insight of
Shasha and Snir.

4.1 Minimal Violations

To deepen our understanding of violating computations, we will concentrate on
violations that are minimal in a carefully chosen order. The main finding is
the following. In a minimal violation, every delay is due to a cycle. To derive
this fact, we employ an interesting proof strategy that establishes properties
by contradiction and that will occur in variants throughout the paper. Starting
from a minimal violation, we assume the property of interest would not hold and
from this deduce the existence of a smaller violation.

Technically, we define minimal violations with the help of a cost func-
tion $(−) mapping computations to a well-founded domain. Intuitively, the
cost of a computation reflects its degree of relaxation. A minimal violation is
then a violation that is as little relaxed as possible (while being a violation).



Locality and Singularity for Store-Atomic Memory Models 141

Phrased differently, the computation is as close to SC as possible. Hence, the
cost can also be understood as a penalty for deviating from SC.

The thing to note about the definition of cost is that we define it on the
per-thread computations. This means that two computations τ1, τ2 ∈ C(P) with
the same per-thread computations, τ1 ↓ t = τ2 ↓ t for all threads t, will have the
same cost, $(τ1) = $(τ2). Like the proof strategy, this equality will be applied
over and over again. It allows us to choose between different interleavings while
preserving minimality.

Technically, the cost of a computation is a triple of natural numbers:

$(τ) := (delays(τ), reorders(τ), length(τ)) ∈ N
3.

We refer to the three auxiliary functions as penalty functions and define them
below. Cost triples in N

3 are compared lexicographically, so (4, 0, 6) < (4, 1, 5).
When we refer to a minimal violation, we mean a violation τ where the cost $(τ)
is minimal in the set of violating computations.

The intuitive meaning of the penalty functions is as follows. The function
delays(−) increases when actions happen between an issue and the corresponding
store or fence action in memory. Such intermediary actions indicate a delay of
the store. Since delays are impossible under SC, there is a penalty for them. To
be precise, we only consider intermediary actions from the thread that executed
the store or fence. The function reorders(−) gives a penalty to reordering delayed
stores. It increases when stores reach the memory in an order different from the
order in which they were issued. Keeping this function value small forces stores
of the same thread to different variables to respect the program order. Finally,
function length(−) gives the computation’s length as we would like to focus on
violations that do not contain unnecessary actions. We turn to the formalization.

The length of a computation τ , denoted by length(τ), is the number of actions
in τ . The special case ε is defined to have length zero.

To define the number of delays, consider the computation τ = τ1 ·isua ·τ2 ·a·τ3
where a is a delayed store or fence action. Let thread(a) := t. We say that a
overtakes every action in τ2 projected to t. Hence, for this one store or fence the
number of delays is delays(a) := length(τ2 ↓ t). The number of delays in τ is the
sum of the delays of all stores and fences:

delays(τ) :=
∑

all stores and fences a in τ

delays(a).

A store or fence a is said to be reordered if it overtakes another issue isub

together with the corresponding store or fence b. Here, a and b are supposed to
have the same thread thread(a) = t = thread(b). So we have

τ = τ1 · isua · τ2 · a · τ3 with τ2 = τ2a · isub · τ2b · b · τ2c.

The number of reorders for the store a, denoted by reorders(a), is the number
of such stores or fences b in τ2 ↓ t. The number of reorders in a computation τ ,
reorders(τ), is again the sum of the reorders of all stores and fences in τ .
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4.2 Cycles

Our goal is to establish the following result about minimal violations. Whenever
we have an action a that has been overtaken by another action b, then we
already find a cycle involving the two. To be more precise, either the cycle is via
the intermediary actions between a and b (Proposition 1(i)), or the cycle is via
a dependency from isub to a (Proposition 1(ii)). For the precise statement, we
need a stronger variant of the happens-before relation.

We will often argue that some of the intermediary actions are sufficient to
establish the existence of a happens-before path between two actions. To make
this dependence on the intermediary actions explicit, we recall the happens-
before-through relation from [14]. It can be understood as embedding the
happens-before relation, or more generally the trace, into the underlying compu-
tation, which is a linear structure. Consider the computation τ = τ1 ·a ·τ2 ·b ·τ3 ∈
C(P). We say that action a happens before action b through τ2, if there is a sub-
sequence a1 . . . an of τ2 so that one of

ai →+
po ai+1, ai →src ai+1, ai →st ai+1, or ai →cf ai+1

holds for all 0 ≤ i ≤ n with a0 := a and an+1 := b. We also refer to a0 · . . . · an+1

as a happens-before-through chain.

Proposition 1 (Cycles). Let τ = τ1 ·a·τ2 ·b·τ3 ∈ C(P) be a minimal violation
where a has been overtaken by b. One of the following holds:

(i) b →+
po a and a →+

hb b through τ2
(ii) a →+

po b and τ1 = τ1a · isub · τ1b and isub →+
hb a through τ1b.

Remark: Both cases lead to a happens-before cycle with actions in τ1 · a · τ2 · b.
The proof of Proposition 1 is non-trivial and relies on a strong dichotomy

result, Lemma 2. The lemma is a disjunction (i) or (ii) and should be read as
two implications. If we read it as ¬(i) implies (ii), it states that given a minimal
violation two actions can be swapped as long as they are not separated by a
happens-before-through chain. This will allow us to modify a given computation.
If we read the dichotomy as ¬(ii) implies (i), it states that given a minimal
violation whenever we see two actions of the same thread we are already sure to
have a happens-before-through chain between them.

Lemma 2 (Dichotomy [14]). In a minimal violation τ = τ1 ·a·τ2 ·b·τ3 ∈ C(P)

(i) a →+
hb b through τ2 or

(ii) there is τ ′ = τ1 · τ21 · b · a · τ22 · τ3 ∈ C(P) with Tr(τ) = Tr(τ ′), τ ↓ t = τ ′ ↓ t
for every thread t, and τ22 a subsequence of τ2.

We note that a similar result has been shown to hold for TSO [14]. The current
setting requires a more subtle cost function on computations.

Corollary 1. In a minimal violation τ = τ1 ·a·τ2 ·b·τ3 ∈ C(P) with thread(a) =
thread(b) we have a →+

hb b through τ2.



Locality and Singularity for Store-Atomic Memory Models 143

The corollary is particularly interesting in the setting where action b has over-
taken action a. In this case, it states that the overtake was actually required
to execute the actions in the following sense. The intermediary actions form a
happens-before-through chain that prevents b from being executed before a. The
existence of this chain renders formally the intuition that minimal violations do
not contain unnecessary delays.

To see the corollary, assume there was no happens-before-through chain.
Lemma 2 would allow us to swap the actions a and b while preserving the per-
thread computations — in contradiction to the fact that the actions stem from
the same thread.

Proof (of Proposition 1). Since b overtakes a, they are from the same thread and
thus program-order dependent. Furthermore, b is a store or a fence. If b →+

po a,
it is immediate to complete the cycle stated in (i): Corollary 1 yields a →+

hb b
through τ2. If a →+

po b, we find the issue action isub in τ1, say τ1 = τ1a · isub · τ1b.
From Corollary 1, isub →+

hb a through τ1b, as required in (ii). �	

5 Locality

Theorem 1 (Locality). A concurrent program is not robust if and only if
there is a violating computation where exactly one thread delays actions.

The difficult task is to show completeness. We can show that we only need to
consider minimal violations of the form τ = τ1 · x · τ2 · y · τ3 · sty · τ4 · stx · τ5
where x is overtaken by stx and y is overtaken by sty with x and y being from
different threads. There are two happens-before cycles: one between x and stx,
the other between y and sty. The goal is to move sty back over y to save one
delay while preserving the computation’s trace, or at least get another valid
computation with a slightly different trace that also contains a happens-before
cycle. This will be the cycle between x and stx. Therefore, we get a violation
with less delays than the original one. This contradicts the initial assumption
that the chosen computation was a minimal violation.

With locality at hand, we can constrain the shape of minimal violations. A
similar normal form was presented for TSO in [13], and we can adapt it to the
current setting with minimal changes.

Proposition 2 (Witnesses [13]). Program P is robust if and only if there is
no minimal violation τ = τ1 · isust · τ2 · a · τ3 · st · τ4 ∈ C(P), called witness
computation, that satisfies the following requirements.

(W1) Only tA := thread(st) = thread(a) delays actions.
(W2) τ3 ↓ tA = ε.
(W3) τ1 and τ2 · a · τ3 do not contain delayed actions.
(W4) For every b in τ3 · st we have a →+

hb b through the intermediary actions.
(W5) τ4 only contains delayed stores and fences of tA.

Following [13], thread tA is referred to as the attacker, the remaining threads
are called helpers.
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6 Singularity

Our second main result shows that it is sufficient to delay only a single store
action. The theorem only holds in the absence of lightweight fence commands,
scfence is still allowed. We stress that the theorem is optimal in the sense that
it characterizes the least relaxation required to violate sequential consistency. A
program without delayed stores is always robust.

Theorem 2 (Singularity). Consider a program without fence. It is not robust
if and only if there is a violation with exactly one delayed store.

The proof is short and derives a contradiction to a strong combinatorial property.
The reasoning is as follows. If the program has a violation with one delayed store,
it is not robust. If the program is not robust, by Proposition 2 there is a minimal
violation that is a witness computation as defined in the previous section. In
this computation, τ4 only consists of delayed stores and fences of the attacker
thread. We assume the program does not contain fence commands. This means
τ4 only consists of delayed stores of the attacker. Now, if more than one store
was delayed, we would have a contradiction to the following Proposition 3 that
came as a surprise to us. A minimal violation will never place two delayed stores
next to each other. This already concludes the argumentation.

Proposition 3 (Two Stores). In the absence of fence, there is no minimal
violation τ1 · st1 · st2 · τ2 with thread(st1) = thread(st2).

7 Instrumentation

To check robustness, we have to look for minimal violations. Proposition 2
reduces the search space as we only have to consider minimal violations in witness
form. If the program does not use the fence instruction, then also singularity
holds and τ4 will be empty in all witness computations. Our instrumentation is
an adaptation of [13].

Attacks. An attack is a triple A = (tA, stinst, lastinst), where tA is a thread,
stinst is a store instruction of tA, and lastinst is a store or load instruction of tA.
Note that attacks are syntactic objects and there is a quadratic number of them.
An attack A is feasible if there is a witness computation where tA plays the role
of the attacker, st is an instance of stinst, and a is an instance of lastinst. With
Proposition 2, the program is robust if and only if no attack is feasible. Given
an attack, we now develop an instrumentation that finds a witness for it.

The witness computation of interest has four phases:

1. In τ1, all issued stores are immediately written to the memory. Eventually,
the attacker decides to delay a store.

2. In τ2, further actions of the attacker happen either without delay or they are
delayed until τ4. The helpers execute arbitrary actions. At some point, the
attacker does its last normal action a, which is a load or non-delayed store.
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3. In τ3, the helpers execute only actions that are happens-before-dependent on
a while the attacker pauses.

4. In τ4, only the attacker’s delayed actions get executed.

We use an observation from [13] that limits the information we have to track
about the delayed stores. The argumentation is as follows. If there are delayed
stores to an address, the attacker will load the last value that was put into the
corresponding buffer. The helpers will load the last value that was stored in
memory. Combined with Property (W3) of witness computations — τ2 · a · τ3
does not contain delayed actions — the content of the buffers is not needed.
All we have to track is two values per address: The current value in memory
and the value of the last buffered store, if any. When the attacker executes a
store that is delayed, it will set the buffered value. When the attacker executes a
store without delay or the helpers execute a store, it updates the current value
in memory. Loads from helpers will always read the current value from memory
while loads from the attacker will prefer the buffered one, if it is set.

Recall that the values in DOM act as addresses. We extend DOM as follows:
For each x ∈ DOM we add auxiliary addresses (x, d) and (x, hb). The addresses
(x, d) hold the values of the last buffered stores. The addresses (x, hb) are used
to track the happens-before-dependencies required by (W4). Here, we rely on
the mechanism from [13]. Furthermore, we add the auxiliary addresses hb and
suc. Flag hb will tell the helpers that Phase 3 has started and they must execute
hb-dependent actions. Flag suc indicates a feasible attack.

Instrumentation of the Attacker for Locality. The attacker operates in
three modes. Initially, instructions are executed under SC (Phase 1). Upon exe-
cution of stinst, the attacker can decide to delay that store. If the store is to
address x, we save the stored value to (x, d) and the address x to an auxiliary
register rstA . The control flow changes to a modified copy of the code for Phase 2.

During Phase 2, when the attacker has to load from address y, it will first
check whether (y, d) is set. If so, it reads that value, otherwise it reads the value
of y. A store to address y can either directly go to memory location y or it is
delayed and stored to (y, d). If there already is a buffered value, then the store
cannot be done on memory and has to update the buffered value — due to the
FIFO property of buffers. Additionally, we have to delay all stores if there was
a fence that had to be delayed. A fence has to be delayed if there is a buffered
value for at least one of its addresses. We use an additional register rfence as a
flag indicating that a fence has been delayed. An scfence action is not permitted
in Phase 2 and will lead to a deadlock.

Upon execution of lastinst, the attacker can decide that this is its last action.
If it is a load, we make sure that there is no buffered value for that address.
Otherwise, there is no possibility for hb-dependent actions in τ3. We set the hb
flag and go to a special wait label. If lastinst is a store, then we have to make
sure that it can be stored directly, i.e., there is no delayed fence and no delayed
store for that address. We execute the store, set the hb flag, and go to the wait
label.
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The third mode is in the wait label. The attacker waits until a helper thread
has completed the happens-before chain, in which case it sets the success flag.

Compared to [13] for TSO, what is new is the handling of non-delayed stores
and fences, and the optimized detection of violations by the attacker.

Optimized Instrumentation of the Attacker for Singularity. When the
program does not make use of the fence instruction, then singularity holds. We
can simplify the above instrumentation as follows. As only one store is delayed,
we can use a single register rdelayval instead of the auxiliary addresses (x, d) to
save the corresponding value. Recall that the address is kept in rstA .
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14. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6756, pp. 428–440. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 34

15. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded model checking of concurrent
data types on relaxed memory models: a case study. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006). doi:10.1007/
11817963 45

16. Burckhardt, S., Alur, R., Martin, M.: Checkfence: checking consistency of concur-
rent data types on relaxed memory models. In: PLDI, pp. 12–21. ACM (2007)

17. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 12

18. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19835-9 3

19. Calin, G., Derevenetc, E., Majumdar, R., Meyer, R.: A theory of partitioned global
address spaces. In: FSTTCS, pp. 127–139 (2013)

20. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: PGAS, p. 2.
ACM (2010)

21. UPC Consortium. UPC language specification v1.2. Technical report (2005)
22. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-

tion under relaxed memory models. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.)
VMCAI 2015. LNCS, vol. 8931, pp. 449–466. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46081-8 25

23. Derevenetc, E., Meyer, R.: Robustness against power is PSPACE-complete.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43951-7 14

24. Derevenetc, E., Meyer, R., Schweizer, S.: Locality and singularity for store-atomic
memory models (2017). arXiv:1703.04603

25. Fang, X., Lee, J., Midkiff, S.: Automatic fence insertion for shared memory multi-
processing. In: SC, pp. 285–294. ACM (2003)

26. Global address space programming interface. http://www.gaspi.de/
27. Hilfinger, P.N., Bonachea, D.O., Datta, K., Gay, D., Graham, S.L., Liblit, B.R.,

Pike, G., Su, J.Zh., Yelick, K.A.: Titanium language reference manual, version
2.19. Technical report UCB/EECS-2005-15, UC Berkeley (2005)

28. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:
FMCAD, pp. 111–119. IEEE (2010)

29. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for
relaxed memory models. In: PLDI, pp. 187–198. ACM (2011)

30. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
SIGACT News 43(2), 108–123 (2012)

http://dx.doi.org/10.1007/978-3-662-46675-9_18
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-642-22012-8_34
http://dx.doi.org/10.1007/11817963_45
http://dx.doi.org/10.1007/11817963_45
http://dx.doi.org/10.1007/978-3-540-70545-1_12
http://dx.doi.org/10.1007/978-3-642-19835-9_3
http://dx.doi.org/10.1007/978-3-642-19835-9_3
http://dx.doi.org/10.1007/978-3-662-46081-8_25
http://dx.doi.org/10.1007/978-3-662-46081-8_25
http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://arxiv.org/abs/1703.04603
http://www.gaspi.de/


148 E. Derevenetc et al.

31. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
CACM 21(7), 558–565 (1978)

32. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

33. Machado, R., Lojewski, C.: The Fraunhofer virtual machine: a communication
library and runtime system based on the RDMA model. Comput. Sci. Res. Dev.
23(3–4), 125–132 (2009)

34. Marino, D., Singh, A., Millstein, T., Musuvathi, M., Narayanasamy, S.: A case for
an SC-preserving compiler. In: PLDI, pp. 199–210. ACM (2011)

35. Meshman, Y., Dan, A., Vechev, M., Yahav, E.: Synthesis of memory fences via
refinement propagation. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol.
8723, pp. 237–252. Springer, Cham (2014). doi:10.1007/978-3-319-10936-7 15

36. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for
distributed array libraries and compiler run-time systems. In: Rolim, J., et al. (eds.)
IPPS 1999. LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999). doi:10.
1007/BFb0097937

37. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. In: ACM
Sigplan Fortran Forum, vol. 17, pp. 1–31. ACM (1998)

38. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI, pp. 175–186. ACM (2011)

39. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. CACM 53, 89–97 (2010)

40. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM TOPLAS 10(2), 282–312 (1988)

41. Singh, A., Narayanasamy, S., Marino, D., Millstein, T., Musuvathi, M.: End-to-end
sequential consistency. In: ISCA, pp. 524–535. IEEE (2012)

42. Vafeiadis, V., Zappa Nardelli, F.: Verifying fence elimination optimisations. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23702-7 14

43. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual Version 9. PTR
Prentice Hall, Upper Saddle River (1994)

http://dx.doi.org/10.1007/978-3-319-10936-7_15
http://dx.doi.org/10.1007/BFb0097937
http://dx.doi.org/10.1007/BFb0097937
http://dx.doi.org/10.1007/978-3-642-23702-7_14


Policies



Policy Expressions and the Bottom-Up Design
of Computing Policies

Rezwana Reaz1(B), H.B. Acharya1, Ehab S. Elmallah2,
Jorge A. Cobb3, and Mohamed G. Gouda1

1 University of Texas at Austin, Austin, USA
{rezwana,acharya,gouda}@cs.utexas.edu
2 University of Alberta, Edmonton, Canada

elmallah@ualberta.ca
3 University of Texas at Dallas, Richardson, USA

cobb@utdallas.edu

Abstract. A policy is a sequence of rules, where each rule consists of a
predicate and a decision, and where each decision is either “accept” or
“reject”. A policy P is said to accept (or reject, respectively) a request
iff the decision of the first rule in P , that matches the request is “accept”
(or “reject”, respectively). Examples of computing policies are firewalls,
routing policies and software-defined networks in the Internet, and access
control policies. In this paper, we present a generalization of policies
called policy expressions. A policy expression is specified using one or
more policies and the three policy operators: “not”, “and”, and “or”.
We show that policy expressions can be utilized to support bottom-up
methods for designing policies. We also show that each policy expression
can be represented by a set of special types of policies, called slices.
Finally, we present several algorithms that use the slice representation
of given policy expressions to verify whether the given policy expressions
satisfy logical properties such as adequacy, implication, and equivalence.

Keywords: Policies · Firewalls · Access control · Routing policies

1 Introduction

A computing policy is a filter that is placed at the entry point of some resource.
Each request to access the resource needs to be first examined against the policy
to determine whether to accept or reject the request. The decision of a policy to
accept or reject a request depends on two factors:

1. The values of some attributes that are specified in the request and
2. The sequence of rules in the policy that are specified by the policy designer.

Examples of computing policies are firewalls in the Internet, routing policies
and software-defined networks in the Internet, and access control policies [12].
Early methods for the logical analysis of computing policies have been reported
in [6,7,15].
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A rule in a policy consists of a predicate and a decision, which is either
“accept” or “reject”. To examine a request against a policy, the rules in the
policy are considered one by one until the first rule, whose predicate satisfies
the values of the attributes in the request, is identified. Then the decision of the
identified rule, whether “accept” or “reject”, is applied to the request.

Note that there are three sets of requests that are associated with each policy
P : (1) the set of requests that are accepted by P , (2) the set of requests that
are rejected by P , and (3) the set of requests that are ignored by P (i.e. neither
accepted nor rejected by P ). This third set is usually, but not always, empty.

Next, we present two policy examples P and Q and use these examples to
introduce the concept of “policy expressions”, the subject matter of the current
paper.

Let u and v be two attributes whose integer values are taken from the interval
[1, 9]. A policy P over these two attributes can be defined as follows:

(
(u ∈ [1, 4]) ∧ (v ∈ [8, 9])

) → reject
(
(u ∈ [2, 4]) ∧ (v ∈ [7, 9])

) → accept
(
(u ∈ [1, 9]) ∧ (v ∈ [1, 9])

) → reject

Policy P consists of three rules. The first rule states that each request (u, v),
where the value of u is an integer in the interval [1, 4] and where the value of v is
an integer in the interval [8, 9], is to be rejected. The second rule states that each
request (u, v), that does not match the first rule and where the value of u is an
integer in the interval [2, 4] and where the value of v is an integer in the interval
[7, 9], is to be accepted. The third rule states that each request (u, v) that does
not match the first two rules is to be rejected. Thus, the set of requests that are
accepted by policy P is {(2, 7), (3, 7), (4, 7)}. Notice that because the third rule
rejects all requests that do not match the first two rules, we conclude policy P
ignores no requests.

A second policy Q over attributes u and v can be defined as follows:
(
(u ∈ [2, 3]) ∧ (v ∈ [7, 7])

) → accept
(
(u ∈ [2, 4]) ∧ (v ∈ [7, 8])

) → accept
(
(u ∈ [1, 9]) ∧ (v ∈ [1, 9])

) → reject

The set of requests that are accepted by Q is {(2, 7), (3, 7), (4, 7), (2, 8), (3, 8),
(4, 8)} and all other requests are rejected.

Now assume that we need to use the two given policies P and Q to design a
policy expression (P or Q). This policy expression accepts every request that is
accepted by policy P or accepted by policy Q. Thus, the set of requests that is
accepted by (P or Q) is {(2, 7), (3, 7), (4, 7), (2, 8), (3, 8), (4, 8)}.

In this paper, we show that every policy expression that is specified using one
or more policies and the three policy operators “not”, “and”, and “or” can be
represented by a set {S1, S2, · · · , Sk} of a special class of policies called slices such
that the following condition holds. A request is accepted by a policy expression



Policy Expressions and the Bottom-Up Design of Computing Policies 153

iff this request is accepted by at least one slice in the set of slices that represents
the policy expression.

As an example, let P and Q refer to the two policies defined above. As dis-
cussed in Algorithm 4 below, the policy expression (P or Q) can be represented
by the set of three slices {S1, S2, S3}:

Slice S1 is defined as follows:
(
(u ∈ [1, 4]) ∧ (v ∈ [8, 9])

) → reject
(
(u ∈ [2, 4]) ∧ (v ∈ [7, 9])

) → accept

Slice S2 is defined as follows:
(
(u ∈ [2, 3]) ∧ (v ∈ [7, 7])

) → accept

Slice S3 is defined as follows:
(
(u ∈ [2, 4]) ∧ (v ∈ [7, 8])

) → accept

(Notice that, as discussed below, each slice is a policy that consists of zero
or more reject rules followed by exactly one accept rule.)

Similarly, as discussed below, the policy expression (P and Q) accepts any
request r iff both polices P and Q accept r. As discussed in Algorithm 3 below,
the policy expression (P and Q) can be represented by the set of two slices
{S4, S5}:

Slice S4 is defined as follows:
(
(u ∈ [1, 4]) ∧ (v ∈ [8, 9])

) → reject
(
(u ∈ [2, 3]) ∧ (v ∈ [7, 7])

) → accept

Slice S5 is defined as follows:
(
(u ∈ [1, 4]) ∧ (v ∈ [8, 9])

) → reject
(
(u ∈ [2, 4]) ∧ (v ∈ [7, 8])

) → accept

This paper suggests a novel bottom-up design method that can be followed
by a designer in designing a computing policy. This design method proceeds as
follows. First, the designer designs several simple elementary policies. Second,
the designer combines these elementary policies using the three policy operators
“not”, “and”, and “or” into a single policy expression PE. Finally, the designer
uses the algorithms in Sect. 6 below to verify that designed policy expression PE
satisfies desired adequacy, implication, and equivalence properties.

As an example, a designer can start by designing two policies P and Q, then
use these two policies to design the policy expression (P and not(Q)). This policy
expression accepts every request that is accepted by policy P and rejected by
policy Q. Then the designer can use Algorithm 7 in Sect. 6 below to prove that
this policy expression implies both policy P and policy not(Q).
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The rest of this paper is organized as follows. In Sect. 2, we present our
formal definition of policies. Then in Sect. 3, we present our formal definition of
policy expressions and discuss three theorems that state fundamental properties
of policy expressions. In Sect. 4, we discuss an algorithm that can be used to
enforce a given policy expression over any input stream of requests. In Sect. 5,
we introduce the concept of a base of a policy expression as a set of slices
that satisfies the following condition. For every request r, the policy expression
accepts r iff at least one slice in the base of the policy expression accepts r.
Also in Sect. 5, we present algorithms for constructing a base for every policy
expression. In Sect. 6, we show that the bases of given policy expressions can
be used to determine whether the given policy expressions satisfy some logical
properties such as adequacy, implication, and equivalence. Finally, we discuss
related work in Sect. 7, and present our concluding remarks in Sect. 8.

2 Preliminaries About Policies

In this section, we formally introduce the main concepts related to computing
policies. These concepts are: Intervals, Attributes, Requests, Predicates, Deci-
sions, Rules, Policies, and Complete Policies.

2.1 Intervals

An interval is a finite and nonempty set of consecutive integers. An interval X
can be denoted by a pair of integers [y, z], where y is the smallest integer in X,
and z is the largest integer in X. Note that an interval [y, y] has only one integer
y. Note also that any pair [y, z], where y > z, is not an interval.

2.2 Attributes

An attribute is a “variable” that has a “name” and a “value”. Throughout this
paper, we assume that there are t attributes whose names are u1, u2, . . . , and
ut. The value of each attribute ui is taken from an interval that is called the
domain of attribute ui and is denoted D(ui).

2.3 Requests

A request is a tuple (b1, . . . , bt) of t integers, where t is the number of attributes
and each integer bi is taken from the domain D(ui) of attribute ui. We adopt R
to denote the set of all requests. Notice that set R is finite.

2.4 Predicates

A predicate is of the form ((u1 ∈ X1) ∧ · · · ∧ (ut ∈ Xt)), where each ui is
an attribute, each Xi is an interval that is contained in the domain D(ui) of
attribute ui, and ∧ is the logical AND or conjunction operator.
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The value of each conjunct (ui ∈ Xi) in a predicate is true iff the value of
attribute ui is an integer in interval Xi.

The value of a predicate is true iff the value of every conjunct (ui ∈ Xi) in
this predicate is true.

A predicate ((u1 ∈ X1)∧· · ·∧ (ut ∈ Xt)), where each interval Xi is the whole
domain of the corresponding attribute ui, is called the ALL predicate.

A request (b1, . . . , bt) is said to match a predicate ((u1 ∈ X1) ∧ · · · ∧ (ut ∈
Xt)) iff each integer bi in the request is an element in the corresponding interval
Xi in the predicate.

2.5 Decisions

We assume that there are two distinct decisions: “accept” and “reject”. Hence-
forth, we write “accept” and “reject” with quotation marks to indicate the
“accept” and “reject” decisions, respectively. We also write accept and reject with-
out quotation marks to indicate the English words accept and reject, respectively.

2.6 Rules

A rule (in a policy) is defined as a pair, one predicate and one decision, written
as follows:

〈predicate〉 → 〈decision〉
A rule whose decision is “accept” is called an accept rule, and a rule whose
decision is “reject” is called a reject rule. An accept rule whose predicate is the
ALL predicate is called an accept-ALL rule, and a reject rule whose predicate is
the ALL predicate is called the reject-ALL predicate.

A request is said to match a rule iff the request matches the predicate of the
rule. (Note that each request matches every ALL rule.)

2.7 Policies

A policy is a (possibly empty) sequence of rules. A policy P is said to accept (or
reject, respectively) a request rq iff P has an accept (or reject, respectively) rule
r such that request rq matches rule r and does not match any rule that precedes
rule r in policy P .

2.8 Complete Policies

A policy P is complete iff every request is either accepted by P or rejected by P .
Let P be a policy. We adopt the notation not(P ) to denote the policy that

is obtained from policy P by (1) replacing each “accept” decision in P by a
“reject” decision in not(P ) and (2) replacing each “reject” decision in P by an
“accept” decision in not(P ).

Note that a policy P is complete iff the policy not(P ) is complete.
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3 Definition of Policy Expressions

In this section, we present a generalization of policies called policy expressions.
Informally, a policy expression is specified using one or more policies and three
policy operators: “not”, “and”, and “or”. Each one of these policy operators can
be applied to one or two policy expressions to produce a policy expression.

Formally, a 〈policy expression PE〉 is defined recursively as one of the fol-
lowing four options:

A complete policy P
A complete policy not(P )
〈policy expression PE1〉 and 〈policy expression PE2〉
〈policy expression PE1〉 or 〈policy expression PE2〉

An example of a policy expression is as follows:
(P and not(Q)) or (not(P ) and Q)

In this example, P and Q are complete policies, “not”, “and”, and “or” are
called policy operators.

Associated with each policy expression PE is a request set RS defined as
follows:

– If PE is a complete policy P ,
then RS is the set of all requests accepted by P

– If PE is a complete policy not(P ),
then RS is the set of all requests accepted by not(P )

– If PE is a policy expression (PE1 and PE2),
then RS is the intersection of two request sets RS1 and RS2 where RS1 is
the request set associated with PE1 and RS2 is the request set associated
with PE2

– If PE is a policy expression (PE1 or PE2),
then RS is the union of two request sets RS1 and RS2 where RS1 is the
request set associated with PE1 and RS2 is the request set associated with
PE2

As an example, the request set associated with the policy expression (P and
not(Q)) is the intersection of the two request sets RS1 and RS2, where RS1 is
the set of all requests accepted by policy P and RS2 is the set of all requests
accepted by policy not(Q).

Two policy expressions PE1 and PE2 are said to be equivalent iff the two
request sets associated with PE1 and PE2 are identical.

For example, the policy expression (P and not(Q)) and the policy expression
(not(Q) and P ) are equivalent.

Let PE be a policy expression. We adopt the notation not(PE) to denote
the policy expression that is recursively obtained from PE as follows:

– If PE is a complete policy P ,
then not(PE) denotes the policy expression not(P )
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– If PE is a complete policy not(P ),
then not(PE) denotes the policy expression P

– If PE is a policy expression (PE1 and PE2),
then not(PE) denotes the policy expression (not(PE1) or not(PE2))

– If PE is a policy expression (PE1 or PE2),
then not(PE) denotes the policy expression (not(PE1) and (PE2))

As an example, not
(
(P and not(Q)) or (not(P ) and Q)

)
denotes the policy

expression
(
(not(P ) or Q) and (P or not(Q))

)
.

The following three theorems state fundamental properties of policy
expressions.

Theorem 1. For every policy expression PE, (1) the request set associated with
the policy expression (PE and not(PE)) is the empty set, and (2) the request
set associated with the policy expression (PE or not(PE)) is the set R of all
requests.

Proof. Our proof of this theorem makes use of the following definition of the
“rank” of a policy expression PE.

The rank k of a policy expression PE is a non-negative integer defined recur-
sively as follows:

– If PE is a complete policy P or is a complete policy not(P ), then k = 0
– If PE is of the form (PE1 and PE2) or is of the form (PE1 or PE2),

then k = (1 + max(k1, k2)), where k1 is the rank of PE1 and k2 is the rank
of PE2

Our proof of this theorem is by induction on the rank k of the policy expres-
sion PE. Details of this proof are presented in [13].

Theorem 2. For every policy expression PE, the request set associated with the
policy expression not(PE) is (R−RS), where R is the set of all requests, RS is
the request set associated with PE, and “−” is the set difference operator.

Proof. Let NS denote the request set associated with not(PE). Thus, the
request set associated with the policy expression (PE and not(PE)) is
(RS

⋂
NS), and the request set associated with the policy expression (PE or

not(PE)) is (RS
⋃
NS). Hence, from Theorem 1, the set (RS

⋂
NS) is empty

and the set (RS
⋃
NS) is the set R of all requests. Therefore, set NS is (R−RS).

A policy expression PE is said to be complete iff for every request r either
PE accepts r or PE rejects r.

Theorem 3. Every policy expression is complete.

Proof. Proof by contradiction: Assume that there is a policy expression PE that
is not complete. Thus, there is a request r such that PE neither accepts r nor
rejects r. Hence, from Theorem 2, request r is neither in the request set RS
associated with PE nor in the request set (R − RS) associated with not(PE).
Therefore, request r is not in the union of the two sets RS and (R−RS), which
constitutes the set R of all requests. This contradicts the fact that r is a request
in the set R of all requests.
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4 Enforcement of Policy Expressions

In this section, we discuss an algorithm that takes as input any given policy
expression PE and any given request r and produces as output a determination
of whether or not PE accepts r. This algorithm can be used to enforce the given
policy expression PE over any input stream of requests.

The main idea of this algorithm is to represent the given PE and r by
a Boolean expression BE, that involves the two Boolean values “T” (which
denotes true) and “F” (which denotes false), and the three Boolean operators
“¬”, “∧”, and “∨”.

The Boolean expression BE, that represents the given policy expression PE
and the given request r, is required to satisfy the following two conditions:

– (PE accepts r) iff (BE is T)
– (PE rejects r) iff (BE is F)

Next, we discuss an example for constructing the Boolean expression BE
that represents a policy expression PE and a request r. Let,

PE = (P and (Q or R)) or not(Q)

where P , Q, and R are complete policies and assume that P accepts r, Q rejects
r, and R rejects r.

Therefore, the Boolean expression BE that represents PE and r can be
constructed as follows:

– Because P accepts r, replace policy P in PE by the Boolean value T in BE
– Because Q rejects r, replace policy Q in PE by the Boolean value F in BE
– Because R rejects r, replace policy R in PE by the Boolean value F in BE
– Replace the policy operator “not” in PE by the Boolean operator “¬” in BE
– Replace the policy operator “and” in PE by the Boolean operator “∧” in BE
– Replace the policy operator “or” in PE by the Boolean operator “∨” in BE
– The Boolean expression BE can now be computed as follows:

BE = (T ∧ (F ∨ F)) ∨ ¬ F = F ∨ T = T

Because BE is T, we conclude that the given policy expression PE accepts
the given request r.

Next, we discuss the time complexity for computing the Boolean expression
BE that represents a given policy expression PE and a given request r. Assume
that the given policy expression PE hasm distinct policies and k policy operators.
Also assume that each distinct policy has t attributes and at most n rules. There-
fore, the time complexity to determine whether each distinct policy in PE accepts
the given request r is O(n × t). Also the time complexity to construct the Boolean
expression is O(n × t × m). The “length” of the constructed Boolean expression
BE is O(k). Thus, the time complexity of computing the Boolean value of BE
is O(k2). Therefore the time complexity for constructing the Boolean expression
BE and computing its Boolean value is O((n × t × m) + k2).
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5 Bases of Policy Expressions

In the next section, Sect. 6, we discuss several properties of policy expressions
and present algorithms to determine whether given policy expressions satisfy
these properties. For example, we discuss in Sect. 6, what does it mean for two
policy expressions to be equivalent and present algorithm to determine whether
any given two policy expressions are equivalent.

Our discussion in Sect. 6 is based on two concepts, namely “slices” and “bases
of policy expressions” that we introduce in the current section.

A slice is a policy that consists of zero or more reject rules followed by exactly
one accept rule.

Let SS be a set of slices and let PE be a policy expression. Set SS is said
to be a base of the policy expression PE iff the following condition holds. Each
request that is accepted by at least one slice in set SS is in the request set
associated with the policy expression PE, and vice versa.

The following five algorithms can be applied to any policy expression PE to
construct a slice set SS that is a base of PE.

Algorithm 1
Input: A complete policy P
Output: A slice set SS that is a base of P
Steps: For each accept rule ar in P , construct a slice sl in SS as follows. All
the reject rules that precede rule ar in P are added to slice sl. Then rule ar is
added at the end of slice sl.
Time Complexity: The time complexity of Algorithm 1 is of O(n2 × t) where
n is the number of rules and t is the number of attributes in the input policy P .
End

Algorithm 2
Input: A complete policy not(P )
Output: A slice set SS that is a base of not(P )
Steps: For each accept rule ar in not(P ), construct a slice sl in SS as follows.
All the reject rules that precede rule ar in not(P ) are added to slice sl. Then
rule ar is added at the end of slice sl.
Time Complexity: The time complexity of Algorithm 2 is of O(n2 × t) where
n is the number of rules and t is the number of attributes in the input policy
not(P ).
End

Algorithm 3
Input: A policy expression PE of the form (PE1 and PE2)

A slice set SS1 that is a base of PE1

A slice set SS2 that is a base of PE2

Output: A slice set SS that is a base of PE
Steps: For every slice sl1 in SS1 and every slice sl2 in SS2, construct a slice sl
in SS as follows:
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1. The reject rules of slice sl is constructed by merging the reject rules of sl1
with the reject rules of sl2 in any order

2. The accept rule of slice sl is constructed by taking the intersection of the
predicates of the two accept rules of slices sl1 and sl2. If this intersection is
empty, then discard slice sl from the base SS of the policy expression PE.

Time Complexity: The time complexity of Algorithm 3 is of O((m1 × m2) ×
(n1 × t + n2 × t)) where m1 is the number of slices in SS1, m2 is the number
of slices in SS2, n1 is the number of rules in the largest slice in SS1, n2 is the
number of rules in the largest slice in SS2, and t is the number of attributes.
End

Algorithm 4
Input: A policy expression PE of the form (PE1 or PE2)

A slice set SS1 that is a base of PE1

A slice set SS2 that is a base of PE2

Output: A slice set SS that is a base of PE
Steps: The slice set SS is constructed as the union of the two slice sets SS1 and
SS2.
Time Complexity: The time complexity of Algorithm 4 is of O((m1 ×n1 × t)
+ (m2 × n2 × t)) where m1 is the number of slices in SS1, m2 is the number
of slices in SS2, n1 is the number of rules in the largest slice in SS1, n2 is the
number of rules in the largest slice in SS2, and t is the number of attributes.
End

Algorithm 5
Input: A policy expression PE
Output: A slice set SS that is a base of PE
Steps: SS is constructed by recursively applying the following four steps:

1. If PE is a complete policy P then use Algorithm 1 to construct SS as a base
of P

2. If PE is a complete policy not(P ) then use Algorithm 2 to construct SS as
a base of not(P )

3. If PE is (PE1 and PE2) and SS1 is a base of PE1 and SS2 is a base of PE2

then use Algorithm 3 to construct SS as a base of PE from the two slice sets
SS1 and SS2

4. If PE is (PE1 or PE2) and SS1 is a base of PE1 and SS2 is a base of PE2

then use Algorithm 4 to construct SS as a base of policy expression PE from
the two slice sets SS1 and SS2

Time Complexity: The time complexity of Algorithm 5 depends on the number
and type of operators in the input policy expression PE.
End
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6 Properties of Policy Expressions

In this section, we present several important properties of policy expressions
(namely adequacy, implication, and equivalence) and present algorithms that
can be used to determine whether any given policy expression satisfies these
properties.

A policy expression PE is said to be adequate iff PE accepts at least one
request. The following algorithm can be used to determine whether any given
policy expression is adequate.

Algorithm 6
Input: A policy expression PE
Output: A determination of whether PE accepts a request.
Steps: Construct a base SS of the policy expression PE using Algorithm 5.
For each slice in the constructed base SS, determine whether this slice accepts
a request using the PSP method described in [1, 14]. If one or more slices in SS
accepts a request, then PE accepts a request. Otherwise, PE does not accept
any request.
Time Complexity: Let T denote the time complexity of Algorithm 5 when
applied to the input policy expression to construct its base SS. Also let m be
the number of slices in the constructed base SS and n be the number of rules in
the largest slice in SS. As discussed in [1, 14], the time complexity of using the
PSP method to determine whether a slice of n rules and t attributes accepts a
request is of O(nt+1 × t). Therefore, the time complexity of Algorithm 6 is of
O(T + (m × (nt+1 × t))).
End

A policy expression PE1 is said to imply a policy expression PE2 iff the
request set associated with the policy expression (PE1 and not(PE2)) is empty.

Theorem 4. PE1 implies PE2 iff the request set RS1 associated with PE1 is
a subset of the request set RS2 associated with PE2.

Proof. Proof of the If-Part: Assume that PE1 implies PE2. Thus, the request
set associated with the policy expression (PE1 and not(PE2)) is empty. From
Theorem 2, the request set associated with not(PE2) is the set (R−RS2), where
R is the set of all requests. Therefore, the set

(
RS1

⋂
(R−RS2)

)
is empty and

RS1 is a subset of RS2.
Proof of the Only-If-Part: Assume that the request set RS1 associated with

PE1 is a subset of the request set RS2 associated with PE2. Thus, the set
(
RS1⋂

(R − RS2)
)
, where R is the set of all requests, is empty. From Theorem 2,

the request set associated with not(PE2) is the set (R − RS2). Therefore, the
request set associated with the policy expression (PE1 and not(PE2)) is empty
and PE1 implies PE2.
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Algorithm 7
Input: Two policy expressions PE1 and PE2

Output: A determination of whether PE1 implies PE2

Steps: First, construct a policy expression PE from the policy expression (PE1

and not(PE2)) by pushing the “not” (which is applied to PE2) deeper into PE2

until every “not” is applied to a policy. Second, use Algorithm 6 to determine
whether the constructed policy expression PE accepts a request. From the defi-
nition of “implies”, if PE accepts no request then PE1 implies PE2. Otherwise,
PE1 does not imply PE2.
Time Complexity: The time complexity of Algorithm 7 is of O(T + (m ×
nt+1 × t)), where T is the time complexity for constructing the policy expression
PE and its base SS, m is the number of slices in the constructed base SS, n is
number of rules in the largest slice in SS, and t is the number of attributes in
each slice in SS.
End

Theorem 5. Two policy expressions PE1 and PE2 are equivalent iff PE1

implies PE2 and PE2 implies PE1.

Proof. Proof of the If-Part: Assume that PE1 and PE2 are equivalent. Thus,
the request set RS1 associated with PE1 and the request set RS2 associated
with PE2 are identical. Therefore, RS1 is a subset of RS2 and RS2 is a subset
of RS1. From Theorem 2, PE1 implies PE2 and PE2 implies PE1.

Proof of the Only-If-Part: Assume that PE1 implies PE2 and PE2 implies
PE1. Thus, from Theorem 2, RS1 is a subset of RS2 and RS2 is a subset of
RS1. Therefore, the request set RS1 associated with PE1 and the request set
RS2 associated with PE2 are identical and the two policy expressions PE1 and
PE2 are equivalent.

Algorithm 8
Input: Two policy expressions PE1 and PE2

Output: A determination of whether PE1 and PE2 are equivalent
Steps: Use Algorithm 7 twice to determine: (1) whether PE1 implies PE2 and
(2) whether PE2 implies PE1. From Theorem 5, if PE1 implies PE2 and PE2

implies PE1, then PE1 and PE2 are equivalent. Otherwise, also from Theorem
5, PE1 and PE2 are not equivalent.
Time Complexity: The time complexity of Algorithm 8 is twice the time com-
plexity of Algorithm 7.
End

7 Related Work

As mentioned earlier, this paper suggests the following bottom-up design method
that can be followed by a designer in designing a desired computing policy.
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First, the designer designs several simple elementary policies. Second, the
designer combines these elementary policies using the three policy operators
“not”, “and”, and “or” into a single policy expression PE that specifies the
desired policy. Third, the designer uses Algorithm 5 to construct a base for
the policy expression PE. Fourth, the designer uses the constructed base and
Algorithms 6, 7, and 8 to verify that the policy expression PE satisfies desired
adequacy, implication, and equivalence properties.

Other methods that can be used in designing policies are reported in [2,5,
11,14]. A brief survey of these methods is in order.

The method for designing policies in [5] consists of two steps. In the first step,
the designer designs the desired policy using a large conflict-free decision diagram
instead of a compact sequence of often conflicting rules. In the second step, the
designer uses several algorithms to convert the large decision diagram into a
compact, yet functionally equivalent, sequence of rules. This design method can
be referred to as “simplifying policies by introducing conflicts”.

The method for designing policies in [11] consists of three steps. In the first
step, the same specification of the desired policy is given to multiple teams
who proceed independently to design different versions of the policy. In the
second step, the resulting multiple versions of the policy are compared with one
another to detect all functional discrepancies between them. In the third step,
all discrepancies between the multiple policy versions are resolved, and a final
policy that is agreed upon by all teams is generated. This design method can be
referred to as “diverse policy design”.

The method for designing policies in [2] consists of three steps. In the first
step, the set of all expected requests is partitioned into non-overlapping subsets
S1, S2, · · · , Sk. In the second step, for each subset Si (obtained in the first step),
design a policy Pi that accepts some of the requests in the subset Si. In the third
step, identify policies P1, P2, · · · , Pk generated in the second step as the desired
policy. This design methods can be referred to as “divide-and-conquer”.

The method for designing policies in [14] consists of k steps. In the first step,
the designer starts with a simple policy P1 that accepts more requests than the
designer wishes. In the second step, the designer designs a second policy P2 such
that if any request is accepted by P2 then the same request is also accepted by
P1. (In other words, P2 implies P1.) This process is repeated k times until the
designer reaches a policy Pk that accepts those requests and only those requests
that the designer wishes to be accepted. This design method can be referred to
as “step-wise refinement”.

These design methods, along with the bottom-up method in the current paper
can constitute a library of policy design methods. When designing a policy, it is
up to the designer to decide which design method in this library will the designer
follow to generate the desired policy.

8 Concluding Remarks

The main contribution in this paper is to present a generalization of policies
called policy expressions. Each policy expression is specified using one or more
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policies and the three policy operators “not”, “and”, and “or”. We showed that
each policy expression can be represented by a set of slices called a base of the
policy expression. We also showed that the bases of given policy expressions can
be used to determine whether the given policy expressions satisfy some desired
properties of adequacy, implication, and equivalence. Finally, we showed that
policy expressions can be utilized to support bottom-up methods for designing
policies.

The authors in [9,10] investigated a novel representation of policies as finite
automata rather than as sequences of rules. They show later in [8], how to use the
automata representation of a given policy to determine whether the given policy
satisfies some desired properties of adequacy, implication, and equivalence. The
question of whether a policy expression can be represented as a finite automaton
rather than as a set of slices remains open.

It has been shown in [4] that the problems of determining whether given
policies satisfy some desired properties of adequacy, implication, and equivalence
are all NP-hard. From this fact and the fact that each (complete) policy is
also a policy expression, it follows that the problems of determining whether
given policy expressions satisfy some desired properties of adequacy, implication,
and equivalence are also NP-hard. Indeed, the time complexities of Algorithms
6, 7, and 8 that can be used to determine whether given policy expressions
satisfy some desired properties of adequacy, implication, and equivalence are all
exponential.

There are two main approaches to face the NP-hardness of determining
whether given policy expressions satisfy some desired properties of adequacy,
implication, and equivalence. The first approach is to use SAT solvers, for exam-
ple as discussed in [3,16], to determine whether given policy expressions satisfy
some desired properties of adequacy, implication, and equivalence. Note that the
time complexity of using SAT solvers is polynomial in most practical situations.

The second approach is to use probabilistic algorithms. Note that the time
complexities of probabilistic algorithms are always polynomial but unfortunately
these algorithms can yield wrong determinations in rare cases.
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Abstract. Authorization in collaborative systems is defined by a global
policy that represents the combination of the collaborators’ access poli-
cies. However, the enforcement of such a global policy may create con-
flicting authorization decisions. In this paper, we categorize two types of
conflicts that may occur in such policies. Furthermore, to resolve these
conflicts and to reach a unique decision for an access request, we present
an approach that uses XACML policy combining algorithms and consid-
ers the category of the detected conflicts. The approach is implemented
using aspect-oriented finite state machines.

1 Introduction

XACML (eXtensible Access Control Markup Language) [7] is one of the access
control policy languages that support the combination of multiple sub-policies.
This combination may create several conflicting decisions. Therefore, XACML
proposes four policy combining algorithms (PCAs) [4] to avoid conflicts between
multiple policies, namely: deny-overrides, permit-overrides, first applicable, and
only one applicable. These algorithms take, as input, the authorization decision
from each policy matching the request and apply some standard logic to come
up with a final decision.

The PCAs are currently chosen in advance by the policy administrator and
hence they are static and remain available for all kinds of requests. However,
in dynamic environments such as hospitals, there is a need to select the PCAs
dynamically depending on the context of the request [5]: emergencies, normal
interventions, etc. For emergencies, for example, we usually need to adopt permit-
overrides in order to grant access to different doctors to save lives. In this paper,
we propose a strategy to dynamically choose the adequate PCA based on the
type of the detected conflicts and the request’s context.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 166–171, 2017.
DOI: 10.1007/978-3-319-59647-1 13



Aspect-Oriented State Machines for Resolving Conflicts in XACML Policies 167

The paper is organized as follows. Section 2 presents the conflicts’ categoriza-
tion. In Sect. 3, we present our conflict resolution strategy. Section 4 discusses
some aspects of the implementation using aspect-oriented finite state machines.
Section 5 concludes the work and outlines future work.

2 Conflict Categorization

A security policy consists of a set of filtering rules, where each rule is specified
as a triplet (S, O, aA), S is a set of subjects (human resources: e.g., doctors),
O is a set of objects (physical resources: e.g., patient records), a ∈ {p, d} denotes
a permission (if a = p) or prohibition (if a = d, for deny), and A contains the
permitted/prohibited actions among read (r), write (w), create (c) and delete
(del). Consider, for example, the rule (S, O, pr), where S represents the generalist
doctor of a hospital H1, and O represents the medical record of a given patient
of another hospital H2. This rule means that S is permitted to read O.

The composition of many security policies may produce a set of conflicts.
A conflict occurs when two policies with different decisions are applicable to
the same request. We identify two types of conflicts: conflict of modalities, and
conflict of fraction permissions [2]. The first type occurs when two different rules
assign contradictory authorizations to the same subject to perform an action
over a given object. For example, a conflict of modalities occurs between the
following two rules: “The generalist doctor of hospital H1 is permitted to read
the medical records (MR) of the patient x in hospital H2” and “The generalist
doctor of hospital H1 is forbidden to read the medical record (MR) of all the
patients of hospital H2”. The second type represents an ambiguity to make a
decision. This ambiguity occurs if two rules with different permitted actions
(e.g., read and write) match the same request. For instance, “The radiologists
can read the electroencephalogram (EEG) of all the patients” and at the same
time “The radiologists can write into the EEG of all the patients”. In this case, we
have a conflict of fraction permissions, because we do not know which policy to
apply since the write permission overlaps with the read permission. The overlap
means if the write permission is granted, then obviously the read permission is
granted, too.

3 Conflict Resolution Strategy

In distributed environments, each organization has its own Policy Decision Point
(PDP) that decides which permission is granted to a given subject to perform
a specific action on a given object. In collaborative systems, a master PDP
combining the collaborative policies is used. Our proposed conflict resolution
strategy is associated to the master PDP. The approach consists of three main
steps: (a) select the match policies (policies that match the request), (b) combine
the policies into one global policy, and (c) detect and resolve the conflicts. If a
conflict of fraction permissions is detected, we resolve it by a prioritization of
permissions approach (see Sect. 3.1). If a conflict of modality is detected, we
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Fig. 1. Workflow representing the conflict resolution strategy

resolve it by a context-based approach (see Sect. 3.2). A workflow representing
the conflict resolution strategy is presented in Fig. 1.

3.1 Prioritization of Permissions Approach

In this approach, the access permissions have distinct priorities. Therefore, for
each policy decision associated to several access permissions, we select the one
with the highest priority. Table 1 presents two ways of prioritizing permissions,
where > denotes has higher priority than. The most secure approach is restrictive
prioritization. For instance, to resolve the conflict detected in a policy with two
different permissions (pr,w; pr) using restrictive prioritization, we eliminate pr,w
and keep pr. If, on the other hand, we use the permissive conflict prioritization,
we eliminate pr and keep pr,w.

Table 1. Prioritization of permissions.

Restrictive prioritization p∅ > pr > pr,w > pr,w,c,del

Permissive prioritization pr,w,c,del > pr,w > pr > p∅
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3.2 Context-Based Approach

In the case of a conflict of modality, we need to check the request’s context.
According to the most frequent cases of healthcare, we propose three types of
context: “emergency”, “sensitive” and “normal”. The first context corresponds
to the case of emergencies where the patient needs a quick intervention of the
doctors to save his life. The sensitive context corresponds to patients with sen-
sitive political positions who need to keep their health state secret and there are
no emergencies. The normal context corresponds to general health cases.

In the case of emergency, the master PDP chooses Permit-Overrides as the
appropriate PCA: if one of the policies returns the permit decision, then the
master PDP permits the access to the required object. If the context is sensitive,
the chosen PCA is Deny-Overrides. Finally, if the context is evaluated to normal,
the PCA is First-Applicable, the master PDP always evaluates the first policy
that matches the request.

4 Implementation

To represent security policies, we adopt the automata-based approach that we
proposed in our previous work [1]. The approach consists of modeling each secu-
rity policy by a finite state automaton (or briefly: automaton). We model each
rule (S, O, aA) of a policy by a simple automaton with 3 or 4 states that has
two types of transitions: an S-transition is labeled by a set of subjects, and an
O-transition is labeled by a set of objects. The authorization aA is associated
with the final state of the automaton. We combine simple automata using the
synchronous product. The resulting automaton models the security policy.

In this paper, we use aspect-oriented finite state machines (AO-FSM) defined
in our previous work [3] to implement our dynamic conflict resolution strategy.
An AO-FSM defines a set of states and transition patterns where pointcuts and
advices are used to adopt domain-specific language (DSL) [6] state machine arti-
facts. The pointcuts define matching state (final states) patterns that correspond
to the conflicts that may occur in a security policy. For instance, the example of
a pointcut in Fig. 2 represents a final state with a fraction permission conflict.
As for the advice in Fig. 2, it implements the adequate resolution strategy that
consists of removing one of the permissions to avoid the conflict.

Basically, pointcut sub-classes match the current state parameters with the
context of a corresponding point of execution in the base code (joinpoint).

Fig. 2. Examples of aspect artifacts: pointcut and advice
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It returns “true” if the pointcut matches, and “false” if not. For instance, the
pointcut FinalState2PermPC, shown in Listing 1.1, checks if the current state
in the pointcut pattern is final. If it is the case, it compares its name with the
labels passed in the context. If they are equal, the pointcut matches and returns
“true”, otherwise it returns “false”.

The advice language deals with making changes to FSMs to which pointcuts
have been matched. The advices implement the resolution strategies of Sect. 3.

Listing 1.1. Excerpt of FinalState2PermPC to define final states with two permissions
(pointcut (a) in Fig. 2)

public class FinalState2PermPC extends Pointcut {
...

public FinalState2PermPC(String Label1, String Label2) {
super(”pFinalState”);

...
@Override
public boolean match(JoinPoint jp) {

return ((jp instanceof FinalStateMachineJoinPoint)&&
(((FinalStateMachineJoinPoint) jp).getFinalStateNames().contains(Label1) &&
((FinalStateMachineJoinPoint) jp).getFinalStateNames().contains(Label2)));}}

5 Conclusion

In this paper, we have presented two categories of conflicts: fraction of permis-
sions and conflict of modality. We have also presented a conflict resolution strat-
egy that consists of two different approaches: prioritization of permissions and
a context-based approach. The selection of the appropriate strategy depends on
the type of the detected conflict. The approach uses aspect-oriented finite state
machines to intercept, prevent, and dynamically manipulate rules that cause
conflicts.

As future work, we intend to integrate the proposed resolution strategy in a
cloud environment to evaluate its performance in detecting and resolving con-
flicts within a large set of policies.
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Abstract. The paper proposes a surprisingly simple characterization of a
large class of models of distributed computing, via an agreement function:
for each set of processes, the function determines the best level of set con-
sensus these processes can reach. We show that the task computability of
a large class of fair adversaries that includes, in particular superset-closed
and symmetric one, is precisely captured by agreement functions.

1 Introduction

In general, a model of distributed computing is a set of runs, i.e., all allowed
interleavings of steps of concurrent processes. There are multiple ways to define
these sets of runs in a tractable way.

A natural one is based on failure models that describe the assumptions on
where and when failures might occur. By the conventional assumption of uniform
failures, processes fail with equal and independent probabilities, giving rise to
the classical model of t-resilience, where at most t processes may fail in a given
run. The extreme case of t = n − 1, where n is the number of processes in the
system, corresponds to the wait-free model.

The notion of adversaries [6] generalizes uniform failure models by defining a
set of process subsets, called live sets, and assuming that in every model run, the
set of correct, i.e., taking infinitely many steps, processes must be a live set. In
this paper, we consider adversarial read-write shared memory models, i.e., sets
of runs in which processes communicate via reading and writing in the shared
memory and live sets define which sets of processes can be correct.

A conventional way to capture the power of a model is to determine its
task computability, i.e., the set of distributed tasks that can be solved in it. For
example, consider the 0-resilient adversary A0-res defined through a single live
set {p1, . . . , pn}: the adversary says that no process is allowed to fail (by taking
only finitely many steps). It is easy to see that the model is strong enough to
solve consensus, and, thus, any task [14].1

T. Rieutord—Supported by ANR project DISCMAT, grant agreement ANR-14-
CE35-0010-01.

1 In the “universal” task of consensus, every process has a private input value, and
is expected to produce an output value, so that (validity) every output is an input
of some process, (agreement) no two processes produce different output values, and
(termination) every process taking sufficiently many steps returns.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 175–190, 2017.
DOI: 10.1007/978-3-319-59647-1 14
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In this paper, we propose a surprisingly simple characterization of the task
computability of a large class of adversarial models through agreement functions.

An agreement function α maps subsets of processes {p1, . . . , pn} to positive
integers in {0, 1, . . . , n}. For each subset P , α(P ) determines, intuitively, the
level of set consensus that processes in P can reach when no other process is
active, i.e., the smallest number of distinct input values they can decide on.

For example, the agreement function of the wait-free shared-memory model
is αwf : P �→ |P | and the t-resilient model, where at most t processes may fail
or not participate, has αt,res : P �→ max(0, |P | − n + t + 1).

The agreement function of an adversary A can be computed using the notion
of set consensus power of an adversary introduced in [13]: αA(P ) = setcon(A|P ).
Here A|P is the restriction of A to P , i.e., the adversary defined through the
live sets of A that are subsets of P .

To each agreement function α, corresponding to an existing model, we asso-
ciate a particular model, the α-model. The α-model is defined as the set of runs
satisfying the following property: the set P of participating (taking at least one
step) processes in a run is such that α(P ) ≥ 1 and is such that at most α(P ) − 1
processes take only finitely many steps in it. An algorithm solves a task T in the
α-model if processes taking infinitely many steps produces an output in any run.

We show that, for the class of fair adversaries, agreement functions “tell it
all” about task computability: a task is solvable in a fair adversarial model with
agreement function α if and only if it is solvable in the α-model. Fair adversaries
include notably the class of superset-closed [16,19] and the class of symmetric [23]
adversaries. Intuitively, superset-closed adversaries do not anticipate failures of
processes: if S ∈ A and S ⊆ S′, then S′ ∈ A. Symmetric adversaries do not
depend on processes identifiers: if S ∈ A, then for every set of processes S′ such
that |S′| = |S|, we have S′ ∈ A.

A corollary of our result is a characterization of the k-concurrency model [9,10].
Here we use the fact that the k-concurrency model is equivalent, with respect to
task solvability, to the k-obstruction-freedom [13], a symmetric adversary consist-
ing of live sets of sizes from 1 to k. Thus, the agreement function αk-conc : P �→
min(|P |, k) captures the k-concurrent task computability. An alternative charac-
terization of k-concurrency via a compact affine taskwas recently suggested in [11].

There are, however, models that are not captured by their agreement func-
tions. We give an example of a non-fair adversary that solves strictly more
tasks than its α-model. Characterizing the class of models that can be captured
through their agreement function is an intriguing open question.

The rest of the paper is organized as follows. Section 2 gives model definitions.
In Sect. 3, we formally define the notion of an agreement function. In Sect. 4, we
prove a few useful properties of α-models. In Sect. 5, we present the class of
fair adversary, show that superset-closed and symmetric adversaries are fair and
that fair adversaries are captured by their agreement functions. In Sect. 6, we
give examples of models that are not captured by agreement functions. Section 7
reviews related work, and Sect. 8 concludes the paper.
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2 Preliminaries

Processes, Runs, Models. Let Π be a system of n asynchronous processes,
p1, . . . , pn that communicate via a shared atomic-snapshot memory [1]. The
atomic-snapshot (AS) memory is represented as a vector of n shared variables,
where each process is associated with a distinct position in this vector, and
exports two operations: update and snapshot. An update operation performed
by pi replaces position i with a new value and a snapshot operation returns the
current state of the vector.

We assume that processes run the full-information protocol: the first value
each process writes is its input value. A process alternates between taking snap-
shots of the memory and writing back the result of its latest snapshot. A run is
thus a sequence of process identifiers stipulating the order in which the processes
take operations: each odd appearance of i in the sequence corresponds to an update
and each even appearance corresponds to a snapshot. A model is a set of runs.

Failures and Participation. A process that takes only finitely many steps
of the full-information protocol in a given run is called faulty, otherwise it is
called correct. A process that took at least one step in a given run is called
participating in it. The set of participating processes in a given run is called its
participating set. Note that, since every process writes its input value in its first
step, the inputs of participating processes are eventually known to every process
that takes sufficiently many steps.

Tasks. In this paper, we focus on distributed tasks [18]. A process invokes a task
with an input value and the task returns an output value, so that the inputs and
the outputs across the processes which invoked the task respect the task specifica-
tion. Formally, a task is defined through a set I of input vectors (one input value
for each process), a set O of output vectors (one output value for each process),
and a total relation Δ : I �→ 2O that associates each input vector with a set of pos-
sible output vectors. An input ⊥ denote a not participating process and an output
value ⊥ denote an undecided process. Check [15] for more details.

In the task of k-set consensus, input values are in a set of values V (|V | ≥
k + 1), output values are in V , and for each input vector I and output vector
O, (I,O) ∈ Δ if the set of non-⊥ values in O is a subset of values in I of size at
most k. The special case of 1-set consensus is called consensus [7].

Solving a Task. We say that an algorithm A solves a task T = (I,O,Δ) in
a model M if A ensures that (1) in every run in which processes start with an
input vector I ∈ I, all decided values form a vector O ∈ O such that (I,O) ∈ Δ,
and (2) if the run is in M , then every correct process decides.

This gives rise to the notion of task solvability, i.e., a task T is solvable in a
model M if and only if there exists an algorithm A which solves T in M .

BGG Simulation. The principal technical tool in this paper is a simulation
technique that we call the BGG simulation, after Borowski, Gafni, Guerraoui,
collecting algorithmic ideas presented in [3,8–10]. The technique allows a system
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of n processes that communicate via read-write shared memory and k-set con-
sensus objects to simulate a k-process system running an arbitrary read-write
algorithm. In particular, we can use this technique to run an extended BG sim-
ulation [8] on top of these k simulated processes, which gives a simulation of an
arbitrary k-concurrent algorithm. An important feature of the simulation is that
it adapts to the number of currently active simulated processes a: if it goes below
k (after some simulated processes complete their computations), the number of
used simulators also becomes a. We refer to [11] for a detailed description of this
simulation algorithm.

3 Agreement Functions

Definition 1 (Agreement function). The agreement function of a model M
is a function α : 2Π → {0, . . . , n}, such that for each P ∈ 2Π , in the set of runs
of M in which no process in Π \P participates, iterative α(P )-set consensus can
be solved, but (α(P )−1)-set consensus cannot. By convention, if M contains no
(infinite) runs with participating set P , then α(P ) = 0.

Intuitively, for each P , we consider a model consisting of runs of M in which
only processes in P participate and determine the best level of set consensus
that can be reached in this model, with 0 corresponding to a model that consists
of finite runs only.

Note the agreement function α of a model M is monotonic: P ⊆ P ′ ⇒
α(P ) ≤ α(P ′). Indeed, the set of runs of M where the processes in Π \P do not
take any step is a subset of the set of runs of M where the processes in Π \ P ′

do not take any step. In this paper, we only consider monotonic functions α.

Definition 2 (α-model). Given a monotonic agreement function α, the α-
model is the set of runs in which, the participating set P satisfies: (1) α(P ) ≥ 1;
and, (2) at most α(P ) − 1 participating processes take only finitely many steps.

We say that a model is characterized by its agreement function α if and only if
it solves the same set of task as the α-model.

Definition 3 (α-adaptive set consensus). The α-adaptive set consensus task
satisfies the validity and termination properties of consensus and the α-
agreement property: if at some time τ , k distinct values have been returned,
then the current participating set Pτ is such that α(Pτ ) ≥ k.

We can easily show that any model with agreement function α can solve the
α-adaptive set consensus task, i.e., to achieve the best level of set consensus
without this an priori knowledge of the set of processes that are allowed to
participate [20].
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4 Properties of the α-model

We now relate task solvability in the α-model and in M . More precisely, we show
that (1) the agreement function of the α-model is α and (2) any task T solvable
in the α-model is also solvable in every model with agreement function α.

Theorem 1. The agreement function of the α-model is α.

Proof. Take P such that α(P ) > 1 and consider the set of runs of the α-model in
which no process in Π \P participates and, thus, according to the monotonicity
property, at most α(P )−1 processes are faulty. To solve α(P )-set consensus, we
use the safe-agreement protocol [2], the crucial element of BG simulation. Safe
agreement solves consensus if every process that participates in it takes enough
steps. The failure of a process then may block the safe-agreement protocol. In
our case as at most α(P ) − 1 processes in P can fail, so we can simply run α(P )
safe agreement protocols: every process goes through the protocols one by one
using its input as a proposed value, if the protocol blocks, it proceeds to the next
one in the round-robin manner. The first protocol that returns gives the output
value. Since at most α(P ) − 1 processes are faulty, at least one safe agreement
eventually terminates, and there are at most α(P ) distinct outputs. To see that
(α(P ) − 1) cannot be solved in this set of runs, recall that one cannot solve
(α(P ) − 1)-set consensus (α(P ) − 1)-resiliently [2,18,22].

The following result is instrumental in our characterizations of fair
adversaries:

Theorem 2. For any task T solvable in an α-model, T is solvable in any read-
write shared memory model which solves the α-adaptive set consensus task.

Proof. Using α-adaptive set consensus and read-write shared memory, we can
run BGG-simulation so that, when the participating set is P , at most α(P ) BG
simulators are activated and at least one is live (i.e., takes part in infinitely many
simulation steps). Moreover, we make a process provided with a (simulated) task
output to stop proposing simulated steps to BGG simulation. Hence, the number
of active simulators is also bounded by the number of participating processes
without an output, with at least one live BG simulator if there is a correct
process without a task output.

These BG simulators are used to simulate an execution of a protocol solving T
in the α-model. And so, since any finite run can be extended to a valid run of
the α-model, the protocol can only provide valid outputs.

We make BG simulators execute the breadth-first simulation: every BG sim-
ulator executes an infinite loop consisting of (1) updating the estimated partic-
ipating set P , then (2) try to execute a simulation step of every process in P ,
one by one.

Now assume that there exist k ≥ 1 correct processes that are never provided
with a task output. BGG simulation ensure that we eventually have at most
min(k, α(P )) active simulators, with at least one live among them. Let s be such
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a live simulator. After every process in P have taken their first steps, s tries to
simulate steps for every process of P infinitely often. A process simulation step
can be blocked forever only due to an active but not live BG simulator2, thus
there are at most min(k, α(P ))− 1 simulated processes in P taking only finitely
many steps.

As at most α(P ) − 1 processes have a finite number of simulated steps, the
simulated run is a valid run of the α-model. Moreover, as at most k−1 processes
have a finite number of simulated steps, there is one process never provided with
a task output simulated as a correct process. But, a protocol solving a task
eventually provides task outputs to every correct process — a contradiction.

Any model can solve its associated α-adaptive set consensus task [20]. Along
with Theorem 2, we derive that:

Corollary 1. Let M be any model, αM be its agreement function, and T be any
task that is solvable in the αM -model. Then M solves T .

5 Characterizing Fair Adversaries

An adversary A is a set of subsets of Π, called live sets, A ⊆ 2Π . An infinite
run is A-compliant if the set of processes that are correct in that run belongs
to A. An adversarial A-model is thus defined as the set of A-compliant runs.

An adversary is superset-closed [19] if each superset of a live set of A is
also an element of A, i.e., if ∀S ∈ A, ∀S′ ⊆ Π, S ⊆ S′ =⇒ S′ ∈ A. Superset-
closed adversaries provide a non-uniform generalization of the classical t-resilient
adversary consisting of sets of n − t or more processes.

An adversary A is a symmetric adversary if it does not depend on process
identifiers: ∀S ∈ A, ∀S′ ⊆ Π, |S′| = |S| =⇒ S′ ∈ A. Symmetric adversaries
provides another interesting generalization of the classical t-resilience condition
and k-obstruction-free progress condition [9] which was previously formalized by
Taubenfeld as its symmetric progress conditions [23].

5.1 Set Consensus Power

The notion of the set consensus power [12] was originally proposed to capture the
power of adversaries in solving colorless tasks [3,4], i.e., tasks that can be defined
by relating sets of inputs and outputs, independently of process identifiers.

Definition 4. The set consensus power of A, denoted by setcon(A), is defined
as follows:

– If A = ∅, then setcon(A) = 0
– Otherwise, setcon(A) = maxS∈A mina∈S setcon(A|S\{a}) + 1.3

2 Note that the extended BG-simulation provides a mechanism which ensures that a
simulation step is not blocked forever by a no longer active BG simulator.

3 A|P is the adversary consisting of all live sets of A that are subsets of P .
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Thus, for a non-empty adversary A, setcon(A) is determined as setcon(A|S\{a})
+ 1 where S is an element of A and a is a process in S that “max-minimize”
setcon(A|S\{a}). Note that for A �= ∅, setcon(A) ≥ 1.

It is shown in [12] that setcon(A) is the smallest k such that A can solve
k-set consensus.

It was previously shown in [13] that for a superset-closed adversary A, the set
consensus power of A is equal to csize(A), where csize(A) denote the minimal
hitting set size of A, i.e., a minimal subset of Π that intersects with each live
set of A. Therefore if A is superset-closed, then setcon(A) = csize(A). For a
symmetric adversary A, it can be easily derived from the definition of setcon
that setcon(A) = |{k ∈ {1, . . . , n} : ∃S ∈ A, |S| = k}|.
Theorem 3. The agreement function of adversary A is αA(P ) = setcon(A|P ).

Proof. An algorithm AP that solves αA(P )-set consensus, assuming that the
participating set is a subset of P , is a straightforward generalization of the result
of [12]. It is shown in [12] that setcon(A)-set consensus can be solved in A. But
if we restrict the runs to assume that the processes in Π \P do not take a single
step, then the set of possible live sets reduces to A|P . Thus using the agreement
algorithm of [12] for the adversary A|P , we obtain a setcon(A|P )-set consensus
algorithm, or equivalently, an αA(P )-set consensus algorithm.

It is immediate from Theorem 3 that A ⊆ A′ implies setcon(A) ≤ setcon(A′).

5.2 Fair adversaries

In this paper we propose a class of adversaries which encompasses both classical
classes of super-set closed and symmetric adversaries. Informally, an adversary
is fair if its set consensus power does not change if only a subset of the processes
are participating in an agreement protocol.

More precisely, consider A-compliant runs with participating set P and
assume that processes in Q ⊆ P want to reach agreement among themselves:
only these processes propose inputs and are expected to produce outputs. We
can only guarantee outputs to processes in Q when the set of correct processes
include some process in Q, i.e., when the current live set intersect with Q. Thus,
the best level of set consensus reachable by Q is defined the set consensus power
of adversary A|P,Q = {S ∈ A|P , S ∩ Q �= ∅}, unless |Q| < setcon(A|P ).

Definition 5 (Fair adversary). An adversary A is fair if and only if:

∀P ⊆ Π,∀Q ⊆ P, setcon(A|P,Q) = min(|Q|, setcon(A|P )).

Property 1.
setcon(A|P,Q) ≤ min(|Q|, setcon(A|P ))

Proof. For any P ⊆ Π and Q ⊆ P , A|P,Q = {S ∈ A|P , S ∩ Q �= ∅} is a subset
of A|P and, thus, setcon(A|P,Q) ≤ setcon(A|P ). Moreover, setcon(A|P,Q) ≤ |Q|,
as |Q|-set consensus can be solved in {S ∈ A|P , S ∩ Q �= ∅} as follows: every
process waits until some process in Q writes its input and decides on it.
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Theorem 4. Any superset-closed adversary is fair.

Proof. Suppose that there exists a superset-closed adversary A that is not
fair, i.e., by Property 1, ∃P ⊆ Π,∃Q ⊆ P, setcon({S ∈ A|P , S ∩ Q �= ∅}) <
min(|Q|, setcon(A|P )). Clearly A|P and A|P,Q are also superset-closed and, thus,
setcon(A|P ) = csize(A|P ) and setcon(A|P,Q) = csize(A|P,Q).

Since setcon(A|P,Q) < |Q|, a minimal hitting set H ′ of A|P,Q is such that
|H ′| < |Q|, and therefore there exists a process q ∈ Q, q �∈ H ′. Also, since
setcon(A|P,Q) < setcon(A|P ), H ′ is not a hitting set of A|P . Thus, there exists
S ∈ A|P such that S ∩ H ′ = ∅. Hence, (S ∪ {q}) ∩ H ′ = ∅. Since A|P is
superset closed, we have S ∪ {q} ∈ A|P and, since q ∈ Q, S ∪ {q} ∈ A|P,Q. But
(S ∪ {q}) ∩ H ′ = ∅—a contradiction with H ′ being a hitting set of A|P,Q.

Theorem 5. Any symmetric adversary is fair.

Proof. The set consensus power of a generic adversary A is defined recursively
through finding S ∈ A and p ∈ S which max-minimize the set consensus power
of A|S\{p}. Let us recall that if A ⊆ A′ then setcon(A) ≤ setcon(A′). Therefore,
S can always be selected to be locally maximal, i.e., such that there is no live set
in S′ ∈ A with S � S′.

Suppose by contradiction that A is symmetric but not fair, i.e., by Property 1,
for some P ⊆ Π and Q ⊆ P , setcon(A|P,Q) < min(|Q|, setcon(A|P )). We show
that if the property holds for P and Q such that A|P,Q �= ∅ then it also holds
for some P ′ � P and Q′ ⊆ Q.

First, we observe that |Q| > 1, otherwise setcon(A|P,Q) = 0 and, thus, we
have A|P,Q = ∅.

Since A is symmetric, A|P is also symmetric. Thus, for every S ∈ A|P and
p ∈ S such that setcon(A|P ) = 1 + setcon(A|S\{p}), any S′ such that |S′| = |S|
and for any p′ ∈ S′, we also have setcon(A|P ) = 1 + setcon(A|S′\{p′}). Since we
can always choose S to be a maximal set, we derive that the equality holds for
every maximal set S in A|P and every p ∈ S.

Let us recall that, by the definition of setcon, there exists L ∈ A|P,Q and
a ∈ L such that setcon(A|P,Q) = 1 + setcon((A|P,Q)|L\{a}) = setcon(A|L,Q).
Since A|P is symmetric, for all L′, |L′| = |L| and L ∩ Q ⊆ L′ ∩ Q, we have
setcon(A|L′,Q) ≥ setcon(A|L,Q). Indeed, modulo a permutation of process iden-
tifiers, A|L′,Q contains all the live sets of A|L,Q plus live sets in A|L′ that
overlap with (L′ ∩ Q) \ (L ∩ Q). Since setcon(A|L,Q) = setcon(A|P,Q) and
L′ ∈ A|P,Q, we have setcon(A|L′,Q) = setcon(A|L,Q). Therefore, for any a ∈ L′,
setcon(A|L′\{a},Q) < setcon(A|L′\{a}).

In particular, for L′ with L′ ∩ Q ∈ {L′, Q}, setcon(A|L′,Q) = setcon(A|L,Q).
Note that L′ � Q, otherwise, A|L′,Q = A|L′ and, thus, setcon(A|L′,Q) =
setcon(A|L′) = setcon(A|P ), contradicting our assumption.

Thus, let us assume that Q � L′. Note that Q′ = Q \ {a} � L′ \ {a},
and since |Q| ≥ 2, Q′ �= ∅, we have setcon(A|P ′,Q′) < setcon(A|P ′) for P ′ =
L′ \ {a} and Q′ ⊆ P ′, Q′ �= ∅. Furthermore, since setcon(A|P,Q) < |Q|, we have
setcon(A|P ′,Q′) < |Q′|.
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By applying this argument inductively, we end up with a live set P and
Q ⊆ P such that setcon(A|P ) ≥ 1, Q �= ∅ and setcon(A|P,Q) = 0. By the
definition of setcon, A|P �= ∅ and A|P,Q = ∅. But A|P is symmetric and Q �= ∅,
so for every S ∈ A|P , there exists S′ ∈ A|P such that |S| = |S′| and S′ ∩ Q �= ∅,
i.e., A|P,Q �= ∅—a contradiction.

Note that not all adversaries are fair. For example, the adversary A =
{{p1}, {p2, p3}, {p1, p2, p3}} is not fair. On the other hand, not all fair adver-
saries are either super-set closed or symmetric. For example, the adversary
A = 2{p1,p2,p3} \ {p1, p2} is fair but is neither symmetric not super-set closed.
Understanding what makes an adversary fair is an interesting challenge.

5.3 Task Computability in Fair Adversarial Models

In this section, we show that the task computability of a fair adversarial A-model
is fully grasped by its associated agreement function αA.

Algorithm 1. Code for BG simulator si to simulate adversary A.
1 Shared variables: R[1, . . . , αA(Π)] ← (⊥, ∅), PMEM [p1, . . . , pn] ← ⊥;

2 Local variables: Scur, Stmp, P, A, W ∈ 2Π , pcur, ptmp ∈ N, Scur ← ∅;

3 Repeat
4 P = {p ∈ Π, PMEM [p] �= ⊥};
5 A = {p ∈ P, PMEM [p] �= �};
6 if i ≥ min(|A|, αA(P )) then
7 W = P ;
8 for j = αA(Π) down to i + 1 do
9 (ptmp, Stmp) ← R[j];

10 if (ptmp �= ⊥) ∧ (Stmp ⊆ W ) ∧ ((setcon(A|Stmp,A) ≥ j)) then
11 W ← Stmp \ {ptmp};

12 if (Scur �⊆ W ) ∨ (setcon(A|Scur ,A) < i) then
13 if ∃S ∈ A|W , setcon(A|S,A) ≥ i then
14 Scur = S ∈ A|W such that setcon(A|S,A) ≥ i;
15 else Scur = S ∈ A|P ;
16 pcur = Scur.first();
17 R[i] ← (pcur, Scur);

18 if (SimulateStep(pcur) = SUCCESS) then
19 if Outputed(pcur) then PMEM [pcur] = �;
20 pcur = Scur.next(pcur);

21 else AbortStep(pcur) ;

22 Forever;
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Using BGG simulation, we show that the αA-model can be used to solve any
task T solvable in the A-model. In the simulation, up to α(P ) BG simulators
execute the given algorithm solving T , where P is the participating set of the
current run. We adapt the currently simulated live set to include processes not
yet provided with a task output, and ensure that the chosen live set is simulated
sufficiently long until some active processes are provided with outputs of T . The
simulation terminates as soon as all correct processes are provided with outputs.

The code for BG simulator bi ∈ {b1, . . . , bαA(Π)} is given in Algorithm 1.
It consists of two parts: (1) selecting a live set to simulate (lines 7–17), and
(2) simulating processes in the selected live set (lines 18–21).

Selecting a Live Set. This is the most involved part. The idea is to select a
participating live set L ⊆ P such that: (1) the set consensus power of A|L,A =
{S ∈ A|L, S ∩A �= ∅}, with A the set of participating processes not yet provided
with a task output, is greater than or equal to the BG simulator identifier i;
(2) L is a subset of the live sets currently selected by live BG simulators with
greater identifiers; (3) L does not contain the processes currently simulated by
live BG simulators with greater identifiers.

The live set selection in Algorithm 1 consists in two phases. First, BG simu-
lators determine a selection window W , W ⊆ P , i.e., the largest set of processes
which is a subset of the live sets selected by live BG simulators with greater iden-
tifiers, and which excludes the processes currently selected by live BG simulators
with greater identifiers (lines 7–11). This is done iteratively on all BG simulators
with greater identifiers, from the greatest to the lowest. At each iteration, if the
targeted BG simulator bk appears live, the current window is restricted to the
live set selected by bk, but excluding the process selected by bk. Determining if
bk appears live is simply done by checking whether, with the current simulation
status observed, the live set selected by bk is valid, i.e., satisfies conditions (1), (2)
and (3) above.

The second phase (lines 12–17), consists in checking if the currently selected
live set is valid (line 12). If not, the BG simulator tries to select a live set L
which belongs to the selection window W , and hence satisfies (2) and (3), but
also such that the set consensus power of AL,A is greater than i, the BG simulator
identifier (line 14). If the simulator does not find such a live set, it simply selects
any available live set (line 15).

Simulating a Live Set. The idea is that, if the selected live set does not
change, the BG simulator simulates steps of every process in its selected live set
infinitely often. Unlike conventional variations of BG simulations, a BG simulator
here does not skip a blocked process simulation, instead it aborts and re-tries
the same simulation step until it is successful.

Intuitively, this does not obstruct progress because, in case of a conflict,
there are two live BG simulators blocked on the same simulation step, but the
BG simulator with the smaller identifier will eventually change its selected live
set and release the corresponding process.
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Pseudocode. The protocol executed by processes in the αA-model is the fol-
lowing: Processes first update their status in PMEM by replacing ⊥ with their
initial state. Then, processes participate in an αA-adaptive BGG simulation (i.e.,
BGG simulation runs on top of an αA-adaptive set consensus protocol), where
BG simulators use Algorithm 1 to simulate an algorithm solving a given task T
in the adversarial A-model. When a process p observes that PMEM [p] has been
set to � (“termination state”), it stops to propose simulation steps.

Proof of Correctness. Let Pf be the participating set of the αA-model run,
and let Af be the set of processes p ∈ Pf such that PMEM [p] is never set to �.

Lemma 1. There is a time after which variables P and A in Algorithm1 become
constant and equal to Af and Pf for all live BG simulators.

Proof. Since Π is finite, the set of processes p such that PMEM [p] �= ⊥ eventually
corresponds to Pf as the first step of p is to set PMEM [p] to its initial state and
PMEM [p] can only be updated to � afterwards. As after PMEM [p] is set to �,
it cannot be set to another value, eventually, the set of processes from Pf such
that PMEM [p] �= � is equal to Af . Live BG simulators update P and A infinitely
often, so eventually their values of P and A are equal to Pf and Af respectively.

Lemma 2. If Af contains a correct process, then there is a correct BG simulator
with an identifier smaller or equal to min(|Af |, αA(Pf )).

Proof. In our protocol, eventually only correct processes in Af are proposing
BGG simulation steps. Thus eventually, at most |Af | distinct simulations steps
are proposed. The αA-adaptive set consensus protocol used for BGG simula-
tion ensures that at most αA(Pf ) distinct proposed values are decided. But
as there is a time after which only processes in Af propose values, eventually,
min(|Af |, αA(Pf ))-set consensus is solved. Thus BGG simulation ensures that,
when this is the case, there is a live BG simulator with an identifier smaller or
equal to min(|Af |, αA(Pf )).

Suppose that Af contains a correct process, and let bm be the greatest live
BG simulator such that m ≤ min(|Af |, αA(Pf )) (by Lemma 2). Let Si(t) denote
the value of Scur and let pi(t) denote the value of pcur at simulator bi at time t.
Let also τf be the time after which every active but not live BG simulators have
taken all their steps, and after which A and P have become constant and equal
to Af and Pf for every live BG simulator (by Lemma1).

Lemma 3. For every live BG simulator bs, with s ≤ min(|Af |, αA(Pf )), even-
tually, bs cannot fail the test on line 13.

Proof. Consider a correct BG simulator bs starting a round after time τf . Let
Ws be the value of W at the end of line 11. Two cases may arise:

– If Ws = Pf , as A is fair, then setcon(A|Ws,Af
) = min(|Af |, setcon(A|Pf

)).
Thus, setcon(A|Ws,Af

) ≥ s.
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– Otherwise, Ws is set on line 11 to some Starget \ {ptarget} at some itera-
tion l, with setcon(A|Starget,Af

) ≥ l for l > s. We have setcon(A|Ws,Af
) =

setcon((A|Starget,A)|Starget\{ptarget}) which, by the definition of setcon, is
greater or equal to setcon(A|Starget,A) − 1 ≥ l − 1 ≥ s, so we have
setcon(A|Ws,Af

) ≥ s.

By the definition of setcon, as setcon(A|Ws,Af
) ≥ s, there exists S ⊆ Ws such

that setcon(A|S,Af
) ≥ s. So, eventually bs will always succeed the test on line 13.

Lemma 4. For every live BG simulator bs, with s ≤ min(|Af |, αA(Pf )), even-
tually, the value of W computed at the end of iteration m + 1 (at lines 8–11) is
equal to some constant value Wm,f .

Proof. No BG simulator bl, with l > m, executes lines 7–21 after time τf . There-
fore R[l] is constant after time τf , ∀l > m. As the computation of W , on lines 7–
11, only depends on the value of A, P and R[l], for αA(Π) ≥ l > m, all constant
after time τf , then the value of W computed at the end of line 11 for iteration
m+1 is the same at every round initiated after time τf for any live BG simulator
bs, with s ≤ min(|Af |, αA(Pf )).

Lemma 5. If Af contains a correct process, then the set of processes with an
infinite number of simulated steps is a live set of A containing a process of Af .

Proof. As bm is live, it proceeds to an infinite number of rounds. By Lemma4,
eventually bm computes the same window in every round. By Lemma 3, if bm

does not have a valid live set selected, then it eventually selects a valid one
for Wm,f . Thus, eventually bm never changes its selected live set. Let Sm,f be
this live set. Afterwards, in each round, bm tries to complete a simulation step
of pm(t) and, if successfully completed, changes pm(t) in a round robin manner
among Sm,f . Two cases may arise:

– If pm(t) never stabilizes, then the set of processes with an infinite number of
simulated steps includes Sm,f . By Lemma 4, every other live BG simulator
with a smaller identifier computes the same value of W at the end of round
m+1 (of the loop at lines 8–11). Thus, after the Sm,f is selected by bm, as Sm,f

is valid, every BG simulator will select a subset of Sm,f for its window value
in every round. Moreover, by Lemma 3, these BG simulators will always find
valid live sets to select, and so they will eventually simulate only processes in
Sm,f . Thus, the set of processes with infinitely many simulated steps is equal
to Sm,f , a live set intersecting with Af .

– Otherwise, pm(t) eventually stabilizes on some pm,f . Therefore, bm attempts
to complete a simulation step of pm,f infinitely often. Two sub-cases may
arise:

– Either |Sm,f | = 1 and, therefore, bm is the only one live BG simulator per-
forming simulation steps, and thus, the set of processes with an infinite
number of simulated steps is equal to Sm,f , a live set intersecting with Af .
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– Otherwise, by Lemma 4, every live BG simulator with a smaller identifier
eventually selects a window, and thus a live set (Lemma 3), which is a
subset of Sm,f \ {pm,f}. Thus every live BG simulator with a smaller
identifier eventually selects processes to simulate distinct from pm,f and,
thus, cannot block bm infinitely often—a contradiction.

Lemma 6. If A is fair, then any task T solvable in the A-model is solvable in
the αA-model.

Proof. Let us assume that it is not the case: there exists a task T and a fair
adversary A such that T is solvable in the adversarial A-model but not in the αA-
model. As every finite run of the A-model can be extended to and A-compliant
run, the simulated algorithm can only provide valid outputs to the simulated
processes. Thus, it can only be the case that a correct process is not provided
with a task output, i.e., belongs to Af .

Therefore, by Lemma 5, the simulation provides an A-compliant run, i.e., the
set of processes with an infinite number of simulated steps is a live set. As the
run is A-compliant then each process p with an infinite number of simulated
steps is eventually provided with a task output and thus pMEM [p] is set to �.
Thus, they cannot belong to Af — a contradiction.

Combining Corollary 1 and Lemma 6 we obtain the following result:

Theorem 6. For any fair adversary A, the adversarial A-model and the αA-
model are equivalent regarding task solvability.

6 Agreement Functions Do not Always Tell it All

We observe that agreement functions are not able to characterize the task com-
putability power of all models. In particular there are non-fair adversaries not
captured by their agreement functions.

Consider for example the adversary A = {{p1}, {p2, p3}, {p1, p2, p3}}. It is
easy to see that setcon(A) = 2, but that setcon(A|Π,{p2,p3}) = 1 which is strictly
smaller than min(|{p2, p3}|, setcon(A)) = 2. Therefore, A is non-fair.

Consider the task Cons2,3 consisting in consensus among p2 and p3: every
process in {p2, p3} proposes a value and every correct process in {p2, p3} decides
a proposed value, so that p2 and p3 cannot decide different values. Cons2,3

is solvable in the adversarial A-model: every process in {p2, p3} simply waits
until p2 writes its proposed value and decides on it. Indeed, this protocol solves
Cons2,3 in the A-model as if p3 is correct, p2 is also correct.

The agreement function of A, αA, is equal to 0 for {p2} or {p3}, to 2 for
{p1, p2, p3}, and to 1 for all other values. It is easy to see that αA only differs
from α1−res, the agreement function of the 1-resilient adversary, for {p1} where
αA({p1}) = 1 > α1−res({p1}) = 0. Therefore, ∀P ⊆ Π,αA(P ) ≥ α1−res(P ),
and thus any task solvable in the A-model is solvable in the 1-resilient model.

The impossibility of solving such a task 1-resiliently can be directly derived
from the characterization of task solvable t-resiliently from [8]. Indeed, let p1
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wait for some process to output in order to decide the same value. Processes p2
and p3 use the ability to solve consensus among themselves to output a unique
value. As there are two correct processes in the system, p2 or p3 will eventually
terminate and thus p1 will not wait indefinitely. This gives a 3-process 1-resilient
consensus algorithm—a contradiction [7,21]. Thus, the A-model is not equivalent
with the αA-model, even though they have the same agreement function.

7 Related Work

Adversarial models were introduced by Delporte et al. in [6]. With respect to col-
orless tasks, Herlihy and Rajsbaum [17] characterized a class superset-closed [19]
adversaries (closed under the superset operation) via their minimal core sizes.
Still with respect to colorless tasks, Gafni and Kuznetsov [12] derived a charac-
terization of general adversary using its consensus power function setcon. A side
result of this present paper is an extension of the characterization in [12] to any
(not necessarily colorless) tasks.

Taubenfeld [23] introduced the notion of symmetric progress conditions,
equivalent to our symmetric adversaries.

The BG simulation establishes equivalence between t-resilience and wait-
freedom with respect to task solvability [3,4,8]. Gafni and Guerraoui [10] showed
that if a model allows for solving k-set consensus, then it can be used to simulate
a k-concurrent system in which at most k processes are concurrently invoking
a task. In our simulation, we use the fact that a model M associated to an
agreement function αM allows to solve an α-adaptive set consensus, using the
technique proposed in [5], which enables a composition of the ideas in [3,4,8]
and [10]. Running BG simulation on top of a k-concurrent system, we are able
to derive the equivalence between fair adversaries and their corresponding α-
models.

8 Concluding Remarks

By Theorem 6, task computability of a fair adversary A is characterized by its
agreement function α: a task is solvable with A if and only if it is solvable in
the α-model. The result implies characterizations of superset-closed [16,19] and
symmetric [23] adversaries and, via the equivalence result established in [9], the
model of k-concurrency.

As a corollary, for all models M and M ′ characterized by their agreements
functions, such that ∀P ∈ Π,αM ′(P ) ≥ αM (P ), we have that M is stronger
than M ′, i.e., the set of tasks solvable in M contains the set of tasks solvable
in M ′. In particular, if the two agreement functions are equal, then M and M ′

solve exactly the same sets of tasks. Note that if a model M is characterized by
its agreement function α, then it belongs to the weakest equivalence class among
the models whose agreement function is α.
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An intriguing open question is therefore how to precisely determine the scope
of the approach based on agreement functions and if it can be extended to
capture larger classes of models.
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Abstract. Shared data structures are a basic building block in distrib-
uted computing, but can be expensive to implement. One way to cir-
cumvent the high implementation cost of linearizability is to relax the
sequential specification of the data type. This gives up some guaran-
tees, for instance on the ordering of data elements, as a tradeoff against
performance. We want to explore the effects of this tradeoff on the com-
putational power of the shared data structures.

In this paper, we characterize the effects of three different types of
relaxation, chosen from the literature, on the computational power of
FIFO queues. By parametrically relaxing each of the three operations on
a queue (Enqueue, Dequeue, Peek), we obtain an infinite 3-dimensional
space for each type of relaxation. We find the consensus number, a stan-
dard measure of the computational power of shared data types, of each
point in these spaces, completely describing the effect of these three types
of relaxation on the computational power of queues.

Keywords: Distributed data types · Relaxed data types · Consensus
numbers

1 Introduction

Shared data structures are a critical abstraction making real-world message-
passing systems appear to a programmer as shared memory systems. These
abstractions can hide much of the complexity of programming on a distributed
system. To be practically useful, though, we need high-performance implemen-
tations of shared data structures.

Past work has shown that to satisfy strong, intuitive conditions on the concur-
rent behavior of shared data structure implementations, those implementations
have a high time cost spent in communication [2,7,8,14]. One approach to cir-
cumvent these lower bounds is to use weaker conditions on concurrent behavior.
This can, in fact, increase performance [2], but tends to lead to less intuitive
behavior, making distributed programming confusing and difficult to guarantee
correct.

Another approach some researchers have proposed is to introduce some non-
determinism into the sequential specifications of the data types of shared struc-
tures [1,5], while keeping the consistency condition strong. By doing this in a
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controlled fashion, one can reduce contention in distributed implementations
of the data type and achieve improved performance. By changing the sequen-
tial specification, it is easier to intuitively understand the changes in allowable
behavior of the shared data type under concurrent access by multiple processes.
Past work has shown that these relaxed data types can be implemented more
efficiently, in an amortized sense, than their unrelaxed counterparts [12].

Given these relaxed data type specifications, we wish to formally analyze their
computational power. In this paper, we explore the ability of relaxed data types,
exemplified by queues, to solve the asynchronous consensus problem among sev-
eral processes which may crash. Solving consensus allows us to implement any
other data type among those processes. Thus, the largest number of processes
which can solve consensus using a given data type, called the consensus number
of the type, is a measure of the data type’s computational strength [6].

We consider the space of possible parameters for three different relaxations
of queues. We extend the classical method of bivalency arguments to handle the
non-determinism in relaxed data types. Using this expanded method, we prove
consensus numbers directly for several base classes, and show how these imply
useful bounds on the consensus numbers of other parameter values.

To generalize our results, we show how parameterization of the relaxation of
the three operations on a queue gives a 3-dimensional space. In this space, we
give lemmas based on those in [10,11] which allow us to extend bounds proved
for certain points across infinite areas. This allows us to totally cover the space
of possible relaxations with only a handful of results.

Due to space constraints, while we have complete proofs of all theorems, we
omit most proofs in this paper.

1.1 Related Work

The first explorations of relaxed data types came when Afek et al. [1] proposed
a weak consistency condition, Quasi-Linearizability, which requires each concur-
rent execution to have a permutation of operation instances which is a bounded
“distance” from a legal execution of the operation type. This can equivalently
be viewed as a relaxation of the sequential specification of an object, allowing
operations to return slightly out-of-date values.

Henzinger et al. [5] generalized the notion of relaxing the sequential speci-
fication of a data type. They used a state machine model to abstractly define
several relaxations and gave shared memory implementations of several relaxed
data types to provide empirical evidence that a distributed system using such
relaxed types could out-perform one using unrelaxed types.

Talmage and Welch [12] re-formulated the relaxations of [5] specifically for
operations on Queues and considered performance in a message-passing system
with bounded delays. They gave upper and lower bounds showing that relax-
ing Queues cannot improve the worst-case time per operation, but may greatly
reduce the amortized time per operation.

Consensus numbers were defined by Herlihy in [6] and are the standard mea-
sure of the computational strength of a shared data type. He showed that in an
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asynchronous system, a consensus object among a certain number of processes
can wait-free implement any other shared data type among those processes.
Thus, if a shared object can implement consensus among n processes, it is “uni-
versal” among n processes and can implement any data type in that system.

Lo and Hadzilacos [9] showed that consensus numbers do not form a robust
wait-free hierarchy, in that multiple types of low consensus number can combine
to implement types of high consensus number, if non-deterministic types are
allowed. It remains an open question whether this is true for any amount or type
of non-determinism, or what is the minimum amount of non-determinism which
causes the hierarchy to collapse. For implementations using objects of a single
type to solve consensus, though, consensus numbers are still useful, even for non-
deterministic types, such as relaxed Queues. [9] also set up the mechanisms for
proving upper bounds on consensus numbers of non-deterministic types, which
we use in this paper.

Shavit and Taubenfeld [10,11] began exploring the computational power
of relaxed data types by proving consensus numbers for some relaxed queues.
Specifically, they proved a selection of results for Out-of-Order relaxed Queues,
one of the relaxations specified in [5] and used in [12]. We extend their work
to include all possible Out-of-Order Queues and prove results for Lateness and
Restricted Out-of-Order relaxed Queues, as well. An attentive reader may notice
that some of our results for Out-of-Order relaxed Queues do not agree with those
in [10,11]. This is because our definition of the relaxation differs from theirs. For
example, if there are only 3 elements in the Queue, and Dequeue can return any
of the top 5, our definition allows the Dequeue instance to return ⊥, indicating
an empty Queue, while that of [10,11] requires the Dequeue to return one of
the elements currently in the Queue. Their extra requirement can be viewed
as allowing less relaxation when the Queue is almost empty. There are good
practical reasons to do this, but from a theoretical perspective, the relaxation
parameter is changing based on the object’s state. This means that their results
do not fully apply to k-relaxed Queues, as defined in the literature [5].

Chen et al. [3] explored the edge-condition behavior of several shared objects,
with respect to their consensus numbers. They showed that the consensus power
of Queues is different if a Dequeue on an empty Queue returns a unique ⊥ value
or breaks and can never be used again, and several other examples. While we do
not explore different edge-condition behaviors in depth, we note that the results
we obtain do depend on our assumptions about when a Dequeue or Peek can
see an empty Queue.

2 Model, Definitions, and Background

We consider an asynchronous, shared-memory model of computation among n
processes, up to n−1 of which may fail by crashing. A crashed process performs
no further actions of any kind. Processes communicate by invoking operations
on shared objects and receiving responses to those operation invocations. Each
shared object is linearizable (or atomic) and thus operations on each object
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appear to happen instantaneously. A data type specifies the behavior of an object.
A data type provides (1) a set of possible operation invocations and (2) a set of
legal sequences of instances of those operations, where an instance of operation
OP , denoted OP (arg, ret) is an invocation, with argument(s) arg, and return
value ret. We assume that every data type satisfies the following properties:

– Prefix Closure: If a sequence ρ is legal, every prefix of ρ is legal
– Completeness: If a sequence ρ is legal, then for every operation OP in the

data type and every argument arg to OP , there exists a response ret such
that ρ.OP (arg, ret) is legal

We use state of an object to refer to the equivalence class of operation
sequences which allow the same set of extending sequences. We will express state
by the sequence of instances which have been executed on the object. Every
operation on a shared object must be either an accessor, which returns some
information dependent on the state of the object, a mutator, which changes the
state of the object, or both, which we call a mixed operation. Operations which
are neither accessors nor mutators would be constants or no-ops, and are thus
not useful operations on a shared object.

2.1 Relaxed Data Types

Intuitively, a relaxed data type is the result of relaxing the ordering constraints
on some “classic” data type. We introduce some non-determinism, allowing mul-
tiple possible return values and changes the object’s state. This can reduce the
contention of operations such as Dequeue on a Queue and Pop on a stack, if we
allow them to return elements near the head or top, instead of always exactly
the head or top element.

We will consider three different types of relaxation introduced in [5] and re-
formulated for relaxing Dequeue on Queues in [12]. Each one has a parameter
specifying the maximum amount of relaxation allowed, either for each operation
instance or bounding the number of consecutive operation instances which can
behave differently than the unrelaxed type. The Out-of-Order k-relaxation allows
each operation instance to take effect up to k places out of order. For example, a
Dequeue can return any of the first k elements at the head of a Queue, instead
of only the first. The Lateness k-relaxation merely requires that at least one in
every k instances must behave as the unrelaxed version, while the other instances
may disregard ordering. The Restricted Out-of-Order k-relaxation is the intersec-
tion of the previous two relaxations, requiring that consecutive instances which
behave in an out-of-order fashion are increasingly near to the correct order.

Each relaxation can be pictured as ideal for different applications. Consider
a job queue, where tasks are inserted in order, but may be claimed and com-
pleted by different actors. The owner of the queue may not require that jobs are
completed exactly in order, but may want to maintain different guarantees on
the ordering. An Out-of-Order relaxed queue is good when we want to guarantee
that every job completed is one of the oldest jobs in the queue. Lateness relaxed
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queues provide a guarantee on the maximum number of jobs added after a par-
ticular job which may be completed before that job. Restricted Out-of-Order
relaxed queues provide both of these guarantees, requiring that every job per-
formed is one of the oldest in the queue, and no job is left undone for too long.

We will next formally define these three relaxations by giving their sequential
specifications. First, we must note that each type will have three different relax-
ation parameters, one for each operation on a Queue. Each of these parameters
may be in the set Z

+ ∪ {∗, ∅}1, which we will denote as Z
∗. A ∅ parameter,

equivalent to a 0 in [10,11], means that the operation is not supported, while
we consider that ∗ > x,∀x ∈ Z. That is, ∗-relaxed is infinitely relaxed, and such
operations have no ordering constraints, since at any particular point in time,
there will be a finite number of elements in the Queue. For technical reasons, we
will define ∅ > ∗ > x,∀x ∈ Z

+.
We assume that all arguments to Queue operations are unique (accom-

plishable by logical timestamps). Represent the state of a relaxed Queue by a
sequence, denoting one end as the head and the other as the tail. In an unrelaxed
Queue, Enqueue(val) appends val to the tail of the Queue, while Dequeue and
Peek return the value at the head of the Queue, with Dequeue also removing
that element from the Queue. Peek and Dequeue may return a special symbol
⊥ if the Queue appears to contain no elements (relaxation may allow the Queue
to appear empty even when it is not).

Definition 1. An Out-of-Order relaxed Queue with parameters a, b, c ∈ Z
∗,

denoted OQueue[a, b, c], provides three operations, as follows:

– Enqueue[a](val) adds val to the OQueue such that at most a − 1 elements
already in the OQueue are nearer the tail than val

– Dequeue[b]() removes and returns one of the first b elements at the head end
of the OQueue; Dequeue[b]() may return ⊥ if there are fewer than b elements
in the OQueue,

– Peek[c]() returns, without removing, one of the first c elements at the head end
of the OQueue; if there are fewer than c elements in the OQueue, Peek[c]()
may return ⊥

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

For the next two relaxations, we need the concept of lateness, which is a
measure of how many consecutive operations of a specific type have been out of
order. Define lateness(OP [k]) for a finite sequence ρ of operations instances on a
relaxed Queue as the number of instances of OP [k] appearing in ρ after the latest
instance of OP [k] that behaved as the unrelaxed version, OP [1], would. That is,
the number of Enqueue[a] instances since the last one which put an element at
the tail, the number of Dequeue[b] instances since the last which removed the
head, or the number of Peek[c] instances since the last which returned the head.
1 We use ∗, not ∞, to maintain consistency with the literature, e.g. [11]. We also use

∅ where [11] used 0. This maintains visual consistency, while avoiding the problem
that 0 < x, ∀x ∈ Z

+, while we want ∅ > x, ∀x ∈ Z
+.
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Definition 2. A Lateness relaxed Queue with parameters a, b, c ∈ Z
∗, denoted

LQueue[a, b, c], provides three operations, as follows:

– Enqueue[a](val) adds val to an arbitrary location in the LQueue while main-
taining lateness(Enqueue[a]) < a

– Dequeue[b]() removes and returns any element in the LQueue, or ⊥, while
maintaining lateness(Dequeue[b]) < b

– Peek[c]() returns, without removing, any element in the LQueue or ⊥, while
maintaining lateness(Peek[c]) < c

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

In effect, OP [k] operations on an LQueue ignore all ordering, as long as at
least one in every k consecutive instances of OP [k] exhibits the behavior of an
unrelaxed OP , acting on the appropriate end of the LQueue, which resets that
operation’s lateness.

An RQueue keeps the requirement of an LQueue that at least a fixed fraction
(1/k) of OP [k] instances must behave as if unrelaxed, but also requires every
operation instance to approximately respect the ordering of an unrelaxed Queue.
Thus, it can be seen as the intersection of the last two definitions.

Definition 3. A Restricted Out-of-Order relaxed Queue with parameters
a, b, c ∈ Z

∗, denoted RQueue[a, b, c], provides three operations, as follows:

– Enqueue[a](val) adds val to the Queue such that at most (a − 1) −
lateness(Enqueue[a]) elements already in the RQueue are nearer the tail than
val

– Dequeue[b]() removes and returns one of the first b − lateness(Dequeue[b])
elements at the head end of the RQueue; Dequeue[b]() may return ⊥ if there
are fewer than b − lateness(Dequeue[b]) elements in the RQueue

– Peek[c]() returns, without removing, one of the first c − lateness(Peek[c])
elements at the head end of the RQueue; if there are fewer than c −
lateness(Peek[c]) elements in the RQueue, Peek[c]() may return ⊥

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

We will use natural reductions of notation to increase readability, such as
denoting Enqueue[1] as Enqueue, etc., since this is an unrelaxed operation. To
specify an Enqueue[a] instance, we will also use the notation Enqueueti(x) to
denote an Enqueue instance executed by process pi which places x immediately
head-ward of the tail-most t elements.

2.2 Consensus Numbers

To classify the computational power of shared data types, we use the consensus
problem. The consensus problem is for each of n processes, starting with an
input value in {0, 1}, to either crash or in a finite amount of time agree on
(decide) and return the same output value as all other deciding processes, such
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that the decided value was some process’ input. We say that a data type T can
wait-free implement consensus if there is an algorithm which uses one or more
objects of type T , plus Read/Write registers, to solve consensus. The consensus
number of T , which we denote as CN(T ), is the maximum number of processes
for which such an algorithm exists. If there is no such maximum number, we say
CN(T ) = ∞.

To prove a lower bound on a type’s consensus number, we merely exhibit
an algorithm which uses objects of that type to solve consensus among some
number of processes. For an upper bound, we use the technique of valency, as
in [6], and its extensions to non-deterministic types from [9]. We here re-state
several concepts and lemmas from these papers, as well as [4,13], which allow us
to streamline our proofs.

A configuration of an algorithm consists of the local states of all processes
and the states of all shared objects. An initial configuration is one where every
process is in an initial local state and every shared object has an initial state,
as specified by the algorithm. We say that two configurations C and D are
indistinguishable to a process pi if pi has the same local state and all shared
objects have the same state in C and D.

Process pi takes step (C, opi, C
′), where C and C ′ are configurations we call

the old and new configurations of the step, if it executes an atomic operation
instance opi on a shared variable V . V and opi’s operation and argument are
specified by pi’s state in C. This is said to be an enabled step. The resulting
configuration C ′ differs from C only in the local state of pi, according to the
algorithm, and V ’s state, according to its type. We call C ′ a child configuration
of C and use the notation C.opi to denote the child configuration C ′. Note that
for each configuration C, there is at least one enabled step for each process.
There may be more than one enabled step for a single process if the algorithm
executes a nondeterministic operation. For example, a relaxed Enqueue may lead
to one of several different child configurations depending on where the argument
is placed in the Queue.

An execution of an algorithm A is an infinite sequence of steps, starting from
an initial configuration, with the new configuration of each step equal to the
old configuration of the next step. Processes that take only a finite number of
steps are said to be crashed. We assume that executions are infinite, as this
implies that at least one process does not crash. If a process terminates the
stated algorithm without crashing, we say that it triggers an infinite series of
no-op steps. A reachable configuration is one that appears in some execution.

Let C be a configuration reachable by some prefix E of an execution of a
consensus algorithm A. Consider all executions E′ which are extensions of E.
A must terminate, so in each E′, some value is decided. Let vals(C) be the set
of values decided in all E′s. We call C bivalent if vals(C) = {0, 1}, 1-valent if
vals(C) = {1}, and 0-valent if vals(C) = {0}. We call C critical if it is bivalent,
but every child configuration of C is univalent.

Lemma 1 ([6,9,13]). Every critical configuration has child configurations with
different valencies which are reached by different processes acting on the same



198 E. Talmage and J.L. Welch

shared object, which is not a register. Further, every enabled step in a critical
configuration must be a mutator.

Lemma 1’s claim that steps leading to different valencies must exist at differ-
ent processes is trivial for deterministic types, since each process can have only
one enabled step. With non-deterministic types, a single process may have mul-
tiple enabled steps from a single configuration. Here, the lemma follows from the
fact that there must be at least one 0-valent child configuration and at least one
1-valent child configuration. If these are not at different processes but both at
the same process, then the valency of a step by some other process can be neither
0 nor 1, contradicting the definitions of valency and critical configurations.

Lemma 2 (Extended from [4]). A consensus algorithm (1) always has an
initial bivalent configuration and (2) must have a critical configuration in every
execution.

Lemma 3 (Univalency Lemma, implicit in [6]). If two univalent configu-
rations are indistinguishable to a process, they have the same valency.

3 Characterizing the Space of Relaxed Queues

Since we are considering relaxations of Queues with three operations, and the
relaxation parameter for each is taken from Z

∗, an extension of the positive inte-
gers, we can visualize the space of possible relaxed Queues, for a given relaxation,
as a 3-dimensional lattice. We can thus state the following general version of two
lemmas from [10,11] and then reason about the space of consensus numbers of
relaxed Queues.

Lemma 4. For t ∈ {O,L,R} and a, b, c, a′, b′, c′ ∈ Z
∗ such that a ≤ a′, b ≤ b′,

and c ≤ c′, CN(tQueue[a, b, c]) ≥ CN(tQueue[a′, b′, c′]).

Lemma 4 states that relaxing an unrelaxed operation, increasing the relax-
ation of an operation, or disabling an operation will not increase a type’s consen-
sus number. The less-relaxed version of the operation satisfies the definition of
the more-relaxed version, so any consensus algorithm using the more-relaxed ver-
sion will also work with the less-relaxed version of the operation. Similarly, any
algorithm which does not use a particular operation will work if its underlying
data type is replaced by a type which differs only in that it provides additional
operations.

Lemma 4 allows us to prove consensus number bounds for a finite number
of points in the relaxation space and immediately have either an upper or lower
bound on the consensus strength of many more relaxations. In the rest of the
paper, we will fill in the consensus numbers of all relaxations of the three types
defined above. We will use standard techniques, with a few novel twists, to show
the consensus numbers of a handful of specific relaxations and apply Lemma 4,
as well as the next two lemmas relating the spaces of different relaxation types,
to achieve results for all relaxation values.
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Since we are considering different types of relaxation, we state the next lemma
to show the points where the 3-dimensional spaces of consensus numbers for each
relaxation type are the same. Disabled operations are no different in different
types of relaxation and a relaxation parameter of 1 means that the operation is
not relaxed. Finally, recall that all relaxation types are equivalent with parameter
∗, imposing no ordering constraints on the operation.

Lemma 5. For a, b, c ∈ {1, ∗, ∅},
CN(OQueue[a, b, c]) = CN(LQueue[a, b, c]) = CN(RQueue[a, b, c]).

Similarly, since an RQueue[a, b, c] satisfies both the definition both of an
OQueue[a, b, c] and that of an LQueue[a, b, c], any algorithm using one of these
relaxed Queues will be correct if all of its relaxed Queues are replaced with
RQueue[a, b, c]s. We thus have the following lemma:

Lemma 6. For a, b, c ∈ Z
∗,

CN(RQueue[a, b, c]) ≥ max{CN(OQueue[a, b, c]), CN(LQueue[a, b, c])}.
We end this section with the results for unrelaxed Queues from [6]. The

results stated in [6] are for Queue[1, 1, 1] and Queue[1, 1, ∅], respectively, but the
algorithms apply exactly as stated to the below versions, which are more useful
for determining the values of relaxed Queues.

Theorem 1.

– CN(Queue[1, ∅, 1]) = ∞, and thus CN(Queue[1, b, 1]) = ∞,∀b ∈ Z
∗

– CN(Queue[∅, 1, ∅]) ≥ 2, so CN(Queue[a, 1, c]) ≥ 2,∀a, c ∈ Z
∗.

These theorems imply that any relaxation which provides a Dequeue[1] oper-
ation will have consensus number at least 2 and any relaxation which provides
Enqueue[1] and Peek[1] will have infinite consensus number. In the rest of the
paper, we will show where the boundaries between infinite and finite consensus
number are, and those between consensus number 1 and 2. This allows us to
understand which relaxations have maximum computational power and which
have no more power than a register.

4 Two Example Results

Before we get into the details of exploring every possible relaxation, we draw
attention to two particular interesting results. This also allows us to showcase
the extended techniques we use for proving consensus numbers that are necessary
for non-deterministic data types.

A large part of the motivation for determining the consensus number of
relaxed Queues is to ease the choice of data type to use in solving a particu-
lar problem. However, if the consensus numbers of relaxed Queues were easily
predictable, or always the same for every type of relaxation, it would hardly be
worth proving them all. The first result we highlight shows that different types of
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relaxation do, in fact, have different consensus numbers for the same relaxation
parameters. This seems an intuitive result, but is not entirely obvious to verify.

We also observe that it is important to be completely familiar with the con-
sensus numbers because they change suddenly. In this result, the choice of relax-
ation type determines whether the consensus number is 2 or ∞. We will shortly
see that even increasing a single parameter by as little as 1 can have a similarly
disastrous effect on the computational strength of a data type. This leads to
the conclusion that it is imperative to fully understand the space of consensus
numbers of relaxed Queues.

Our proof of Theorem 2 must handle the extra detail required for prov-
ing impossibility for non-deterministic data types. The number of cases which
we must consider increases, handling different possible choices for the non-
determinism. At the same time we also have extra leverage from non-
determinism. If one branch of a non-deterministic possibility is enabled, we can
argue that another is as well, and use that to show the desired result. A small
case of this technique is included in the proof of Lemma 7, below.

Theorem 2. For a > 1 ∈ Z
+, CN(RQueue[a, 1, 1]) = CN(OQueue[a, 1, 1]) =

∞, but CN(LQueue[a, 1, 1]) = 2.

The second result we highlight shows that even a very slight relaxation, mov-
ing from a Peek[1] to a Peek[2], drops the consensus number of every type of
relaxed Queue we consider from ∞ to 1. This illustrates the ease with which a
developer could use the wrong relaxation and lose all guarantees on computa-
tional power, unless all relaxations’ consensus numbers are known.

The proof of Theorem 3 uses another major technique by which we prove
upper bounds on consensus numbers in this paper. We exploit the non-
determinism of the relaxed data type to force certain return values at each
process. If each process only sees its own actions after a critical configuration,
then it must conclude that it is running alone. Since different processes’ steps
have different valencies, this leads to erroneous decision values, proving the
impossibility result. This “hiding” technique was introduced in [13] and is a
formal and general version of a technique used to prove bounds for Queues with
relaxed Peeks in [10,11].

Theorem 3. CN(RQueue[1, ∅, c]) = 1,∀1 < c ∈ Z
∗.

We can then extend this result, to cover another column in the relaxation
space for each type of relaxation, by the following lemma. Note that this lemma
is not part of Lemma 4, since ∅ > ∗ in Z

∗, so the inequality is in the other
direction.

Lemma 7. ∀t ∈ {O,L,R}, CN(tQueue[a, ∗, c]) ≤ CN(tQueue[a, ∅, c]),∀a,
c ∈ Z

∗

Proof. Suppose there exists a consensus algorithm A, for some relaxed Queue
tQueue[a, ∗, c], t ∈ {O,L,R}, a, c ∈ Z

∗ among some number n of processes
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such that CN(tQueue[a, ∅, c]) < n. Then A must invoke Dequeue[∗], or it
would also solve consensus using objects of type tQueue[a, ∅, c], contradicting
the assumption on tQueue[a, ∅, c]’s consensus number. But with a Dequeue[∗],
every instance can return ⊥ in each type of relaxation. Thus, from any initial
configuration, there is an execution of A in which Dequeue[∗] is a no-op. If A can
successfully solve consensus in this execution, then we can replace each instance
of Dequeue[∗] with a constant function to generate an algorithm A′ which can
solve consensus using tQueue[a, ∅, c] from the same initial state, a contradiction.

Applying Lemma 7 to Theorem 3 gives us the following more general
formulation:

Theorem 4. ∀t ∈ {O,L,R}, CN(tQueue[a, ∗, c]) = 1,∀a ∈ Z
∗, 1 < c ∈ Z

∗

5 Filling the Space

All we have left to do is to prove upper and lower bounds on boundary cases.
These are the cases where adjusting relaxation parameters changes the consen-
sus number of the relaxed Queue. Most upper bounds we need only to prove
for RQueues, since by Lemma 6 an upper bound for RQueues applies to both
LQueues and OQueues. On the other hand, algorithms for either LQueues or
OQueues give lower bounds for RQueues as well.

We present consensus algorithms for lower bounds, but omit the proofs since
they are completely standard. At the end of the section, we present Fig. 1, a
graphical representation of the relaxation spaces for each relaxation type.

For RQueues, we show that any relaxation of Peek results in consensus
number at most 2. This upper bound applies to the entire relaxation space
of RQueue[a, b, c]s, except where c = 1. For that part of the space, we show that
when a reaches ∗, then any further relaxation has consensus number at most 2,
and if both a and b reach ∗, then the RQueue is no stronger for consensus than
a register.

The result in Theorem 3 shows that when we have relaxed Peeks (c > 1), we
drop from consensus number 2 to 1 when the relaxation of Dequeue[b] reaches
b = ∗. The following theorems, along with the result we will show next for
OQueue[∅, b, ∅], completely and precisely give the consensus numbers of any
RQueue[a, b, c] with a, b, c ∈ Z

∗.

Theorem 5. CN(RQueue[1, 1, c]) ≤ 2,∀c > 1 ∈ Z
∗.

This theorem is proved with a hiding proof, similar to the proof of Theorem 3.
In constructing the indistinguishable executions, we need only be careful of when
the elements Enqueued immediately after a critical configuration are Dequeued.

The two bounds in Theorem 6 both have proofs in the style of Theorem 2.
Both proofs involve arguing that if one Enqueue[∗] is enabled, then Enqueue[∗]s
to other locations in the RQueue must also be enabled, and showing that a
contradiction arises. To prove the second, we show that CN(RQueue[∗, ∅, 1]) = 1
and use Lemma 7. The third bound in Theorem 6 is implied by an algorithm for
LQueue[∅, b, ∅], which we will describe when we discuss LQueues.
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Theorem 6. CN(RQueue[∗, 1, 1]) ≤ 2, CN(RQueue[∗, ∗, 1]) = 1 and
CN(RQueue[∅, b, ∅]) ≥ 2, 1 < b < ∗ ∈ Z

∗.

By Lemma 6, upper bounds for RQueues also apply to LQueues, so
we immediately have that CN(LQueue[1, 1, c]) ≤ 2, 1 < c ∈ Z

∗ and
CN(LQueue[1, ∗, c]) = 1, 1 < c ∈ Z

∗.
To determine the consensus numbers of all other LQueue[a, b, c]s, we also

need the following two bounds in Theorem 7. The proof of the first bound shows
that CN(LQueue[a, ∅, 1]) = 1, using the techniques of Theorem 2, then expands
the result with Lemma 7.

To prove the second, there is a consensus algorithm for 2 processes. We ini-
tialize the LQueue[∅, b, ∅] to contain one special element. Each process writes
its input to a register, then invokes Dequeue[b] b times. If it returns the ini-
tial element, the process decides its own input, otherwise it decides the other
process’. Intuitively, we can see that the algorithm is correct since the definition
of Dequeue[b] on an LQueue requires that at least one in every b consecutive
Dequeue[b] instances returns the element at the head of the LQueue. Thus, one
of the Dequeue[b] instances will return the initial element, and the process which
does not Dequeue[b] that element will know the other process must have.

Theorem 7. CN(LQueue[a, ∗, 1]) = 1,∀a > 1 ∈ Z
∗ and

CN(LQueue[∅, b, ∅]) ≥ 2,∀b > 1 ∈ Z
+.

From the results for RQueues and since an upper bound on the consensus
number of an RQueue[a, b, c] implies the same upper bound on OQueue[a, b, c],
we immediately have the following results for OQueues: CN(OQueue[1, 1, c]) ≤
2, 1 < c ∈ Z

∗, CN(OQueue[1, ∗, c]) = 1, 1 < c ∈ Z
∗, CN(OQueue[∗, 1, 1]) ≤ 2,

and CN(OQueue[∗, ∗, 1]) = 1.
The following theorem determines the last of the consensus numbers of

relaxed OQueues. The two bounds have very similar proofs, using the techniques
of Theorem 2 applied to both Enqueue[a] and Dequeue[b], taking advantage of
the non-determinism implying that multiple steps by a single process may be
enabled in a single configuration.

Theorem 8. CN(OQueue[1, b, c]) = 1,∀1 < b, c ∈ Z
∗ and

CN(OQueue[∗, b, 1]) = 1,∀1 < b ∈ Z
∗.

Finally, we give a graphical presentation of our results. Recall that for each
relaxation type, we have a 3-dimensional lattice. In the charts, we use a, b, c
to indicate integers greater than 1, since it happens that within that range,
consensus numbers do not change. Moving right in a grid increases the relaxation
of Dequeue, moving down increases the relaxation of Peek, and moving back
from one grid to the next increases the relaxation of Enqueue.

We mark cells with “(imp)” or “(alg)” to indicate an impossibility result
or algorithm proved or restated in this paper. Lemma 4 implies that consensus
numbers must decrease while moving to the right or down within a single grid
or moving back from one grid to the next. An algorithm, giving a lower bound
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Fig. 1. Graphical representation of relaxation space for different relaxation types
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on a consensus number, implies the same lower bound for all cells above, to
the left, and in more-forward grids, since those cells have stronger and/or more
operations. Cells containing “(1)” indicate vacuous data structures which do not
have both an accessor and a mutator.

6 Conclusion

In this paper, we have explored the space of parameterized relaxations for three
related types of relaxed Queues. We used a visualizable description of the three-
dimensional parameter space of each relaxation to allow us to draw conclusions
about every point in the space from a handful of carefully-chosen parameters.

Having determined the consensus number of each possible relaxation of these
three types, we can draw interesting conclusions about what effect different
amounts and type of relaxation have on the computational power of a data
type. For instance, we note that for every type, only Queues with an unrelaxed
Peek operation have infinite consensus number. Even the slightest relaxation of
Peek reduces the consensus number to 2 or less.

In fact, none of these relaxation types have consensus numbers between 2 and
∞. This means that, as far as computational guarantees are concerned, there is
little purpose in using a slightly-relaxed Queue. If performance is the primary
concern, the degree of relaxation should be increased as much as possible, as
that leads to the possibility of more efficient implementations [12].

This work generalizes that in [10,11], which considers only out-of-order
relaxed Queues, which we call OQueues. We show the relationship between the
strength of different relaxations, where the same parameters can lead to different
consensus numbers, as shown in Sect. 4. Note that we use a slightly different def-
inition of OQueue than that in [10,11]. They do not allow a non-empty relaxed
Queue with fewer than k elements to return ⊥, indicating an empty Queue.
Under this definition, an OQueue[∗, ∗, ∅] is simply a multiset, allowing them to
use the known fact that multiset’s consensus number is 2.

This does not match the definitions in [5,12], so the conclusions about
increased performance from those papers do not hold. Intuitively, the definition
in [10,11] restricts the relaxation of an almost-empty Queue, making it behave
as if it had smaller relaxation parameters. For this reason, we use the previous
definitions, which do allow erroneous empty indicators, which leads to consen-
sus number 1 for certain relaxations, such as OQueue[∗, ∗, ∅], where [10,11] had
consensus number 2.

In the future, this work should be expanded to other data types. Stacks,
which are a natural extension, are less interesting, as even a Stack[1, 1, 1] has
consensus number 2, so all relaxations of these types will have consensus number
1 or 2. The generalization of relaxations is still not well understood. [5] gives an
abstract specification, but it is not always obvious how this applies to data
types beyond Stacks, Queues, and a few others. We wish to explore this space,
generalizing relaxations and the data types which we know how to relax.
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Abstract. Consensus is the most basic agreement problem encountered
in fault-tolerant distributed computing: each process proposes a value
and non-faulty processes must agree on the same value, which has to be
one of the proposed values. While this problem is impossible to solve in
asynchronous systems prone to process crash failures, it can be solved
in synchronous (round-based) systems where all but one process might
crash in any execution. It is well-known that (t+1) rounds are necessary
and sufficient in the worst case execution scenario for the processes to
decide and stop executing, where t < n is a system parameter denot-
ing the maximum number of allowed process crashes and n denotes the
number of processes in the system.

Early decision and stopping considers the case where f < t processes
actually crash, f not being known by processes. It has been shown that
the number of rounds that have to be executed in the worst case is then
min(f + 2, t + 1). Following Castañeda, Gonczarowski and Moses (DISC
2014), the paper shows that this value is an upper bound attained only
in worst execution scenarios. To this end, it investigates a sequence of
three early deciding/stopping predicates P1 = Pcount, P2 = Pdif and
P3 = Ppref0, of increasing power, which differ in the information obtained
by the processes from the actual failure, communication and data pat-
tern. It is shown that each predicate Pi is better than the previous one
Pi−1, i ∈ {2, 3}, in the sense that there are executions where Pi allows
processes to reach a decision earlier than Pi−1, while Pi−1 never allows a
process to decide earlier than Pi. Moreover, P3 = Ppref0 is an unbeatable
predicate in the sense that it cannot be strictly improved: if there is an
early deciding/stopping predicate P ′ that improves the decision time of a
process with respect to Ppref0 in a given execution, then there is at least one
execution in which a process decides with P ′ strictly later than with Ppref0.
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1 Introduction

1.1 t-Resilient Crash-Prone Synchronous System

This paper considers a distributed system with n processes, among which at
most t may crash, 1 ≤ t < n. Hence, n and t are two system model parameters
that are statically defined and known when designing an algorithm. A crash is a
premature halt: a process behaves correctly, executing the algorithm assigned to
it, until it possibly crashes. After a crash, a process executes no more actions. A
process that does not crash in a given execution is said to be correct or non-faulty
there, otherwise it is faulty. Moreover, given an execution, let f , with 0 ≤ f ≤ t,
denote the number of processes that actually crash in this execution. Notice that
while n and t are two parameters (of the system model) that can be used in an
algorithm executed by processes, f is specific to each execution and cannot be
known in advance, and consequently no process knows its value.

The processes communicate by broadcasting and receiving messages. If a
process does not crash while executing a broadcast, the message is received
by all processes, including itself. If it crashes while executing a broadcast, an
arbitrary subset of processes (not predetermined and possibly empty) receive
the message (without alteration). Hence, a broadcast operation is not atomic.

The processes execute collectively a sequence of synchronous rounds. In each
round a process first broadcasts a message, then receives messages, and finally
executes a local computation whose inputs are its current local state and the mes-
sages it has received during the current round. The synchrony model assumption
states that a message is received in the very same round as the round in which
it is sent. Hence, synchrony means that the processes progress in a lock-step
manner.

An distributed algorithm (or protocol) is made of a collection of local algo-
rithms, one per process. Each local algorithm indicates messages to be sent by
the corresponding process at each round. Sometimes it is convenient to consider
full-information algorithms where in every round, each process broadcasts all
it knows so far. Full-information algorithms are not meant to be efficient —
messages may contain unnecessary information— but are easy to describe and
useful to prove lower bounds on step complexity: any information transfer scheme
used by another algorithm is contained in the full information transfer scheme.

1.2 The Consensus Problem

The consensus problem was introduced in the Eighties by Lamport, Shostack,
and Pease in the context of synchronous message-passing systems prone to
Byzantine (arbitrary) failures [14,16]. Here we consider the case of process crash
failures [11].

Each process is assumed to propose a value, and the processes have to agree
on the same value. Of course, a process may crash before proposing a value, or
before deciding a value. For the problem to be meaningful, the decided value must
be related to the proposed values. This is captured by the following properties,
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which constitute a specification of the consensus problem (hence, any algorithm
that claims to solve the problem must satisfy these properties).

– Termination. Every correct process decides on a value.
– Validity. A decided value is a proposed value.
– Agreement. No two (correct or faulty) processes decide different values.

1.3 Bounds on the Number of Rounds

The bound (t + 1). It is shown in [1,10] that (t + 1) rounds are necessary and
sufficient to solve consensus in a synchronous system prone to up to t < n process
crash failures. An intuition that underlies this bound is the following. A “worst
case” scenario is when there is a crash per round, which prevents processes from
knowing the state of the system at the beginning of the round. But if (t + 1)
rounds are executed, there is a failure-free round (a.k.a. clean round [7]) during
which all the correct processes can exchange and obtain proposed values, from
which a value can be deterministically extracted to be decided.

The bound min(f + 2, t + 1). As t is known by the processes while f ≤ n is
not, an interesting question is the following: is it possible to solve the consensus
problem in crash-prone synchronous systems in fewer than (t + 1) rounds when
the number of actual crashes f is smaller than t? This question is known as the
early deciding/stopping, problem [6]. In early stopping, a process stops execut-
ing when it decides; In early deciding, a process can continue executing rounds
after it has decided. Here, we consider early deciding/stopping algorithms, i.e.,
algorithms were a process stops executing in the same round as the one in which
it decides.

In other words, can we adapt the efficiency of a consensus algorithm to the
actual value of f , instead of always having the “(t + 1) rounds” cost? Thus,
the main target in early deciding/stopping algorithms is to allow at least one
process to detect as soon as possible a predicate on the execution, e.g., a failure-
free round, which will allow it to safely decide and stop.

It is shown in [2,6,13,18,22] that min(f +2, t+1) is a necessary and sufficient
condition for early deciding/stopping consensus. Interestingly, this bound is inde-
pendent of the failure model, be it crash failure, omission failure, or Byzantine
failure. An intuition for the (f + 2) bound is the following. As there are only f
failures in the considered execution, after (f + 1) rounds there is at least one
process that executed a round in which it saw no failures. Thereby, this process
knows which value can be decided, but, as f �= t, it does not know if the other
processes are aware of it. Hence, it needs an additional round to inform the other
processes of this knowledge before deciding.

1.4 Content of the Paper

In the following we are interested in predicates that, not only match the lower
bound of min(f +2, t+1) rounds for reaching consensus in worst case scenarios,
but allow processes to reach a decision in much fewer rounds in a lot of frequent
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cases, such as when there are initial crashes, or when several processes crash
during the very same round.

These predicates are denoted Pcount, Pdif , and Ppref0. We investigate their
respective power to solve early deciding/stopping binary consensus1 and consider
those predicates in sequence P1 = Pcount, P2 = Pdif and P3 = Ppref0. We show
that each predicate in the sequence Pi (i ∈ {2, 3}) is better than the previous
one Pi−1: there are executions in which Pi allows processes to reach a decision
earlier than Pi−1, while Pi−1 never allows processes to reach a decision earlier
than Pi.

To go further, we consider the notion of unbeatability [12] (initially called
optimality), that has been introduced to formally compare the decision-time
performance of algorithms. For binary consensus, Ppref0 is an unbeatable predi-
cate in the sense that it cannot be strictly improved: if there is an early decid-
ing/stopping predicate that improves the decision time of a process for binary
consensus in a given execution, then there is an execution in which a process
decides strictly later than by Ppref0. Thus, in principle, there are predicates that
can improve the decision time of a process in an execution at the cost of decid-
ing/stopping strictly later in another case.

2 The Three Early Deciding/Stopping Predicates

2.1 PCount (P1): a Predicate Based on the Counting of Crashed
Processes

Let us observe that “to be crashed” is a stable property, i.e., after it crashed, a
process never recovers. A crash is a premature halt. This observation can be used
to detect process crashes, by requiring each process to broadcast a message at
every round, until it decides or crashes. Hence, if r is the first round during which
pi does not receive a message from pj , and pi has not yet received a decision
message from pj , then pi can safely conclude that pj crashed.

Let faultyi[r] be the number of processes that pi considers faulty after the
reception of messages during round r, i.e., the number of processes from which
it did not receive a message during r. A simple early decision predicate used by
pi at round r is P1 = Pcount:

Pcount[i, r] ≡ (
faultyi[r] < r

)
.

This predicate (used in [17]) specifically targets the worst case scenario: it allows
a process pi to detect the first round in which, from its point of view, there is
no crash. Let r be the first round such that Pcount[i, r] is true. This means that
(a) for any round r′ < r we have faultyi[r′] ≥ r′, and (b) r is a failure-free round
from pi point of view. Those properties will be exploited to obtain a Pcount-based
early stopping consensus algorithm, that we describe in Sect. 3.3.
1 While Ppref0 is specific to binary consensus, Pcount and Pdif can be used for multivalued

consensus (where the size of the proposed value is not restricted to be only one bit).
However, the predicate can be modified to handle multivalued consensus.
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2.2 PDif (P2): a Round-based Differential Predicate

A second early stopping predicate, introduced in [19], is a differential predicate,
in the sense that it is based on each pair of consecutive rounds (the current and
the previous rounds). It requires that each process broadcasts a message until it
decides or crashes, and each message m indicates if its sender is about to decide
after having broadcast m.

Let UP [r] be the set of processes that start round r, i.e., the set of alive
processes when round r starts. Let reci[r] be the set of processes from which pi

receives messages during round r > 0, and reci[0] be the set of n processes. Let
us notice that, while it executes round r, no process knows the value of UP [r],
but each pi can easily compute the value of reci[r − 1] and reci[r]. Moreover,
as crashes are “stable”, pi knows that reci[r − 1] ⊆ UP [r] ⊆ reci[r]. The early
deciding/stopping predicate P2 = Pdif is then

Pdif [i, r] ≡ (
reci[r − 1] = reci[r]

)
.

As shown in Fig. 1, the fact that Pdif [i, r] holds does not mean that there is no
crash during round r. A cross means that the corresponding process crashed
during its broadcast phase, sending a message to a single process only.

Fig. 1. An execution illustrating Pdif . Crosses denote crashes, Pdif [i, j] indicates when
Pdif holds.

When Pdif [i, r] becomes satisfied, pi received a message from all the processes
that were alive at the beginning of round r. Due to the message exchange pattern,
it can know all values known by these processes from the first round until the
previous round (r−1). Consequently, it will never know new values in the future.
It follows that it can deterministically decide value among all values it know
(smallest or greatest one, for example).

It is possible that reci[r − 1] = reci[r] while there is a process pj such that
recj [r − 1] �= recj [r]. As a simple example, let us consider again Fig. 1 and
assume that v1 < min(v2, v3, v4) (vi being the value proposed by pi). During
round 1, p1 sent v1 to p2 only before crashing, and then, during round 2, p2 sent
v1 to p4 only before crashing. It follows that, while p4 can decide v1, no other
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(not crashed) process knows v1. This issue is solved as follows: when Pdif [4, r]
becomes satisfied, p4 does not decide and stop during round r, but proceeds to
round (r + 1) during which it broadcasts v1 plus a flag indicating it is about to
decide and stop, which it does only after the broadcast is completed.

2.3 PPref0 (P3): A Knowledge-Based Unbeatable Predicate

The predicate Ppref0, introduced in [3], allows processes to decide as soon as pos-
sible on a preferred value, 0 in this case, while the other value 1 is decided only
when the process is sure that no process decides on the preferred value 0. The
predicate is expressed in the knowledge-based approach in distributed comput-
ing, in the spirit of [9]. This approach leads us to understand, in a precise sense,
the information needed for a process to decide as fast as possible.

Roughly speaking, a process pi knows a statement A if in every execution
which is indistinguishable from the point of view of pi (i.e., in which pi has the
same local view), A is true. For example, if pi receives a message with an input 0,
it knows the statement “there is a 0 in the system”.

Assuming that processes want to decide as soon as possible, preferring
value 0, there are two cases:

– When is it safe for a process to decide on 0? As soon as the process knows
that every correct process knows that there is a 0 in the system, i.e., each
correct process has received in some round a message communicating that
someone started with input 0.

– When is it safe for a process to decide on 1? Since processes decide 0 as soon
as possible, the process can safely decide on 1 as soon as the process knows
that there is no 0 in the system, namely, no active process got a message
containing a 0. Thus, no process will ever know there is a 0.

This is formalized as follows. In an execution, we say that pj is revealed to pi in
round r if either pi knows the information pj has at the beginning of round r or
it knows that pj is crashed before that round. As a consequence, pj cannot carry
information in round r that is hidden to pi because, in the first case, pi knows
the information pj knows, while in the second case, pj crashed before (hence it is
not active in round r). A round r is revealed to pi if every process pj is revealed
to pi in round r. Therefore, when r is revealed to pi, the process knows all the
information than went through the system from round r − 1 to r.

The predicate Ppref0 is based on the following sub-predicates. Let
∃ correct 0(i, r) denote the predicate: “pi knows that at least one correct process
knows in round r that there is a 0” and let ∃ revealed(i, r) denote the predicate:
“a round r′ ≤ r has been revealed to pi”. The early deciding/stopping predicate
P3 = Ppref0 is defined as [3]:

Ppref0[i, r] ≡ ∃ correct 0(i, r) ∨ ∃ revealed(i, r).

We stress that if ∃ correct 0(i, r) holds, then, at the end of round r +1, every
correct process will know that there is a 0: the correct process knowing a 0
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(whose existence is guaranteed by ∃ correct 0(i, r)) will have communicated this
value to every correct process.

The way each sub-predicate of Ppref0[i, r] is made operational will be detailed
in Sect. 3.3, where a Ppref0-based algorithm is presented. To give a flavor of it, we
consider below two executions, each one satisfying one sub-predicate of Ppref0.

– The simplest case is when a process pi starts with input 0, then broadcasts
this value to every process in round 1, and finally receives the messages sent to
it in this round. At the end of the round, since pi succinctly communicates 0
to every process, the predicate ∃ correct 0(i, 1) is satisfied. Hence, using Ppref0,
a process can decide on 0 at the end of round 1, even in presence of failures.
In the execution there might be another process pj such that Ppref0[j, 1] is not
true. This can happen if pj starts the execution with input 1 and sees failures
in round 1, and hence it does not decide in this round. However, pj is pre-
vented from deciding 1 because it knows there is a 0 in the system (as it gets
the message from pi in round 1 containing a 0). While our example involved
round 1, the same holds for an arbitrary round r: if a process broadcasts a 0
in round r and does not crash in this round, the condition ∃ correct 0(i, r)
holds at the end of round r.

– A second example is shown in Fig. 2 where every process starts with input 1.
In round 1, process p4 gets messages from every process but p1, hence, by the
end of the round, p4 has uncertainty on the input of p1 and the fact that this
input may be known by some other process. In the example, before crashing,
p1 sends its message to p3, and in round 2, p4 gets a message from p3 but not
from p2. Although p4 sees a failure in round 2, it knows all inputs from all
processes since p4 gets indirectly the input of p1 from the message of p3 in
round 2 (assuming full-information algorithms). Thus, round 1 is revealed to
p4 during round 2, namely, the sub-predicate ∃ revealed(4, 2) is satisfied, and
thus p4 can safely decide on 1, regardless of the fact that it sees failures in
both rounds.

Fig. 2. An illustration of Ppref0. Crosses denote crashes, Ppref0[i, j] indicates when Ppref0

holds.
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3 Consensus Algorithms Based on the Predicates

For ease of exposition, an algorithm based on P2 = Pdif is first presented, and
only then it is shown that a simple replacement of the predicate P2 = Pdif by
P1 = Pcount produces an algorithm based on P1 = Pcount. The algorithm based
on P3 = Ppref0 is described at the end of the section.

3.1 An Algorithm Based on PDif (P2)

An early deciding/stopping consensus algorithm based on Pdif is described in
Fig. 3. The variable r denotes the current round number, whose progress is auto-
matically ensured by the underlying system (synchrony assumption of the dis-
tributed computing model). When the consensus algorithm starts (round 1),
each process locally invokes the operation propose(vi) where vi is the value it
proposes to the consensus instance. If it does not crash before, it terminates
when it executes the statement return(v) where v is the value it decides.

Local variables. A process pi manages three local variables.

– esti is pi’s current estimate of the decided value. It is initialized to vi.
– nbi[r] is the number of processes from which pi received messages during

round r. By assumption nbi[0] = n. As crashes are stable, reci can only
decrease. It follows that the predicate reci[r − 1] = reci[r] can be replaced by
nbi[r − 1] = nbi[r].

– earlyi is a Boolean initialized to false. It is set to true when pi discovers
that it can early decide at the next round.

Local algorithm. During a round r, a process pi first broadcasts a message carry-
ing its current estimate esti and the Boolean earlyi (line 4). If earlyi = true, pi

early decides by executing the statement return(esti) which stops its execution
(line 4). Let us notice that if pi decides at round r, at each round r′ ≤ r, it
broadcasts the smallest value it has seen up to round r′.

If pi does not decide, it checks if another process early decides (line 5) during
this round, and updates esti according to the estimates received during the
current round (line 6). Then, if its early deciding/stopping predicate is true, or
if it learns another process early decides, it sets earlyi to true (line 8). Finally,
if r < t + 1, pi proceeds to the next round. Otherwise, it returns its current
estimate value.

The proof of the Termination property follows directly from the synchrony
assumption provided by the computing model. The proof of the Validity prop-
erty follows from the observation that the esti local variables can only contain
proposed values (lines 1 and 6). The proof of the Agreement property is given
in [19]. Let us notice that, in the executions where no process decides at line 4,
the algorithm boils down to the very classical synchronous consensus algorithm
described and proved in several textbooks (e.g., [17,19,20]). We prove in the
following only the early decision property.
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Fig. 3. Pdif -based early deciding/stopping synchronous consensus (code for pi, t < n)

Theorem 1. When considering the Pdif-based early deciding/stopping synchro-
nous consensus algorithm, no process executes more than min(f +2, t+1) rounds.

Proof. The (t+1) bound follows directly from the predicate of line 9. So let us
assume that a process pi decides at line 4 of a round d. There are two cases.

– There is a process pi that decides at line 4 of round d ≤ f + 1. Hence,
it previously broadcast the message est(esti, earlyi) at line 3, and all non-
crashed processes receive this message during round d. Let pj be any of them.
If pj does not early decide during round d, it sets earlyj to true during
round d (lines 5 and 8). It follows that, if it does not crash, it will decide
during the next round d + 1 ≤ f + 2.

– No process decides at line 4 of a round d ≤ f + 1. Let pi be any process that
executes round f + 1. As it did not decide by the end of the round f + 1, we
have nbi[r − 1] �= nbi[r] at any round r, 1 ≤ r ≤ f . As there are exactly f
crashes, this means that we necessarily have nbi[0] = n, nbi[1] = n − 1, ...,
nbi[f − 1] = n− (f − 1), and nbi[f ] = n− f (there is one crash per round and
the process that crashed did not send a message to pi). Moreover, as there
are f crashes, we have nbi[f + 1] = n − f . It follows that nbi[f ] = nbi[f + 1]
at round f + 1, and pi sets earlyi to true at line 8. Hence, pi (which is any
process that executes the rounds f + 1 and f + 2) early decides at line 4 of
round d ≤ f + 2, which concludes the proof.

�Theorem 1

3.2 An Algorithm Based on PCount (P1)

Let us remark that faultyi[r] = n − nbi[r]. An algorithm based on Pcount can be
easily obtained from Fig. 3 by replacing at line 8 the predicate (nbi[r−1] = nbi[r])
by the predicate Pcount[i, r] ≡ (n − nbi[r] < r). The correctness proof and the
bounds on the decision times of process can be proven similarly as before.
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Theorem 2. When considering the Pcount-based early deciding/stopping syn-
chronous consensus algorithm, no process executes more than min(f + 2, t + 1)
rounds.

3.3 An Algorithm Based on PPref0 (P3)

Figure 3 contains the early deciding/stopping consensus algorithm based on
Ppref0, introduced in [3]. The processes proceed in a sequence of synchronous
rounds (the variable r denotes the current round). As before, when the consen-
sus starts, all processes simultaneously invoke the operation propose with the
values they propose to the consensus instance.

Local variables. Each process pi uses the following local variables.

– valsi: set of values pi is aware of. The set it is initialized to {vi} as, at the
beginning of the execution, pi knows its input only.

– Gi: directed graph containing pi’s view in the current round, namely, the
chain of messages that has been sent to pi so far. Initially, it has a single
node 〈i, 0〉 denoting that pi is not aware of any message before round 1. This
graph is formally defined below. V (Gi) denotes the vertices of Gi, and E(Gi)
denotes its edges.

– knew 0i: Boolean indicating if pi knows there was a zero in the previous round,
namely, valsi contained a zero by the end of the previous round.

– correct 0i: Boolean indicating if the predicate ∃ correct 0(i, r) is satisfied in
the current round r.

– revealedi: Boolean indicating if the predicate ∃ revealed 0(i, r) is satisfied in
the current round r.

– earlyi: Boolean indicating if pi discovers that it can decide at the next round.

Local algorithm. At the beginning of every round, pi first broadcasts its set of
known values, valsi, together with its view graph, Gi (i.e. it communicates all it
knows so far) and then checks if it can decide early, namely, earlyi = true. If so,
it simply decides 0, otherwise, it updates its local variables, lines 5–9, in order
to test the predicate Ppref0[i, r] ≡ ∃ correct 0(i, r) ∨ ∃ revealed(i, r), lines 10–14.

Before receiving the messages sent to it in the current round, pi sets knew 0i

to true if, at the end of the previous round, pi was aware that there was a
zero in the system, line 5. Then, pi updates its set of known values valsi, line 6,
and records in n 0i and n fi the number of messages from the current round
containing a zero and the number of processes it does not receive a message
from in the current round, lines 7 and 8.

To explain how pi updates its view graph Gi, let us consider the communi-
cation graph Gc of an execution of a full-information algorithm. Intuitively, the
communication graph Gc is the directed graph that represents how communica-
tion and failures occur in a given execution. Formally, each vertex of the graph
has the form 〈i, r〉, representing pi at the beginning of round r + 1 (hence the
vertex also represents pi at the end of round r), and there is a directed edge
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Fig. 4. Local views of the communication graph of the execution from Fig. 2

(〈j, r〉, 〈i, r + 1〉) if process pj sends a message to pi in round r + 1. The view
of pi at the end of round r, denoted Gc(i, r), is the subgraph of Gc containing
every directed path that ends at 〈i, r〉. Notice that Gc(i, r) contains all Lamport
message chains from all processes in previous rounds to pi at round r. Roughly
speaking, Gc(i, r) contains the maximal amount of information pi has (directly
or indirectly) heard of up to round r. Figure 4 provides, as an illustration, the
views of processes of the communication graph, computed for the execution of
Fig. 2.

In the algorithm, pi computes its view graph inductively as rounds go by. The
main invariant in this construction is that at the beginning of round r, the local
variable Gi is equal to Gc(i, r − 1) (which holds for r = 1 by the initialization
of Gi). Then, at the end of round r, Gi is equal to Gc(i, r) because, in line 9, pi

adds to Gi the edges due to (a) the messages it receives in round r, and (b) the
view graphs of round r − 1 carried by those messages.

Once pi handles all messages and updates its local variables, it verifies if
Ppref0[i, r] is satisfied by separately testing the sub-predicates ∃ correct 0(i, r)
and ∃ revealed 0(i, r), lines 10 and 11.

If the condition in line 10 is true, there are two not necessarily mutually
exclusive subcases. If knew 0i = true, then pi knew there was a zero at the end
of the previous round, hence, in the current round, it broadcasts that zero to
all correct processes. And if t − n fi ≤ n 0i, then at least t − n fi + 1 processes
know there is a zero at the current round (where the +1 is because pi itself knows
there is a zero), from which follows that at least one correct process knows there
is a zero, since at most another t − n fi processes can crash. In both cases,
∃ correct 0(i, r) is satisfied, hence correct 0i is set accordingly.

To test if ∃ revealed 0(i, r) is satisfied, line 11, pi directly verifies on Gi if a
round is revealed to pi: for some r′ ≤ r, for each pj , either (a) there is a chain
of messages from 〈j, r′〉 (pj at the beginning of round r′ + 1) to 〈i, r〉 (pi at
the end of round r), i.e. 〈j, r′〉 ∈ V (Gi), or (b) there is a 〈�, r′〉 ∈ V (Gi) with
(〈j, r′ −1〉, 〈�, r′〉) /∈ E(Gi) (i.e. p� did not receive a message from pj in round r′).
If so, the round r′ + 1 is revealed to pi, and thus ∃ revealed 0(i, r) is satisfied.
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Fig. 5. Ppref0-based early deciding/stopping synchronous consensus (code for pi, t < n)

Finally, pi verifies if it can decide. If correct 0i = true, then all correct
processes know there is a zero and hence pi can safely decide 0, line 12. If
revealedi = true ∧ 0 /∈ valsi, then a round has been revealed to pi and there is
no zero in the system (as 0 /∈ valsi), hence it is safe for pi to decide 1, line 13.
However, if revealedi = true ∧ 0 ∈ valsi, then there might be a correct process
that knows a zero (but pi does not know that fact as correct 0i = false), hence
it cannot decide 1 but sets earlyi to true, indicating that it can decide at the
very next round. Observe that after pi broadcasts its message in the next round,
∃ correct 0(i, r) is satisfied as it knew there was a zero and consequently sent its
message to everyone, and thus it decides 0 in line 4.

The correctness proof of the algorithm is shown in [3]. The validity and
termination properties are easy to prove. For agreement, the main observation
is that the only way a process decides on 1 is if it is sure that no process ever
will know there is a 0 (as it knows there is no 0 and a round has been revealed
to it), hence no process will ever decide 0.

The decision time bound in the following theorem follows directly from The-
orem 1 above and Theorem 4 in the next section comparing the predicates and
showing that at any time that Pdif [i, r] is satisfied, Ppref0[i, r] is satisfied as well.
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Theorem 3. When considering the Ppref0-based early deciding/stopping syn-
chronous consensus algorithm, no process executes more than min(f + 2, t + 1)
rounds.

4 Comparing the Predicates

While the three predicates presented above ensure that the processes decide in
at most min(f + 2, t + 1) rounds in the worst cases, is one predicate better than
the other?

We show here that, in a precise sense, P3 = Ppref0 is the strongest predicate for
early deciding/stopping binary consensus, and P2 = Pdif is strictly stronger than
P1 = Pcount, resulting in the above mentioned strict hierarchy in the sequence
P1, P2, P3.

Theorem 4. Consider the predicates Pcount[i, r], Pdif [i, r] and Ppref0[i, r].

(a) Given an execution, let r be the first round at which Pdif [i, r] is satisfied. We
have Pcount[i, r] ⇒ Pdif [i, r].

(b) Given an execution, let r be the first round at which Ppref0[i, r] is satisfied.
We have Pdif [i, r] ⇒ Ppred0[i, r].

(c) There are executions in which ¬(
Pdif [i, r] ⇒ Pcount[i, r]

)
, where r is the first

round at which Pdif [i, r] is satisfied.
(d) There are executions in which ¬(

Ppref0[i, r] ⇒ Pdif [i, r]
)
, where r is the first

round at which Ppref0[i, r] is satisfied.

Proof. Each case is handled separately.
Proof of item (a).As r is the first round during which Pcount[i, r] ≡ (n−nbi[r] < r)
is satisfied, Pcount[i, r − 1] is false, i.e., n − nbi[r − 1] ≥ r − 1. It follows from these
inequalities that (n − nbi[r]) − (n − nbi[r − 1]) < r − (r − 1) = 1. Combined with
the fact that nbi[r] ≥ nbi[r], we obtain nbi[r]−nbi[r −1] = 0 which concludes the
proof of item (a).

Proof of item (b). Since Pdif [i, r] is satisfied, we have that nbi[r − 1] = nbi[r].
Therefore, in round r, pi receives a message from any process pj that sends a
message to pi in round r−1. Moreover, pi knows for sure that all other processes
crash before round r simply because it does not get any message from them in
round r − 1. We conclude that round r is revealed to pi, from which follows that
Ppref0[i, r] is satisfied (as ∃ revealed(i, r) is true).

Proof of item (c). The proof follows from a counter-example. Consider a run
in which 2 ≤ x ≤ t processes have crashed before taking any step, and
then no other process crashes. The predicate Pcount[i, r] ≡ (n − nbi[r] < r)
becomes true for the first time at round x + 1. Let us now look at the predicate
Pdif [i, r] ≡ (nbi[r − 1] = nbi[r]). We have, nbi[1] = nbi[2] = n − x. Consequently,
Pdif [i, 2] is satisfied. As x ≥ 2, it follows that ¬Pcount[i, 2] ∧ Pdif [i, 2], which con-
cludes the proof.
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Proof of item (d). Consider any execution in which (1) all processes start with
input 0, (2) pn crashes without communicating its input to any process, and
(3) all other processes are correct. Then, for every process pi, 1 ≤ i ≤ n − 1,
∃ revealed(i, 1) is true, as pi starts with 0 and communicates it to every one.
Thus, Ppref0[i, 1] is satisfied. In contrast, Pdif [i, r] is not satisfied because pi does
not receive a message from pn, and hence nbi[0] = n∧nbi[1] = n−1. �Theorem 4

Operational view. The fact that Pdif [i, r] is better than Pcount[i, r] comes from
the following. The predicate Pcount[i, r] ≡ (n − nbi[r] < r) considers the number
of crashes since the beginning, while Pdif [i, r] considers the failure pattern in a
finer way: it is a differential predicate based on the number of crashes perceived
by a process pi between each pair of consecutive rounds. Similarly, Ppref0[i, r]
is better than Pdif [i, r] because of the following two things: (a) each process
decides on 0 as soon as possible without considering failures (as in the execution
explained in the proof of Theorem 4(d)); and (b) processes detect rounds in
which no information is hidden by looking at “how information flowed in the
past” (like in the execution described in Sect. 2.3) and not only looking at the
current round.

It is interesting to notice that with Pdif [i, r] (a) if no process crashes, the
processes decide in two rounds, and (b) if the crashes occur before the exe-
cution, the correct processes decide in three rounds. In the failure pattern (b),
Pcount[i, r] does not allow to decide before round (f+2). Similarly, with Ppref0[i, r],
any correct process starting with 0 decides at the end of round 1, while there
are executions in which such a process would decide in round f + 2 (or, in the
worst case, in round t + 1) with Pdif [i, r].

On the unbeatability of Ppref0. As already mentioned, Ppref0 is unbeatable in
the sense that it cannot be strictly improved. Thus, there might be predicates
that improve the decision time of a process in a given execution but the decision
time of a (possibly different) process in a (possibly different) execution is strictly
worse. An example of such a predicate is Ppref1 where the roles of 0 and 1 are
exchanged. Thus, the aim of the predicate is to decide on 1 as soon as possible
(to adapt the algorithm in Fig. 5 to Ppref1, 0’s and 1’s are exchanged). Observe
that in executions in which all processes start with 0, Ppref0 is fast, regardless of
the failure pattern, while Ppref1 might need up to t + 1 rounds, and vice versa,
in executions in which all processes start with 1, Ppref1 is fast while Ppref0 might
be slow.

Interestingly, it is shown in [15] that there is no all case optimal predicate P
for consensus that is at least as fast as any predicate that allows to solve con-
sensus.

A similar result was observed for the non-blocking atomic commit problem
in synchronous systems ([8], see also Chap. 10 in [19]). According to its local
computation, each process votes yes or no. If all processes vote yes and there is
no failure, they all must commit their local computations. If one of them votes
no, they must abort their local computations. It is shown in [8] that there is no
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algorithm that, whatever the decision (abort or commit), is fast in all executions:
a fast algorithm for commit cannot be fast for abort, and vice versa.

5 Conclusion

This article explored the notion of early deciding/stopping for consensus, try-
ing to better understand the relationship between static and dynamic decisions.
Indeed, it turns out that dynamicity in early deciding/stopping can be based
on several properties of actual execution, namely, failure pattern, flow of infor-
mation, and input pattern. To compare existing solutions, we presented three
early deciding/stopping strategies as a sequence of predicates, respectively based
on (i) counting crashed processes, (ii) consecutive rounds message pattern, and
(iii) a finer analysis of the information flow in the execution.

On the pedagogical side, we advocate that having all algorithms presented
in the same framework eases understanding and comparison of early decid-
ing/stopping consensus algorithms, and pinpoints the subtle differences between
those strategies.

The question whether such an approach can be conducted on the k-set agree-
ment problem, the most natural extension of consensus where up to k different
values can be decided [5,21], remains an open question. The predicate given
in [4] is strictly better than any other predicate found in the literature but the
question of its unbeatability is still an open problem.
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Abstract. Shared objects are the means by which processes gather and
exchange information about the state of a distributed system. Objects
that disclose more information about the system are therefore more desir-
able. In this paper, we propose the schedule reconstruction (SR) problem
as a new metric for the disclosure power of shared memory objects. In
schedule reconstruction, processes take steps which are interleaved to
form a schedule; each process needs to be able to reconstruct the sched-
ule up to its last step. We show that objects can be ranked in a hierarchy
according to their ability to solve SR. In this hierarchy, stronger objects
can implement weaker objects via a SR-based universal construction. We
identify a connection between SR and consensus and prove that SR is at
least as hard as consensus. Perhaps surprisingly, we show that objects
that are powerful in solving consensus—such as compare-and-swap—are
not always powerful in their ability to solve SR.

1 Introduction

Programming a computing system in a centralized way is significantly more
powerful than doing so in a distributed way. The main difficulty of distributed
programming comes from the lack of knowledge that a process has about the
state of the other processes and the overall state of the system. The more infor-
mation a process has about the state of the system, the easier it is to write
an algorithm for that process to achieve a task in coordination with the other
processes. In a distributed system, this information can only be obtained by
processes from shared objects. So, intuitively, the more information an object
discloses about the rest of the system, the more appealing it is.

In this paper, we propose the schedule reconstruction (SR) problem as a new
metric for the disclosure power of shared objects. In order to solve SR, processes
in a shared memory system need to be able to accurately identify the interleaving
of steps (shared memory accesses) taken by all processes (the schedule). It is
easy to see why objects that can identify the schedule are desirable. Knowing
the schedule basically equates knowing the full system state and thus overcoming
the main difficulty of distributed programming, as mentioned above.

We associate a SR number with each object A, representing the maximum
number of processes of a system in which A can solve SR. Objects can thus be
organized in a hierarchy, with each level corresponding to a different SR number.
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There is a natural connection between disclosure power as measured by the
SR number and synchronization power as measured by the consensus number [2].
Intuitively, synchronization is a means of restricting the very large space of
executions of a concurrent algorithm, whereas SR is a way of identifying which
one of these possible executions actually occurred. At first glance, one would
expect that objects with a high reconstruction power (high SR number) should
also have a high synchronization power (high consensus number). We confirm
this intuition by showing that SR is at least as hard as consensus: the SR number
of an object is at most its consensus number.

Due to this connection between SR and consensus, intuition might also pre-
dict the inverse relationship to hold true: that objects with a high consensus
number should also possess a high SR number. Surprisingly, this is not always
the case, as we show in this paper. We prove that compare-and-swap, a very
powerful, even universal [2], synchronization primitive, is no more powerful than
simple read-write registers in terms of schedule reconstruction.

An object A’s position in the SR hierarchy also determines A’s power to
implement other objects. We show that in the SR hierarchy a stronger object
A is always able to implement a weaker object B, by providing a universal
construction based on SR objects. We also show that B is unable to implement
A in such a way that the implementation maintains the same disclosure power
as A. In other words, implementing a stronger object from a weaker one always
entails losing disclosure power.

2 Model and Problem Statement

2.1 Processes

We consider a set of n processes P = {P1, ..., Pn} that communicate through
shared memory using a set of memory access primitives. The processes are exe-
cuting an algorithm A, which consists of a sequence of shared memory accesses
and local steps. We assume local steps to be instantaneous and shared memory
steps to be atomic.

An execution of algorithm A by a set of processes P is modeled by a sched-
ule—a finite or infinite sequence of process identifiers which represents the inter-
leaving of steps taken by the processes. When describing a schedule, we ignore
local steps, so a schedule defines a global total order on the shared memory
accesses done by all processes participating in the execution.

2.2 Schedule Reconstruction Object

A schedule reconstruction object (or SR object) provides two methods, step

and reconstruct, neither of which takes any arguments. Basically, a call to
reconstruct by a process p returns the schedule up to the last step call by
p. The two methods need to satisfy the following conditions:
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– the execution of each call to step performs exactly one primitive shared mem-
ory access and any number of local steps.

– reconstruct may only be implemented using local steps and shared memory
accesses that do not modify the state of shared memory (such as reads).

– a call to reconstruct by process p returns the schedule as a mapping from
step numbers to process ids or an empty mapping if there are no step calls
by p preceding the reconstruct call.

We are interested in wait-free implementations of SR objects that correctly
reconstruct any possible schedule (any interleaving of step calls). We call any
such implementation a SR algorithm. A class C of objects solves n-process sched-
ule reconstruction if there exists an SR algorithm A that solves n-process sched-
ule reconstruction using any number of objects of class C and any number of
atomic registers. We define the schedule reconstruction number (or SR number)
of a class C to be the largest n for which C solves n-process schedule reconstruc-
tion. If no largest n exists, we say that the SR number of the class is infinite.

3 SR and Consensus

In this section, we establish a connection between SR and consensus: SR is at
least as hard as consensus.

Theorem 1. Any class C of objects that solves n-process SR also solves n-
process consensus.

Proof. Let A be an algorithm solving n-process SR using only objects of class
C and atomic registers. We use A to solve consensus. Each process writes its
proposed value in a single-writer, multi-reader register. Then, each processes calls
step once and then calls reconstruct. Thus, every process knows the schedule
and is able to decide on the value proposed by the process which was scheduled
first.

Corollary 1. The SR number of a class C is at most equal to its consensus
number.

4 The SR Hierarchy

We examine specific classes of objects according to their ability to solve SR. Due
to space limitations, we omit full proofs throughout this section and refer the
reader to the full version of the paper [1]. Proof sketches are provided.

4.1 Fetch-and-Increment

Fetch-and-increment objects have consensus number 2 [3] and thus have SR num-
ber at most 2 (Corollary 1). We now show that they have SR number exactly 2.
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Theorem 2. Fetch-and-increment has SR number 2.

Proof. Consider the following protocol for 2-process SR. The two processes share
a fetch-and-increment object which initially has value 0. A step call simply
invokes getAndIncrement and receives a (unique) ticket number, which it appends
the result to a local list of observations. A reconstruct call by p simply assigns to
p the steps corresponding to the tickets in p’s local observation list and assigns
to the other process the steps corresponding to the gaps in p’s observation list.

4.2 Compare-and-Swap: A Surprising Result

In this section, we show that the SR number of compare-and-swap (CAS) is 1.
We know that it is (trivially) at least 1, by the same argument used for atomic
registers. It remains to show that it is also at most 1.

Theorem 3. CAS has SR number at most 1.

Proof. We assume towards a contradiction that there exists some algorithm A
for 2-process SR using only CAS objects and registers and examine the first step
of A by each process. This first step cannot be a read, since reads do not modify
the observable state of the system and thus cannot be reconstructed. The first
step of a process p cannot be a register write either, because immediately after
a write p cannot establish whether its write was performed before or after the
other process’s step. Thus, the first step of both processes must be a CAS. Both
CAS’s must succeed, because a failed CAS does not modify the observable system
state. Moreover, both CAS’s must be executed on the same memory location,
otherwise they would commute. However, if two CAS’s succeed in some schedule
S, at least one of them will fail in a schedule S′ in which the order of the CAS’s
is reversed—making S′ not reconstructible by A, a contradiction.

4.3 Multiple Atomic Append: Every Level Is Populated

An append register is similar to a regular register, except that every write
appends its value to the current value of the register, instead of overwriting
it. A k-writer append register is an append register from which any number
of processes can read but to which only k processes can append. Interestingly,
append registers have been studied in a Byzantine setting as well [4].

Theorem 4. k-writer append registers have SR number s = k.

Proof. First, we show that s ≥ k. A SR algorithm for k processes using a shared
k-writer append register r is as follows. A step call appends the invoking process’s
id to r. A reconstruct call reads r and assigns step numbers to processes accord-
ing to the order of id’s in r. It remains to show that s < k + 1. Assume towards
a contradiction that there exists a SR algorithm for k + 1 processes using only
k-writer append registers and atomic read-write registers. We consider the first
step of the algorithm for each process. Similarly to the proof of Theorem 3,
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all processes must access append registers during their first step. Because there
are k + 1 processes but the append registers only support k writers, there must
exist two processes which do not write to the same append register for their first
step. Thus, their appends commute and are not reconstructible.

4.4 SWAP3: the Hierarchy is Infinite

We define a new primitive called SWAP3. SWAP3 takes three arguments a, b and c.
It atomically writes the value of b into c and the value of a into b.

Theorem 5. SWAP3 has SR number ∞.

Proof. We describe an algorithm that solves SR for any number of processes.
The processes maintain a shared linked list which encodes the schedule. A step

call prepares a new node with the invoking process’s id and appends it to the
head of the list (a single global step using SWAP3: atomically assign the head of
the list to point to the new node and the new node’s next field to the old value
of the head). Reconstructing the schedule is done by traversing the linked list
and assigning step numbers to processes in reverse order.

5 A SR-Based Universal Construction

In this section, we examine the relationships between the levels in the SR hier-
archy. We give two main results: a positive one—stronger objects can implement
weaker objects—and a negative one—weaker objects cannot implement stronger
objects in a way that preserves reconstructibility.

We begin with the positive result: in a system of n processes, given any object
A with SR number ≥ n and any deterministic object B, A implements B. By
definition of SR number, A can be used to implement SR objects in a system of n
processes. Furthermore, B can be implemented from SR objects in the following
way (full details in our paper [1]). The processes use an SR object to determine
the order in which their invocations take effect and then use this information to
simulate the execution on local copies of B.

We have just shown that in the SR hierarchy, as in the consensus hierarchy,
there exist objects that are universal. Given sufficiently many of them, any object
with a sequential specification can be implemented in a wait-free linearizable way.

We now turn to the negative result: in a system of n processes, given any
object A with SR number ≥ n and any object B with SR number < n, B
cannot 1-implement A. We say that A 1-implements B if A implements B and
the implementation performs at most one shared memory accesses per call to B’s
methods. Towards a contradiction, assume that B can 1-implement A in a system
of n processes. Since A has SR number ≥ n, there exists an implementation of a
SR object from A and atomic registers. By replacing A in this implementation
with its 1-implementation from B, we obtain a valid implementation of an SR
object from B, a contradiction of the fact that B’s SR number is less than n.
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Note that this negative result does not contradict the universality of objects
in the sense of consensus, which states that an object with consensus number
at least n can implement any object in a system of n or less processes. Our
negative result states that objects with lower SR number cannot 1-implement
objects with higher SR number. So, for instance, CAS has infinite consensus
number, so it can implement any object, but it has SR number 1, so it cannot
implement in a single step any object with SR number larger than 1 (e.g., fetch-
and-increment) in a system of 2 or more processes. In other words, no such object
can be implemented from CAS in such a way that the implementation has the
same SR number as the abstract object.

6 Conclusion

In this paper, we propose the schedule reconstruction problem and the SR num-
ber as a new measure for the disclosure power of objects in shared memory
systems. Objects can be organized in a dense hierarchy where strong objects
implement weaker objects via a universal construction based on SR. Further-
more, we identify a link between SR and consensus and show that SR is at least
as hard as consensus. Finally, we evaluate the SR number of well known objects
and show that universal consensus objects are not always universal SR objects.
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Abstract. This paper studies a fundamental dynamic clustering prob-
lem. The input is an online sequence of pairwise communication requests
between n nodes (e.g., tasks or virtual machines). Our goal is to mini-
mize the communication cost by partitioning the communicating nodes
into � clusters (e.g., physical servers) of size k (e.g., number of virtual
machine slots). We assume that if the communicating nodes are located
in the same cluster, the communication request costs 0; if the nodes are
located in different clusters, the request is served remotely using inter-
cluster communication, at cost 1. Additionally, we can migrate: a node
from one cluster to another at cost α ≥ 1.

We initiate the study of a stochastic problem variant where the com-
munication pattern follows a fixed distribution, set by an adversary.
Thus, the online algorithm needs to find a good tradeoff between ben-
efitting from quickly moving to a seemingly good configuration (of low
inter-cluster communication costs), and the risk of prematurely ending
up in a configuration which later turns out to be bad, entailing high
migration costs.

Our main technical contribution is a deterministic online algorithm
which is O(log n)-competitive with high probability (w.h.p.), for a spe-
cific but fundamental class of problems: namely on ring graphs.

1 Introduction

Modern distributed systems are often highly virtualized and feature unprece-
dented resource allocation flexibilities. For example, these flexibilities can be
exploited to improve resource utilization, making it possible to multiplex more
applications over the same shared physical infrastructure, reducing operational
costs and increasing profits. However, exploiting these resource allocation flex-
ibilities is non-trivial, especially since workloads and resource requirements are
time-varying.
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This paper studies a fundamental dynamic resource allocation problem
underlying many network-intensive distributed applications, e.g., batch process-
ing or streaming applications, or scale-out databases. To minimize the resource
footprint (in terms of bandwidth) of such applications as well as latency, we
want to collocate frequently communicating tasks or virtual machines on the
same physical server, saving communication across the network. The underly-
ing problem can be seen as a clustering problem [3]: nodes (the tasks or virtual
machines) need to be partitioned into different clusters (the physical servers),
minimizing inter-cluster communications.

The clustering problem is challenging as the detailed communication patterns
are often stochastic and the specific distribution unknown ahead of time. In other
words, a clustering algorithm must deal with uncertainties: although two nodes
may have communicated frequently in the past, it can turn out later that it is
better to collocate different node pairs. Accordingly, clustering decisions may
have to be reconsidered, which entails migrations.

Our Contributions. This paper initiates the study of a natural dynamic clus-
tering problem where communication patterns follow an unknown distribution,
chosen by an adversary: the distribution represents the worst-case for the given
online algorithm, and communication requests are drawn i.i.d. from this dis-
tribution. Our goal is to devise online algorithms which perform well against
an optimal offline algorithm which has perfect knowledge of the distribution.
Our main technical contribution is a deterministic online algorithm which, for a
special but fundamental request pattern family, namely the ring, achieves a com-
petitive ratio of O(log n), with high probability (w.h.p.), i.e., with probability
at least 1 − 1/nc, where n is the total number of nodes and c is a constant.

Novelty and Challenges. Our work presents an interesting new perspective
on several classic problems. For example, our problem is related to the fun-
damental statistical problem of guessing the most likely distribution (and its
parameters) from which a small set of samples is drawn. Indeed, one natural
strategy of the online algorithm could be to first simply sample requests, and
once a good estimation of the actual distribution emerges, directly move to the
optimal clustering configuration. However, as we will show in this paper, the
competitive ratio of this strategy can be very bad: the communication cost paid
by the online algorithm during sampling can be high. Accordingly, the online
algorithm is forced to eliminate distributions early on, i.e., it needs to migrate
to seemingly low-cost configurations. And here lies another difference to clas-
sic distribution learning problems: in our model, an online algorithm needs to
pay for changing configurations, i.e., when revising the “guessed distribution”.
In other words, our problem features an interesting combination of distribution
learning and efficient searching. It turns out that amortizing the migration costs
with the expected benefits (i.e., the reduced communication costs) at the new
configuration however is not easy. For example, if the request distribution is
uniform, i.e., if all clustering configurations have the same probability, the best



Competitive Clustering of Stochastic Communication Patterns on a Ring 233

Fig. 1. Example: Communication patterns drawn from a certain distribution (on the
left, represented as a communication graph) need to be learned and clustered. In this
example, we have � = 2 clusters of size k = 9. In the middle, a bad clustering is
shown: there are four inter-cluster edges (“before swap”). However, by swapping nodes
v7 and v16, all inter-cluster edges can be removed (on the right in the figure). Note
that different edges can have different frequencies, which however are not depicted in
this example.

strategy is not to move: the migration costs cannot be amortized. However, if the
distribution is “almost uniform”, migrations are required and “pay off”. Clearly,
distinguishing between uniform and almost uniform distributions is difficult from
an online perspective.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we introduce our formal model. In Sect. 3, we provide intuition about our prob-
lem and highlight the challenges. In Sect. 4, we present our deterministic online
algorithm, and we analyze it formally in Sect. 5. After reviewing related work in
Sect. 6, we conclude our contribution in Sect. 7.

2 Model

We consider the problem of partitioning n nodes V = {v1, v2, . . . , vn} into � clus-
ters of capacity k each. We assume that n = � ·k, i.e., nodes perfectly fit into the
available clusters, and there is no slack. We call a specific node-cluster assign-
ment a configuration c. We assume that the communication request is generated
from a fixed distribution D , chosen in a worst-case manner by the adversary.
The sequence of actual requests σ(D) = (σ1, σ2, ..., σT ), is sampled i.i.d. from
this distribution: the communication event at time t is a (directed) node pair
σt = (vi, vj). Alternatively, we represent the distribution D as a weighted graph
G = (V,E). For an edge (vi, vj) ∈ E(G), let the weight of the edge p(vi, vj)
denote the probability of a communication request from between vi and vj : each
edge e ∈ E has a certain probability p(e) and

∑
e∈E p(e) = 1. A request (i.e.,

edge in G) σt = (vi, vj) is called internal if vi and vj belong to the same clus-
ter at the current configuration (i.e., at the time of the request); otherwise, the
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request (edge) is called external. We will assume that the communication cost
of an external request is 1 and the cost of an internal request is 0.

Note that each configuration uniquely defines external edges that form a
“cut”, interconnecting � clusters in G. Therefore in the following, we will treat the
terms “configuration” and “cut” as synonyms and use them interchangeably; we
will refer to them by c. Moreover, we define the probability of a cut (or identically
a configuration) c as the sum of the probabilities of its external edges: p(c) =∑

e∈c p(e). We also note that there are many configurations which are symmetric,
i.e., they are equivalent up to cluster renaming. Accordingly, in the following,
we will only focus on the actually different (i.e., non-isomorphic) configurations.

To reduce external communication costs, an algorithm can change the cur-
rent configuration by using node swaps. Swapping a node pair costs 2α (two
node migrations of cost α each). Since the request probability of different con-
figurations/cuts differs, the goal of the algorithm will be to quickly guess and
move toward a good cut, a configuration that reduces its future cost. Figure 1
shows an example.

In particular, we are interested in the online problem variant : we assume that
the distribution D of the communication pattern (and hence the σ we observe
is generated from) is initially unknown to the online algorithm. Nevertheless,
we want the performance of an online clustering algorithm, ON, to be similar
to the one of a hypothetical offline algorithm, OFF, which knows the request
distribution as well as the number of requests σ, henceforth denoted by |σ|,
ahead of time. In particular, OFF can move before any request occurs or σ is
generated.

We aim to minimize the competitive ratio, the worst ratio of the online
algorithm cost divided by the offline algorithm cost (for a given distribution D
and the same starting configuration co):

ρ = max
σ(D)

ON(σ(D))
OFF(σ(D))

Here, the cost ON(σ(D)) of any algorithm ON for a sequence σ(D) is the sum
of the overall communication costs and the migration costs. We consider bounds
on ρ with high probability.

As a first step, we focus on partitioning problems where � = 2 and con-
sider fundamental ring communication patterns. That is, the communication
graph G is the cycle graph and the event space is defined over the edges
E = {(v1, v2), (v2, v3), . . . , (vn−1, vk), (vn, v1)}. Moreover, we assume configura-
tions that minimize the cut, that is nodes are partitioned according to contigu-
ous subsequences of the identifier space. Each cluster is (up to modulo) of the
form, {(vi, vi+1, . . . , vi+k−1}. This communication pattern is not only fundamen-
tal but also captures the aspects and inherent tradeoffs rendering the problem
non-trivial. In this model, an algorithm changes configurations using rotations
(either clockwise or counter-clockwise). See Fig. 2.
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3 The Challenge of Dynamic Clustering

In order to acquaint ourselves with the problem and understand the fundamen-
tal challenges involved in dynamic clustering, we first provide some examples
and discuss naive strategies. Let us consider an example with n = 2k nodes
divided into � = 2 clusters of size k. There are k possible configurations/cuts:
{c0, c1, . . . , ck−1}. At one end of the algorithmic spectrum lies a lazy algorithm
which never moves, let’s call it LAZY. At the other end of the spectrum lies
a very proactive algorithm which greedily moves to the configuration which so
far received the least external requests, let’s call it GREEDY. Both LAZY and
GREEDY are doomed to fail, i.e., they have a large competitive ratio: LAZY
fails under a request distribution where the initial external cut has probability
1, i.e., p(c0) = 1 and for any i > 0, p(ci) = 0: LAZY pays for all requests,
while after a simple node swap all communication costs would be 0. GREEDY
fails in uniform distributions, i.e., if p(ci) = 1/k for all i: the best configuration
is continuously changing, and in particular, the best cut is likely to be at dis-
tance Ω(k) from the initial configuration c0: GREEDY quickly occurs migration
costs in the order of Ω(α · k), while staying at the same location would cost 1/k
per request. Thus, the competitive ratios grow super-linearly in the number of
requests and in the number of nodes.

Another intuitive strategy could be to wait in the initial configuration c0
for some time, simply observing and sampling the actual distribution, until a
“sufficiently accurate” estimation of the distribution is obtained. Then, we move
directly to the (hopefully) optimal configuration. Thus, the problem boils down
to the classic statistical problem of estimating the distribution (and its para-
meters) from samples. However, it is easy to see that waiting for the optimal
distribution to emerge is costly. Imagine for example a scenario where the initial
configuration/cut c0 has a high probability, and there are two additional cuts c1
and c2 which have almost the same low probability (for example polynomially
low probability). Clearly, waiting at c0 to learn whether c1 or c2 is better is not
only very costly, but it may also be pointless: even if the online algorithm ended
up at c1 although c2 was a little bit better, the resulting competitive ratio could
be still small.

Thus, the key challenge of our problem lies in its required joint optimization
of learning and searching : while learning the distribution, an efficient search
algorithm must be employed to minimize reconfiguration costs. In particular,
the following criteria need to be met:

1. Migrate early...: An online algorithm should migrate away from a suboptimal
configuration early, possibly long before the optimal configuration can be
guessed.

2. ... but not too early...: An online algorithm should avoid frequent migrations,
e.g., due to a wrong or poor estimate of the actual request distribution.

3. ... and locally: Especially if the length of σ is small (small number of requests),
it may not make sense to migrate to an optimal but faraway location, even if
the distribution is known: even OFF would not move there.
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Fig. 2. Weighted ring communication pattern: frequently used edges (in bold) should
not be part of the cut. The cut can be changed using rotations: in the figure, a counter-
clockwise rotation leads from the middle to the right configuration.

4 Deterministic and Competitive Clustering

With these intuitions and challenges in mind, we present our solution. Let us
first start with the offline algorithm. It is easy to see that OFF, knowing the
distribution as well as the number of requests, only moves once in time (i.e., one
move consisting of multiple migrations or node swaps): namely in the beginning
and to the configuration providing an optimal cost-benefit tradeoff. Concretely,
OFF computes for each configuration ci, its expected cost-benefit tradeoff: the
communication cost of configuration ci is |σ|·p(ci) and the cost of moving there is
2α ·d(c0, ci), where d(·, ·) is the rotation distance between the two configurations
(the smallest number of rotation moves to reach the other configuration). Thus,
OFF will move to cOFF := arg minci

p(ci) + (2α · d(c0, ci))/|σ| (note that this
configuration is not necessarily unique). In the following, we will use the short
form di = d(c0, ci) to denote distances relative to c0, the initial configuration.

The online algorithm is more interesting. The competitive and deterministic
online algorithm presented in this paper relies on three key ideas:
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– Eliminating bad configurations: We define conditions for configurations which,
if met, allow us to eliminate the corresponding configurations once and for
all. In particular, we will guarantee (w.h.p.) that an online algorithm be
competitive (even) if it never moves back to such a configuration anymore
in the future. In other words, our online algorithm will only move between
configurations for which this condition is not true yet.

– Local migrations and growing-radius search strategy: In order to avoid high
migration costs, our online algorithm is local in the sense that it only moves
to nearby cuts/configurations once the condition of the current configuration
is met and it needs to be eliminated. Concretely, our online algorithm is based
on a growing-radius search strategy: we only migrate to valid configurations
lying within the given radius. Only if no such configurations exist, the search
radius is increased.

– Amortization: The radius growth strategy alone is not sufficient to provide
the necessary amortization for being competitive. Two additions are required:
1. Directed search: An online algorithm may still incur a high migration cost

when frequently moving back-and-forth within a given radius, chasing the
next best configuration. Therefore, our proposed online algorithm first
moves in one direction only (clockwise), and then in the other direction,
bounding the number of times the c0 configuration is crossed.

2. Lazy expansion: Even once all configurations within this radius have been
eliminated, the online algorithm should not immediately move to config-
urations in the next larger interval. Rather, the algorithm waits until a
certain amount of requests have been accumulated, allowing to amortize
the migrations (an “insurance”).

With these high-level ideas in mind, we now describe the algorithm in detail
(cf. Algorithm 1). We consider a time t, and assume that the online algorithm
is at configuration ct. The algorithm maintains an array r[] where it counts, for
each possible configuration c0, . . . ck−1, the number of samples that hit an exter-
nal edge of the corresponding cut; in other words, r[] is used to estimate the
distribution of the communication pattern. Let E be the set of the eliminated
configurations, and let E be the complement of E : the set of configurations not
eliminated yet. R is the search radius, initially R = 1. Upon each request, σt,
we first increment the value of the corresponding configuration in the sampling
array r[] (only one configuration is affected by a given external request). We then
compare all configurations not eliminated yet to the “seemingly best configura-
tion”: the configuration which received the least (external) requests so far (i.e.,
arg minci

r[ci]). Let rmin := minci
r[ci] be the minimum value. We now eliminate

any configuration cj for which the condition Cond(r[cj ], rmin) is fulfilled: cj is
too far from the optimum. Concretely, w.l.o.g. assume that r[cj ] > r[ci] and let
γ = r[ci]/r[cj ] < 1. Then for ε > 0 (a parameter for the error probability), we
use the following condition:

Cond(j, i) :=

⎧
⎨

⎩

True r[cj ] ≥ ln( 1
ε )

ln( 2
1+γ )−( 1−γ

2 )
False otherwise

(1)
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If on this occasion, we eliminated our own current configuration c(t), we then
have to decide where we want to move next, using the function next(E ) (unless
all configurations have been eliminated). The distance from the suggested next
configuration cnext to c0 (the initial configuration) may be greater than the
current radius R, in which case we double R until R ≥ dnext. However, before
moving, we also test whether min{dcnext<R}(r[cnext]) ≥ α · R. Only if this is
fulfilled, we can move to the new configuration cnext; otherwise, we lazily stay
on the current configuration.

Algorithm 1. Online Algorithm ON (upon receiving request σ(t) and current
configuration c(t))
Initialize: r := [0; ..; 0], E := {}, E := [− k

2
, k
2
], R := 1 ε := 1

n2

1: cj = c(σ(t)) (* configuration to which σ(t) is external *)
2: r[cj ] + +
3: rmin := min{r[i] | i ∈ [|1, k|]}
4: if cj ∈ E then
5: if Cond(r[cj ], rmin) then
6: remove cj from E
7: add cj to E
8: end if
9: end if

10: if c(t) ∈ E then
11: cnext := The next configuration ci ∈ E on the searching path
12: while dnext > R do
13: R = 2R
14: end while
15: if r[c(t)] ≥ α · dnext then
16: move from c(t) to cnext

17: c(t) := cnext

18: end if
19: end if

Let us now elaborate more on the moving strategy. Before going into the
details however, let us note that for ease of presentation, we will use two different
but equivalent numbering schemes to refer to configurations: depending on what
is more useful in the current context. In particular, while when talking about the
number of requests, r[], we often enumerate configurations globally, 0, 1, 2, . . . , k.
When discussing moving strategies, we often enumerate configurations relative
to c0, i.e., −1, 1,−2, 2, . . . , ck/2, depending on whether they are located clock-
or counter-clock wise from c0.

Given this remark, let us consider a simple migration strategy: we could
always move to the closest not eliminated configuration next. However, we can
show that this strategy is flawed. To see this, consider the following distribution:
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∀i ∈ [1;
k

2
] : p(ci) =

1
ki

, p(c0) =

⎛

⎝1 −
∑

i∈[1; k
2 ]

p(ci)

⎞

⎠ ,

∀i ∈ [−k

2
,−1] : p(ci) = 0

In such a situation, we have to move away from the configuration c0 as soon
as possible: we pay a cost close to 1 on this configuration, for each request.
In particular, we cannot wait until we even observe the first request on c1: we
would incur high communication costs. Now, however, the algorithm may move
in the wrong direction: e.g., to c1, and then to the closer configuration not
eliminated, c2. Thus, eventually all configurations in [c0, ck/2] may be visited
before reaching the minimal configurations.

This is reminiscent of classic line searching [12] type problems like “the
goat searches the hole in the fence”-escape problems: moving in one direc-
tion only, the goat may risk missing a nearby hole in the other direction.
That is, moving greedily in one direction is Ω(F ) competitive only, where F
is the circumference of the fence, which in our case means that the compet-
itive ratio is Ω(k). Accordingly, some combination of search-left and search-
right is required. Our search radius R is centered around c0 at any time dur-
ing the execution of the algorithm, and we always first explore all remaining
non-eliminated configurations in one direction, and then explore the remaining
configurations in the other direction. In other words, starting from c0, we alter-
nate the search between the positive and negative configurations following the
sequence: (1,−1, 2, 3,−2,−3, . . . , 22i−2 + 1, . . . , 22i,−22i−1 − 1, . . . ,−22i+1, . . .).
Thus, configuration c0 is crossed only a constant number of times per given
radius R. We call this sequence the searching path.

Given a moving strategy, we next note that we should not move too fast: we
introduce a second condition for when it is safe to move. When in a configuration
22i and before we want to explore configurations in [−22i+1,−22i−1], we wait in
the configuration cmin between configurations −22i−1 and 22i, until this configu-
ration fulfills r[cmin] ≥ α · 22i+1. Similarly, when moving from the configuration
−22i+1 to explore the configurations in [22i, 22i+2], we will wait at cmin between
[−22i+1, 22i], until r[cmin] ≥ α · 22i+2.

5 Analysis

We first make some general observations on our elimination condition. Subse-
quently, we will present a cost-breakdown which will be helpful to analyze the
competitive ratio of ON : we will show that each cost component is competitive
with respect to the optimal offline algorithm.

The following lemma provides an intuition of our algorithm and its condition.

Lemma 1. Let ε > 0, then if Cond(j, i) = True,

Pr (p(cj) > p(ci)) ≥ 1 − ε
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Proof. We first prove the following helper claim.

Claim. Assume ci and cj occur with the same (unknown) probability, let b > a
and assume w.l.o.g. that r[cj ] > r[ci], then,

Pr
(
r[ci] ≤ a and r[cj ] ≥ b | p(ci) = p(cj)

)
≤ Pr

(
r[cj ] ≥ (1 + δ)X

)
≤
(

eδ

(1 + δ)1+δ

)X

where δ = b−a
b+a and X = b

1+δ = b+a
2

Proof. The proof idea is to consider two probabilities using known Chernoff
Bounds [16]:

P1[δi] := Pr(r[ci] ≤ (1 − δi)E[r[ci]]) ≤
(

e−δi

(1 − δi)1−δi

)E[r[ci]]

(2)

and

P2[δj ] := Pr(r[cj ] ≥ (1 + δj)E[r[cj ]]) ≤
(

eδj

(1 + δj)1+δj

)E[r[cj ]]

(3)

The two events are not independent, but we can bound the probability that
both events occur by the maximum of the two probabilities when we assume
p(cj) = p(ci) and E[r[cj ]] = E[r[ci]] = (a + b)/2 = X. In this case, we have
that δ = (b − a)/(b + a). We now want to bound the maximum of these two
probabilities. Towards this objective, we study which one of our bounds is greater
and bound the maximum of the probability by the maximum of the bounds. Let
B1[δ] (resp B2[δ]) the bound on P1[δ] (resp. P2[δ]).

B1[δ] =
(

e−δ

(1 − δ)1−δ

)X

B2[δ] =
(

eδ

(1 + δ)1+δ

)X

To determine which one is greater than the other, we now study the function:

F (δ) =
B1[δ]
B2[δ]

=
(

e−2δ (1 + δ)1+δ

(1 − δ)1−δ

)X

We obtain that ∀δ ≥ 0 F (δ) ≤ 1, so Pr
(
r[ci] = a and r[cj ] = b | p(ci) =

p(cj)
)

≤ B2[δ] =
(

eδ

(1+δ)1+δ

)X

.

We can now prove Lemma 1. Specifically, we want to prove that
Pr (Cond(j, i) | p(cj) ≤ p(ci)) ≤ ε. First note that for x ≤ y:

Pr (Cond(j, i) | p(cj) = x, p(ci) = y) ≤ Pr (Cond(j, i) | p(cj) = y, p(ci) = y)
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Next we bound Pr (Cond(j, i) | p(cj) = p(ci)) using Claim 5.

Pr (Cond(j, i) | p(cj) = p(ci)) ≤ Pr (r[cj ] ≥ (1 + δ)X) = P2

P2 ≤
(

eδ

(1 + δ)1+δ

) r[cj ]
1+δ

We want that P2 ≤ ε:

(
eδ

(1 + δ)1+δ

) r[cj ]
1+δ

≤ ε ⇐⇒
(

e
δ

1+δ

(1 + δ)

)r[cj ]

≤ ε ⇐⇒
(

δ

1 + δ
− ln(1 + δ)

)

r[cj ] ≤ ln(ε) ⇐⇒

r[cj ] ≥ ln(ε)
(

δ
1+δ − ln(1 + δ)

) ⇐⇒ r[cj ] ≥ ln(1ε )
ln(1 + δ) − ( δ

1+δ )

Now let γ = r[ci]
r[cj ]

< 1, so δ = 1−γ
1+γ , and we have:

r[cj ] ≥ ln(1ε )

ln
(
1 + 1−γ

1+γ

)
−

(
1−γ
1+γ

1+ 1−γ
1+γ

) ⇐⇒ r[cj ] ≥ ln(1ε )

ln
(

2
1+γ

)
−

(
1−γ
1+γ
2

1+γ

)

⇐⇒ r[cj ] ≥ ln(1ε )

ln
(

2
1+γ

)
− (

1−γ
2

)

which concludes the proof of the lemma. �	

5.1 A Cost Breakdown

It is convenient to break down the algorithm costs into different components. In
case of OFF, the situation is fairly easy: OFF simply incurs a migration cost,
henceforth denoted by Offmig, of Offmig = 2α · dOFF to move to the optimal
location cOFF , where dOFF is the rotation distance between c0 and cOFF , plus
an expected communication cost Offcomm of |σ| · p(cOFF ).

In case of ON, the situation is more complicated. In particular, while we do
not distinguish between different migration costs for ON either, we consider three
types of communication costs for ON : Onelim is the elimination cost, i.e., the
total communication cost incurred while ON is waiting on every configuration
that has not been eliminated yet, until the condition Cond(j, i) is fulfilled for the
current configuration. Onins is the “insurance” cost paid by ON when waiting
in an already eliminated configuration, until being allowed to actually move
beyond the current radius to a non-eliminated configuration. Finally, Onfinal is
the communication cost paid by ON once it reached its final configuration and
all other configurations have been eliminated. (Note that the cost incurred at
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the final configuration while there are still other, non-eliminated configurations,
is counted toward elimination costs).

The total communication cost Oncomm is the sum of these three costs. In
the following, we will prove that all these cost components are competitive com-
pared to OFF ’s overall costs, from which the bound on the competitive ratio is
obtained.

5.2 Competitive Ratio

We now prove that our online algorithm ON performs well with high probability
(w.h.p.). That is, we derive a competitive ratio of O(log k) which holds with
probability at least 1 − 1/nc for some constant c.

Theorem 1. The competitive ratio achieved by ON is ρ ∈ O(log n) with high
probability.

The remainder of this section is devoted to the proof of this theorem. In
particular, we will use our cost breakdown, and express the competitive ratio as
(where σ = σ(D)):

ρ = max
σ

(
On(σ)
Off(σ)

) = max
σ

(
Onmig(σ) + Onelim(σ) + Onins(σ) + Onfinal(σ)

Offcomm(σ) + Offmig(σ)

)

We will prove that each cost component in On is competitive to OFF ’s
overall cost, therefore resulting in an O(log n · Off(σ)) bound.

Elimination Costs. To calculate the elimination cost (the total cost resulting
from waiting at different configurations until Cond() holds for the current con-
figuration), we divide all configurations into two sets: configurations c for which
p(c) ≤ 20pmin and configurations c′ for which p(c′) > 20pmin. We consider the
elimination cost for these two sets in turn.

– All configurations c for which p(c) ≤ 20pmin. We will consider again two cases.
Let e[c] the cost of elimination on a position c (number of requests served until
the condition of elimination of c is fulfilled). Either e[c] ≤ 20 log n or e[c] >
20 log n. In the first case we can just say that the number of configuration we
have to eliminate is in O(Onmigr) and so

∑

e(ci)≤log n

e(ci) ≤ O(log n·Onmigr) =

O(log n · Off).
For the other case, where e(ci) > 20 · log n, we use the following claim:

Claim. Let Δ = [t1, t2] be a time interval. We note r[c](Δ) = r[c](t2) − r[c](t1),
where r[c](t) is the number of requests on the configuration c at the time t. Then:
If p(cj) ≤ 20p(ci) and r[cj ](Δ) ≥ 20 log n then w.h.p. r[cj ](Δ) ≤ 40r[ci](Δ).

Proof. First note that from the bound of Eq. (3) w.h.p. r[cj ](Δ) ≤ 2E[r[cj ](Δ)].
Similarly since E[r[ci]] ≥ 1

20E[r[cj ]] we have that w.h.p. r[ci](Δ) ≥
1
2E[r[ci](Δ)] ≥ 1

40E[r[cj ](Δ)]. So w.h.p. r[cj ](Δ) ≤ 40r[ci](Δ). �	
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From the above lemma and union bound over at most n states we get that w.h.p.
r[cj ](Δj) ≤ 40rcmin(Δj) for all such configurations, with Δj denoting the time
interval where we stayed on the configuration cj , and cj was not eliminated.

So
∑

e(ci)≤log n

e(ci) =
∑

e(ci)≤log n

r[ci](Δi) ≤
∑

e(ci)≤log n

20r[cmin](Δi)

≤ 20r[cmin]([0, |σ|]) = 20r[cmin] ≤ O(OFFcomm)

In conclusion as Onelim≤20 =
∑

e(ci)≤log n

e(ci)+
∑

e(ci)>log n

e(ci) we have w.h.p.:

Onelim≤20(σ)
Off(σ)

= O(1)

.

– All configurations c′ for which p(c′) > 20pmin. For this we claim:

Claim. If p(cj) ≥ 20p(ci) and r[cj ] ≥ 20 log n then w.h.p. r[cj ] > 5r[ci] and
Cond(j, i) is True for ε = 1

n2 .

Proof. Since r[cj ] ≥ 20 log n w.h.p. E[r[cj ]] ≤ 2r[cj ]. If r[ci] > 1
5r[cj ] then w.h.p.

E[r[ci]] > 1
10r[cj ], but this contradicts the assumption that E[r[ci]] ≤ 1

20E[r[cj ]].
So we have r[ci]

r[cj ]
≤ 1

5 and Cond(j, i) holds for ε = 1
n2 . �	

Now since the number of configurations On needs to eliminate is lower than
Onmig/α ≤ Onmig, the total cost On paid is O(Onmig · log n). But since
Onmig(σ)
Off(σ) = O(1) (as we show next) we have:

Onelim>20(σ)
Off(σ)

= O(log n)

To conclude Onelim = Onelim≤20 + Onelim>20, and: Onelim(σ)/Off(σ) =
O(log n).

Migration Cost. We distinguish two cases. Let cfar be the farthest configu-
ration reached by our online algorithm. Either dfar (the distance between cfar

and c0) is lower than dOFF , or it is greater than dOFF .

– In the first case, dOFF ≥ dfar, we can prove

Lemma 2. if dOFF ≥ dfar then Onmig ≤ 6 · Offmig(σ).

Proof. ∃x ∈ N 22x ≤ dfar < 22x+2. Then, in the worst case, we have to go to
22x+2. So

Onmig(σ) ≤
2x+1∑
i=0

3 · 2i · α ≤ 6 · 22x+1 · α ≤ 6dfarα ≤ 6 · dOFF · α ≤ 6 · Offmig(σ)

�	
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– If dOFF < dfar, then from Claim 5.2 with Δ = [0, |σ|] it follows that w.h.p.
r[cOFF ] ≥ Ω(α · dfar): Recall that in our algorithm (line 15) we only move
beyond the current radius if the corresponding costs have been amortized.
Hence Onmig ≤ Offcomm.

In conclusion, in both cases: Onmig(σ)/Off(σ) = O(1).

Insurance Costs. For the insurance cost we also consider several cases. Let cfar

be the farthest configuration reached by our online algorithm. Let cOFF denote
the location of the offline algorithm. We split Onins into two parts: Onins<far

and Onins=far. Onins<far is the insurance cost up to (not including) cfar while
Onins=far is the insurance cost paid on cfar. The last insurance cost, paid
before the last migration to cfar, is αdfar, so we have Onins<far ≤ O(Onmig) =
O(Off) (see the migration cost analysis).

The only possible problem is therefore Onins=far. Now we consider two cases:

– cOFF is in E (eliminated configuration). Since cOFF was eliminated before
cfar if follows from Claim 5.2 that w.h.p. r[cOFF ] > Ω(r[cfar]) so
Onins=far < O(Offcomm).

– cOFF is in E . In this case because of our searching path and the selection of
cnext, we have dOFF ≥ dnext/2. Therefore Onins=far ≤ O(Offmig).

Overall we have: Onins(σ)/Off(σ) = O(1).

Final Costs. By definition, in the final configuration, all other configurations
have been eliminated. Thus, our condition, Cond(j, i), has been fulfilled at some
point for any cj , with respect to some ci. The probability that we eliminate a
minimum configuration and end up at a suboptimal configuration is small. This
follows from Lemma 1, when setting ε := 1

n2 : once we stopped in a configura-
tion, it is, with high probability, a (not necessarily unique) minimal configura-
tion. Since OFF directly moves to a minimum configuration (which may not
be unique), ON cannot incur a higher cost than OFF on a specific minimum
configuration, i.e., not more than r[cmin]. As the offline algorithm moved from
the start to a configuration cOFF and r[cmin] is the configuration with the lowest
number of requests, r[cOFF ] ≥ r[cmin]. Thus, Onfinal(σ) ≤ Off(σ), and also
Onfinal(σ)/Off(σ) = O(1).

Overall Costs. In conclusion, with high probability:

ρ ≤ max
σ

(
Onmig(σ) + Onelim(σ) + Onins(σ) + Onfinal(σ)

Offcomm(σ) + Offmig(σ)

)

= O(log n)

6 Related Work

Our paper takes a novel perspective on a range of classic problems. First, clus-
tering and graph partitioning problems as well as repartitioning problems [21]
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have been studied for many years and in many contexts. These problems are
usually NP-complete and even hard to approximate [2]. Especially partitioning
problems for two clusters (� = 2 in our case), known as minimum bisection prob-
lems [9], have been studied intensively. Minimum bisection problems are known
to allow for good, O(log1.5 n)-factor approximations [13]. Problem variants with
k = 2 correspond to maximum matching problems, which are polynomial-time
solvable. In contrast to our work however, these models assume an offline per-
spective where the problem input is given ahead of time. In the online world, our
problem is related to page (resp. file) migration [4,6] and server migration [5]
problems: in these problems, a server needs to be migrated close to requests
occurring on a graph, trading off access and migration costs. In the former prob-
lem variant, migration costs relate to distance; in the latter, migration costs
relate to the available bandwidth along migration paths. Moreover, in our prob-
lem, a ski-rental resp. rent-or-buy like tradeoff between migration and communi-
cation costs needs to be found. However, migrations do not occur along a graph
but between clusters, and multiple nodes can be migrated simultaneously. The
large configuration space also renders solutions based on metrical task system
approaches [7] inefficient. Another interesting connection exists to k-server prob-
lems [11], where multiple servers can “collaboratively” serve requests. In some
sense, our problem can be seen as the opposite problem, where rather than aim-
ing to move servers to the locations where the requests occur, we aim to move
away and avoid configurations (i.e., cuts) where requests occur. More impor-
tantly, compared to classic online migration problems where requests define a
unique optimal location from which they can be served at minimal cost (namely
at the corresponding graph vertex), in our case, a request only reveals very lim-
ited information about the optimal (minimal cost) configuration. In other words,
a single request only contains very limited information about how good a current
clustering is, and how far (in terms of migrations) we are from an optimal offline
location.

Our model can be seen as a generalization of online paging [10,14,15,20,22],
and especially its variants with bypassing [1,8]. However, in general, in our model,
the “cache” is distributed : requests occur between nodes and not to nodes, and
costs can be saved by collocation.

Our problem also has connections to online packing problems, where items
of different sizes arriving over time need to be packed into a minimal number of
bins [18,19]. In contrast to these problems, however, in our case the objective is
not to minimize the number of bins but rather the number of “links” between
bins, given a fixed number of bins.

The paper closest to ours is [3] which studies online partitioning problems
from a deterministic perspective, i.e., σ is generated in a deterministic manner.
In this setting, it has been shown that the competitive ratio is inherently high,
at least linear in k, and even if the online algorithm is allowed to user larger
clusters than the offline algorithm (scenario with augmentation). We in this
paper initiate the study of stochastic models where request patterns are drawn
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from an unknown but fixed distribution, and show that polylogarithmic bounds
can be achieved under ring patterns, even without augmentation.

In general, we believe that a key conceptual contribution of our model itself
regards the underlying combination of learning and searching. Indeed, while
the fundamental problem of how to efficiently learn a distribution has been
explored for many decades [17], our perspective comes with an additional locality
requirement, namely that searching induces costs (i.e., migrations).

7 Conclusion

This paper initiated the study of a natural cluster learning problem where the
search procedure entails costs: communication costs occur in “suboptimal” clus-
tering configurations and migration costs occur when switching between con-
figurations. In particular, we presented an efficient online clustering algorithm
which performs well even if compared to an offline algorithm which knows the
distribution of the communication pattern ahead of time. Indeed, the O(log k)
competitive ratio is interesting as k is likely to be small in the applications con-
sidered in this paper: k corresponds to the number of virtual machines that can
be hosted on the same server, e.g., the number of cores. Moreover, we believe that
our online approach is interesting in practice as it does not rely on any assump-
tions on the communication distribution, which may turn out to be wrong.

We believe that our work sheds an interesting new light on multiple clas-
sic problems, and opens an interesting field for future research. In particular, it
would be interesting to know whether similar competitive ratios can be achieved
even for more general communication patterns. Moreover, so far we have only
focused on deterministic algorithms, and the exploration of randomized algo-
rithms constitutes another interesting avenue for future research.

References

1. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: An O(log k)-competitive
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Abstract. A fundamental challenge in unstructured peer-to-peer sys-
tems is how to identify rare resources. Actual solutions only base on local
information of peers or from their direct neighbors, which is not enough
to know if resources are rare or not. We propose a Resource Availability
Measurement for mobile P2P systems which considers knowledge from
all peers of the system. Preliminary simulation results show that our
estimation of availability is close to the real one.

Keywords: Mobile peer-to-peer · Availability · Rare resource ·
Replication · Clustering

1 Introduction

Peer-to-peer (P2P) systems are an alternative to traditional client/server systems:
every peer acts as both a client and a server for respectively asking and sharing
resources. P2P applications consist mainly of file-sharing like Gnutella [4], distrib-
uted computing and streaming. Mobile P2P systems, that consist of P2P systems
deployed over the devices composing a MANET, constitute an interesting envi-
ronment for sharing files in public spaces like airport lounges or temporary events
like music concerts. An object has a measurement of its availability in the P2P
system. It can be rare if it is less available compared to number of the peers in
the system. Identifying rare resources in P2P system is a fundamental challenge
because a peer is neither aware of the number of peers in the whole system nor
of their shared resources. The resource availability assessment can be efficiently
used in object search and in replication strategies to improve the network perfor-
mances. Some works on the replication [1] and hybrid search [2] have proposed
different methods to identify rare files but they only base on information local to
peers or from their direct neighbors, which is not enough to know if file are rare
or not. This paper proposes a Resource Availability Measurement for mobile P2P
systems, which considers knowledge from all peers of the system. Our estimated
availability is close to the real one. The remainder of the paper is organized as
follows. Section 2 describes our contribution. In the Sect. 3, we present our exper-
imental evaluation. Finally, Sect. 4 concludes the paper.
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2 Resource Availability Measurement

The file’s availability is the ratio of its total number of copies in the network
and the total number of peers in the network. We use a clustering method as
we need information from all peers of the network and there is no central entity
to keep information of all peers. Clustering is used to efficiently retrieve global
information. Each clusterhead (CH ) has global knowledge about its cluster and
keeps counters of the number of all cluster file copies and the number of peers
in the cluster which helps to give a more realistic estimation. We can use any
clustering method proposed in the literature as proposed in [3] to apply resource
availability calculation. We consider an unstructured MP2P system, each peer
indexes its own files and has no knowledge about the other shared files in the
network and their locations. Each joining peer must establish connections with
some neighbors and join a cluster.

2.1 Calculation of Resource Availability

In this section, we explain the collaboration between the CH s through hello
messages to calculate the global availability of a file. Each CH communicates
the information of its members to neighboring CH s. A CH aggregates its own
information with the received one to compute global-like availability but also
propagates the information to other CH s to cover the entire network. All the
calculations are done locally at each CH. Two main measurements, local file avail-
ability (LA) and Global file availability (GA), are estimated; they are updated
continuously based on local knowledge and received global knowledge.

Based on Local Knowledge: Each CH calculates for each file in the cluster
its LA based on the number of file copies (NC ) and the number of peers including
CH (NP) in the cluster as follows:

LA = NC/NP (1)

The total number of file copies in the network (TNC ) is set to NC and is updated
each time the number of file copies in the cluster is updated. Additionally, the
total number of peers of the network (TNP) is set to NP and updated when NP
is updated. Therefore, the global availability (GA) is set to local availability and
updated when LA is updated. If member peer shares a new file or deletes one,
it informs its clusterhead by piggybacking the file key of this file to the periodic
hello message. This leads the CH to update locally file key list of this member
peer, NC and TNC.

Based on Global Knowledge: Before any contact with other CH s, the global
availability is equal to the local availability because at this step, the computation
is only based on local information. However, since it is not enough to reflect the
real value, we consider information (files list and peers number) of other CH s.
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All the necessary information is piggybacked in hello messages. CH executes two
phases: initial phase and update phase. In the initial phase, Each new CH sends
to its neighbors NC of its local file key and NP. After that, the update phase
consists only to send the update information (add new file, delete file, etc.) to
avoid redundancy. Between two hello messages, a member peer may share new
file or delete file and a new peer may join a cluster or member peer may discon-
nect. A CH takes into consideration all these changes locally as explained above,
but also needs to inform its neighbors. All these changes are in cache and CH
sends them with a timestamp (i.e. Seq Num variable) in the next hello message.
Timestamp is used to determine the freshness of the information contained in
the hello message. When a CH receives a hello message from one of its CH
neighbors, it extracts the necessary information (Info1,..., Infoj ,..., Infom).
Each Infoj contains:

– IPaddressj : is the IP address of the source CH.
– Timestampj : is used to show the freshness of this information.
– Peer numberj : is equal to NP if the sender is in the initial phase. During the

update phase, Peer numberj may take a positive value, meaning that new
peer member has joined the cluster or a negative value, meaning that a peer
member is disconnected.

– (file key1j = val1j ,..., file keyij = valij ,..., file keynj = valnj): if a CH is
in initial phase, file keyij is key of a cluster local file and valij equals its NC.
During the update phase, file keyij may be the key of a new shared file or
of a deleted file and valij can take a positive value if a new file is shared and
a negative value if a file is deleted.

The CH checks the freshness of each Infoj by comparing its timestamp to
the last timestamp. If the information is not up-to-date, the CH ignores it.
Otherwise, the CH applies the following modifications:

TNP = TNP +
m∑

j=1

Peer numberj (2)

For each file keyi:

TNC =

{
TNC +

∑m
j=1 valij if file keyi exists in Index2∑m

j=1 valij else
(3)

Where Index2 is structure that contains file key, NC, TNC, LA, GA of each file.
Then, GA is updated as follows :

GA = TNC/TNP (4)

Figure 1 shows a simple example of file availability estimation. Before any contact
between CH s, the global availability in each cluster equals the local availability
(Fig. 1(A)). After the exchange of hello messages between CH s, the availabilities
of all files in each cluster equal the real ones (Fig. 1(B)).
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Fig. 1. The global file availability estimation

3 Simulation

We used OMNeT++ [5], a discrete event simulation environment which provides
both P2P model and ad-hoc 802.11 model, to study the performance of proposal
with number of mobile nodes equals to 300. Simulations area is 1500 m* 1500 m
and transmission range is 120 m. Random Way Point mobility is used with maxi-
mum speed of 2 m/s. We compared the global file availability measurement (GA)
with the real availability value denoted R GA, since we are not aware of another
global resource availability measurement in the literature. We used the global
observer algorithm implemented in OMNeT++. The global observer has a global
view of the P2P network and is able to calculate R GA with Eq. (4) for a given
file F1. We considered in this paper that there are one hop between CH and its
member peers (1-hop clustering approach) and maximum number of members is
10. The average neighbor per CH is 5. Each peer has a random number of local
files limited to 50. For our simulations, we chose one file denoted F1 and observed
its GA evolution compared to its R GA. Initially, 60% of the peers possess F1

and we do not apply any replication strategy; consequently, if a number of peers
equals 180 then the copies number of F1 is equal to 108 and R GA is equal to
0.58 (= 108/180).

Figure 2 presents the availability measurement of the file F1 during a sim-
ulation time of 600 s. The hello delay is the time interval between two hello
messages and is set to 20 s. The thin lines represent GA measurements of F1 at
some participating CH s in the network and thick line represents R GA of F1.
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Fig. 2. Our proposal vs. global observer availability measurement

Results show that after 100 s, not only GA values calculated by CH s are close
to each others but they are also close to R GA. Before 100 s, GA calculated by
each CH is different and is not close to R GA because the CH s need a propaga-
tion delay (called stabilization time) to acquire the information about the files
and the peers of other CH s. When the stabilization is reached, the availability
deviation becomes stable. This proves that the collaboration between CH s used
in our proposal to propagate the necessary information is essential to calculate
the global-like file availability.

4 Conclusion

In this paper, we have proposed a simple and efficient resource availability
algorithm for MP2P. We benefited from a clustering method and collabora-
tion between clusters to gain a global-like knowledge. Preliminary experimental
results showed that our proposal is close to real measurement. More details and
simulation tests will be added in our future contributions.
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Abstract. Lazy sequentialization has proven to be one of the most
effective techniques for concurrent program verification. The Lazy-CSeq
sequentialization tool performs a “lazy” code-to-code translation from
a concurrent program into an equivalent non-deterministic sequential
program, i.e., it preserves the valuations of the program variables along
its executions. The obtained program is then analyzed using sequential
bounded model checking tools. However, the sizes of the individual states
still pose problems for further scaling. We therefore use abstract inter-
pretation to minimize the representation of the concurrent program’s
(shared global and thread-local) state variables. More specifically, we
run the Frama-C abstract interpretation tool over the programs con-
structed by Lazy-CSeq to compute overapproximating intervals for all
(original) state variables and then exploit CBMC’s bitvector support to
reduce the number of bits required to represent these in the sequential-
ized program. We have implemented this approach in the last release of
Lazy-CSeq and demonstrate the effectiveness of this approach; in par-
ticular, we show that it leads to large performance gains for very hard
verification problems.

1 Introduction

Concurrent programming is becoming more important as concurrent computer
architectures such as multi-core processors are becoming more common. How-
ever, concurrent program verification remains a stubbornly hard problem, due to
the large number of interleavings that a verifier must analyze. Techniques such
as testing that analyze interleavings individually struggle to find “rare” concur-
rency bugs, i.e., bugs that manifest themselves only in a few of the interleavings.
Techniques that use symbolic representations to analyze all interleavings collec-
tively typically fare better, especially for rare concurrency bugs.

Sequentialization has proven to be one of the most effective symbolic tech-
niques for concurrent program verification, shown for example by the fact that
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most concurrency medals in the recent SV-COMP program verification competi-
tions were won by various sequentialization-based tools [17,31,32,35]. It is based
on the idea of translating concurrent programs into non-deterministic sequen-
tial programs that (under certain assumptions) behave equivalently, so that the
different interleavings do not need to be treated explicitly during verification
and, consequently, sequential program verification methods can be reused. Eager
sequentialization approaches [10,24,33] guess the different values of the shared
memory before the verification and then simulate (under this guess) each thread
in turn. They can thus explore infeasible computations that need to be pruned
away afterwards, which requires a second copy of the shared memory, and so
increases the state space. Lazy sequentialization approaches [20] instead guess
the context switch points and (re-) compute the memory contents, and thus
explore only feasible computations. They also preserve the sequential ordering
of the interleaved thread executions and thus the local invariants of the original
program. Lazy approaches, such as Lazy-CSeq, are thus typically more efficient
than eager approaches.

Lazy-CSeq [15,17] is implemented as a source-to-source transformation in the
CSeq framework [9]: it reads a multi-threaded C program that uses the Pthreads
API [18], applies the translation sketched in Sect. 2 and described in more detail
in [16], and outputs the resulting non-deterministic sequential C program. This
allows us to use any off-the-shelf sequential verification tool for C as backend,
although we have achieved the best results with CBMC [6].

Lazy-CSeq’s translation is carefully designed to introduce very small memory
overheads and very few sources of nondeterminism, so that it produces simple
formulas. It also aggressively exploits the structure of bounded programs and
works well with backends based on bounded model checking (BMC). It is very
effective in practice, and scales well to larger and harder problems. Currently,
Lazy-CSeq is the only tool able to find bugs in the two hardest known con-
currency benchmarks, safestack [37] and eliminationstack [12]. How-
ever, for such hard benchmarks the computational effort remains high, and
for eliminationstack Lazy-CSeq requires close to six hours on a standard
machine.

A detailed analysis of these benchmarks shows that a large fraction of the
overall effort is not spent on finding the right interleavings that expose the bugs,
but on finding the right values of the original (concurrent) programs’ shared
global and individual thread-local variables. We found that this is caused by the
unnecessarily large number of propositional variables (reflecting the default bit-
widths of the variables in C) that CBMC uses. In an experiment, we manually
reduced this to the minimum required to find the bug (three bits in the case of
safestack), which leads to a 20x speed-up. This clearly indicates the potential
benefits of such a reduction.

In this paper, we describe an automated method based on abstract interpre-
tation to reduce the size of the concurrent programs’ shared global and thread-
local state variables. More specifically, we run the Frama-C abstract interpretation
tool [2] over the sequentialized programs constructed by Lazy-CSeq to compute
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overapproximating intervals for these variables. We use the intervals to minimize
the representation of the (original) state variables, exploiting CBMC’s bitvector
support to reduce the number of bits required to represent these in the sequen-
tialized program, and, hence, ultimately in the formula fed into the SAT solver.
Note that this approach relies on two crucial aspects of Lazy-CSeq’s design. On
the theoretical side, we rely on the fact that lazy sequentializations only explore
feasibly computations to infer “useful” invariants that actually speed up the veri-
fication; our approach would not work with eager sequentializations because they
leave the original state variables unconstrained, leading to invariants that are too
weak. On the practical side, we rely on the source-to-source approach implemented
in Lazy-CSeq, in order to re-use an existing abstract interpretation tool.

We have implemented this approach in the last release of Lazy-CSeq and
demonstrate its effectiveness. We show that the effort for the abstract interpre-
tation phase is relatively small, and that the inferred intervals are tight enough to
be useful in practice and lead to large performance gains for very hard verification
problems. In particular, we demonstrate a 5x speed-up for eliminationstack.

2 Verification Approach

In this section we illustrate the verification approach we propose in this paper.
We recall multi-threaded programs and context-bounded analysis before we give
some details on the two pillars of our approach: the lazy sequentialization per-
formed by the tool Lazy-CSeq [16] and the value analysis performed by the tool
Frama-C [2].

2.1 The General Scheme

Verification by sequentialization is based on a translation of the input multi-
threaded program into a corresponding sequential program which is then
analysed by an off-the-shelf backend verification tool for sequential programs.
We improve on this by applying value analysis to the sequentialized program to
derive overapproximating intervals for the original program variables and using
these intervals to reduce the number of bits used to represent each variable in
the backend verification tool. In particular, our approach works in four steps:

1. We compute a sequential program that preserves the reachable states of the
input program up to a given number of thread context-switches (sequential-
ization).

2. We compute the bounds on the values that the variables can store along any
computation of the sequential program (value analysis).

3. We transform the sequentialized program by changing the program variables
of numerical type (i.e., integer and double) to bitvector types of sizes
determined by the results of the value analysis (model refinement).

4. We verify the resulting sequential program (verification).
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In sequentializations the control nondeterminism of the original program is
replaced by data nondeterminism and thread invocations are replaced by func-
tion calls. Lazy sequentialization methods also preserve the sequential ordering
of the interleaved thread executions, and thus also the local invariants of the
original program. This property ensures that the value analysis can produce
good overapproximations of the variable ranges (i.e., tight intervals). We instan-
tiate our approach with the lazy sequentialization implemented in Lazy-CSeq,
and the value analysis given by Frama-C.

2.2 Multithreaded Programs

We consider standard multi-threaded programs with shared variables, dynamic
thread creation, thread join, and mutex locking and unlocking operations for
thread synchronization. We omit the formal definition of the syntax and the
semantics of multi-threaded programs which is standard [16]. We adopt a C-like
syntax in our examples.

We assume that each multi-threaded program contains a function main, which
is the starting function of the only thread that exists in the beginning. We call
this the main thread. As usual, there are no calls to main and that no other
thread can be created that uses main as starting function.

We assume a sequentially consistent semantics by interleaving, thus only
one of the executable threads can be active (i.e., running) at any given time.
Initially, only the main thread is active; new threads can be spawned from any
thread by invoking create. Once created, a thread is added to the pool of the
executable threads. At a context switch the currently active thread is suspended
(but remains executable), and one of the executable threads is resumed and
becomes the active thread. When a thread becomes active it resumes from the
point where it was suspended (or from the beginning, if it becomes active for the
first time). For ease of presentation, we assume that each statement is executed
atomically.

Each thread configuration is a triple 〈locals, pc, stack〉, where locals is a valu-
ation of the local variables, pc is the program counter that tracks the currently
executing statement, and stack is a stack of function calls that works as usual.
A configuration of a multithreaded program is a tuple of thread configurations
along with valuation of the global variables that are shared by all threads.

A context is a possibly empty sequence of statements that consecutively exe-
cuted by a thread in a computation. We underapproximate the behavior of a
concurrent program by allowing computations up to a given round of a round-
robin schedule (bounded round-robin computations). In such computations, each
executable thread executes exactly one context for each round and in all con-
sidered rounds threads are always scheduled according to a same schedule (note
that this is not a real restriction since a thread can execute zero statements in
a round).

As an example consider the multithreaded program in Fig. 1. It encodes a
producer/consumer system. The program has two shared variables: a mutex m
and an integer c that stores the number of items that have been produced but
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not yet consumed. The main function initializes the mutex and spawns two
threads executing P (Producer) and two threads executing C (Consumer). Each
producer acquires m, increments c, and terminates by releasing m. Each consumer
first checks whether there are still elements not yet consumed; if so (i.e., the
assume-statement on c > 0 holds), it decrements c, checks the assertion c ≥ 0
and terminates. Otherwise it terminates immediately.

Note that the mutex ensures that at any point of the computation at most
one producer is operating. However, the assertion can still be violated since there
are two consumer threads, whose behaviors can be freely interleaved: with c = 1,
both consumers can pass the assumption, so that both decrement c and one of
them will write the value −1 back to c, and thus violate the assertion.

2.3 Lazy Sequentialization Schema

In this section, we briefly recall the lazy sequentialization encoding that we use
in our approach. This is implemented in our Lazy-CSeq tool [15,16]. We assume
that a concurrent program P consists of n + 1 functions f0, . . . , fn, where f0
denotes the main function, and that P creates at most n threads, with the
respective start functions f1, . . . , fn. Moreover, no function fi contains loops.
Note that these assumptions can easily be enforced by bounding the programs
in BMC fashion and cloning the start functions, if necessary (bounded multi-
threaded program). Since each start function is thus associated with at most one
thread, we can identify threads and (start) functions.

Consider a bounded multithreaded program P as described above. In our
analysis of bounded round-robin computations, we fix a number of rounds K
and an arbitrary schedule ρ by permuting the functions f0, . . . , fn that form
the starting program. Thus, the lazy sequentialization of P yields a sequential
program P ′ such that P fails an assertion in K rounds if and only if P ′ fails
the same assertion. P ′ is composed of a new function main and a thread sim-
ulation function Ti for each thread fi in P . The lazy sequentialization of the

Fig. 1. Producer/Consumer program.
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Fig. 2. Lazy-CSeq sequentialized code of the Consumer/Producer program modified
according to the value analysis by Frama-C.

Producer/Consumer program given in Fig. 1 generated by Lazy-CSeq (with two
loop unwindings) is the code shown in Fig. 2 with the bitvector type in bold
replaced by the integer type. In the figure, we emphasize the code injected by
Lazy-CSeq showing in black the original code and in gray the injected code.

Note that the sequential verification of P ′ relies on stubs provided by Lazy-
CSeq. P ′ thus uses a slightly modified version of the Pthreads API. For example,
the create stub takes an additional argument for the (statically known) id of
the calling thread; see [16] for details.

The new main of P ′ is a driver that calls, in the order given by ρ, the functions
Ti for K complete rounds. For each thread it maintains the label at which the
context switch was simulated in the previous round and where the computation
must thus resume in the current round. Moreover, before each call of Ti, the label
at which the control will context-switch out is nondeterministically guessed.

Each Ti is essentially fi with few lines of injected control code and
with labels to denote the relevant context-switch points in the original code.
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When executed, each Ti jumps (in multiple hops) to the saved position in the
code and then restarts its execution until the label of the next context switch
is reached. This is achieved by the J-macro. Context-switching at branching
statements requires some extra care; see [16] for details. We also make the local
variables persistent (i.e., static) such that we do not need to re-compute them
when resuming suspended executions.

We use some additional data structures and variables to control the context-
switching in and out of threads as described above. The data structures are
parameterized over T ≤ n which denotes the maximal number of threads acti-
vated in P ’s executions. We keep track of the active threads (active), the
arguments passed in each thread creation (we omitted it in our example since
the considered thread functions have no arguments), the largest label used in
each Ti (size), the current label of each Ti (pc), and for the currently executed
thread its index (ct) and the context-switch point guessed in the main driver
before calling the thread (cs).

Note that the control code that is injected in the translation is designed such
that each Ti reads but does not write any of the additional data structures. These
are updated only in the main driver and in the portions of code simulating the
API functions concerning thread creation and termination. This introduces fewer
dependencies between the injected code and the original code, which typically
leads to a better performance of the backend tool (e.g., for BMC backends this
results in smaller formulas).

2.4 Value Analysis

The value analysis of programs aims at computing supersets of possible values
for all the variables at each statement of the analyzed program. All executions
of the instruction that are possible starting from the function chosen as the
entry-point of the analysis are taken into account.

The value analysis of Frama-C [2] is a plug-in based on abstract interpre-
tation and is capable of handling C programs with pointers, arrays, structs,
and type casts. Abstract interpretation links the set of all possible executions
of a program (concrete semantics) to a more coarse-grained semantics (abstract
semantics). Frama-C explores symbolic execution of the program, translating
all operations into the abstract semantics. For the soundness of the approach,
any transformation in the concrete semantics must have an abstract counterpart
that captures all possible outcomes of the concrete operation. Thus, when several
execution paths are possible, e.g., when analyzing an if-statement, all branches
need to be explored and then at the point where the branches join together,
e.g., after the if statement, the lattice-theoretic join of the results along each
branch is taken. In Frama-C this is implemented as the smallest interval that
encloses all intervals computed along the individual branches. For-loops require
additional care, since value analysis is not guaranteed to terminate. However,
this aspect is not relevant to our approach as the output of Lazy-CSeq does not
contain loops but only bounded programs.
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As an example, consider the sequentialization of the Producer/Consumer
program generated by Lazy-CSeq. On this program, Frama-C computes for the
integer shared variable c and the integer local variable tmp of producer threads
the interval of values [−2, 5]. Thus, in the verification analysis we can safely
reduce the size of these integer variables to 4 bits (one bit is for the sign) instead
of the standard 32 bits used for the type int. Therefore, we can transform the
sequentialized program accordingly by replacing the type int in the declaration
of these variables with the bitvector type. The resulting sequentialized code is
shown in Fig. 2.

3 Implementation

We have implemented our approach in a relatively straightforward way within
the CSeq framework, as an extension (Lazy-CSeq+ABS) to the existing Lazy-
CSeq implementation. CSeq consists of a number of independent Python mod-
ules that provide different program transformations (e.g., function inlining, loop
unrolling) as well as parsing and unparsing [15]. These modules can be config-
ured and composed easily to implement different sequentializations as source-to-
source transformation tools.

Fig. 3. Lazy-CSeq+ABS Architecture (Color figure online)

The architecture of Lazy-CSeq+ABS is shown in Fig. 3. We now briefly illus-
trate the architecture of Lazy-CSeq (shown in Fig. 3 in blue), and then incre-
mentally describe how we have extended it. Lazy-CSeq consists of a chain of
modules:

– a module that preprocesses the source files merging them into a single file;
– a module that simplifies the syntax;
– a module for unrolling loops and inlining functions to produce a bounded

program;
– a module that implements the Lazy-CSeq sequentialization [16] which pro-

duces a backend-independent sequentialized file;
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– a module to instrument the sequentialized file for a specific backend (in our
case, CBMC);

– This module then replaces two wrappers, one for backend invocation
(FEEDER), and another one that generates counterexamples (CEX).

We reuse all these module as follows. The output of the LAZY-CSEQ module,
which produces a backend-independent sequentialized file, is now instrumented
for Frama-C by replacing the nondeterministic choice, assert, and assume state-
ments with the equivalent Frama-C primitives. The next module consists of a
wrapper that invokes Frama-C on the instrumented code. The result of this
analysis, which reports for each variable a lower and upper bound on the value
that the variable can take along any execution of the bounded program, is used by
the INSTRUM TYPES module to compute the minimal number of bits required
for each program variable. This module then replaces the original scalar type
of each variable, say x, in the sequentialized file produced by the LAZY-CSEQ
module with the CBMC type CPROVER bitvector[i] where i is the number of
bits computed for x. The resulting program is then passed to the INSTRUM
module and the remaining process is the same as Lazy-CSeq. The additional
modules of Lazy-CSeq+ABS are implemented in Python as well.

Lazy-CSeq+ABS is publicly available at: http://users.ecs.soton.ac.uk/gp4/
cseq/cseq.html.

4 Experimental Evaluation

In this section we report on a large number of experiments where we compare
Lazy-CSeq v1.0 and Lazy-CSeq+ABS with the aim of demonstrating the effec-
tiveness of the approach proposed in this paper. The results of this empirical
study show that Lazy-CSeq+ABS is substantially more efficient on complex
benchmarks, i.e., larger programs that contain rare bugs. Furthermore, for sim-
ple benchmarks, which Lazy-CSeq v1.0 already solves quickly, the overhead of
running Frama-C on is often negligible.

In our experiments we use CBMC1 v5.6 as sequential backend for both Lazy-
CSeq v1.0 and Lazy-CSeq+ABS. CBMC encodes symbolically the executions
of the bounded program into a CNF formula that is then checked by the SAT
solver MiniSat v2.2.1. Furthermore, we use Frama-C2 v13-Aluminium for Lazy-
CSeq+ABS. In the remainder of the paper we denote Lazy-CSeq v1.0 simply as
Lazy-CSeq.

We have performed the experiments on an otherwise idle machine with a
Xeon W3520 2.6 GHz processor and 12 GB of memory, running a Linux operating
system with 64-bit kernel 2.6.32.

Since we use a BMC tool as a backend, we individually set the parameters for
the analysis (i.e., loop unwinding, function inlining and rounds of computations)
for each unsafe benchmark (i.e., program with a reachable error location) to the
minimum values required to expose the corresponding error.
1 CBMC: http://www.cprover.org/cbmc/.
2 Frama-C: http://frama-c.com.

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://www.cprover.org/cbmc/
http://frama-c.com
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SV-COMP’16 Benchmarks

The first series of experiments is conducted on the benchmark set from the
Concurrency category of the Software Verification Competition (SV-COMP’16)
held at TACAS. This set consists of 1005 concurrent C files using the Pthread
library, with a total size of about 277,000 lines of code. 784 of the files contain
a reachable error location. We use this benchmark set because it is widely used
and many state-of-the-art analysis tools have been trained on it. Moreover, it
offers a good coverage of the core features of the C programming language as
well as of the basic concurrency mechanisms.

Table 1 reports on the experiments for the unsafe benchmarks and Table 2
on those for the safe ones. Each row of these two tables summarizes the exper-
iments by grouping them into sub-categories. For each sub-category, we report
the number of files and the total number of lines of code in that sub-category.
The tables also gather the results of the experiments performed using Lazy-
CSeq v1.0 and Lazy-CSeq+ABS on these benchmarks. For the CBMC backend
analysis, we indicate with time the average time in seconds, mem the average
memory peak usage expressed in MB, and with #vars and #clauses the average
number of variables and clauses of the CNF formula produced by CBMC. Fur-
thermore, only for Lazy-CSeq+ABS, the column Frama-C denotes the average
time in seconds taken by Frama-C for the value analysis.

Table 1. Experiments on SV-COMP unsafe benchmarks

Lazy-CSeq Lazy-CSeq+Abs

CBMC CBMC Frama-C Total

Subcategory #files LOC sec. GB #vars #clauses sec. GB #vars #clauses sec. sec.

pthread 17 4085 34.7 84.9 89317.7 336250.1 18.0 66.8 47961.4 184287.8 5.5 23.5

pthread-atomic 2 204 1.7 33.3 9131.0 29186.0 1.8 46.2 6259.5 17936.0 0.9 2.7

pthread-ext 8 780 6.5 358.4 647840.1 2654905.9 4.5 83.1 89718.9 423391.8 1.1 5.5

pthread-lit 3 123 1.9 38.3 9993.0 31206.7 1.9 49.3 5882.0 16421.0 1.2 3.1

pthread-wmm 754 236496 2.0 31.4 2427.1 5668.3 2.2 46.1 2402.2 5578.8 0.9 3.1

The two tables paint a relatively clear picture in terms of runtimes. For the
larger and more complex benchmark categories pthread (both safe and unsafe
instances) and pthread-ext (only safe instances), where Lazy-CSeq takes on aver-
age more than 30 s, the effort for the abstract interpretation is relatively small
(approx. 5%–20% of the original CBMC runtimes) and is easily recouped, so that
we see overall performance gains of approx. 25%–40%. For the simpler bench-
marks, Frama-C takes almost as much time as Lazy-CSeq on its own, without
substantially reducing the size or complexity of the problems. In most cases we
thus see some slow-downs, but in absolute terms these are small (approx. 2 s)
and outweighed by the larger gains on the more complex benchmarks.

A very similar picture emerges for peak memory consumption—reductions of
approx. 15%–75% for the larger benchmarks that outweigh the relatively large
but absolutely small increases for the smaller benchmarks.
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Table 2. Experiments on SV-COMP safe benchmarks

Lazy-CSeq Lazy-CSeq+Abs

CBMC CBMC Frama-C Total

Subcategory #files LOC sec. GB #vars #clauses sec. GB #vars #clauses sec. sec.

pthread 15 1285 172.4 1124.4 1732068.1 7270420.0 98.6 945.3 1424912.1 6004425.3 8.4 107.0

pthread-

atomic

9 1136 2.7 37.9 18947.4 67709.0 2.9 47.7 16611.9 58334.0 2.0 4.9

pthread-ext 45 3683 71.7 876.8 1660452.6 6949976.3 49.4 552.6 937205.0 4036919.5 2.2 51.6

pthread-lit 8 432 5.8 43.7 15207.3 57356.2 4.9 51.6 11094.2 42161.0 1.0 5.9

pthread-

wmm

144 29282 1.6 31.5 3154.7 9420.2 1.6 45.7 3065.4 9084.0 0.9 2.5

If we look at the number of variables and clauses, we can see how effective
our approach is in reducing the size of the induced SAT problems. In most case
we see a reduction of approx. 30% to 50%. These reductions are not necessarily
correlated to reductions in either the SAT solver’s runtime or peak memory
consumption, but this is expected, as the size of a SAT problem is generally not
a reliable predictor for its difficulty. However, there are two notable exceptions.
For the unsafe pthread-ext benchmarks we see a much larger reduction of approx.
85%, but this is skewed by two benchmarks that involve large arrays that allow
these large reductions. Conversely, for the pthread-wmm benchmarks we see
almost no reduction in size. This is a consequence of the very simple structure of
these benchmarks—they are typically loop-free, which means that the unwound
programs only contain a (relatively) small number of assignments. Hence, there
is little scope to optimize the representation of the program variables.

Complex Benchmarks

We now report on the experiments for three unsafe benchmarks that present
a non-trivial challenge for bug-finding tools. These benchmarks consist of non-
blocking algorithms for shared data-structures. It is hardly surprising that lock-
free programming is an important source of benchmarks whose complexity truly
stems from the system’s concurrent interactions, not its computations. In fact,
the focus there is to minimize the amount of synchronization for performance
optimization, thus generating a large amount of nondeterminism due to inter-
leaving. Here we demonstrate that Lazy-CSeq is very effective in spotting rare
bugs in these programs, and that Lazy-CSeq+Abs allows to amplify its effec-
tiveness both in terms of verification time and memory peak usage.
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Time Memory Variables Clauses

9038772

2230134

2181.14M
B

3628.5s
779.84s

Time Memory Variables Clauses

2801774

712197

1188.4M
B

783.86s
1850.66s

17.0s

safestack. This is a real world bench-
mark implementing a lock-free stack
designed for weak memory models. It
was posted to the CHESS forum by
Dmitry Vyukov.3 It is unique in the
sense that it contains a very rare bug
that requires at least three threads
and five context-switches to be exposed
when running under the SC seman-
tics. In the verification literature, it was
shown that real-world bugs require at
most three context-switches to mani-
fest themselves [30]. safestack, for
this reason, presents a non-trivial challenge for concurrency testing and sym-
bolic tools. Lazy-CSeq is the only tool we are aware of that can automati-
cally find such concurrency bugs in safestack. It requires about 1 h:13 m:28 s
(of which about one hour is spent in the SAT solver) to find a bug and
has a memory peak of 2.18 GB (by setting the minimal parameters to
expose the bug to 4 rounds of computation and 3 loop-unwinding). Lazy-
CSeq+ABS, with the same parameters, requires 44 m:11 s time, where the
same time is spend in the symbolic execution, and 17 s is the time required
for the value analysis by Frama-C, which leads to a 1.7x speed-up. Also, it
uses only 1.19 GB of memory, i.e., roughly half of the memory required by
Lazy-CSeq. All this is illustrated in the figure on the right where we also
report on the number of variables and clauses of the produced CNF formulas.

Time Memory Variables Clauses

7907404

1951352

2395.43M
B

20113.3s

42.32s

Time Memory Variables Clauses

6367042

1579939

1175.14M
B89.8s

4049.26s

4.91s

eliminationstack. This is a C
implementation of Hendler et al.’s Elim-
ination Stack [12] that follows the orig-
inal pseudocode presentation. It aug-
ments Treiber’s stack with a “collision
array”, used when an optimistic push or
pop detects a conflicting operation; the
collision array pairs together concurrent
push and pop operations to “eliminate”
them without affecting the underlying
data structure. This implementation is
incorrect if memory is freed in pop oper-
ations. In particular, if memory is freed
only during the “elimination” phase,
then exhibiting a violation (an instance of the infamous ABA problem) requires
a seven thread client where three push operations are concurrently executed
with four pops. To witness the violation, the implementation is annotated with
several assertions that manipulate counters as described in [4]. Lazy-CSeq is the
only tool we are aware of that can automatically find bugs in this benchmark
3 https://social.msdn.microsoft.com/Forums/.

https://social.msdn.microsoft.com/Forums/
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and requires 5 h:35 m:13 s time and 2.39 GB of memory to find a bug. Lazy-
CSeq+ABS, with the same parameters, requires 1 h:07 m:29 s time, where 4.9 s
is the time required for the value analysis by Frama-C, which leads to a 5x
speed-up. As for the memory usage, it uses only half of the memory required
by Lazy-CSeq, namely 1.17 GB. All this is illustrated in the figure on the right
where we also report on the number of variables and clauses of the produced
CNF formulas.

Time Memory Variables Clauses

19273695

4756586

3112.27M
B

104.1s

1972.69s

Time Memory Variables Clauses

19251710

4749364

3090.01M
B

5.25s

1234.01s

89.81s

DCAS. This is a non-blocking algorithm
for two-sided queues presented in [1].
This algorithm has a subtle bug that
was discovered in an attempt to prove
its correctness with the help of the
PVS theorem prover. The discovery of
the bug took several months of human
effort. Although the bug has been auto-
matically discovered using the model
checker SPIN (see [13] and http://
spinroot.com/dcas/), a generalized ver-
sion of the benchmark remains a chal-
lenge for explicit exploration approach.
In fact, after 138 h of CPU-time (using 1000 cores), and an exploration of 1011

states the error was still undetected [14]. Here, we have translated this bench-
mark from Promela to C99 with Pthread library considering a more complex
version that has 10 threads while the version of [14] only considers 8 threads.
Lazy-CSeq can detect the bug within 32 m:52 s and with a memory peak usage
of 3.11 GB. Instead, Lazy-CSeq+Abs takes only 20 m:34 s with a memory peak
of 3.09 GB. All this is illustrated in the figure on the right where we also report
on the number of variables and clauses of the produced CNF formulas.

5 Related Work

The idea of sequentialization was originally proposed by Qadeer and Wu [29]. The
first scheme for an arbitrary but bounded number of context switches was given
in [24]. Since then, several algorithms and implementations have been developed
(see [3,9,19,20,23,33]). Lazy sequentialization schemes have played an impor-
tant role in the development of efficient tools. The first such sequentialization
was given in [20] for bounded context switching and extended to unboundedly
many threads in [21,22]. These schemes require frequent recomputations and
are not suitable for use in combination with bounded model-checking (see [11]).
Lazy-CSeq [16] avoids such recomputations and achieves efficiency by handling
context-switches with a very lightweight and decentralized control code. Lazy-
CSeq has been recently extended to handle relaxed memory models [34] and to
prove correctness [25].

Abstract interpretation [7] is a widely used static analysis technique which
has been scaled up to large industrial systems [8]. However, since the abstraction

http://spinroot.com/dcas/
http://spinroot.com/dcas/
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functions typically overapproximate the values a program variable can take on,
abstract interpretation is prone to false alarms, and considerable effort went into
designing suitable abstractions (e.g., [27,36]).

An alternative approach combines abstract interpretation with a post-
processing phase based on a more precise analysis to either confirm or filter
out warnings. Post et al. [28] describe a semi-automatic process in which they
use CBMC repeatedly on larger and larger code slices around potential error
locations identified by Polyspace.4 They report a reduction of false alarms by
25% to 75%, depending on the amount of manual intervention. Chebaro et al.
[4,5] describe the SANTE tool, which uses dynamic symbolic execution or con-
colic testing to try and construct concrete test inputs that confirm the warnings.
The main difference to our work is that such approaches use abstract interpre-
tation only to “guide” the more precise post-processing phase towards possible
error locations but do not inject information from the abstractions into the post-
processing in the same way as in our work.

Wu et al. [38] also combine sequentialization and abstract interpretation, but
in a different context and with different goals. More specifically, they consider
interrupt-driven programs (IPDs) for which they devise a specific lazy sequential-
ization schema; they then run a specialized abstract interpretation, which takes
into account some properties of the IPDs such as schedulability, in order to prove
the absence of some numerical run-time errors. In contrast, we consider general
C programs over the more general Pthreads API, and use a generic sequentializa-
tion schema but a simpler abstract interpretation. However, the main difference
is that we use the abstract interpretation only to produce hints for a more precise
analysis (i.e., BMC), and not to produce the ultimate analysis result.

6 Conclusions and Future Work

Concurrent program verification remains a stubbornly hard problem, but lazy
sequentialization has proven to be one of the most effective techniques, and has,
in combination with a SAT-based BMC tool as sequential verification backend,
been used successfully to find errors in hard benchmarks on which all other tools
failed. However, the sizes of the individual states (which are determined by con-
current program’s shared global and thread-local variables) still pose problems for
further scaling. We have therefore proposed an approach where we use abstract
interpretation to minimize the representation of these variables. More specifically,
we run the Frama-C abstract interpretation tool over the programs constructed
by Lazy-CSeq to compute overapproximating intervals for all (original) program
variables and then exploit CBMC’s bitvector support to reduce the number of bits
required to represent these in the sequentialized program. We have implemented
this approach on top of Lazy-CSeq and have demonstrated the effectiveness of this
approach; it has performed very well in SV-COMP’17 competition, where it solved
all tasks [26]. In this paper, in particular, we have further shown that it leads to
large performance gains for very hard verification problems.
4 https://www.mathworks.com/products/polyspace.html.

https://www.mathworks.com/products/polyspace.html


Concurrent Program Verification with Lazy Sequentialization 269

Our approach is easy to implement and effective because of the confluence
of four different strands. First, we use a source-to-source transformation tool
for the sequentialization. This makes it easy to re-use an off-the-shelf tool (i.e.,
Frama-C) for the interval analysis. Second, we use a backend verification tool
(i.e., CBMC) that can effectively exploit the information provided by Frama-C,
by means of a specialized bitvector type. Third, we are using a lazy sequential-
ization, which ensures that the interval analysis can compute tight intervals; our
approach would not work with an eager sequentialization where the state vari-
ables remain unconstrained. Fourth, the interval analysis strikes the right balance
between analysis efforts and results—that is, it runs fast enough, and the com-
puted intervals are tight enough, so that the overheads are easily recouped, and
we actually improve the overall performance. Other, more elaborate, abstract
interpretations have in fact proven to be counter-productive.

In this paper, we have demonstrated our approach for sequentially consistent
concurrent programs that use the Pthreads API. However, all specific aspects of
the concurrency model are actually encapsulated in the sequentialization. Our
approach is therefore also applicable to other concurrency models, as long as
we have (or can design) a corresponding lazy sequentialization, and we plan to
extend our work to weak memory models, based on our previous work [34].

Another avenue for future work is to investigate other “cheap” analyses that
can be run over sequentialized program; specifically, we plan to use a points-to
analysis to reduce the amount of possible sharing that the BMC backend needs
to encode into the SAT formula.
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Abstract. In this paper we address the problem of solving parity games
over the configuration graphs of bounded phase multi-pushdown systems.
A non-elementary decision procedure was proposed for this problem by
A. Seth. In this paper, we provide a simple and inductive construction to
solve this problem. We also prove a non-elementary lower-bound, answer-
ing a question posed by A. Seth.

1 Introduction

Multithreaded programs are widely used in computer systems. They are notori-
ously complex and hard to get right. Therefore methods and tools for checking
systematically their correctness are of paramount importance. Model checking
is a well established algorithmic verification approach that allows to check auto-
matically if a formal (automata-based) model of a program/system satisfies a
property expressed in some specification logic, typically a temporal logic or a
fixpoint calculus. The most expressive of these logics, when only regular proper-
ties are considered, is the propositional mu-calculus. It has been shown that the
model checking problem of a given model against the proposition mu-calculus
is tightly related to the problem of solving 2-player parity games on the state
graph of the model. Solving games means to determine if one of the player has
a winning strategy. This problem is decidable for finite-state systems, and even
for classes of infinite-state models such as pushdown systems [12]. The latter
are known to be natural formal models for sequential programs with recursive
procedure calls. In this paper, we investigate the extension of the game-theoretic
verification framework to the case of multi-threaded programs.

The authors acknowledge partial support by Indo-French Project AVeCSo, TCS-
Fellowship, Indo-Swedish DST-VR Project P-02/2014, Infosys Foundation.

c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 272–287, 2017.
DOI: 10.1007/978-3-319-59647-1 21



Parity Games on Bounded Phase Multi-pushdown Systems 273

Natural models for multi-threaded (shared memory concurrent) programs
are multi pushdown systems, i.e., several pushdown systems that can access to
a shared (finite) memory. However, this model is clearly Turing powerful, and
therefore, any nontrivial problem stated on this model is obviously undecidable.
Then, one possibility to obtain decidability is to consider restrictions on the
kind of behaviours for which the decision problem is stated. This can be use-
ful in the context of finding errors. Indeed, good under-approximations of the
set of behaviours are useful to orient the search toward some special classes of
computations where most of the errors are visible. To this aim, parameterized
under-approximation schema have been proposed and shown to be useful and
efficient for the analysis of muti-threaded programs such as context-bounding
in [5] and phase-bounding in [10]. Context-bounding consists in bounding the
number of context-switches between threads, while phase-bounding is a more
liberal concept where each phase corresponds to a sequence of operations where
all pops are from one fixed stack, while pushes are non restricted and allowed to
be on any stack. In fact, phase-bounding is more general than context-bounding
in the sense that sets of behaviours explored under phase-bounding, for some
fixed bound on the number of phases, would require an unbounded number of
context-switches to be explored. Then, the issue we address in this paper is
exploring the limits of the decidability of the problem of solving parity games on
muti-pushdown systems under phase bounding, and establishing its complexity.

Anil Seth provides in [8] a decision procedure for solving the parity games on
phase bounded muti-pushdown systems for a fixed initial state. The procedure
has a non-elementary complexity (i.e., a tower of exponentials with a height
depending on the number of phases). His result is based on an extension
of Walukiewicz’s proof for solving this problem in the case of pushdown
systems [12]. This is proof is very difficult, based on reducing the problem of
solving a parity game on a phase bounded muti-pushdown system to the prob-
lem of solving the parity game on a complex finite state graph. An important
question is whether it is possible to provide a conceptually simpler proof allowing
to have a better understanding of the structure of the problem. Also, a natural
question is whether the high, non-elementary complexity is unavoidable.

The first contribution of this paper is to provide a proof that is based on
a simple inductive argument on the number of phases by effectively reducing a
(k + 1)-phase game to a k-phase game, for any k ≥ 1. Our proof exploits the
global approach used in, e.g., [1,3,7] to construct the set of winning states in a
parity game on pushdown systems. Roughly, the latter construction is used to
construct the winning states in last phase, and the obtained set is plugged in
the system to get a new one with one less phase, and so on.

The second contribution of the paper is to establish a non-elementary lower
bound for the parity games on bounded-phase multi-pushdown systems, showing
that this problem is inherently hard and that our construction is optimal for
computing the set of winning states. The proof is based on a reduction of the
satisfiability problem of first-order logic over natural numbers with ordering. The
details missing in the paper can be found in [6].
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2 Bounded Phase Multi Pushdown Systems

Multi pushdown systems (MPDS) are generalizations of pushdown systems with
multiple stacks. The kinds of transitions performed by an MPDS are (i) pushing
a symbol into one of the stacks (ii) popping a symbol from one of the stacks and
(iii) an internal move that changes the state but leaves the stacks unchanged.

Definition 1 (MPDS). A Multi-PushDown System (MPDS) is a tuple M =
(n,Q, Γ,Δ, q0) where n ≥ 1 is the number of stacks, Q is the non-empty set of
states, Γ is the finite set of stack symbols, containing a special symbol ⊥, q0 ∈ Q
is the initial state and Δ ⊆ Q × Op × Q is the transition relation, where Op =⋃

i∈[1..n] Opi ∪ {Int} and Opi = {Pushi(a),Popi(a) | a ∈ Γ \ {⊥}} ∪ {Zeroi}.

A configuration of the MPDS M is a (n + 1) tuple (q, γ1, γ2, · · · , γn) with
q ∈ Q, and γ1, γ2, . . . , γn ∈ (Γ \ ⊥)∗⊥. The set of all configurations of the
MPDS M is denoted by C(M). The initial configuration cinit

M of the MPDS
M is (q0,⊥, . . . ,⊥,⊥). Given τ = (q, op, q′) ∈ Δ and two configurations c =
(q, γ1, · · · , γn) ∈ C(M) and c′ = (q′, γ′

1, · · · , γ′
n) ∈ C(M), we say c

τ→ c′ iff one of
the following holds.

– τ = (q,Pushi(a), q′), γ′
i = a.γi and ∀j ∈ [1..n] \ {i}, γ′

j = γj

– τ = (q,Popi(a), q′), γi = a.γ′
i and ∀j ∈ [1..n] \ {i}, γ′

j = γj

– τ = (q,Zeroi, q
′), γ′

i = γi = ⊥ and ∀j ∈ [1..n] \ {i}, γ′
j = γj

– τ = (q, Int, q′) and ∀j ∈ [1..n], γ′
j = γj

A computation π of M starting from a configuration c is a (possibly infinite)
sequence of the form c0

τ1−−→ c1
τ2−−→ · · · such that c0 = c and ci−1

τi−−→ ci for all
1 ≤ i ≤ |τ1τ2 · · · |. Given a finite computation π1 = c0

τ1−→ c1
τ2−→ c2 · · · τm−→ cm

and a (possibly infinite) computation π2 = cm+1
τm+2−→ cm+2

τm+3−→ · · · , π1 and
π2 are said to be compatible if cm = cm+1. Then, we write π1 • π2 to denote
the computation π

def= c0
τ1−→ c1

τ2−→ c2 · · · τm−→ cm
τm+2−→ cm+2

τm+3−→ · · · . Given a
configuration c = (q, w1, w2, · · · , wn), we will use Stacki(c) to denote the stack-i
content i.e. wi and State(c) to denote the state q.

It is easy to see that a multi-pushdown system with just one stack is a push-
down system. When refering to pushdown systems, we will omit any references
to the stack number.

2.1 Bounded Phase

The bounded phase restriction on an MPDS was introduced in [11]. Informally
a phase is a sequence of operations in which the Pop and Zero operations
are performed on only one stack. In a bounded-phase computation, there is an
a-priori bound on the number of phases that it can involve.

Definition 2. Phase: A Phase of a stack i ∈ [1..n] is a computation involv-
ing pops and zero tests only from stack-i i.e. it is a computation of the form
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π = c0
τ1−−→ c1

τ2−−→· · · in which τ1, τ2, . . . ∈ Δ↓i , where Δ↓i = Δ ∩ (Q × (Op \⋃
j �=i ∪a∈Γ {Popj(a)} ∪ {Zeroj}) × Q).

Bounded Phase computation: Given k ∈ N, a computation π = c0
τ1−−→

c1
τ2−−→· · · is said to be k phase-bounded if it can be seen as a concatenation

of at most k-phases i.e. π = π1 • π2 • . . . • πl such that π1, · · · , πl are phases
and l ≤ k.

3 Parity Games

Parity game is a two player game that is played on a directed graph (possibly
infinite). Informally the game can be thought of as one that starts from a desig-
nated node in which a token is placed. Each of the nodes in the graph are owned
by one of the two players. Further every node in the graph is assigned a number
from a predetermined finite set of natural numbers, we will refer to this number
as the rank of the node. The game proceeds in rounds. In each round, the player
who owns the node in which token is placed makes a move. We will assume that
the graph has no dead ends and that a player can always make a move. During
a move, a player removes the token from a node and places it on one of the
adjacent nodes. The winner of the game is determined by the minimum rank
visited infinitely often in the play. The game is formalised below.

Definition 3. Parity game is defined over game graph G = (V,E, τ, σ) where V
is (possibly infinite) set of nodes, E ⊆ V × V is set of edges, τ : V �→ [0, 1] is a
function that defines ownership of the node and σ : V �→ [1..m] for some m ∈ N

is a ranking function that assigns a rank to each node.
For any node s ∈ V , we define E(s) = {s′ | (s, s′) ∈ E}. We say a π is a finite

play of G iff π = s1s2 · · · sn such that for all i ∈ [1 . . . n − 1], (si, si+1) ∈ E and
E(sn) = ∅. π is said to be infinite play of G iff π = s1s1s2 · · · such that for all
i ∈ N, we have (si, si+1) ∈ E. We will assume w.l.o.g. that graphs we deal with
do not have any dead end nodes and hence assume that all our plays are infinite.
For any infinite play π = s0s1s2 · · · , we let S∞

π to be the set of all nodes that
appear infinitely often in the play π. We define Parity(π) = min(inf (π))mod 2,
where inf (π) = {σ(s) | s ∈ S∞

π } i.e. it is the parity of the minimum rank that is
seen infinitely often along the run. An infinite play π is winning for player-0 iff
Parity(π) is 0, otherwise it is winning for player-1.

For any i ∈ [0, 1], we will let Vi = {s | s ∈ V ∧ τ(s) = i} i.e. it is the set
of positions owned by player-i. A strategy function f for player-0 is defined as
f : V ∗V0 �→ 2V \ ∅. An infinite play π = v0v1v2 · · · is said to be confirming to
a strategy function f iff for any prefix of the play π′ = v0 · · · vi ∈ V ∗V0, vi+1 ∈
f(π′). A strategy function f is said to be winning for player-0 from any node s,
if the set of all possible plays π which start from the node s and confirms to the
strategy function f are winning for player-0. The strategy function for player-
1 is defined analogously. We say a node s is winning for player-0 (or player-1)
iff there is a strategy function that is winning for player-0 (or player-1) from
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that position. A strategy function f of player-i is called memory less strategy
or positional strategy if it is of the form f : Vi �→ 2V \ ∅, i.e. it only depends
on a single node. Any given play π = v0v1 · · · is said to be confirming to the
memoryless strategy function f of player-i, if for all nodes vj ∈ Vi (j ∈ N), we
have vj+1 ∈ f(vj).

A natural question in this setting is whether for any position s, one of the
two players has a winning strategy (determinacy) from that position and if so
whether the strategy is memoryless (memoryless determinacy). The determinacy
of parity games follows from a very general result due to Martin’s determinacy
theorem [4] which establishes the determinacy for a much wider class of games.
Memory less determinacy theorem (Theorem 1) for parity games [2] establishes
that we not only have determinacy, we also have that the winning player has a
memoryless winning strategy.

Theorem 1 [2]. Given a parity game G = (V,E, τ, σ), there is a partition of
nodes V , V = W0 � W1 and memoryless strategy functions σ0 and σ1 such that
σi is winning for player-i from each positions in Wi.

Determining the winning sets and strategies in such games is an interesting
problem, which is easy to solve for finite games and not so for infinite games.

4 Bounded Phase Parity Games on MPDS

In this paper, we are interested in parity games played over the configuration
graphs of a MPDS with bounded-phase restriction (also refered to as the bounded
phase parity games). For purpose of defining the bounded-phase parity games, we
will first enhance the configurations of a multi-pushdown system with the infor-
mation about the number of phases remaining and the identity of the currently
active stack.

Definition 4 (Bounded-phase parity games). Given a multi-pushdown sys-
tem M = (n,Q, Γ,Δ, q0) and a constant k, we define the set of enhanced con-
figurations of M , Ek(M) as C × [0..n] × [1..k]. Such an enhanced configuration,
apart from containing the configuration of multi-pushdown system, also records
the currently active stack and number of remaining phases. We will omit the k
and simply refer to it as E(M) when ever k is clear from the context. At the
beginning of any computation, we let the current stack component (the penulti-
mate component) of E(M) to be 0, indicating that none of the stacks are active.
From such a position, a stack gets active on the very first pop or zero test. Given
any two configurations (c, i, j), (c′, i′, j′) ∈ E(M), we say (c, i, j) � (c′, i′, j′) iff
c

τ−→ c′ and one of the following holds.

– If τ = (q,Popl, q
′) or τ = (q,Zerol, q

′) for some l ∈ [1..n] and i = 0 then
j = j′ = k and i′ = l.

– if τ = (q,Pushk(a), q′) for some k ∈ [1 . . . n] or τ = (q, Int, q′) or τ =
(q,Popi, q

′) or τ = (q,Zeroi, q
′) then i′ = i, j′ = j
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– if τ = (q,Popl(a), q′) or τ = (q,Zerol, q
′) for some l �= i and j > 1 then

i′ = l, j′ = j − 1

Let τ : Q �→ [0, 1] be a map that designates each of the states to a player,
let σ : Q �→ [1..m] be a map that assigns a rank to each of the states and let k
be any natural number, then a k-bounded-phase parity game is the parity game
played on the game graph G = (E(M),�, τ, σ), where τ, σ are extended to con-
figurations as follows. For any (c, i, j) ∈ E(M), we let τ((c, i, j)) = τ(State(c))
and σ((c, i, j)) = σ(State(c)). We will refer to such games as G = (k,M, τ, σ).

Given a bounded phase parity game G = (k,M, τ, σ) and a node s ∈ E(M),
in this paper we are interested in the problem of determining whether there is a
strategy function g that is winning for player-0 from the node s.

5 Some Results on Parity Games

In this section, we will prove/recall some lemmas that we will use later. The
following lemma states that if there is a mapping from one game graph to another
such that any move in the former can be simulated in the latter, and if such a
simulation preserves the player and the rank at each position of the play, then
the winning positions are also preserved by the mapping.

Lemma 1. Let G = (VG, EG, τG, σG) and H = (VH , EH , τH , σH) be games
graphs and let F : VG −→ VH be any function such that for any position x ∈ VG

1. σG(x) = σH(F(x)), the function is rank preserving.
2. τG(x) = τH(F(x)) i.e. x and F(x) belongs to the same player i.
3. If x → x′ then F(x) → F(x′).
4. If F(x) → y then there exists x′ such that x → x′ and F(x′) = y.

Then, any position x is winning for player 0 (player-1) in G if and only if F(x)
is winning for player 0 (resp player-1) in H.

Given a game graph G = (V,E, τ, σ), U ⊆ V is said to be a trap of G iff
E ∩ U × (V \ U) = ∅. i.e. once the game enters U , there is no way for it to exit.
The following Lemma states that given any parity game graph, the game graph
obtained by fusing all the winning positions of player-0 (and that of player-1),
into one node, preserves the winning positions.

Lemma 2. Let G = (VG, EG, τG, σG) be a parity game and let VH ⊆ VG be
a trap of G. Suppose VH0 and VH1 are the winning positions for the players
0 and 1 respectively, in the subgame VH . Then, consider the game graph G′ =
(VG′ , EG′ , τG′ , σG′) constructed as follows:

1. Delete the subgame VH , add two new positions qw and ql and add edges from
qw to qw and ql to ql.

2. For s → t in E with s �∈ VH and t ∈ VH0, add an edge from s to qw.
3. For s → t in E with s �∈ VH and t ∈ VH1, add an edge from s to ql.
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4. For all v ∈ VG \ VH , we let τG′(v) = τG(v), τG′(qw) = 0, τG′(ql) = 1.
5. For all v ∈ VG \ VH , σG′(v) = σ(v) and σG′(qw) = 0, σG′(ql) = 1.

Then, any position in VG that is not in VH is winning for any player in G if
and only if it is winning for that player in the game G′.

In [1,7], T. Cachat and O. Serre independently proved that the set of all
winning positions of a particular player in a parity game played on a pushdown
system is effectively regular. This can also be obtained using tree automata
techniques as shown in [3].

Definition 5 (Parity game on PDS). Given a pushdown system P =
(Q,Γ,Δ, q0) and mappings τ : Q �→ [0, 1] and σ : Q �→ [1..m], parity game
on PDS is simply a parity game played on the game graph G = (C(P ),−→, τ, σ),
where τ and σ are extended to configurations as follows. For any configuration
of the form c = (q, γ), τ(c) = τ(q) and σ(c) = σ(q).

Theorem 2 [1,7]. The set of all winning positions of player 0 (or player 1) in
a pushdown game can be effectively characterised by an exponential sized finite
state automaton over the alphabet Γ ∪ Q. Such an automaton accepts a word
wq ∈ Γ ∗Q if and only if the configuration (q, w) is winning for player 0 (or
player 1).

6 Decidability of Bounded Phase Parity Games

Theorem 3. Given a k bounded phase parity game, deciding whether player
0 can win from the initial configuration can be done in time which is Non-

elementary in the number of phases.

In this section we prove the Theorem 3 which states that the winner of a
bounded phase parity game can be decided in non-elementary time. The proof
of the theorem is obtained by inductively solving the k bounded-phase parity
game. The intuitive idea is to first show that if the game is a single phase game,
then the game graph of such a game actually corresponds to just the positions
of a pushdown game and by Theorem 2 we know the set of winning positions are
recognisable. Secondly observe that the positions in the game graph are stratified
in the following sense – if (c′, i′, k′) is reachable from (c, i, k) then k′ ≤ k. From
this, we know that if the game were to enter the last phase, it will continue
to remain in that phase. Hence any position in the last phase corresponds to
a position of a pushdown game, which is known to be recognisable. Using this
information, we will go onto show how to reduce the k bounded-phase game to
a k − 1 bounded-phase game.

6.1 Decidability of a 1-Phase Game

In an 1-phase game, the configurations can be of the form (c, i, 1) with i �= 0 or
of the form (c, 0, 1). We will show in each of the cases that the set of positions
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winning for player-0 is a recognisable set (i.e. it can be effectively determined).
For the sub-game involving only configurations of the form (c, i, 1), we will show
that such positions correspond to positions of a pushdown game. Now using the
fact that the set of all positions winning for player-0 in a pushdown game is a
recognisable set, we will show that the nodes that are winning for player-0 in
sub-game involving configurations of the form (c, i, 1) is also a recognisable set.
For the case involving configurations of the form (c, 0, 1), we will reduce such a
sub-game to a parity game involving only finitely many states.

Lemma 3. Let G = (1,M, τ, σ) be a bounded-phase parity game, with M =
(n,Q, Γ,Δ, q0). We can effectively determine the set of all positions of the form
E1(M), that are winning for player 0. Further the size of such an automaton
that recognises the winning positions is at most exponential.

Proof. The nodes in E1(M) are either of the form (c, 0, 1) or of the form (c, i, 1)
for some i �= 0. We will first consider the nodes of the form (c, i, 1) and show that
the winner can be determined. The general idea of the proof is to first construct
a pushdown system for each i ∈ [1..n], from the given multi-pushdown system
M . Such a pushdown system will simulate the moves of stack-i by using its own
stack for any operations on stack i, and ignoring the pushes on other stacks. The
pushdown system (corresponding to stack-i) is defined as, Pi = (Q,Γ, δi, q0),
where δi is defined as

– For every τ = (q,Popi(a), q′) ∈ Δ , we add τ ′ = (q,Pop(a), q′) ∈ δi. We add
similar transitions for τ = (q,Zeroi(a), q′) ∈ Δ, τ = (q,Pushi(b), q′) ∈ Δ
and τ = (q, Int, q′) ∈ Δ.

– For j �= i and for every τ = (q,Pushj(b), q′) ∈ Δ, we add τ ′ = (q, Int, q′) ∈ δi.

The winning positions of each player of the sub-game with configurations
of the form (c, i, 1) with i �= 0, can be captured using the pushdown game
H = (C(Pi),→, τ, σ). Let the function F : E1(M) �→ C(Pi) be given by
F(((q, γ1, γ2, · · · , γn), i, 1)) = ((q, γi)). The function F simply disregards
content of stacks other than i and keeps stack i intact. Following lemma shows
that such a mapping will preserve the properties required by Lemma 1.

Lemma 4. The mapping F preserves the following properties. For any v ∈
E1(M), we have τ(v) = τ(F(v)) and σ(v) = σ(F(v)). For any u = (c, i, 1), v =
(c′, i, 1) ∈ E(M), if (u � v) then we have F(u)−→F(v). Suppose for some
v ∈ E(M), we have F(v)−→ d, then there is an u ∈ E(M) such that F(u) = d
and v � u.

Thus using Lemma 1, the position (c, i, 1) in our subgame is winning for a
player-i if and only if F((c, i, 1)) is winning for player-i in the pushdown game
(C(Pi),→, τ, σ). Thus, the set of all winning positions of a 1-phase game involving
stack-i is given by S = {(c, i, 1) | F((c, i, 1)) ∈ RPi

} where RPi
is the set

of winning positions in the game (C(Pi),→, τ, σ). It is easy to see that S is
recognisable set since RPi

is recognisable by Theorem 2.
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Finally we consider the positions of the form (c, 0, 1). Any configuration
(c′, i, k′) reached from configuration (c, 0, 1) must necessarily have k′ = 1. Fur-
ther, if the game ever enters a position with i �= 0, we may immediately determine
the winner of the game from thereon (Since we already know how to compute the
set of all winning positions of a 1-phase game involving stack-i). This allows us to
formulate a finite state game whose solution determines the winning positions of
the form (c, 0, 1). Note that the game can remain in a position of the form (c, 0, 1)
iff the transitions involve only push moves or internal moves. The moment a pop
move is made, the stack is fixed and the game enters a configuration of the form
(c, i, 1), for some i ∈ [1..n].

Let Bi = (QBi
, Γ ∪Q, si, δ

Bi , Fi) be the deterministic finite state automaton
that accepts a word of the form ⊥wRq (where (q, w⊥) is a configuration of
the pushdown system Pi) iff it belongs to the winning positions of the game
(C(Pi),→, τ, σ). Such an automata is guaranteed by Theorem 2, we note that
the size of such an automata is exponential in the size of the pushdown system.
The finite state game we have in mind is one which instead of keeping track of
the contents of each stack i, only keeps track of the top of stack symbol and the
state reached by Bi on reading the contents of that stack. We plan to do this
only for the push and the internal moves and hence it is indeed feasible. Any pop
or zero test moves would commit to a stack. In this case we may immediately
determine the winner using the state of Bi.

The state space of the finite state game H is (Q×Γn ×QB1 ×QB2 · · · QBn
)∪

{qw, ql}, we will refer to this as V (H). The state qw is entered on determining
that the game will be won by player 0 and ql if it is determined that the game
will be lost by player 0. The edges −→H of the game graph are given as follows:

1. qw → qw and ql → ql

2. For all i ∈ [1..n], we have if (q,Pushi(b), q′) ∈ Δ, then we have (q, a1, · · · ,
an, p1, · · · pn) → (q′, a1, · · · , b, · · · , an, p1, · · · , δBi(pi, ai), · · · , pn), for all a1,
a2, · · · , an ∈ Γ and for all j ∈ [1..n], pj ∈ QBj

.
3. If (q, Int, q′) ∈ Δ then we have (q, a1, · · · , an, p1, · · · pn) → (q′, a1, · · · ,

an, p1, · · · , pn). This handles the case of internal moves.
4. If (q,Popi(ai), q′) ∈ Δ then if δBi(pi, q

′) ∈ Fi, we have (q, a1, · · · , an, p1, · · · ,
pn) → qw else if δBi(pi, q

′) �∈ Fi, we have (q, a1, · · · , an, p1, · · · , pn) → ql

5. If (q,Zeroi, q
′) ∈ Δ then, if δBi(si,⊥.q′) ∈ Fi, we have (q, a1, · · · ,

ai−1,⊥, ai+1 · · · , an, p1, · · · , pi−1, si, pi+1, pn) → qw else if δBi(si,⊥.q′) �∈ Fi,
we have (q, a1, · · · , ai−1,⊥, ai+1 · · · , an, p1, · · · , pi−1, si, pi+1, · · · , pn) → ql

Now consider the ranking function σ′ that assigns 0 to qw, 1 to ql, i.e.
σ(qw) = 1 and σ(ql) = 0 and for all other positions of the form c = (q, a1, · · · ,
an, p1, · · · , pn), we let σ′(c) = σ(q). Similarly, consider τ ′ that assigns τ ′(qw) = 0
and τ ′(ql) = 1. Further we let τ ′(c) = τ(q) for any c = (q, a1, · · · , an, p1, · · · , pn).
We claim that nodes in the subgame involving configurations of the form (c, 0, 1)
can be reduced to the finite state parity game given by H = (V (H),−→H , σ′, τ ′).

The idea now is to provide a mapping from positions of the form (c, 0, 1) in
G to positions in H. For this, we wish to first eliminate from G, using Lemma 2,
any positions of the form (c, i, 1) for i �= 0. Note that, the set of all position
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S = {(c, i, 1) | (c, i, 1) ∈ E(M), i �= 0} is a trap in G. Let Wi ⊆ S be
the set of winning positions for player-i. Now consider the game graph G′

obtained by deleting S from G, adding two new vertices pwin, plose replac-
ing all the edges to W0 by edges to pwin and the edges to W1 by edges
to plose. Then by application of Lemma 2, a position in E(M) \ S is win-
ning for any player iff it is winning in G′. Observe that the set E(M) \ S
is exactly {(c, 0, 1)|c ∈ C(M)}. Now consider the mapping F from posi-
tions of G′ to positions in H defined as F((q, a1γ1, a2γ2, · · · , anγn), 0, 1)) =
((q, a1, · · · , al, δ

P
1 (x1, γ

R
1 ), δP

2 (x2, γ
R
2 ), · · · , δP

n (xn, γR
n )) and F(pwin) = qw and

F(plose) = ql. Notice that such a mapping preserves the properties required
by Lemma 1. As a result, we get the following lemma.

Lemma 5. A position (c, 0, 1) is winning for player-i in G′ if and only if
F((c, 0, 1)) is winning for player-i in H.

In addition note that the set of positions of the form (c, 0, 1) that are winning
for player-0 are precisely those in SWin = {w | f(w)is winning for player-0} and
this clearly is a recognizable set. This completes the proof of Lemma 3.

6.2 Decidability of a k Phase Game

The idea is to use the fact that the 1-phase sub-game of a k-phase game is
determined. Notice that after execution of k − 1 phases, what remains is a 1-
phase sub-game. In this 1-phase sub-game, the stack contents of all other stacks
(exclusing the currently active stack) are irrelevant and hence it can easily be
simulated by a pushdown automata.

Let K = {(c, i, 1) | (c, i, 1) ∈ Ek ∧ i ∈ [1..n]}. Recall the pushdown automata
Pi constructed in Lemma 3. As in the case of Lemma 3, we can provide a
mapping F from the sub-game involving positions from K to positions in the
game H = (C(Pi),−→, τ, σ), such that F satisfies the properties of Lemma 1 (as a
matter of fact, the game graph H is isomorphic to the trap consisting of positions
of the form (c, i, 1), i �= 0 in the game graph of a 1-phase parity game). From
this, we get the following Lemma which states that the set of winning positions
of a 1-phase sub-game can be effectively determined using the set of winning
positions of the pushdown system Pi.

Lemma 6. s ∈ K is winning for player-0 iff F(s) is winning for player-0 in the
pushdown game H = (C(Pi),−→, τ, σ)

Now to handle the case of k-phase game, we first invoke Theorem 2 to obtain
Bi = (QBi

, Γ ∪ Q, si, δ
Bi , Fi) that recognises the winning positions of the push-

down system Pi. Suppose at the end of k − 1 phase, we know the state that the
automata Bi reaches on reading stack i, then, at the beginning of phase k, we
can determine whether player-0 is winning from that position or not. The case
for 1-phase game was easy since we had only pushes to contend with (and hence
it was possible to simulate Bi using only the state space). However, in case of a
k−1 phase game, we need to also handle pop operations. Hence it is not possible
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to simulate Bi automata by just keeping it in the state space. The informal idea
is to keep the Bi automata as part of the state space and simulate it on each
push onto the stack-i. In addition, on each push, along with the stack symbol we
also store in the stack the state of Bi that was reached before the current push.
Now each time a pop operation is performed, we can retrieve the correct state
of the Bi automata and delegate it to the state space. The details are formalised
below.

Let (k,M, τ, σ) be a k-bounded-phase game with M = (n,Q, Γ,Δ, q0) and
k > 1. We define a new MPDS as M(k) = (n,QM(k), ΓM(k),Δ

′, qM(k)
0 ), where

QM(k) = Q×QB1 ×· · ·×QBn
×Γn×[0..n]×[2..k]∪{qw, ql}, ΓM(k) =

⋃
i∈[1..n](Γ ×

QBi
) ∪ {⊥}, q

M(k)
0 = (q0, s1, · · · , sn,⊥n, 0, k) and the transition relation Δ′ is

defined as follows

1. if (q,Pushi(b), q′) ∈ Δ then we have for all i ∈ [1..n], pi ∈ QBi
, m ∈ [0..n],

l ∈ [2..k] and ai ∈ Γ , ((q, p1, · · · , pn, a1, · · · , an,m, l), Pushi(ai, pi), (q′, p1,
· · · , pi−1, δ

P
i (pi, ai), · · · , pn, a1, · · · , ai−1, b, ai+1, · · · , an,m, l)) ∈ Δ′. We

always store the top of stack and current state of Bi in the state space.
Every time we push, the previously stored top of stack in the state (ai) and
the previously stored state of Bi (pi) is pushed into the actual stack.

2. if (q, Int, q′) ∈ Δ then we have for all i ∈ [1..n], pi ∈ QBi
and ai ∈ Γ ,

((q, p1, · · · , pn, a1, · · · , an,m, l), Inti, (q′, p1, · · · , pn, a1, · · · , an,m, l)) ∈ Δ′.
3. For each (q,Popj(aj), q′) ∈ Δ we add the following transitions.

– ((q, p1, · · · , pn, a1, · · · , an, 0, k),Popj(bj , p
′
j), (q

′, p1, · · · , pj−1, p
′
j , pj+1,

· · · , pn, a1, · · · , aj−1, bj , aj+1, · · · , an, j, k)) ∈ Δ′, for all bj ∈ Γ . This
transition corresponds to the case where no pop or zero test operation
were performed previously.

– ((q, p1, · · · , pn, a1, · · · , an, j, l),Popj(bj , p
′
j), (q

′, p1, · · · , pj−1, p
′
j , pj+1,

· · · , pn, a1, · · · , aj−1, bj , aj+1, · · · , an, j, l)) ∈ Δ′. This transition corre-
sponds to poping from the currently active stack.

– For any l > 2, i �= j, ((q, p1, · · · , pn, a1, · · · , an, i, l),Popj(bj , p
′
j), (q

′, p1,
· · · , pj−1, p

′
j , pj+1, · · · , pn, a1, · · · , aj−1, bj , aj+1, · · · , an, j, l − 1)) ∈ Δ′.

This transition corresponding to a pop from stack-j when the currently
active stack is i.

– For any i �= j and δ(p′
j , q

′) ∈ Fj , ((q, p1, · · · , pn, a1, · · · , an, i, 2), Int,
qw) ∈ Δ′.

– For any i �= j and δ(p′
j , q

′) /∈ Fj , ((q, p1, · · · , pn, a1, · · · , an, i, 2), Int, ql)
∈ Δ′.

4. For each (q,Zeroj , q
′) ∈ Δ we add the following transitions.

– ((q, p1, · · · , pn, a1, · · · , aj−1,⊥, · · · , an, 0, k),Zeroj , (q′, p1, · · · , pj−1, · · · ,
pn, a1, · · · , aj−1,⊥, · · · , an, j, k)) ∈ Δ′.

– ((q, p1, · · · , pn, a1, · · · , aj−1,⊥, · · · , an, j, l),Zeroj , (q′, p1, · · · , pj−1, · · · ,
pn, a1, · · · , aj−1,⊥, · · · , an, j, l)) ∈ Δ′, for all l ∈ [2..k].

– For all l > 2 and i �= j, ((q, p1, · · · , pn, a1, · · · ,⊥, aj−1, · · · ,
an, i, l), Zeroj , (q′, p1, · · · , pj−1, · · · , pn, a1, · · · , aj−1,⊥, · · · , an, j, l −
1)) ∈ Δ′.
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– For any i �= j and δ(sj , q
′) ∈ Fj , ((q, p1, · · · , pn, a1, · · · , aj−1,⊥, · · · ,

an, i, 2), Int, qw) ∈ Δ′.
– For any i �= j and δ(sj , q

′) ∈ Fj , ((q, p1, · · · , pn, a1, · · · , aj−1,⊥, · · · ,
an, i, 2), Int, qw) ∈ Δ′.

5. We further add (ql, Int, ql) and (qw, Int, qw) to the transitions

Observe that any run of such a system may involve at most k − 1 phases,
as every change of phase results in a reduction in the last component. After
k − 1 reductions, we end up in one of the states qw or ql. For correctness of
the construction, we first define a ranking function σ′ as follows. σ′(qw) = 0,
σ′(ql) = 1 and for all other states s = (q, p1, · · · , pn, a1, · · · , an) ∈ QM(k), we let
σ′(s) = σ(q). Similarly we define τ ′ as τ ′(qw) = 0, τ ′(ql) = 1 and for all other
states s = (q, p1, · · · , pn, a1, · · · , an) ∈ QM(k), we let τ ′(s) = τ(q) and we show
that we may associate positions of the form (c, i, k) in the bounded-phase game
on (k,M, τ, σ) with positions of the form (d, i, k−1) in the bounded-phase game
on (k − 1,M(k), τ ′, σ′) that preserves the winner.

For a sequence w = anan−1 . . . a1a0 ∈ (Γ \ {⊥})+⊥ and 1 ≤ j ≤ l,
let ρj(w) = (an−1, pn−1) . . . (a2, p2)(a1, p1)(a0, p0)⊥ (we let ρj(⊥) = ⊥)
where p0 = sj and for all i ∈ [1..n], pi = δBj (pi−1, ai−1). Fur-
ther, let δj(w) = δBj (pn−1, an−1) (we let δj(⊥) = p0). We now define
the map F from the k-bounded-phase parity game on (k,A, τ, σ) to
the k − 1-bounded-phase parity game on the game (k − 1, A(k), τ, σ) as
F((q, γ1, · · · , γn), i, j) = (((q, δ1(γ1), · · · , δn(γn),Top(γ1), · · · ,Top(γl), i, j), ρ1
(γ1), · · · , ρl(γn)), i, j), if j > 1 (where Top is a function that returns top of the
stack), F((q, γ1, · · · , γn), i, 1) = qw if (q, γ1, · · · , γn) is winning for player-0 and
F((q, γ1, · · · , γn), i, 1) = ql if (q, γ1, · · · , γn) is losing for player-0. Now using
arguments similar to Lemma 3, we get the following.

Lemma 7. The map F satisfies the following properties
(1) The ownership and the rank of all positions (c, i, j) with j > 1 are pre-

served. (2) For any configuration (c, i, j) if (c, i, j) → (c′, i′, j′) with j′ > 1 then
F((c, i, j)) → F((c′, i′, j′)). (3) For any configuration (c, i, j) if F(c, i, j) → d for
any d �∈ {qw, ql} then there is (c′, i′, j′) with (c, i, j) → (c′, i′, j′), j′ > 1 such that
F(c′, i′, j′) = d. (4) If (c, i, 2) → (c′, i′, 1), then F(c, i, 2) → qw iff (c′, i′, 1) is a
winning position and F(c, i, 2) → ql iff (c′, i′, 1) is a losing position for player-0.

Hence we can effectively determine the set of all positions that are winning
for player 0, in the bounded-phase parity game (k,M, τ, σ).

We have shown how to reduce a k-bounded-phase game to a k − 1-bounded-
phase game. However note that each such a reduction is exponential in the size
of the system. Since we do as many such reductions as the number of phases,
the overall complexity will be a tower of exponents. Hence the overall reduction
is Non-elementary in nature. This completes the proof of theorem 3. Next we
show that such a blow up cannot be avoided.
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7 Lower Bounds for Bounded Phase Parity Game

We show that the satisfiability of a first order formula with ordering relation
over natural numbers, can be reformulated as a bounded-phase parity game
over MPDS. We first briefly recall the first order theory of natural numbers with
ordering relation (FO(<)).

Let V be countably infinite set of variables, we will use x, y, z, x1, x2 · · · to
refer to the variables in V. The set of terms in FO(<) is defined as t := x | t < t |
t = t. The set of formulas is defined to be Ψ := t | ¬t | Ψ ∨Ψ | Ψ ∧Ψ | ∀xΨ | ∃xΨ .
The notion of free, bound (quantified) variable are defined as usual. We write
V ar(Ψ) ⊆ V to denote the set of all free variables (unquantified variables) of Ψ .

Given any formula Ψ over variables V, we define a valuation function as
μ : V �→ N in the usual way. Given any formula Ψ and a valuation function μ,
we call μ a model of Ψ , iff μ |= Ψ . A formula with no free variables is called a
sentence. A sentence is said to be satisfied iff there is some valuation function
that satisfies it. Note that the negation is defined only on the atomic formulas.
However, given any formula Ψ , we can easily obtain another formula Duel(Ψ)
such that for any model μ of Ψ , μ |= Ψ iff μ �|= Duel(Ψ). w.l.o.g we will assume
that formulas that we deal henceforth with will be in prenix normal form.

Given a formula Ψ and its model μ we define the linearisation of μ w.r.t. Ψ to
be a word of the form x1a

j1x2a
j2 · · · xnajn⊥, where {x1, · · · , xn} = Var(Ψ) and

for each k ∈ [1..n], μ(xik) = jk + jk−1 · · · jn. Similarly, for any set of variables V,
we say a string (α = xnainxn−1a

in−1 · · · x1a
i1) ∈ (V ∪ a)∗ is a valuation string

if for all l, k ∈ [1..n], we have l �= k =⇒ xl �= xk (i.e. each xi appears at most
once). Firstly, given any valuation string α = xnainxn−1a

in−1 · · · x1a
i1 and a set

of variable V, we define μV
α as, for any j ∈ [1..n], μV

α(xj) = aij +aij−1 + · · ·+ai1 ,
i.e. it maps the variables xj , to a value equal to number of a’s appearing before
it in α. For any x ∈ V such that x does not appear in α, we let μα(x) = 0.

Given any formula Ψ , we use Cl(Ψ) to indicate the set of all formulas obtained
by closing the formula Ψ over subformulas. Note that even if Ψ is a sentence,
elements of Cl(Ψ) can have free variables. We now show that satisfiability of
first order formula over (N,<) (known to have non-elementary complexity [9])
can be reduced to a parity games over the bounded-phase MPDS.

The informal idea is to construct an MPDS, in which the state space contains
the subformulas of the given formula Ψ (i.e. Cl(Ψ)), along with some intermedi-
ary states. The MPDS starts with empty stack and the formula Ψ . At any point
in the game, the MPDS maintains the unprocessed part of the formula φ ∈ Cl(Ψ)
as part of its state space and the linear encoding (linearisation) of the current
valuation μ (w.r.t. φ) in its stack. There are two parts to the game depending on
whether the unprocessed part begins with a quantifier or not. If the unprocessed
part of formula begins with a quantifier ∀, then player-1 strips off the quantifier
and assigns a valuation to the corresponding variable by modifying the stack. If
it begins with a ∃ quantifier then the valuation is provided by player-0. If the val-
uation that the player wishes to provide is less than the variables already in the
stack, the elements are moved to stack-2 till the appropriate position is found,
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the variable is placed in this position and the elements from stack-2 are moved
back to stack-1. If the valuation that the player wishes to provide is greater than
all the variables present in the stack, extra a’s are appended and the variable is
placed. If the outer most operator is ∧, then the player-1 chooses a subformula
and the game proceeds. If the outer most operator is ∨, then the player-0 selects
a subformula. The game proceeds till the unprocessed part is an atomic formula,
in which case it can easily be verified based on the valuations in the stack.

We will formally describe the construction of the MPDS MΨ = (2, Q, Γ =
{a,⊥} ∪ Var(Ψ),Δ, q0) in two parts. The first part describes the moves till we
reach an atomic formula. It contains the following set of states Cl(Ψ) ∪ Cl(Ψ) ×
{lt, gt,m1,2,m2,1}∪Cl(Ψ)×{m1,2,m2,1}×({a}×Var(Ψ)). The transition relation
Δ is defined as follows. We will used ?x to denote either of ∃x or ∀x.

1. For all ψ1 ∧ψ2 ∈ Cl(Φ), the transitions (ψ1 ∧ψ2, Int, ψ1), (ψ1 ∧ψ2, Int, ψ2) ∈
Δ. Similarly for all ψ1 ∨ ψ2 ∈ Cl(Φ), the transitions (ψ1 ∨ ψ2, Int, ψ1) and
(ψ1 ∨ ψ2, Int, ψ2) ∈ Δ.

2. For all ?x.ψ ∈ Cl(Φ), we add (?x.ψ, Int, (?x.ψ, lt)) and (?x.ψ, Int, (?x.
ψ, gt)) ∈ Δ, this transition enables guessing whether the current variable
x needs to be inserted in between the existing variable (valuation falls below
the current maximum) or needs to be inserted on top (is greater than the
current maximum).

3. We also add ((?x.ψ, gt),Push1(a), (?x.ψ, gt)) ∈ Δ (pushes a into stack-1 to
increase possible valuation for x) and ((?x.ψ, gt),Push1(x), ψ) ∈ Δ (Marks
position of x and shift to the sub-formula).

4. We add ((?x.ψ, lt), Int, (?x.ψ,m1,2)) ∈ Δ (Begin moving from stack-1 to
2), ((?x.ψ,m1,2), Pop1(a), (?x.ψ,m1,2, a)) ∈ Δ and ((?x.ψ,m1,2, a),Push2

(a), (?x.ψ,m1,2)) ∈ Δ, ∀a ∈ Γ \ {⊥} (moves values from stack-1 to 2).
5. Similarly we add ((?x.ψ,m1,2),Push1(x), (?x.ψ,m2,1)) ∈ Δ (Begin moving

from stack-2 back to 2), ((?x.ψ,m2,1), Pop2(a), (?x.ψ,m2,1, a)) ∈ Δ and
((?x.ψ,m2,1, a), Push1(a), (?x.ψ,m2,1)) ∈ Δ, ∀a ∈ Γ \ {⊥} (moves values
from stack-2 to 1). We also add ((?x.ψ,m2,1),Zero2, ψ) ∈ Δ (Move to the
next sub-formula).

In the second part, we describe the state space starting at a state of the form
(x = y) or (x < y) that determines winner of the game. It contains the following
set of states {x = y, x < y, ay | x, y ∈ V } ∪ {T, F}. The transitions are as below.

1. (x = y,Pop1(z), x = y) ∈ Δ, for all z ∈ V \ {x, y} ∪ {a}, pop all elements
other than x, y.

2. (x = y,Pop1(z), z′) ∈ Δ, for z ∈ {x, y}, z′ ∈ {x, y} \ {z}, as soon as one of
{x, y} is seen (say x) goto a state expecting to see the other variable (y if we
saw x previously).

3. For x ∈ V , we add (x,Pop1(a), F ) ∈ Δ, if we see an a when we are expecting
a variable in x ∈ V , we goto the losing state F .

4. For x, z ∈ V , z �= x we add (x,Pop1(z), x) ∈ Δ, if we see a variable other
than x, we skip.
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5. For x ∈ V , we add (x,Pop1(x), T ) ∈ Δ, if we see a variable x, we goto
winning state.

6. We also add (T, Int, T ) and (F, Int, F ) to Δ.

The set transitions needed for ¬(x = y), (x < y),¬(x < y) are similar. We
will now consider the bounded-phase parity game given by (|Ψ |, C(MΨ ), τ, σ)
where σ : Q �→ {0, 1} and τ : Q �→ {0, 1} are defined as:

– We let σ(T ) = 0 and σ(F ) = 1. We let σ((∃x.Ψ ′, gt)) = 1 and σ((∀x.Ψ ′, gt)) =
0 (this will ensure that either of the player cannot simply win by just pushing
elements onto the stack). For all other q ∈ Q, we let σ(q) = 0.

– For any state s such that its subformula component is of the form, ∀x.Ψ ′ or
Ψ1 ∧ Ψ2, we let τ(s) = 1 (player-1 position). Otherwise, τ(s) = 0 i.e. we let
all other states to be player-0 position.

Notice that along any positions in the game, where the state is only a subformula
from Cl(Ψ), the stack content of the first stack α is a valuation string. This is
easy to see since by nature of the formula we have assumed that along any path,
we can never encounter the same variable twice. Clearly such a μV

α function
is a valuation function. We show in Lemma 8, that along positions in game
graph where the state is only a subformula from Cl(Ψ), the valuation function
constructed out of the content of stack 1 is actually a model of the subformula
iff player-0 has a winning strategy from that position.

Lemma 8. Give any configuration c ∈ C(M) which is of the form (Ψ, α⊥,⊥)
where α = xnainxn−1a

in−1 · · · x1a
i1 ∈ (V Γ ∗)∗ is a valuation string containing

all the free variables of Ψ , then μV
α |= Ψ iff player-0 has a bounded-phase winning

strategy from c.

Corollary 1. For any sentence Ψ , Ψ is satisfiable iff (Ψ,⊥,⊥) is winning for
player 0 in the game (|Ψ |, C(MΨ ), τ, σ). Thus deciding bounded-phase games has
a Non-elementary lower bound.
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Abstract. In this paper, we consider the reachability problem of multi-
threaded programs where threads have priorities and are scheduled by
a priority based round-robin scheduler. For that, we introduce a new
model, called Dynamic Pushdown Networks with Priorities (P-DPNs)
that extends the well known DPN model with priorities. We represent
potentially infinite sets of configurations of P-DPNs using finite state
automata and show that the backward reachability sets of P-DPNs are
regular and can be effectively computed.

1 Introduction

Writing multi-threaded programs is notoriously difficult, as concurrency related
bugs are hard to find and reproduce. This difficulty is increased if we consider
that several software systems consist of different components that react to the
environment and uses resources like CPU or memory according to a real time
need. For instance, in systems that control automobiles we can have a component
in charge of the music subsystem and another component in charge of the braking
subsystem. Obviously, the braking subsystem should have a higher priority access
to the resources needed, since a delay in the action of the brakes can cost lives.

The programming model used in the vast majority of these embedded sys-
tems, used from automobiles to spacecrafts, defines a set of threads that per-
form computation monitoring or responding to events. Each thread is typically
assigned a priority and are scheduled by a priority round-robin preemptive sched-
uler: if a thread with a higher static priority becomes ready to run, the currently
running thread will be preempted and returned to the wait list for its priority
level. The round-robin scheduling policy allows each thread to run only for a
fixed amount of time before it must yield its processing slot to another thread
of the same priority.

Combining threads with priorities and different synchronization primitives
can easily leads to a large number of undesirable behaviors. Consider for example
the pseudocode of Fig. 1. It consists on five threads that synchronize their access
to shared variables using a spin-lock. The program consists of two global variables
x and y, and one spin-lock l (lines 1, 2 and 3). The program starts with thread
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Fig. 1. Pseudocode of a program with threads, priorities and spin-locks.

main (line 5), of priority one, creating two threads A and B (lines 7 and 8), each
of them of priority one too. Thread A increments variable x (line 14), holding
the spin-lock, and then it creates thread C (line 16), of higher priority of two.
Thread B, holding the spin-lock, reads variable x into variable tmp (line 22) and
checks if they are equal (line 23). Note that threads A and B can be executed
concurrently, but the assert succeeds, since all accesses to variable x are protected
by the spin-lock. Thread C is similar to thread A, but this time incrementing
variable y and creating again thread A. This creates a loop that executes thread
A and C in an interleaved way. Thread D mimics thread B, reading variable
y but this time without protecting it with the spin-lock. Thread D also create
thread B, making a loop with it.

Now, we may think that the error in this program is the lack of protection to
the global variable y on thread D. But the assertion (line 39) will always succeed,
since threads C and D will never be executed concurrently. Indeed, either C or
D will be created first and will block the creation of the other thread until it
finish. However, the program still has a bug. The problem occurs when thread
B owns the spin-lock (lines 22 or 23) and it is interrupted by thread C trying to
acquire it (line 30). In this case we have a deadlock, since the only thread that
can make progress is thread C, for having higher priority, but it cannot acquire
the spin-lock.

Deadlock freedom and absence of conflicts, like data races, are among the
most crucial properties that need to be checked for multi-threaded programs.
The previous example shows that there is a real need for formal methods to find
automatic verification techniques for multi-threaded programs with priorities.

Dynamic pushdown networks (DPNs) were introduced in [1] as a suitable
formalism to model multi-threaded programs. DPNs generalize pushdown sys-
tems by rules that have the additional side effect of creating a new thread that is
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then executed in parallel. The key concept for analyzing DPNs is computation of
predecessor sets. Configurations of a DPN are represented as words over control
and stack symbols, and for a regular set of configurations, the set of predecessor
configurations is regular as well and can be computed effectively [1]. Predecessor
computations can be used for various interesting analyses, like kill/gen analysis
on bit-vectors, context-bounded model checking.

However, DPNs cannot model multi-threaded programs with priorities. In
a DPN model all the threads have the same priority to make a transition to
another configuration independently of other threads. Previous research [2,3] on
verification of multi-threaded programs with priorities using pushdown systems
has focused on threads scheduled under a FIFO policy, on which each thread can
only be interrupted by another thread of highest priority (threads of the same
priority cannot interleave).

Here we consider multi-threaded programs with priorities where threads with
the same priority can interleave as well. For this, we extend the DPN model
allowing the creation of threads with different priorities. In this new model,
called P-DPN, only threads in a configuration with highest priority are allowed to
make transitions. Threads with the same priority can interleave their executions,
imitating the round-robin scheduling.

The paper is organized as follows: first we introduce the definition of P-
DPNs and give its semantics (Sect. 2); then we show how to model programs
with threads and priorities, in particular we give the P-DPN model for the
program of Fig. 1 (Sect. 3). Next, we show a way to see executions of P-DPNs
as trees (Sect. 4) and present a finite abstraction over these executions trees
(Sect. 5). This abstraction allows to determine whether a DPN execution satisfies
the priority semantics or not. Then we show how to represent infinite sets of
configurations of a P-DPN, using a finite automaton, and show how to detect
data races and deadlocks with them (Sect. 6). Finally, we give the algorithm to
compute predecessor sets in P-DPNs (Sect. 7).

2 Model Definition

Definition 1. A Dynamic Pushdown Network with Priorities (P-DPN) is a
tuple M = (P,Γ ,Δ, η), where P is a finite set of control states, Γ is a finite
stack alphabet with P ∩ Γ = ∅, η : P → P is a function from control states to
a finite set of natural numbers P representing priorities, and Δ = ΔN ∪ ΔS

is a finite set of non-spawning rules pγ ↪→ qw ∈ ΔN and spawning rules
pγ ↪→ q1w1 � q2w2 ∈ ΔS, where p, q1, q2 ∈ P, γ ∈ Γ and w,w1, w2 ∈ Γ ∗.

A Dynamic Pushdown Network (DPN) can be seen as a P-DPN (P,Γ ,Δ, η0)
such that ∀p ∈ P, η0(p) = 0. Given a P-DPN M = (P,Γ ,Δ, η), its DPN M ′ is
defined as (P,Γ ,Δ, η0), abbreviated (P,Γ ,Δ).

A P-DPN can be seen as a collection of threads running in parallel, each
of them being able to perform pushdown operations using non-spawning rules
and to create new threads in the system using spawning rules. Using pushdown
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operations in the stack we can model calls and returns from (possibly recursive)
functions.

A global configuration of a P-DPN M is a word over the alphabet P ∪ Γ ,
starting with a symbol in P , representing the state of the P-DPN. A global con-
figuration can be seen as a sequence of words in PΓ ∗ each of them corresponding
to the configuration of one of the threads running in parallel on the system, also
called local configuration. Let ConfM be the set of all global configurations of a
P-DPN M .

The function η assigns a priority to each control state. Intuitively, this means
that a thread can be in configurations with different priorities. P-DPNs must
execute first the thread in the configuration with highest priority. We overload
the function η to configurations as follows: for all c = p1w1 . . . pnwn ∈ ConfM ,
η(p1w1 . . . pnwn) := max(η(p1), . . . , η(pn)). We say that η(c) is the priority of c.

Thus, a thread in a local configuration pγr can move to another local config-
uration qwr if its priority η(p) is highest among the others local configurations,
as the following definition shows.

Definition 2. The transition relation −→M is defined as the smallest relation
in ConfM × ConfM such that ∀c1, c2 ∈ ConfM :
1. c1 pγr c2 −→M c1 qwr c2, if η(c1 pγr c2) = η(p) and pγ ↪→ qw ∈ ΔN ;
2. c1 pγr c2 −→M c1 q2w2 q1w1r c2, if η(c1 pγr c2) = η(p) and pγ ↪→ q1w1 �

q2w2 ∈ ΔS;

where p, q, q1, q2 ∈ P, γ ∈ Γ,w,w1, w2, r ∈ Γ ∗. We denote as −→∗
M the transitive-

reflexive closure of −→M .

The semantics above says that: (1) a thread in a local configuration with
control state p and top of stack γ can move to a local configuration with control
state q, replacing the top of its stack γ by w, if there is a non-spawning rule
pγ ↪→ qw and its priority (η(p)) is equal to the highest priority in the system
(η(c1 pγr c2)); (2) a thread in a local configuration with control state p and top
of stack γ can move to a local configuration with control state q1, replacing the
top of its stack γ by w1 and creating another thread in control state q2 with stack
w2, if there is a spawning rule pγ ↪→ q1w1 � q2w2 and its priority (η(p)) is equal
to the highest priority in the system (η(c1 pγr c2)). Note that each transition
has the power to block and/or unblock others threads according to the priority
of the new control states.

Given a configuration c, the set of immediate predecessors of c in M is defined
as preM (c) = {c′ ∈ ConfM : c′ −→M c}. This notation can be general-
ized straightforwardly to sets of configurations. Let pre∗

M denote the reflexive-
transitive closure of preM . For the rest of this paper, we assume that we have
fixed a P-DPN M = (P, Γ,Δ, η). Let M ′ = (P, Γ,Δ) be its corresponding DPN
defined as in Definition 1.

3 Modeling Programs with P-DPNs

It was explained in [1] how to use DPNs to model multi-threaded programs
where all threads have the same priority. P-DPN extends the DPN model by



292 M. Diaz and T. Touili

Fig. 2. Some transition rules corresponding to the P-DPN of the program of Fig. 1.

attaching a priority to each control state and restricting the execution of each
thread according to the priority of the control state of his local configuration.
Only threads with highest priority can execute, i.e. only threads in a local config-
uration with the higher priority of the global configuration can make transitions
to other local configurations. Then, by giving to all the control states of a thread
the same priority, we can model a thread with that priority.

When modeling the termination of a thread, we must make sure that the
priority of its final control state does not prevent other threads from making a
transition. To ensure this, the control state of the final configuration should have
priority zero (the smallest priority).

Thus, the P-DPN of the program of Fig. 1 consists on:

– The set of control states P = {p0, p0,l, p1, p1,l, p2, p2,l}. The sub-index indicates
the priority and the spin-locks of the control state. For instance p0 is a control
state with priority zero and does not hold any spin-lock, while p1,l is a control
state with priority one and holds spin-lock l.

– The stack corresponds to program points on each thread:
Γ = {m0, . . . ,m3, a0, . . . , a4, b0, . . . , b5, c0, . . . , c4, d0, . . . , d3}.

– We show some of the transition rules on Fig. 2. For example, there are three
rules corresponding to thread Main: the first two representing the creation of
threads A and B; and the last one representing the end of its execution (note
that it moves to a control state of zero priority). Thread A, for its part, is
represented by five transition rules, each one representing (in this order): the
acquisition of lock l, the write of variable x, the release of lock l, the creation
of thread C, and the end of its execution. The rules for the others threads are
created following a similar reasoning. Note that sometimes is not possible to
anticipate the locks that each thread holds on each program point. On these
cases we should add a rule for each possible subset of locks. We omitted these
rules on Fig. 2.
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– As said previously, the sub-index of the control states indicates their priority.
Thus we have that η(p0) = 0, η(p1) = η(p1,l) = 1, η(p2) = η(p2,l) = 2.

4 Execution Hedges

The executions of P-DPNs can be viewed as trees, in which we specify the order
of transitions inside each thread and the father-child relation between threads
but we do not specify the order of transitions between different threads running
concurrently. Then, a P-DPN execution viewed as a tree can be either:

– only a configuration, representing an execution without transitions;
– a configuration with a child subtree, representing a configuration that makes

a non-spawning transition with the subtree representing the remaining part
of its execution;

– a configuration with two children subtrees, representing a configuration that
makes a spawning transition with the right subtree representing the remaining
part of the execution of the father thread and the left subtree representing the
execution of the child thread.

Thus, we model an execution of a P-DPN M as a list of trees called execution
hedge, where each tree represents the execution started from each thread in the
beginning of the execution.

Formally, let X be a variable, we define the set T [X] of terms over P∪Γ∪{X},
inductively, as follows: X ⊆ T [X], PΓ ∗ ⊆ T [X], if t ∈ T [X], c ∈ PΓ ∗ then
c(t) ∈ T [X], if t1, t2 ∈ T [X], c ∈ PΓ ∗ then c(t1, t2) ∈ T [X]. Terms in T [] are
called trees, and will be denoted also by T . A context C is a term in which X
occurs exactly once. Let t be a tree, then C[t] is the tree obtained by substituting
in C the occurrence of the variable X with the tree t. We define a hedge as a
finite sequence of trees in T , denoted as T ∗. Given a hedge h ∈ T ∗, we define the
root configuration of h, root(h), as the configuration formed by concatenating the
roots of each tree in h, from left to right. Given a hedge h ∈ T ∗, we define the yield
configuration of h, yield(h), as the configuration formed by concatenating the
leaves of h, from left to right. On Fig. 3 we can observe a graphical representation
of two of the possible hedges from the P-DPN of Fig. 2. In particular, these hedges
are called execution hedges, since its edges match transition rules of Δ. Note that
the execution hedge of the left is contained in the execution hedge of the right.
At the top of the right hedge we can observe the thread Main creating thread A.
The left subtree corresponds to the execution of thread A, on which it acquire
and release the spin-lock l and create thread C. The right subtree corresponds
to the remaining execution of thread Main, where it creates thread B, and the
execution of thread B, on which it acquire and release the spin-lock l and creates
thread D.
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Fig. 3. Two execution hedges corresponding to the P-DPN of Fig. 2.

Note that the configurations p2c0 and p1,lb1, can be reached simultaneously
from the starting configuration:

p1m0 → p1a0 p1m1 → p1a0 p1b0 p1m2

→ p1,la1 p1b0 p1m2 → p1,la2 p1b0 p1m2

→ p1a3 p1b0 p1m2 → p2c0 p1a4 p1b0 p1m2

→ p2c0 p1a4 p1,lb1 p1m2

This configuration corresponds to the deadlock mentioned in the introduction:
the thread C in configuration p2c0 is the only one allowed to execute, but it
cannot make progress since it should acquire the spin-lock owned by thread
B in configuration p1,lb1. On the otherside, the configurations p2,lc1 and p2d0,
corresponding to a data race mentioned in the introduction, cannot be reached
simultaneously as explained in that section.

We say that a hedge h is schedulable if we can interleave the edges of it
allowing us to reach the leaves of the hedge (yield(h)) from its root (root(h)).
For instance, on Fig. 3, the left execution hedge is schedulable but the right
execution hedge is not.

Definition 3. Let =⇒ be the smaller transition relation between trees that sat-
isfies:

C[pγr] =⇒ C[pγr(qwr)] if pγ ↪→ qw ∈ Δ

C[pγr] =⇒ C[pγr(q2w2, q1w1r)] if pγ ↪→ q1w1 � q2w2 ∈ Δ,

where C is a context, p, q, q1, q2 ∈ P, γ ∈ Γ,w,w1, w2, r ∈ Γ ∗. Its transitive-
reflexive closure is denoted by =⇒∗. We extend this definition in the obvious
way to hedges.
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Then, we can define the execution hedge as the hedge resulting from a sequence
of =⇒ transitions starting from a configuration.

Definition 4. A hedge h ∈ T ∗ is an execution hedge iff root(h) =⇒∗ h.

The definition of execution hedges guarantees that they represent only valid exe-
cutions in the DPN M ′. The following lemma is straightforward and is intended
to state the relation between −→∗ and =⇒∗.

Lemma 1. Let c, c′ ∈ ConfM , then c −→∗
M ′ c′ iff there is an execution hedge

h ∈ T ∗ such that c = root(h) and c′ = yield(h).

Since we are interested in execution hedges that can be mapped to at least
one valid execution path under P-DPN semantics, we define now a scheduler rela-
tion that schedules the transitions of an execution hedge respecting the priority
semantics.

Definition 5. The scheduler �⊆ T ∗×(PΓ ∗)×T ∗ is the least relation satisfying
the following constraints:

h1 c(t) h2 � h1 t h2 if η(root(h1 c(t) h2)) = η(c)
h1 c(t1, t2) h2 � h1 t1t2 h2 if η(root(h1 c(t1, t2) h2)) = η(c)

where h1, h2 ∈ T ∗, t, t1, t2 ∈ T, c ∈ PΓ ∗. The transitive reflexive closure of � is
denoted by �∗.

The transition rules above mean that the scheduler chooses configuration c to
execute first since c has the highest priority of the other active threads: the
priority of c is η(root(h1 c(t) h2)) for the first rule and η(root(h1 c(t1, t2) h2))
for the second rule.

We will say that a hedge h is schedulable if the scheduler can schedule all its
transitions, i.e. the sequence of � transitions end up with the yield configuration
of h.

Definition 6. A hedge h is schedulable iff h �∗ yield(h).

Then, it is easy to see that a schedulable execution hedge has a valid execution
path in M , i.e. under P-DPN semantics. Thus, we can relate −→∗

M with =⇒∗

(execution) and �∗ (schedulable), as follows:

Theorem 1. Let c, c′ ∈ ConfM , then c −→∗
M c′ iff there is a schedulable exe-

cution hedge h ∈ T ∗ with c = root(h), c′ = yield(h).

5 Priority Structures

Given an execution hedge h ∈ T ∗, one way to decide whether it is schedulable
or not is to try all the possible ways to schedule its transitions until we succeed
on executing all of them, i.e. to saturate �∗ and then to check if h �∗ yield(h).
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We will see now a more efficient and useful way to decide it, by computing a
finite abstraction over the execution hedges.

We compute this finite abstraction, called priority structure, using a function
denoted by Φ. The computation is carried out inductively over the structure of
the hedge, from leaves to roots. If the hedge is schedulable its priority structure
will be defined as a tuple [[x, y]], where x is the lowest priority of the configurations
that make a transition, called lowest transition priority ; and y is the priority of
the yield configuration, called highest final priority. Otherwise, if the hedge is
not schedulable, its priority structure will be denoted by the symbol ⊥. The set
of all priority structures is defined as PS = {[[x, y]] | x ∈ P ∪ {∞}, y ∈ P} ∪ {⊥},
where ∞ is defined as the highest possible priority.

The priority structure of an execution hedge will be computed using two
auxiliary functions called update and compose (⊕). The function update updates
the priority structure in non-spawning transitions, while the function ⊕ compute
a new priority structure from the priority structures of a spawning transition.

Definition 7. Given a hedge h ∈ T ∗ we define its priority structure Φ(h) as:

Φ(h) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[[∞, η(c)]] if h = c

update(η(c), Φ(t)) if h = c(t)
update(η(c), Φ(t) ⊕ Φ(t′)) if h = c(t, t′)
Φ(t1) ⊕ · · · ⊕ Φ(tn) if h = t1 . . . tn

update(n, s) :=

{
[[min(n, x), y]] if s = [[x, y]]
⊥ ifs = ⊥

s1 ⊕ s2 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[[min(x1, x2),max(y1, y2)]] if s1 = [[x1, y1]] ∧ s2 = [[x2, y2]]
∧((y2 ≤ x1 ∧ x1 ≤ x2)

∨(y1 ≤ x2 ∧ x2 ≤ x1))
⊥ otherwise

where c ∈ PΓ ∗, t, t′, t1, . . . , tn ∈ T, s, s1, s2 ∈ PS, x, x1, y, y1 ∈ P .

Let us give the intuition behind this definition:

1. If the hedge is a leaf (h = c), i.e. a configuration pw without transitions, then
it is trivially schedulable. Its priority structure Φ(h) is the tuple [[∞, η(p)]]: its
lowest transition priority is set to ∞, since there are no transitions; and the
highest final priority, by definition, is the priority of its control state η(p).

2. If the hedge is a root configuration with a unique child subtree (h = c(t)); then
it is schedulable if the subtree t is schedulable, since the first non-spawning
transition can obviously be made. This case is handled by the auxiliary func-
tion update (update(η(c), Φ(t))), depending on the schedulability of the sub-
tree t:
2.1 If the subtree t is not schedulable, then its priority structure is ⊥. Thus,

the hedge is obviously not schedulable and then its priority structure is
also ⊥.
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2.2 If the subtree t is schedulable, then its priority structure is [[x, y]] for some
priorities x, y. Then, the lowest transition priority will be the minimum
between the priority n of the root configuration and x; and the highest
final priority will remain equal to y. Thus, the priority structure of h is
[[min(n, x), y]].

3. If the hedge is a root configuration with two children subtrees (c(t, t′)), then
it is schedulable if the subtrees are schedulable, since the first spawning tran-
sition can obviously be made. So, we use the function update in the same
way as the previous item, but over the composition of the priority structures
of each subtree (update(η(c), Φ(t) ⊕ Φ(t′))). The composition operator ⊕,
depending on the schedulability of each subtree, is defined as follows:
3.1 If one of the subtrees is not schedulable (s1 = ⊥ or s2 = ⊥), then obvi-

ously the two subtrees cannot be scheduled together.
3.2 If the subtrees are schedulable, then they have priority structures [[x1, y1]]

and [[x2, y2]] for some priorities x1, y1, x2, y2. Note that at least one of the
subtrees finish its execution first, the one with higher lowest transition
priority. Once it finishes its execution, its highest final priority should
allow to execute the remaining transitions of the other tree. Thus, in this
case, the subtrees are schedulable together if:

3.2.1. The tree with lowest transition priority x1 finish its execution first,
x1 ≥ x2, and it does it with highest final priority y1 allowing the
execution of the transitions of the other tree, y1 ≤ x2; or,

3.2.2. The tree with lowest transition priority x2 finish its execution first,
x2 ≥ x1, and it does it with highest final priority y2 allowing the
execution of the transitions of the other tree, y2 ≤ x1.

If this happen, then the composition of the priority structures is the
priority structure of the hedge tt′: the minimum of the lowest tran-
sition priorities and the maximum of the highest final priorities, i.e.
[[min(x1, x2),max(y1, y2)]].

4. If the hedge is a sequence of trees t1 . . . tn, then it is schedulable if the com-
position of their priority structures is not ⊥, i.e. Φ(t1) ⊕ · · · ⊕ Φ(tn) �= ⊥.
Since the ⊕ operator is associative and commutative, the intuition of the pre-
vious case, with only two subtrees, can be applied here composing by pairs
of priority structures.

The intuition explained in item 3.2 leads to the following lemma:

Lemma 2. Given two schedulable hedges h1 and h2 with priority structures
[[x1, y1]] and [[x2, y2]], respectively, the execution hedge h1h2 is schedulable if and
only if:

(y1 ≤ x2 ∧ x2 ≤ x1) ∨ (y2 ≤ x1 ∧ x1 ≤ x2)

Then, we can show the following theorem.

Theorem 2. An execution hedge h is schedulable if and only if Φ(h) �= ⊥.
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Fig. 4. Computation of priority structures of the hedges of Fig. 3.

On Fig. 4 we show the computation of the priority structures of the execution
hedges of Fig. 3, the arrows show the direction of the computation of the priority
structures and each node contains the priority structure of the tree rooted by
itself. Thus, by the previous theorem, the execution hedge of the left is schedu-
lable since it has a priority structure of [[1, 2]]; and the execution hedge of the
right is not schedulable since its priority structure is ⊥.

6 Representing Infinite Sets of Configurations
of a P-DPN

Following [1], we use finite automata called M -automata to represent regular
(possible infinite) sets of configurations of P-DPNs.

Definition 8. Let M = (P, Γ,Δ, η) be a P-DPN, a finite automaton
A = (S,Σ, δ, s0, F ) is an M-automaton if the following conditions hold:

1. Σ = P ∪ Γ is the finite alphabet.
2. The set of states is partitioned into two sets S = Sc ∪ Ss s.t. Sc ∩ Ss = ∅.
3. For every s ∈ Sc and every p ∈ P , there is a (unique and distinguished) state

sp ∈ Ss. Let SP = {sp : s ∈ Sc, p ∈ P}.
4. There is a relation δ′ ⊆ Ss × Γ × (Ss \ SP ) ∪ Ss × {ε} × Sc. such that δ =

δ′ ∪ {(s, p, sp) : s ∈ Sc, p ∈ P}.
5. The initial state s0 ∈ Sc.
6. F ⊆ S is the set of final states.

For σ ∈ Σ ∪ {ε} and s, s′ ∈ S, we write s
σ−−→δ s′ instead of (s, σ, s′) ∈ δ.

We extend this notation in the obvious manner to sequences of symbols: ∀s ∈
S.s

ε−−→δ s, and ∀s, s′ ∈ S.∀σ ∈ Σ∪{ε}.∀w ∈ Σ∗.s σw−−→δ s′ iff ∃s′′ ∈ S.s
σ−−→δ s′′

and s′′ w−−→δ s′. Note that requirement (4) encodes a number of conditions on δ:
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– Each s ∈ Sc has sp as its unique p-successor and no Γ -transitions.
– s is the only predecessor of sp.
– Only ε-moves from states in Ss leads to states s ∈ Sc.
– States s ∈ Ss don’t have p-successors from any p ∈ P .

So, every path in a M -automaton (starting from the initial state) is the concate-
nation of paths of the form: s

p−→δ sp
w−→δ t

ε−→δ s′, where s, s′ ∈ Sc, p ∈ P,w ∈ Γ ∗

and all states in the path sp
w−→δ t are in Ss. Note that for every finite automaton

A over the alphabet P ∪ Γ such that L(A) ⊆ ConfM , it is possible to construct
an M -automaton recognizing the same language. A set of configurations C is
regular if there exists an M -automaton A such that L(A) = C.

Suppose we want to check that the program of Fig. 1 does not have data
races between threads C and D. We can create an M-automaton for each pair
of program points that access the same global variable, with at least one write
access, compute their predecessors configurations and check if the initial con-
figuration is included. For instance, control points c1 and d0 attempt to access
variable y, the first one to write it and the second one to read it. So, in order to
check if these control points can be reached at the same time, we can create an
M-automaton A that accepts the language (PΓ ∗)∗ Pc1(PΓ ∗)∗ Pd0 (PΓ ∗)∗ and
(PΓ ∗)∗ Pd1(PΓ ∗)∗ Pc1 (PΓ ∗)∗.

In a similar way, we can create another M-automaton A to check that the
program does not have deadlocks as a result of the interaction between the pri-
orities and the spin-locks. This M-automaton will accept the language of global
configurations with a local configuration holding a spin-lock, like configuration
p1,lb1, and another local configuration, with a higher priority, trying to acquire
the same spin-lock, like configuration p2c0.

7 Computing pre∗ Images of P-DPNs

Given a P-DPN M and a M -automaton A, we will compute pre∗
M (L(A)). The

main idea of the algorithm consists on computing the predecessors without taking
care of priorities, using the algorithm of [1] over a modified version of M ′, and
then filtering out the unreachable configurations using priority structures. In
order to filter or not a configuration c ∈ pre∗

M ′(L(A)), we compute the priority
structure of the hedge h with root configuration c and yield configuration in L(A).
Then, using Theorems 1 and 2, if Φ(h) �= ⊥ we conclude that the configuration
c belongs also to pre∗

M (L(A)).
For computing the priority structure of these hedges, we modify M ′ and A

(steps 1 and 2), embedding the definition of Φ inside the control states of the
configurations. We obtain thus a DPN M ′′ and a M -automaton A ′. Then, instead
of computing predecessors of L(A) in M ′, we compute predecessors of L(A ′)
in M ′′ (step 3), obtaining configurations of the form (p1, s1)w1 . . . (pn, sn)wn.
Intuitively, (p1, s1)w1 . . . (pn, sn)wn ∈ pre∗

M ′′(A ′) means that p1w1 . . . pnwn ∈
pre∗

M ′(L(A)) and that s1 ⊕ · · · ⊕ sn is the priority structure of the execution
hedge rooted at p1w1 . . . pnwn and whose yield is in L(A). Finally, we create an
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automaton Apre∗
M

(step 4) that accepts only the configurations of pre∗
M ′′(L(A ′))

with priority structures not equal to ⊥. Thus, the algorithm consist of four steps
that we explain in detail below.

Step 1: Compute A ′. First, we create an automaton A ′ from A. We want to
compute the predecessors of p1w1 . . . pnwn, for p1w1 . . . pnwn ∈ L(A). Each pre-
decessor should be the root of an execution hedge whose yield is p1w1 . . . pnwn.
To compute the priority structures of such execution hedge, we need, as explained
in Sect. 5, to start the computation upward on the hedge, while initializing the
leaves (p1w1, . . . , pnwn) by their priority structures ([[∞, η(p1)]], . . . , [[∞, η(pn)]]).
Thus, we need to transform A in order to take into account these priority struc-
tures. For that, we transform A into A ′, that accepts the language:

L(A ′) = {(p1, [[∞, η(p1)]])w1 . . . (pn, [[∞, η(pn)]])wn | p1w1 . . . pnwn ∈ L(A)}.

It is easy to see that A ′ can be computed from A in a straightforward manner.

Step 2: Compute M ′′. Now, we continue the computation of priority struc-
tures of the hedges with yield configurations in L(A) that we started in the
previous step. For that, we create a new DPN M ′′ from M , attaching priority
structures to the control states of P and embedding the definition of Φ (for cases
h = c(t) and h = c(t, t′)) in the transitions rules of Γ . Then, we obtain the
control states P ′ and transitions rules Δ′ of M ′′, as follows:

– For each control state p ∈ P , we add a control state ps = (p, s) to P ′, for
each priority structure s ∈ PS. Intuitively, the configuration (p, s)w ∈ P ′Γ ∗

means that s is the priority structure of the execution hedge that starts at
configuration pw ∈ PΓ ∗.

– Given a non-spawning transition pγ ↪→ qw ∈ Δ, we add the transitions
(p, sp)γ ↪→ (q, sq)w to Δ′, where sp = update(η(p), sq),∀sq ∈ PS. This
means that if we have the execution hedge qwr(. . . ) with priority structure
sq then we have the execution hedge pγr(qwr(. . . )) with priority structure
update(η(p), sq).

– Given a spawning transition pγ ↪→ q1w1 � q2w2 ∈ Δ we add the transi-
tions (p, sp)γ ↪→ (q1, sq1)w1 � (q2, sq2)w2 to Δ′, where sp = update(η(p), sq1 ⊕
sq2),∀sq1 , sq2 ∈ PS. This means that if we have the hedges q1w1r(. . . )
and q2w2(. . . ) with priority structures sq1 and sq2 , respectively, then we
have the execution hedge pγr(q1w1r(. . . ), q2w2(. . . )) with priority structure
update(η(p), sq1 ⊕ sq2).

Definition 9. Given the P-DPN M = (P, Γ,Δ, η), the DPN M ′′ = (P ′, Γ,Δ′)
is defined as: P ′ = {(p, s) | p ∈ P, s ∈ PS} and the transition rules of Δ′ are:

(p, sp)γ ↪−→ (q, sq)w ∈ Δ′ if pγ ↪−→ qw ∈ Δ ∧ sp = update(η(p), sq)
(p, sp)γ ↪−→ (q1, sq1)w1 � (q2, sq2)w2 ∈ Δ′ if pγ ↪−→ q1w1 � q2w2 ∈ Δ

∧ sp = update(η(p), sq1 ⊕ sq2)

where p, q, q1, q2 ∈ P , γ ∈ Γ,w,w1, w2 ∈ Γ ∗, sp, sq, sq1 , sq2 ∈ PS.
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The following lemma is a direct result from Theorems 1 and 2 and the definition
of M ′′. It intuitively says that M ′′ can compute priority structures.

Lemma 3. p1w1 . . . pnwn −→∗
M p′

1w
′
1 . . . p′

mw′
m if and only if

(p1, s1)w1 . . . (pn, sn)wn −→∗
M ′′ (p′

1, [[∞, η(p′
1)]])w

′
1 . . . (p′

m, [[∞, η(p′
m)]])w′

m

and s1 ⊕ · · · ⊕ sn �= ⊥.

The next lemma shows that we can use M ′′, A ′ and the algorithm for predecessor
sets in DPNs of [1] to compute predecessors sets in P-DPNs by filtering out
the configurations with the composition of its priority structures (stored in the
control states) equal to ⊥.

Lemma 4. p1w1 . . . pnwn ∈ pre∗
M (L(A)) if and only if

(p1, s1)w1 . . . (pn, sn)wn ∈ pre∗
M ′′(L(A ′)) and s1 ⊕ · · · ⊕ sn �= ⊥.

Step 3: Compute Apre∗M
′′ . Then, we apply the algorithm of [1] to the DPN

M ′′ and the M ′′-automaton A ′. We obtain an automaton Apre∗
M′′ such that:

L(Apre∗
M′′ ) = pre∗

M ′′(L(A ′)).

Step 4: Compute Apre∗
M

. Finally, as we said previously, we need to filter out the
configurations accepted by Apre∗

M′′ with the composition of the priority structures
in their control states equal to ⊥. This corresponds to the case h = t1 . . . tn of the
definition of Φ. For doing this, we define a new automaton Apre∗

M
that satisfies:

L(Apre∗
M

) = {p1w1 . . . pnwn | (p1, s1)w1 . . . (pn, sn)wn ∈ L(Apre∗
M′′ )

∧ s1 ⊕ · · · ⊕ sn �= ⊥}
It is easy to see that is straightforward to construct such M-automata.

Finally, we get the main result of the paper that says that backward reach-
ability sets of P-DPNs are regular and can be effectively computed.

Theorem 3. L(Apre∗
M

) = pre∗
M (L(A)).

Note that the time complexity of the proposed algorithm is polynomial on the
size of M , A and the number of priorities.

8 Related Work

Several other models have been proposed for multi-threaded programs with pro-
cedure calls and thread creation, like Ground Tree Rewrite Systems [4] and
process rewrite systems (PRS) [5]. However, these models cannot deal with
priorities. PA-processes, a subclass of PRS and incomparable with DPNs, was
extended with priorities in [6]. On the other hand, PA-processes cannot precisely
model procedure calls. Other works extend DPNs to model multi-threaded pro-
grams [7–12], but none of these extensions handle priorities.
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The models of [2,3] do not allow concurrent behavior between threads of the
same priority. Kidd et al. introduced in [2] a program transformation that trans-
lates a multi-threaded program into a sequential one. The key insight behind
their reduction is that because a preempted lower-priority thread is not resched-
uled until the higher-priority thread has finished, the two threads can share the
same stack. Bouajjani et al. [3] extended multiset pushdown systems with prior-
ities on each task. Multiset pushdown systems is a model where some procedure
calls can be stored as tasks to be processed later.

9 Conclusion

We have defined a new formalism called Dynamic Pushdown Networks with
Priorities (P-DPN) that extends the well known DPN model by attaching prior-
ities to each control state and restricting the transition relation to threads with
highest control state priority.

Then, we show that backward reachability sets of regular (possible infinite)
sets of configurations of P-DPNs are regular and effectively computable. Using
automata-based techniques, we give a polynomial-time algorithm to compute
these sets. Finally, we show how to use our model to rule out false alarms regard-
ing data races and to detect deadlocks.
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Abstract. Software-defined networking (SDN), network functions vir-
tualization (NFV) and network virtualization (NV) build a mini-cosmos
inside data centers, cloud providers, and enterprises.

The network virtualization allows new on-demand management capa-
bilities, in this work we demonstrate such a service, namely, on-demand
efficient monitoring or anonymity. The proposed service is based on net-
work virtualization of expanders or sparsifiers over the physical network.
The defined virtual (or overlay) communication graphs coupled with a
multi-hop extension of Valiant randomization based routing lets us mon-
itor the entire traffic in the network, with a very few monitoring nodes.

In particular, we show that using overlay network with expansion
properties and Valiant randomized load balancing it is enough to place
O(m) monitor nodes when the length of the overlay path (number of
intermediate nodes chosen by Valiant’s routing procedure) is O(n/m).

We propose two randomized routing methods to implement policies for
sending messages, and we show that they facilitate efficient monitoring
of the entire traffic, such that the traffic is distributed uniformly in the
network, and each monitor has an equiprobable view of the network flow.
In terms of complex networks, our result can be interpreted as a way to
enforce the same betweenness centrality to all nodes in the network.

Additionally, we show that our results are useful in employing
anonymity services. Thus, we propose monitoring or anonymity services,
which can be deployed and shut down on-demand. Our work is the first, as
far as we know, to bring such on-demand infrastructure structuring using
the cloud NV capability to existing monitoring or anonymity networks. We
propose methods that theoretically improve services provided by existing
anonymity networks, and optimize the degree of anonymity, in addition
to providing robustness and reliability to system usage and security.

At last, we believe, that our constructions of overlay expanders and
sparsifiers weighted network, that use several random walk trees, are of
independent interest.
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1 Introduction

Software-defined networking (SDN) is a building block and mechanism for realiz-
ing network virtualization (NV) and architecture independent network functions
virtualization (NFV). Network virtualization allows us to create virtual net-
works which network’s topology is decoupled from the topology of the underly-
ing physical network, and dynamically create policy-based virtual networks [33].
An overlay network is one of many possible forms of network virtualization. Its
main idea is to encapsulate a network service decoupled from the underlying
infrastructure [33].

Network functions virtualization concerns implementation of network func-
tions in software. Due to increasing demand for dynamic network architectures,
network virtualization technology was utilized in Network-as-a-Service (NaaS)
models that enabled dynamic deployment of a network service on-demand [7].
Integration of SDN and NFV enables flexible, programmable and dynamic
deployment of network services [6], and in [7] one such SDN-based implementa-
tion was presented.

Today, companies heavily rely on networking and Internet connection even for
simple tasks. As such, traffic monitoring is a common request in private corporate
networks. In this work, we describe an on-demand overlay network construction
which enforces a defined policy of message sending scheme utilizing Valiant [37]
randomization technique. We propose to construct an overlay network over the
underlying network in such a way that the overlay network will preserve the
expansion properties of the underlying network, moreover, we build the overlay
network oriented towards having capacity approximately close to the capacity
of the underlying physical network. This requirement makes the overlay network
maximally utilize the capacity usage for all sort of network applications.

The monitoring of the network resorts to monitors that are located at the
nodes of the constructed overlay network. Monitors are not required to be located
at each node of the network but can be placed at selected nodes. This decision
depends on selected message sending policy of the network. The combination
of the enforced message sending scheme and spectral properties of the overlay
network graph provides uniform monitoring abilities such that each monitor
supervises uniform fraction of network traffic, and none of the monitors have
higher network traffic observation.

Goyal et al. showed in [28] that it is possible to construct an expander graph
via random spanning trees. We follow this method of constructing expander
graph from random spanning trees. However, we employ this method on weighted
graphs in order to build a capacity biased overlay network. Moreover, we show
that the constructed graph is a sparsifier of the underlying graph, namely, the
constructed graph spectrally approximates the underlying graph. Furthermore,
we provide a distributed algorithm for overlay network construction together
with an algorithm for verifying the mixing properties of the constructed graph.
In contrast to independent sampling methods of sparse graph construction, span-
ning tree is a connected graph, and as such, using spanning trees results in a
connected graph.
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By its very nature, the constructed network is robust and is able to recover
from congestion and link failures due to expansion properties, and due to path
diversity which is achievable by a combination of random spanning trees [28,31].
Moreover, the overlay network is scalable and may grow linearly in the number
of vertices.

We have also identified a possible application of our dynamic network archi-
tecture service for anonymity in the network. The proposed network architecture
with its spectral properties and enforced messaging policy provides a high degree
of anonymity for senders as for receivers. Its on-demand flexibility allows private
deployment for an individual or with a trusted party usage.

In the next session, we discuss the related works. Later, we describe the over-
lay network construction method and distributed expansion verification algo-
rithm used in distributed construction of the overlay network. In Sects. 5 and 6
we describe the use of expander graphs for monitoring, message sending scheme
and the probabilities of successful network monitoring. Finally, in Sect. 7 we
show a feasible implementation of our on-demand network construction as an on-
demand anonymity service, which we believe opens a new scope in the research
on communication anonymity. Due to space limitations proofs and some details
are omitted. See in [16] for complete proofs and discussions.

2 Related Work

Goyal et al. demonstrated the building process of an expander graph, which
expansion depends on the degree of the primal graph, by the union of random
spanning trees and showed that the union of the trees approximates each cut
of the primal graph within a factor of O(log n). In our work, we show that
the same method can be used to build weighted expanders from a weighted
graph, moreover, we show that the union of weighted spanning trees spectrally
approximates the primal graph.

Similar result to ours was shown by Fung et al. in [24]. Fung et al. showed that
sampling spanning trees while adjusting their link weights, results in a sparsifier.
In contrast to their work, we utilize the weights of the given primal graph in order
to construct a capacity optimized expander, while including enough edges results
in an overlay network which sparsifies the primal graph. Performing random walk
on a weighted graph, better preserves the locality1 of a cut.

In contrast to previously mentioned works, we additionally employ a distrib-
uted construction of the expander graph. Our construction method can run in a
distributed manner for the concurrent construction of expander graphs. Distrib-
uted construction of expander graphs was also shown by Dolev and Tzachar in
[18], where the authors introduced the notion of Spanders, distributed spanning
expanders, and showed a practical way for verifying that the constructed graph
is an expander. We use the method of expansion verification presented in [18] in
order to optimize the construction of the overlay network and limit the number
of constructed spanning trees.
1 We thank Noga Alon for drawing our attention to this observation.
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We show that our network architecture is valuable for network monitoring.
Altshuler et al. showed an efficient flooding scheme for generating a collabora-
tion between a group of random walking agents which are released from different
sources and at different times [3]. This participation of agents results in a col-
laborative monitoring infrastructure, requiring only a small number of active
monitors.

Measures for estimating monitoring capabilities of a vertex (BC, SPBC, LC,
FBC) were established in [5,21,22,25]. Routing betweenness centrality (RBC),
a network measure for estimating the control probabilities of a vertex or a set
of vertices was proposed in [15], generalizes aforementioned network measures.
RBC measures the extent to which vertices or group of vertices are exposed to
the traffic [15]. As a result, RBC is useful for predicting the effectiveness (and
cost) of passive network monitoring. We use the RBC measure to show that each
monitor in our constructed network is equivalently effective as a passive monitor.

Chaum introduced the concept of a mix [10] and mix-net based proto-
cols, and also a DC-net [9], a broadcast network which provides both sender
and receiver anonymity. DC-net scheme suffers from poor scalability and it is
unsuitable for large-scale networks [29]. Most notable work based on DC-net is
Xor-Trees [17], which was proposed by Dolev and Ostrovsky to provide sender
and receiver anonymity, additionally reducing the amount of communication
overhead. Additional anonymous communication scheme which provides a high
degree of anonymity is Buses [4], which is a network routing based anonymous
communication scheme, that can be viewed as a bus system. Buses attempts
to hide traffic patterns and to provide an unlinkability for two communicating
parties.

Recent work by Hermoni et al. proposed a Peer-to-Peer file sharing sys-
tem which provides anonymity to all participants, namely, receiver (server) and
sender (publisher or reader) anonymity [29]. Hermoni et al. propose the use of
anonymity tunnels for each different user. The authors assume a semi-honest
adversary in their first provided solution, while the same adversary as the one
assumed in Tor for their second solution.

The authors of [12,14] show that restricted topologies provide better
anonymity with less cover traffic overhead, additionally they scale better as the
number of mix nodes grows. We show that sparse overall network with expan-
sion properties can provide anonymity service with restricted routes and optimal
topology.

Our results can be used as the base to provide a flexible and robust network
architecture as a service with on-demand deployment. Boubendir describes an
implementation of NaaS architecture with SDN-enabled NFV in [6], and shows
feasible on-demand dynamic network service based on SDN-enabled NFV [7].
We further exploit the NV, SDN and NFV emerging technologies to enable
network architecture as a service for use in private commercial networks, network
and service providers, or facilities desiring flexible policy enabled networking to
secure their traffic and to monitor network flows for mitigation of misuse or
malicious uses.
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3 Preliminaries

3.1 Notation

We specify a graph G = (V,E), having a vertex set V = 1, . . . , n and an edge
set E ⊆ {(u, v)| u, v ∈ V }. If the graph is weighted, it will be specified by
G = (V,E,w) where w(u,v) > 0 for each (u, v) ∈ E. For each vertex u ∈ V ,
w(u) =

∑
z w(u, z) is defined as the total weight of edges that are incident to

the vertex v. For S, T ⊂ V , we specify the set of edges emerging from S to T by

E(S, T ) = {(u, v) | u ∈ S, v ∈ T, (u, v) ∈ E}
We denote the edge boundary of a set S as ∂S and is defined as ∂S = E(S, S̄).
The edge boundary is a set of edges emerging from the set S to its complement.
We specify the set of neighbors of v for v ∈ V , as Γ (v) = {u ∈ V |(u, v) ∈ E}.
For A ⊆ V , Γ (A) = ∪v∈AΓ (v) and Γ ′(A) = Γ (A) \A.

3.2 Graph Expansion

For a good introduction on expander graphs see [26,30]. Here, we describe only
the basic definitions of expander graphs. Expansion requires that any set of
vertices, of size at most n/2, has a relatively large set of neighbors. The edge
expansion ratio of G, denoted by h(G), is defined as:

h(G) = min
{S||S|≤ n

2 }
|∂S|
|S|

The vertex expansion of graph G is defined as:

h(G) = min
{S||S|≤ n

2 }
|Γ ′(S)|

|S|

4 Expander Overlay Network Construction

Assume that the underlying network is represented by a weighted graph G =
(V,E, ω). A random walk begins from a randomly chosen vertex, and moves to
one of its neighbors with probability proportional to the weight of the edge,
P [(u, v)] = ω(u,v)

ω(u) . Each time the random walk arrives at a new vertex, a vertex
which was not visited before; the edge, through which it arrived, is added to the
spanning tree construction. Inspired by the work of Goyal et al. [28], we show
that for a weighted bounded degree graph and for the weighted complete graph
a small number of spanning trees result in a subgraph with expansion properties
comparable to each cut of the original graph. In addition, the generated subgraph
utilizes the capacity of the primal network by including edges of greater capacity
with a greater probability.

For generating a random spanning tree, we use the algorithm derived by
Andrei Broder [8]. However, we modify the algorithm to utilize the probabilities
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Algorithm 1. Generation of Spanning Tree via Random Walk Simulation

input : G = (V, E, ω)
output : spanning tree T

1 T = {}
2 Simulate a weighted random walk on graph G starting at an arbitrary vertex s

until every vertex is visited. T ← T ∪ e(v, u) for each vertex u ∈ V \s if this is
the first visit of vertex u.

3 return T

Algorithm 2. Expander Overlay Construction

input : G = (V, E, ω), k
output : union of k random spanning trees Uk

G

1 Uk
G = {}

2 repeat
3 Generate a random spanning tree T , according to Algorithm 1

4 Uk
G ← Uk

G ∪ T

5 until k trees are generated

6 return Uk
G

of edges (Algorithm 1). Overlay network is created by repeating k times the
creation of a random spanning tree (Algorithm 2).

Goyal et al. showed in [28] that for any bounded degree graph, the union of
at least two random spanning trees of the graph approximates the expansion of
every cut in the graph. Using more trees gives a better approximation. We follow
the outline of the proofs in [28] and prove them for weighted graphs. Pemantle
proved the following Theorem on the negative correlation property of uniform
spanning trees [35]:

Theorem 1. For any finite connected graph G, let T be a uniform spanning
tree. If e and f are distinct edges, then

P [e, f ∈ T ] ≤ P [e ∈ T ]P [f ∈ T ]

Goyal et al. extended Theorem 1 for any subset of edges in [28]:

Theorem 2 (Negative Correlation of Edges). For any subset of edges
e1, . . . , ek ∈ E we have

P [(e1 ∈ T ), . . . , (ek ∈ T )] ≤ P [e1 ∈ T ] · · · P [ek ∈ T ] (1)

We prove our results using Chernoff bounds, for this, we define the following
indicator variables:

Xe =
{

1 e ∈ T
0 otherwise
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Now, we can rewrite (1) as

E[Xe1 · · · Xek
] ≤ E[Xe1 ] · · · E[Xek

] (2)

We can say that {Xe} satisfying (2) are negatively correlated for every subset
of edges e1, . . . , ek. It is possible to apply Chernoff bounds unaltered to nega-
tively correlated variables [19, Proposition 5]. Then, by [2, Theorem A.1.13] it
is possible to derive the following version of Chernoff bounds [28]:

Theorem 3. Let Xi
n
i=1 be a family of 0 − 1 negatively correlated random vari-

ables such that 1 − Xi
n
i=1 are also negatively correlated. Let pi be the probability

that Xi = 1. Let p = 1
n

∑
i∈[n] pi. Then for λ > 0

P [
∑

i∈[n]

Xi < pn − λ] ≤ e
−λ2
2pn

Due to space limitations, the proofs of the next three Theorems are omitted and
can be found in [16].

Base graph is a complete graph. We show that the union of two random
spanning trees is required to approximate the expansion of a complete weighted
graph.

Theorem 4. The union of two randomly spanning trees of the complete weighted
graph on n vertices has constant vertex expansion with probability 1 − o(1).

Base graph is a bounded-degree graph. We consider weighted and irregu-
lar graphs with bounded degrees, and we show the probability bounds for the
construction process on these graphs. In the following Theorem, p is an average
probability for edge e being part of a random spanning tree.

Theorem 5. For a weighted graph G = (V,E, ω), let Uk
G be the union of k

uniformly random spanning trees. Also, let α > 0 be a constant and α(k−1) > 8
p .

Then with probability 1 − o(1), for every A ⊂ V we have

|∂Uk
G
A| ≥ 1

α ln(n)
|∂GA|

Uk
G is a sparsifier. We show that Uk

G generated by the process defined above is
a sparsifier of a weighted graph G, if |Uk

G| is sufficiently large.

Theorem 6. Let G have Laplacian L and Uk
G have Laplacian L′ and

1√
n

≤ ε ≤ 1, |Uk
G| ∈ O(n log n/ε2). With probability at least 1

2

∀x ∈ Rn (1 − ε)xT Lx ≤ xT L′x ≤ (1 + ε)xT Lx
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4.1 Distributed Construction of Overlay Network

The algorithm for overlay network construction (Algorithm 2) can be modified to
a distributed algorithm. This is also beneficial for networks where a centralized
entity has several cores that can execute the algorithm in a distributed manner.
For example, in software-defined networking, the network control software [23]
can execute the iterations of the algorithm concurrently or delegate the execution
of some iteration to a different controller. Each controller will execute one or a few
iterations of the algorithm until the required approximation of the primal graph
is achieved. In such setup, a monitoring algorithm for verification of expander
construction is required. The monitoring algorithm can be executed by the main
controller in charge of the network (see Algorithm 4).

Algorithm 3. Mixing Rate Based Monitoring

input : Uk
G for some k

output : j: number of counted nodes

1 L: max length of the walk
2 counter ← 0
3 v: arbitrary chosen vertex
4 length ← 1
5 Γ ′

Uk
G

= {}
6 repeat
7 if v was not visited before then
8 counter ← counter + 1
9 Γ ′

Uk
G

← Γ ′
Uk

G
∪ Γ ′(v)

10 end
11 length ← length + 1
12 choose u ∈ Γ ′

Uk
G

13 v ← u

14 until all vertices are visited or length > L
15 return counter

We exploit the mixing rate based monitoring algorithm described in [18]
which is modified for our construction scheme (Algorithm 3). This monitoring
algorithm is used to estimate the expansion of constructed graph, since calcu-
lating the expansion is NP hard. The mixing rate based monitoring algorithm
employs the rapidly mixing property of expander graphs, O(log n) mixing rate.
It is also known that cover time of expander graphs is O(n log n) [1,18]. The con-
trol software starts a random walk of length O(n log n) on an arbitrary vertex
v, each new visited vertex is marked and counted. The neighbors of the newly
visited vertex are added to the set of all neighbors. Afterward, the walk proceeds
from one of the randomly chosen neighbors. When the random walk is termi-
nated, the counter is examined by the control software. In case the walk covered
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less than n nodes, we can conclude with high probability that the graph is not
rapidly mixing as was required or there are too many edges in the constructed
graph, implying that the construction was not successful [18].

Algorithm 3 can be sped up by performing O(n) random walks of length
O(log n) [1,18]. The controller software, which runs the algorithm, in SDN can per-
form parallel random walks and possibly delegate to other controller units. Each
of the controller units will return the results to the main controller, upon which
will be the decision to stop generating random spanning trees (see Algorithm 4).

Algorithm 4 is executed until the expansion of Uk
G, measured by the mixing

rate quality, reaches the required value or at most O(log n) iterations. At each
iteration of the algorithm, the number of generated spanning trees is doubled.
The algorithm will stop when the required approximation of the expansion is
achieved, which results in fewer spanning trees and fewer edges in the expander
graph.

Algorithm 4. Distributed Expander Overlay Construction

input : G = (V, E, ω)
output : union of k random spanning trees Uk

G

1 Uk
G = {}

2 k ← 1
3 while mixing rate requirement is not satisfied do
4 T ← delegate the generation of k random spanning trees
5 for T in T do

6 Uk
G ← Uk

G ∪ T
7 end
8 verify mixing rate requirement using Algorithm 3
9 k ← 2 · k

10 end

11 return Uk
G

5 Sparse Expander Graphs for Monitoring

We propose a message sending scheme similar to the one proposed by Valiant in
[37]. Source node s, that sends a message to destination t, performs a random
walk of length l = log(n) to intermediate destination v ∈ V . The set of vertices
visited by a length l random walk on an expander graph is a randomly chosen
sequence of v0, v1, . . . , vl, where each vi+1 is chosen uniformly at random and
independently, among the neighbors of vi, for i = 0, . . . , l − 1 [11]. The sender
sends the message along the path from s to v, in such a way that the path is a
sequence of vertices chosen by the random walk, and then the random walk is
performed again to deliver the message from v to destination t. The message is
sent through two paths, each of length log(n).
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In fact, the sender can arbitrary choose the number of several intermediate
destinations, such that a message would be sent from source to intermediate
destinations v1, v2, . . . vr for some chosen r. Each path from source to intermedi-
ate destination and between the intermediate destinations, including destination
t chosen by s, is a random walk of length log(n). Overall route complexity is
O(log n) overlay edges. If the underlying graph is an expander graph too, then
the total route complexity is O(log n), otherwise it is O(log(n) · diam(G)).

The message sending scheme implements two routing methods; incremental
path building (incremental routing) and loose routing. In incremental routing,
the sender’s application proxy software builds the route hop by hop, correspond-
ing and exchanging keys with each router on behalf of the user. As such, sender’s
application proxy is aware of each participant in the chosen route. In loose routing
[27], a node may decide to extend or change the message’s path, this means that
the sender may not be aware of all the nodes which constitute the whole path.

On the one hand, it may be preferable for the sender to route a message to
a subarea of the network where the local routing policy will decide upon the
routing in the subarea towards the receiver. On the other hand, in the former
case, the implementation is easier. As well, the sender can negotiate session keys
with each router it chooses in the route, as opposed to the latter case where it
is left to the router that performs a modification to the route on behalf of the
sender.

The full discussion on assessment of different routing strategies is omitted
due to space limitations. The reader can find the full discussion and assessment
on the success of traffic monitoring in case of both incremental and loose routing
in [16], where we use Chernoff bounds to show that there is an exponentially
small chance for none of the nodes in a path to be a monitoring node. As a
matter of fact, we show that in the expander based overlay network, with very
high probability at least one node in the sequence of traveled nodes will be
a monitoring node, and we can have a vast majority of non-monitoring nodes
whilst with probability no more than 1

2 the complete path will not be monitored.
These probability calculations show that with high probability in a route

of length O(log n) at least one node is a monitoring node, and consequently,
O(n/ log n) monitors are required in order to monitor the traffic in the network
with high probability.

6 Measuring Monitoring Success

In this Section, we quantify the monitoring level of the system. Using several
approaches, we show that our system is able to uniformly monitor the traffic in
the network. Full details of the following discussion can be found in [16].

Traffic analysis. We employ the Bayesian inference method of traffic analysis for
extracting the probability distribution over the hidden states of the system [36].
Observation of a system results in obtaining the correspondence between inputs
and outputs of each node. This collection of input-output relationships is called
the hidden state of a system. The hidden state of a system can be described by the
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path each message has taken [36]. Therefore, the probability of hidden states of
a system is proportional to the probability of the paths that were chosen by the
user.

A user who is interested in sending a message according to our message-
sending scheme is allowed to choose the number of intermediate nodes, which
consequently affects the total path length of the message. The number of inter-
mediate nodes is uniformly chosen, and the probability for any sequence of nodes
for the chosen length are considered equally likely.

Thus, the probability for every path of a message, and following the prob-
ability for each hidden state of the system, would be equally likely too. The
obtained samples of the hidden state can be used to compute the probability
for monitoring network flows. Since all states are equiprobable, the distribution
of the hidden states would be uniform, and as such the distribution of the net-
work flows. Hence, each monitor can uniformly audit the network traffic, and
the network traffic is unbiased towards flowing through specific links.

Monitoring avoidance. The maximum degree of monitoring is achieved when
the sender sees all monitors as equally likely being the auditors of a message. The
entropy of the system, after an observation is performed, is compared against
the maximum entropy [13]. This comparison gives a hint of the amount of infor-
mation that was learned.

The most useful property of expander graphs is that a random walk mixes
fast. If a random walk starts at any vertex, after O(log n) steps the position will
be uniformly random. Therefore, without any additional knowledge of the sys-
tem, and given that the probability for each hidden state of the system is equally
likely, each of the, nmntr, monitors is assigned the probability of pi = 1

nmntr
being

the auditor of the message. Furthermore, without any prior knowledge on the
number of monitors, every node in the graph may be a possible monitoring node.
Hence, the probability of identifying the monitor node is 1

n . The entropy of the
system is maximized.

Monitors locations. We estimate the monitoring potential of each node in the
network, employing routing betweenness-centrality (RBC) measure proposed by
Dolev et al. RBC of a vertex represents its potential to monitor and control
data flow in the network [15]. The probability for a packet to pass through some
vertex, v, on its way from source to destination, can be recursively calculated
for the set of immediate predecessors of v. Whilst, the message-sending policy
is embedded into the function representing the routing scheme, the probability
for a message to be sent from any vertex to its neighbor is equal for every set of
vertices and their neighbors. Additionally, all routing decisions in our message
sending policy are independent. Thus, we obtain the result that the RBC is
equivalent for every node in our constructed network, and there is no preferred
location for a monitor, and each node has an equivalent potential for monitoring
the network.
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7 Anonymity

Anonymity of a subject is defined as being not identifiable within the anonymity
set [32]. The anonymity set is the set of all possible subjects who might cause
an action. A subject is identifiable if we can get a hold of information that can
be linked to the person. In the model proposed by [13], the concept of entropy
was proposed to measure the information gained after an attack on a system.
Assuming the adversary has no prior knowledge with regard to the anonymity
set, in the best case scenario the adversary has no better than 1

n chance of
identifying a subject within the anonymity set of size n. Therefore, we obtain
that all subjects have an equiprobable probability to appear as the source of
an action, consequently, obtaining a maximum entropy, and as such, a maximal
degree of anonymity.

Anonymity on-demand. Similarly to the case with monitoring nodes (see
Sect. 5 and extended discussion in [16]), calculations show that we can have more
than half of compromised nodes and yet remain anonymous in the network.

The computation of anonymity is based on computing the entropy of the
distribution of all possible sources of action [13,34]. Since all hidden states are
equiprobable (see Sect. 6), the distribution of the hidden states would be uniform
and the entropy of the system will be maximized.

The on-demand nature of our network architecture can mitigate common
attacks on anonymity networks, in particular, onion routing based. Intersection
attacks [20] can be mitigated by using cover traffic. Since the constructed overlay
network is of a bounded degree, only a linear number of output packets would
be sent. Hence, in the worst case, O(Δ · n) messages are required.

In predecessor timing attack, unknown path length can significantly decrease
the success of an attack [38]. As proposed in our message sending scheme, vary-
ing number of intermediate nodes and possibly in combination with loose routing
can be used for dynamic path length. A number of rounds required to success-
fully perform the attack with high probability is O

(
(n

c )2 ln n
)

where c is the
number of attackers [38]. The required amount of rounds is greater than the
route length, which is of order O(log n). This means that until the attack is
successfully completed, the anonymity network service can be shut down since
messages have already arrived at their destinations. Circuit clogging, or conges-
tion attack, can be prevented with the policy we proposed for the constructed
network. This sort of attack (as also DoS attack) can be inspected as if certain
nodes are compromised, as noted above, more than half of nodes in the network
can be compromised without significantly affecting the routing of traffic.

8 Discussion

We have presented in this paper methods for constructing a flexible, on-demand
network service over SDN-enabled architecture with defined policy of message
sending scheme which can be deployed by service providers, commercial com-
panies, or private users. We have shown that constructing overlay network with
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expansion properties in combination with randomized message sending policy,
we were able to achieve uniform dispersion of network traffic and consequently
with high probability monitoring the whole network requiring relatively small
number of monitors, in particular O(n/ log n) monitors are enough to cover the
complete overlay network when each path is of length of O(log2 n) physical edges.
The overlay network can be constructed in distributed manner, converging faster
towards the required features. The constructed overlay network graph is a sparse
connected graph, approximating the primal weighted graph if O(n log n/ε2) edges
are included in the construction.

Furthermore, we have shown that our construction method can be applied
for providing anonymity network. This work presents first of its kind, as far
as the authors know, anonymity on-demand network service. The NaaS archi-
tecture of the network can mitigate most of the known attacks on anonymity
networks. Notably, attacks that congest the network or result in relay server
denial of service can be coped with on-demand nature of the network. If the
user, who deployed the anonymity network, suspects that over time the relays
were compromised, he/she can periodically shut down the service and re-deploy
it with different nodes and even with a different topology. This kind of service
can be suitable for private communication use among trusted parties.
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Abstract. The proliferation of mobile devices and location-based ser-
vices (LBS) is strongly challenging user privacy. Users disclose a large
volume of sensitive information about themselves to LBS. Indeed, such
services collect user locations to operate and can thus use them to per-
form various inference attacks. Several privacy mechanisms and metrics
have been proposed in the literature to preserve location privacy and to
quantify the level of privacy obtained when these mechanisms are applied
on raw locations. Although the use of these metrics is relevant under spe-
cific threat models, they cannot anticipate the level of location privacy
on the sole basis of the altered location data shared with LBS. Therefore,
we propose a location privacy estimator that approximates the level of
location privacy based on spatio-temporal uncertainties resulting from
location alterations produced when a location privacy preserving mech-
anism is applied on user raw locations. This estimator also takes into
account spatial-temporal user privacy parameters. We also describe the
computation of the spatio-temporal uncertainties through the sampling,
the Gaussian perturbation as well as the spatial cloaking. Finally, we
compare the results of our estimator with those of the success of two
localization attacks. The findings show that our estimator provides rea-
sonable or conservative estimates of the location privacy level.

1 Introduction

Over the past few years, we have observed a privacy paradigm shift. Following
the constant increase of mobile device users and location-based services (LBS),
user sensitive data is not only shared with friends and acquaintances, but also
with companies, which provide these services. However, users are not always
aware of this privacy issue and they often do not have enough information to
properly assess risks and benefits of the use of LBS [12]. We are in a privacy
paradox as described in [3]. In this paper, Barnes discusses about privacy issues
in a context involving teenagers and social networks. A user can reveal a lot
of personal information about herself on a social network. This user obviously
thinks that her data is adequately protected according to the privacy settings
she chooses. She takes care about her privacy and does not want to disclose her
private information to people she does not know on this social network. However,
her personal data can be sold to third parties or explored for a variety of goals
c© Springer International Publishing AG 2017
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(e.g., profiling, targeted advertising) by the social network itself meaning that
there is probably no privacy any more. Analyzing user information on social net-
work is not the only way to obtain personal data about users. For instance, we
can easily extract sensitive user information by exploring the metadata of user’s
photos shared online and performing attacks on them as demonstrated in [21].
There also exist other subtle ways to infer user’s personal information, such as
analyzing user’s locations collected by a LBS. In the context of location pri-
vacy, Krumm [14] describes the main computational threats. According to these
threats, various inference attacks can be performed by an adversary to reveal
user sensitive information, such as home place, gender, tastes and much more
as indicated in [8]. In order to deal with a privacy threat, user locations must
be protected by using an adapted location privacy preserving mechanism. These
mechanisms belong to different types of location alterations, such as location
obfuscation, location perturbation, location confusion and location suppression
as described in detail in [6]. A large number of location privacy metrics, pre-
sented in the literature, can accurately evaluate the level of protection provided
by different location privacy preserving mechanisms by taking into account pre-
cise threat models as well as specific inference attacks performed by an adversary.
To the best of our knowledge, there is no metric that can estimate the level of
location privacy on the sole basis of the altered locations sent to a possible adver-
sary. In addition, existing metrics do not take into account spatial and temporal
privacy choice of the user.

To address this issue, we propose a spatio-temporal estimator enabling to
approximate the level of location privacy and that only takes as input spatial
and temporal uncertainties generated when a location privacy preserving mecha-
nism is applied on the raw data in order to alter and protect them. Moreover, the
estimator is user-oriented because it takes into consideration privacy choice of the
user as parameters or could automatically define them by exploring the mobility
behavior of the user. We consider that extracting spatio-temporal uncertainties
from location alterations is crucial to estimate the level of location privacy. In the
context of a stream of locations, most of location privacy preserving mechanisms,
which modify the space dimension of a location, can also have an impact on the
time dimension of the location(s) of this stream. Consequently, it is crucial to
take into account these two types of uncertainties in the computation of a loca-
tion privacy estimate. In order to properly evaluate this estimator, we compare
its results and those of the performance of two localization attacks according to
specific location privacy preserving mechanisms applied on user raw locations.
This comparison enables to highlight if our privacy estimator can reasonably esti-
mate the privacy level by only analyzing uncertainties resulting from the alter-
ations produced after the application of a protection mechanism on raw data.
For the experiments, we use a Nokia dataset containing real mobility traces of
185 users as precisely described in [16]. We choose three types of location privacy
preserving mechanisms presented in [8,13]: the sampling, the Gaussian pertur-
bation and the spatial cloaking. We also decide to evaluate the success of the two
following localization attacks: the discovery of the most frequently visited places
of a user (i.e., user’s zones of interest) and the discovery of user’s home place.
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This paper has three main contributions: presenting a new spatio-temporal loca-
tion privacy estimator, describing the computation of the spatio-temporal uncer-
tainties resulting from location alterations and evaluating our estimator with real
user traces.

The paper is structured as follows. We start by describing the definitions and
modeling of the main entities of our work in Sect. 2 providing the foundation
to introduce the location privacy estimator in Sect. 3. Section 3.1 presents how
spatial and temporal uncertainties are computed after applying three types of
location privacy preserving mechanism on raw locations. In Sect. 4, we present in
detail the evaluation as well as the obtained results in the context of localization
attacks. Section 5 provides an overview of the existing location privacy metrics
and highlights the links between these metrics and our estimator. Finally, we
summarize the most relevant findings and present the future work in Sect. 6.

2 Definitions and Modeling

This section describes the definitions and modeling of the main entities required
to introduce the location privacy estimator.

User and Raw Locations. We consider a user who moves in a two dimensional
space and owns a mobile device. This device enables to obtain raw locations via
an embedded Global Positioning System (GPS) or a WiFi Positioning System
(WPS) in order to locate itself. The history of the successive raw locations of the
user stored in the device is a sequence L = 〈loc1, loc2, · · · , locn〉, where loci =
(φ, λ, t) is a 3-item tuple representing a unique location in which φ, λ ∈ R are
respectively a latitude and a longitude and t ∈ N is the time when the location
was captured. We use the notation loc.φ, loc.λ and loc.t to designate specific
parts of loc below. In order to ensure that locations are mostly caught in a
regular manner, the duration between two successive locations in L does not
exceed a constant Δtlimit. Let loci and loci+1 ∈ L, loci+1.t − loci.t ≤ Δtlimit.

Location Privacy Preserving Mechanism, Altered Locations and
Spatio-Temporal Location Uncertainties. A location privacy preserving
mechanism is applied on the raw locations of a user in order to protect them
and to ensure her location privacy. There exist two main mechanisms to pre-
serve user location privacy: anonymizing the identity of a user and altering the
set containing user raw locations before sharing them with third-party entities
such as LBS. In this paper, we only focus our attention on the second mecha-
nism. Following this, we introduce a function called protect(L) that modifies the
set of user raw locations passed as a parameter by using a specific location pri-
vacy preserving mechanism. This function returns an altered set of locations that
are sent to a third party entity, which can be seen as an untrusted component.
This set is called La = 〈loca1 , loca2 , · · · , locam

〉. Applying a location privacy
preserving mechanism on the set containing all raw locations L also generates
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spatial and temporal location uncertainties, which vary depending on the cho-
sen mechanism. We define a zone z that describes a spatial location uncertainty,
expressed by a 3-item tuple z = (φ, λ,Δr) where φ, λ ∈ R represent a latitude
and a longitude respectively and Δr ∈ R represents the radius of the zone. We
also introduce Δt ∈ N that is a duration representing a temporal location uncer-
tainty. Therefore, a spatio-temporal location uncertainty, called u, is a 3-item
tuple including z and Δt as well as the number of raw locations of L affected by
an alteration, simply called nb, such as u = (z,Δt, nb). In the following sections,
we sometimes use the notation u.z, u.Δt and u.nb to designate specific parts
of u. Finally, we introduce a function called uncertainties(L) that returns a set
containing all the uncertainties computed when the location privacy preserving
mechanism was applied on the set L. The output of this function is a set U con-
taining all uncertainties such as U = 〈u1, u2, · · · , um〉. It is important to note
that the size of U can differ from the size of La and also the size of L. The
computation of uncertainties only depends on the location privacy preserving
mechanism applied on the set of raw locations and how the mechanism oper-
ates. The beginning of the next section will present how spatial and temporal
uncertainties are computed in the context of three location privacy preserving
mechanisms.

3 Location Privacy Estimator

This section describes both the computation of spatio-temporal uncertainties
and the location privacy estimator. The first part is necessary to introduce the
estimator, which takes as input the spatio-temporal uncertainties.

3.1 Computation of Spatio-Temporal Uncertainties

There exist various location privacy preserving mechanisms that are described in
the following papers [2,7,8]. Amongst them, we only consider the three following
mechanisms such as the sampling, which will be performed in two ways, i.e.,
according to a time window (TW) and a specific number of locations (LN),
the Gaussian perturbation as well as the spatial cloaking. All these mechanisms
firstly affect the spatial dimension of a location and can also have an impact on
the temporal dimension of a location or a subset of locations if we consider the
context of a location stream. All new locations mentioned in the explanation
below are obviously considered as the altered locations of the location set La

sent to a LBS.

TW Sampling. The sampling according to a time window is a location privacy
preserving mechanism enabling to summarize a subset of successive locations
occurring during a specific period of time into a single new location. In a concrete
implementation, we divide the entire user raw location set into several location
subsets and compute new locations according to them. The latitude of the new
location is simply the mean of all latitudes of the original locations of the subset
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and, in the same manner, the longitude of this new location is the mean of
all longitudes of the original locations. Concerning the timestamp of the new
location, we consider that it corresponds to the timestamp of the location being
in the middle of the subset of locations. Consequently, this location privacy
preserving mechanism generates both space and time alterations. We introduce
tw ∈ N being the duration of the time window. We also consider a subset Lsubi ∈
L of successive raw locations such as Lsubi = 〈loc1, loc2, . . . , locj〉. This subset is
a TW sampling subset iff the two following conditions are met:

• locj .t − loc1.t <= tw
• locj+1.t − loc1.t > tw

Then, the new location locai
computed from the subset Lsubi containing j

raw locations is a tuple that includes the following elements:

• locai
.φ = 1

j × ∑j
i=1 loci.φ

• locai
.λ = 1

j × ∑j
i=1 loci.λ

• locai
.t = loci/2.t

Concerning all spatio-temporal uncertainties ui produced with the TW sam-
pling, we generate an uncertainty for each new location. The centroid of the
spatial alteration ui.z corresponds to the new location and its radius ui.z.Δr
is the distance between the new location and the farthest raw location of
the subset. The temporal alteration ui.Δt is the duration between the last
and the first raw locations of the subset. The number ui.nb of raw locations
affected by the mechanism is equal to the size of the subset Lsubi . Let a
function called distance(loci, locj), which computes and returns the distance
between the two locations passed as parameters. In addition, let a function
called farthest(locr, 〈loc1, loc2, . . . , locn〉), which finds and returns the farthest
location of the set of locations passed as a parameter from a given reference
location locr. The several items below describe the previous explanations with
the subset of raw locations Lsubi introduced before.

• ui.z.φ = locai
.φ

• ui.z.λ = locai
.λ

• ui.z.Δr = distance(locai
, farthest(locai

, Lsubi))
• ui.Δt = locj .t − loc1.t

LN Sampling. The sampling according to a number of successive locations is
a location privacy preserving mechanism enabling to summarize a specific num-
ber of locations into a single new location. In a concrete implementation, we
create several subsets having the same number of successive locations and we
summarize each subset into a single one new location. The latitude and the lon-
gitude of the new location is computed in the same manner as mentioned above
for the TW sampling. The timestamp of this new location also corresponds to
the timestamp of the raw location being in the middle of the subset of loca-
tions. Consequently, both space and time alterations are also generated when
this mechanism is applied.
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Gaussian Perturbation. The Gaussian perturbation mechanism modifies each
location of the set of the user raw locations by bringing spatial noise to its
latitude and longitude. The latitude and the longitude of the raw location are
changed according to two parameters: a mean and a standard deviation, which
are the latitude or the longitude of the raw location and a value that may be
expressed in meters respectively. Consequently, this location privacy preserving
mechanism only affects the spatial dimension of the original location because the
timestamp of each altered location remains unchanged. We introduce Δdφ and
Δdλ ∈ R corresponding to two distances (i.e., spatial noise) randomly generated
and added to the latitude and the longitude respectively in order to spatially blur
the original location. Each location loci, contained in the set of user raw locations
L, generates a new altered location that is sent to the untrusted component and
noted locai

as follows:

• locai
.φ = loci.φ + Δdφ

• locai
.λ = loci.λ + Δdλ

• locai
.t = loci.t

In this context, the spatial alteration is computed for each new location such
as the centroid of the zone ui.z is locai

and its radius is the distance between
the locai

and the raw location loci. The temporal alteration ui.Δt is equal to 0
because the timestamp of the new location remains the same. The number ui.nb
is equal to 1 because the perturbation only affects one raw location. The spatial
and temporal alterations generated are summarized below:

• ui.z.φ = locai
.φ

• ui.z.λ = locai
.λ

• ui.z.Δr = distance(locai
, loci)

• ui.Δt = locai
.t − locai

.t = 0

Spatial Cloaking. As presented in [13], Krumm introduces an implementa-
tion of the spatial cloaking algorithm that can be applied on a single user’s
location dataset. In Krumm’s paper, an ambiguity is created around a sensitive
location (i.e., user’s home place in the paper) by computing a specific cloaked
region containing the user’s home place and deleting all user raw locations being
recorded in this region in order to protect the privacy of the user. A cloaked
region is a zone defined by a centroid and a radius. The sensitive location is not
the center of the computed cloaked region but it is only contained in this region.
Consequently, it is more difficult to find the original sensitive location for an
adversary in this case. In our implementation, we do the same around all zones
of interest found for a user, which are obviously her sensitive areas. By applying
this location privacy preserving mechanism on user raw data, we only delete
sensitive locations occurring in a cloaked region without altering the previous or
successive raw locations that are not located in cloaked regions. Consequently,
all locations being in the set La of altered locations and sent to a LBS will be
raw, such as locai

= loci.
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Spatial and temporal uncertainties are generated for the deletion of the raw
locations being in the cloaked regions. Let C the set containing k computed
cloaked regions and C[i] a cloaked region in which the raw locations of the
subset Lsubi = 〈loc1, loc2, · · · , locj〉 are located. Raw locations are sent to a
LBS, consequently, we also compute uncertainties for these raw locations. In
the following description, (1) describes the uncertainty of the deletion of raw
locations and (2) presents the uncertainty of a raw location. The number ui.nb
of the first uncertainty is equal to the number of raw locations deleted and
contained in Lsubi while the number of the second uncertainty corresponds to 1.

• (1) 〈loc1, loc2, · · · , locj〉 ∈ C[i]
– ui.z.φ = C[i].φ
– ui.z.λ = C[i].λ
– ui.z.Δr = C[i].Δr
– ui.Δt = locj .t − loc1.t

• (2) loci /∈ C[i]
– ui.z.φ = locai

.φ
– ui.z.λ = locai

.λ
– ui.z.Δr = distance(locai

, locai
)

– ui.Δt = locai
.t − locai

.t

3.2 Estimator

The location privacy estimator takes as input all the uncertainties obtained when
a location privacy preserving mechanism is applied on the set of raw locations L
and generates the altered set of locations La as described in Sects. 2 and 3.1. Since
an uncertainty has spatial and temporal dimensions, the estimator includes the
privacy evaluations of these two dimensions. A top-down approach is chosen to
present the estimator. As detailed in Eq. 1, the final result of this estimator is
the sum of each location privacy estimate Privacy(ui) related to each spatio-
temporal uncertainty ui contained in the set U multiplied by the number of
raw locations affected by an alteration. Finally, the sum is divided by the total
number of raw locations n of L.

Privacye =
1
n

×
n∑

i=1

(Privacy(ui) × ui.nb) (1)

The computation of the estimate of the location privacy of a single spatio-
temporal uncertainty Privacy(ui) is described in Eq. 2. This second equation is
the sum of spatial and temporal location privacy estimates of the uncertainty
multiplied by their respective factor (i.e., α for the spatial location uncertainty
and β for the temporal location uncertainty) and finally divided by the sum of
these two factors in order to normalize the final result. These two factors must be
chosen according to the importance of the spatial and the temporal dimensions
for the user. If a user considers that her spatial privacy is more important than
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her temporal privacy, α could have more weight than the temporal factor β,
knowing that β must be always equal to 1 − α.

Privacy(ui) =
(α × Pspace(ui.z)) + (β × Ptime(ui.Δt))

α + β
(2)

The location privacy estimate of the spatial uncertainty Pspace(ui.z) is pre-
sented in Eq. 3, where the minimum between the area of the zone ui.z and the
area of a zone that we consider as a maximum area called zmax is divided by this
maximum area zmax. It means that, when this area is reached, the user cannot
lose more privacy because her privacy is fully ensured when this maximum area
is reached.

Pspace(ui.z) =
min(Area(ui.z), Area(zmax))

Area(zmax)

=
min(ui.z.Δr2, zmax.Δr2)

zmax.Δr2

(3)

The location privacy estimate of the temporal uncertainty Ptime(ui.Δt) is
presented in Eq. 4, where Δtmax is a time threshold beyond which the user
cannot lose more privacy. The equation is therefore the division of the minimum
between ui.Δt and Δtmax by Δtmax.

Ptime(ui.Δt) =
min(ui.Δt,Δtmax)

Δtmax
(4)

The two values, zmax and Δtmax, should also be chosen by the user who is
able to know when she considers that the spatial and temporal dimensions of
her privacy are considered as entirely ensured. These two values could also be
automatically determined by studying the mobility behavior of the user.

4 Experiments and Results

In this section, we present the chosen approach to evaluate the reliability of
the location privacy estimator in the context of localization attacks. To reach
this goal, we observe the correlation between the evolution of the privacy level
predicted with the estimator and the evolution of the success of the chosen
localization attacks. In the next sections, we first present the dataset used for
the experiments, the localization attacks as well as our findings at the end.
It is also important to indicate that we created a dedicated OS X application
containing the implementations of all blurring techniques and all localization
attacks we chose.

4.1 Dataset

We select a dataset provided by Nokia that contains real mobility data traces
collected in Switzerland (Europe) from October 2009 to March 2011. The collect-
ing process of this campaign is explained in detail in [16]. This dataset consists
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of real data traces of 185 users including GPS location data, GPS WLAN loca-
tion data, SMS, calls and several other data. Since the duration of the data
collection varies from one user to another, i.e., from less than one day to more
than 500 days, we decide to only retain 103 users of this dataset who met the
following conditions. A user must have a set of raw locations captured during
a period of at least 300 days and a Δtlimit (defined in Sect. 2) of 600 s on an
average meaning that the locations are captured in a frequent manner.

4.2 Localization Attacks

From an adversary viewpoint, an inference attack aims at discovering sensi-
tive information based on user locations. In our context, the adversary is the
untrusted component of the mobile device, i.e., a LBS. The data, which is used
as input to perform the attack, is the user locations sent to the LBS after apply-
ing a location privacy preserving mechanism on raw data. Various threats and
inference attacks are presented in [8,13,14,20]. We select two different localiza-
tion attacks [20] having different goals: discovering zones of interest of a user
and discovering user’s home place. We describe in detail their goal, the way they
operate as well as the quantification of their success in the next sections.

Discovering User’s Zones of Interest. This first localization attack is per-
formed by an adversary that wants to highlight all the most frequently visited
places, i.e., zones of interest, of a user based on her locations sent from the trusted
component, i.e., operating system, to the untrusted component, i.e., LBS. The
zone of interest discovery process is entirely based on an algorithm described
in this paper [15], with the sole exception that the recent aspect of a zone is
not taken into account. In order to calculate the success of this attack, we first
compute the reference set of user’s zones of interest that is obtained when this
attack is performed on user’s raw data. Consequently, we decide to quantify the
success of this attack as the discovery area percentage of the reference set by
comparing it to that obtained with the altered set of locations. Firstly, we con-
sider a set Zr containing all reference zones of interest of the user obtained with
the set L. Secondly, we introduce Zb that is a set containing all user’s zones of
interest computed from the set La. Finally, we compare Zr and Zb to evaluate
the success of this inference attack. More specifically, we compute the discov-
ery area mean of all discovery areas linked to the reference zones of interest of
the user as described in Eq. 5. In this Equation, we consider that Zr contains n
reference zones of interest such as Zr = {zi, zi+1, · · · , zn} and Zb has m zones
of interest such as Zb = {zj , zj+1, · · · , zm}. We simply use zi and zj below to
refer a zone of Zr and a zone of Zb respectively. The result of the success of this
attack is a value between 0 (i.e., no zone is discovered) and 1 (i.e., all zones are
discovered) included.

successIA(Zr, Zb) =
1
n

×
n∑

i=1

discoveredAreaSum(zi, Zb) (5)
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Equation 6 enables to compute the sum of all discovered areas of a specific
reference zone of interest zi by comparing it with all possible zones of interest
of Zb.

discoveredAreaSum(zi, Zb) =
m∑

j=1

discoveredArea(zi, zj) (6)

Then, we compute the discovered area percentage of a reference zone, also
scaled from 0 to 1, in Eq. 7. For this computation, we take into account if there
exists a discovered area between a reference zone of interest and a zone of interest
of Zb. Four cases are taken into consideration in order to compute this discov-
ered area percentage. Firstly, if there is no intersection or inclusion between the
reference zone and one of the zones of Zb, the discovered area percentage equals
0. Secondly, in the case where there exists an intersection between the reference
zone and one of the zones of Zb, the discovered area percentage is equal to the
area of the intersection divided by the area of the reference zone. Thirdly, in
the case where one of the zones of Zb is fully included in the reference zone,
we also compute the discovered area percentage as mentioned previously. And
fourthly, if the reference zone is fully included in one of the zones of Zb, the
discovered area percentage corresponds to the area of the intersection divided
by the area of the zone of Zb because the discovery precision is reduced. Since
the zone of interest discovery algorithm includes a merging of clusters before
the zone of interest discovery, there is no overlap amongst all discovered user’s
zones of interest. Considering this, we do not need to manage cases where a same
specific area of a reference zone is covered by two zones of Zb. These four cases
are summarized in Eq. 7 below.

discoveredArea(zi, zj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if zi ∩ zj = 0
Area(zi ∩ zj)/Area(zi), if zi ∩ zj �= 0

or if zj ⊂ zi

Area(zi ∩ zj)/Area(zj), if zi ⊂ zj

(7)

Discovering User’s Home Place. For this localization attack, an adversary
wants to discover the user’s home place. Two techniques are used to perform this
attack. The first technique is based on the discovery of user’s zones of interest
with the process explained in the previous section, while the second technique
focuses on one heuristic. Regarding the first technique, we use the user’s zones
of interest because the user’s home place is obviously one of them. We start by
computing the set containing all user’s zones of interest, then we search the home
place amongst all of them by highlighting the most likely visited zone of interest
of the set during a specific time slice, i.e., from 8:00 PM to 6:00 AM the next
day. The second technique is inspired by a heuristic called last destination, which
is described in [13]. Last destination heuristic consists in computing the last
destination visited by a user, i.e., at the end of the day. In our implementation,
this place is discovered during the time slice starting at 0:00 AM and ending at
4:00 AM. The output of the second technique used is also a zone defined by a
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centroid and a radius. In order to evaluate these two inference attacks related to
the user’s home place, we compute a reference user’s home place zone zi with the
user raw locations L. Similarly, we also extract zj , which is the user’s home place
computed from the altered set of locations La. We compute the success of these
inference attacks by using Eq. 7 in order to evaluate the discovery percentage
between the reference zone zi and the other computed zone zj .

4.3 Experimental Settings and Results

In the previous sections, we presented all the key elements used for the experi-
ments. We now describe the experimental settings as well as the main findings.

Experimental Settings. Regarding the location privacy estimator, we first
choose equal factors for the computation of the privacy of the spatial and tem-
poral uncertainty meaning that α and β have the same weight for all users, i.e.,
both are equal to 0.5. Secondly, we consider that the radius of zmax equals a
value of 1000 m indicating that the user considers that her spatial privacy is
fully ensured when this radius is reached or exceeded. This value is determined
according to the dataset because users mainly move in cities or areas where a suf-
ficient number of individuals are living. In addition, we select a value of 24 h for
Δtmax, also meaning that her temporal privacy is entirely ensured if this duration
is exceeded. Thirdly, several parameters are selected for each location privacy
preserving mechanism. Regarding the TW sampling, we select 68 values for the
time window ranging from 5 min to 5 days. About the LN sampling, we choose
24 values ranging from 10 locations to 2500 locations per sample. Concerning
the Gaussian alteration, 16 standard deviation values are selected ranging from
0.0001 (i.e., about 12 m) to 0.05 (i.e., 5948 m approximately). And finally, for
the spatial cloaking, we take 6 values ranging from 100 m to 10000 m for the
radius of the cloaked region. Regarding the localization attacks, we select the
following parameters for the user’s zone of interest discovery: Δdmax equals 60 m
and Δtmin is 900 s (i.e., 15 min). A value of 6 visits is chosen for the visitThresh-
old in order to highlight the frequent user’s zones of interest. We found these
values by exploring the Nokia dataset. The time slices used for each inference
attacks are described in the previous section. To conclude, the chosen location
privacy preserving mechanisms are those described in Sect. 3.1.

Results. For each selected parameter of each location privacy preserving mech-
anism, we first compute the mean of the success results of all users for each
localization attack. Then, we display the evolution of the privacy level according
to the evolution of the mean of the success results of all localization attacks in
Figs. 1 and 2. In the four graphs, each dot corresponds to a specific parameter
that evolves from the lowest value to the highest value of the range of the para-
meters of each protection mechanism described in the previous section. These
graphs allow us to see the evolution trend between the results of our location
privacy estimator and the success of the attacks. Regarding the Gaussian per-
turbation in Fig. 2 on the left, the maximum result given by the location privacy
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Fig. 1. TW (left) and LR (right) sampling results.

Fig. 2. Gaussian perturbation (left) and spatial cloaking (right) results.

estimator is 0.5 because the temporal uncertainty is equal to 0. The best results
are obtained with the TW sampling and the LR sampling because the curves
show a negative linear correlation between the success of the attacks and the
privacy estimator results. Regarding the Gaussian perturbation and the spatial
cloaking, we observe exponential decay curves meaning that our privacy esti-
mator is pessimistic. In the context of Gaussian perturbation, the performance
of the localization attacks declines relatively quickly because the added spatial
noise has a high impact on the detection of the zone’s of interest. In the context
of spatial cloaking, the performance of the localization attacks declines sharply
because all zone’s of interest are considered as cloaked regions. Even if Gaussian
perturbation and spatial cloaking results present less accurate estimates than
those of TW and LR sampling, the obtained privacy estimates are conservative
in that they do not give a false sense of location privacy. This means that there
is no outlying curve (i.e., exponential curve) or outlier results such as a high suc-
cess probability of the localization attacks and a high location privacy estimate
at the same time.

5 Related Work

Estimating location privacy is the central aspect of this paper. Therefore, this
related work presents a classification of existing privacy metrics found in the
literature and the possible links between them and our estimator at the end.

Error-Based Metrics. To begin with the first category, Hoh and Gruteser use
two main location privacy metrics to evaluate a path perturbation algorithm
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they propose in [9]. The first location privacy metric, called mean location pri-
vacy, computes the accuracy of the estimation of each location contained in a
user’s path by an adversary (i.e., the expectation of distance error). It takes
into account the difference between correct and estimate locations as well as the
probability of occurrence of the estimate location. In addition to this first metric,
they also consider a second metric, called mean location error aiming at eval-
uating the quality of service provided. Basically, this metric helps to compute
the location accuracy difference of each user’s paths (i.e., between the original
and the observed location). In [19], Shokri et al. introduce a new location pri-
vacy metric, called distortion-based metric. It evaluates the level of distortion of
a reconstructed trace of a user. The latter is obtained by applying the reverse
of the location preserving mechanism used to generate the observed trace. The
metric takes into account the probability of each possible reconstructed trace
as well as the sensitivity of the locations in terms of space and time because it
may directly have an influence on the user privacy. Shokri et al. also introduce
a framework for the analysis of location privacy preserving mechanisms includ-
ing a metric to evaluate the user’s location privacy in [20]. This metric, called
correctness, enables to quantify the correctness of the attack by computing the
expected estimation error of the distance between the true expected result and
all the results contained in the estimate distribution, which is the output of an
attack. Moreover, other error-based metrics are presented in [6,17,18].

Uncertainty-Based Metrics. In [4], Beresford and Stajano use a metric com-
puting the level of anonymity ensured by a mix-zone by using the entropy. To
summarize, an adversary is confronted with a mapping issue including old and
new pseudonyms taken by users in a mix-zone. The entropy enables to compute
the level of uncertainty in the mapping set and quantify the number of users
that we are not able to distinguish from each other. Hoh et al. also introduce
a privacy level measure called mean time to confusion in [11]. It highlights the
tracking time from which an adversary is no longer able to find the next loca-
tion sample with a sufficient certainty. In [5], Cheng et al. present a framework
enabling to control the location uncertainty aiming at preserving user privacy.
They also build a model and queries helping to reach this goal and introduce
two means of quantifying privacy. The first is the size of uncertainty region due
to the fact that the larger the region size, the higher the privacy. The second is
based on the location of the user and its link with sensitive regions such as an
hospital or other sensitive places related to the user. More formally, it computes
the ratio between the area of sensitive regions discovered (i.e., the intersection
between the sensitive regions and the area of the uncertainty of a location) and
the area of the uncertainty of a location. The higher the ratio, the lower the
privacy. Finally, Ardagna et al. present a metric called relevance that represents
the relative accuracy loss of the location when a location obfuscation is applied
on a raw location in [1,6]. This metric only takes into account the geometric
uncertainty generated by a location obfuscation mechanism without defining
the adversary’s goal and knowledge.
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Score-Based Metrics. Hoh et al. evaluate the degree of privacy protection
with two metrics in the context of traffic monitoring in [10]. They consider
that an adversary could try to infer the user’s home and they evaluate the
privacy obtained for different sampling frequencies. The first metric focuses on
the effectiveness of the detection by computing the home identification rate (i.e.,
the number of correct estimated homes out of the total number of correct homes)
and the second metric computes the false positive (i.e., the number of incorrect
estimated homes out of the total number of estimated homes). In [8], Gambs et
al. evaluate the impact of different sanitization mechanisms on different means
aiming at reaching the same adversary’s attack. More specifically, the attack
relates on detecting the user’s clusters. In order to evaluate this impact, they
use well-known metrics called precision and recall. In their analysis, the precision
is the number of correct points of interest divided by the total number of points
of interest returned by an attack and the recall is the number of area detected
divided by the total number of areas.

To finish, there also exist other metrics such as k-anonymity and differential
privacy-based metrics as discussed in [6]. In this classification, our location pri-
vacy estimator could clearly belong to the uncertainty-based category. The exist-
ing metrics mainly take into account the spatial dimension to compute the pri-
vacy while the temporal dimension is equally important and can also be affected
by a location privacy preserving mechanism. To the best of our knowledge, there
is no user-oriented location privacy metric using spatio-temporal uncertainties
resulting from spatial and temporal alterations applied on user raw locations.

6 Conclusion and Future Work

In this paper, we have presented a location privacy estimator taking into account
spatial and temporal uncertainties, generated when a location privacy preserv-
ing mechanism is applied on user raw data, as well as user privacy preferences.
We also introduce how to generate spatial and temporal uncertainties accord-
ing to three existing privacy mechanisms. We chose to evaluate it by comparing
the results of our estimator and those of the success of two localization attacks.
This comparison showed that our estimator provides reasonable or conservative
estimates of the location privacy level. Future work could focus on implement-
ing other location privacy preserving mechanisms and other localization attacks
in order to have a better overview of the behavior of the estimator. Then, we
could also try to automatically adapt zmax and Δtmax to the mobility behavior
of each user. Another interesting work could be to add a weight to each uncer-
tainty according to the degree of importance of the raw location(s) affected by
an alteration in order to see if it increases the accuracy of the results of the
estimator. And finally, a last challenge could be to adapt the computation of the
location privacy with our estimator in realtime during the use of a LBS on a
mobile device.
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Abstract. In the past years, researchers developed approaches to detect
spam in Online Social Networks (OSNs) such as URL blacklisting, spam
traps and even crowdsourcing for manual classification. Although previ-
ous work has shown the effectiveness of using statistical learning to detect
spam, existing work employs supervised schemes that require labeled
training data. In addition to the heavy training cost, it is difficult to
obtain a comprehensive source of ground truth for measurement. In con-
trast to existing work, in this paper we present AdaGraph that is a
novel graph-based approach for spam detection. AdaGraph is unsuper-
vised, hence it diminishes the need of labeled training data and training
cost. Particularly, AdaGraph effectively detects spam in large-scale OSNs
by analyzing user behaviors using graph clustering technique. More-
over, AdaGraph continuously updates detected communities to comply
with users dynamic interactions and activities. Extensive experiments
using Twitter datasets show that AdaGraph detects spam with accuracy
92.3%. Furthermore, the false positive rate of AdaGraph is less than
0.3% that is less than half of the rate achieved by the state-of-the-art
approaches.

Keywords: Unsupervised spam detection · Social networks · Distrib-
uted systems · Evolving graphs algorithms · Community detection

1 Introduction

With the widespread usage of user generated content in Online Social Networks
(OSNs), spam has increased and has become an effective vehicle for malware
and illegal advertisement distribution. Spam not only pollutes the content con-
tributed by normal users, resulting in bad user experiences, but also misleads and
even traps legitimate users. Furthermore, OSNs have also led to new methods
of delivering spam, such as spammy apps, social bots, and fake accounts. These
methods result in increasing social media spam to 355% in 2013 over 20121.
Spotting spammers is very challenging especially with the dynamic nature of
social networks where activities and interactions among users evolve rapidly.

1 http://nexgate.com/solutions/nexgate-social-media-security-stat-center/.
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Additionally, the problem becomes more challenging due to the huge amount
of data shared by users. Therefore, researchers have analyzed different spam
strategies to design mechanisms to combat the spam activities from different
prospectives, including studying the redirection chains of embedded URLs [1–3],
analyzing textual content [4–6], as well as analyzing different friendship graph
properties of spammers against those of legitimate users [4–6].

The research community has produced a substantial number of mechanisms
for automated spam detection based on binary classification mechanisms. The
design of such spam detection mechanisms in general is guided by the behavior
dissimilarity exhibited by legitimate users than spammers. The central premise
as proved in the existing work is that spammer behavior appears anomalous rel-
ative to normal user behavior along some features that could be extracted from
textual content (i.e., content-based features such as number of URLs, hash-
tags and mentions used per post) and OSN friendship graph (i.e., graph-based
features that are calculated from the friendship graph such as local clustering
coefficient and betweenness centrality). However, all of the existing techniques
rely on supervised binary classification methods [1,4,6–8].

Although the proposed binary classification methods succeed at detecting
spam content, they implicitly require offline training with statistically sufficient
and representative labeled training set of different user behaviors in order to
achieve good detection coverage. This requirement itself is hard to satisfy, not to
mention the difficulty of adapting to different behavior patterns that emerge in
the future. Furthermore, the number of features required to discriminate spam-
mers increases due to the diverse users activists in OSNs, the evolving spam
patterns, as well as the limited the amount of labeled data. For example, Zhu
et al. [8] use 1,680 different user activities in their supervised detection app-
roach. Additionally, binary classification methods result in false positive rate
that could range between 5.7% and 0.8% [7,9] resulting in some legitimate users
are identified as spammers and get disconnected from the network. Particularly,
derived from the remark that spammers hijack trending topics and include many
URLs in their posts, content-based classification methods distinguish spammers
by the extensive use of URLs, hashtags and mentions. Consequently, legitimate
users such as the official news channels that continuously broadcast posts with
diverse topics containing URLs and hashtags of the trending topics are going to
be classified as spammers.

To address these issues, in this paper we propose AdaGraph2 that is a
novel unsupervised graph-based clustering technique for spam detection. Dif-
ferently from existing work, AdaGraph constructs a user similarity graph that
is created by connecting users with edges having weights that quantify their
behavioral similarity. The essence of AdaGraph is to construct a user simi-
larity graph that encodes within its topology a holistic view of all behavioral
interactions and patterns of OSN users. Afterwards, AdaGraph performs graph
clustering by applying community detection on top of the newly created graph.

2 This work is under the umbrella of the iSocial EU Marie Curie ITN project (FP7-
PEOPLE-2012-ITN).
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In particular, we create a user-based feature vector to summarize both content
and graph features associated with every user. Accordingly, the edges are created
connecting users having weights equal to the cosine similarity of feature vectors
of source and destination nodes3. Afterwards, AdaGraph detects communities
on top of similarity graph to identify different behavioral patterns existing in
the social network, then spots the spam patterns among the detected ones by
applying some lexical analysis. Spam detection using graph-based clustering not
only diminishes the training cost, but also achieves low false positive rate. Graph-
based clustering provides meaningful insights to the existing behavioral patterns,
therefore, categorizes the existing patterns into more homogeneous and accurate
clusters than binary splitting as illustrated in Fig. 1. Hence, grouping users into
multiple communities minimizes the chances of high false positive rates, specially
for legitimate users with diverse and highly active behaviors such as news chan-
nel accounts. Clustering will group such accounts into a separate cluster with a
closer distance to users having legitimate behavior pattern with diverse topics
rather than the spam pattern that exhibit high URL and hashtags rate, yet in
the same time has high similarity in the content. Hence, graph-based cluster-
ing provides more accurate results compared to binary classification without the
need of the repetitive cost of maintaining up-to-date labeled training dataset.

However, centralized graph-based clustering techniques are not realistically
scalable due to the huge number of users in current OSNs. Therefore, graph-
based clustering algorithms must be developed as massively parallel clustering
that eliminates the need of single centralized aggregation point. Even better,
graph-based clustering can be implemented as fully decentralized solution to
be applicable with currently emerging Decentralized Online Social Networks
(DOSNs). DOSNs operate as distributed information management platforms
on top of networks of trusted servers or P2P infrastructures [10]. Thus, DOSNs
provide a privacy preserving alternative to current OSNs, where users have full
control of their data. Accordingly, in AdaGraph we allow every node to indepen-
dently process its data and only communicate with its direct neighbors. Addi-
tionally, AdaGraph adaptively updates similarity connections among nodes in
the detected communities based on the newly received information integrated
with the previously known without the need of recomputing from scratch. Hence,
AdaGraph is capable of monitoring the behavioral changes and dynamically
adapts to the evolving social activities and interactions among users. We have
performed experiments, using Twitter datasets, to show the effectiveness of our
proposed approach. The results show that AdaGraph provides more accurate
spam detection rate with accuracy up to 92.3% and false positive rate less than
0.3%. Thus, AdaGraph outperforms the state-of-the-art techniques not only in
plain performance figures, but also by removing the need of labeled data and
offline training effort (since AdaGraph is unsupervised) as well as removing the
scalability issues due to the fully decentralized and distributed nature of the
algorithm.

3 Users and nodes refer to the same meaning and are used interchangeably.
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Fig. 1. Similarity-based clustering vs. Binary classification. (a) Initial social graph
of OSN users having different behavioral patterns. (b) AdaGraph creates similarity
graph and extracts communities that group users with similar behaviors. (c) Binary
classification organizes all users in feature space to find the best splitting hyperplane.

Accordingly, our work offers the following contributions to the problem of
spam detection:

– We propose unsupervised spam detection approach that requires no a priori
labeling while maintaining low false positive rate,

– We propose a novel graph-based spam detection technique that detects spam
using graph clustering on top of a constructed user similarity graph which
encodes user behavioral patterns within its topology,

– We introduce adaptive algorithms that enable similarity-based community
detection to evolve with respect to the behavioral changes of the users,

– Our proposed graph-based spam detection technique out-performs existing
centralized binary classification,

– All of the above contributions are performed in purely distributed and decen-
tralized manner.

The remainder of this paper is structured as follows. In Sect. 2 we list the
features used for spam detection, whereas, in Sect. 3 we illustrate the core algo-
rithms implemented in AdaGraph. Furthermore, in Section 3 we detail the lexi-
cal analysis method adopted to indicate the spammers communities among the
detected ones. In Sect. 4 we present evaluation of AdaGraph. Finally, Sect. 5
shows the related work, then Sect. 6 concludes the paper.

2 Spam Detection Features

In this section, we first briefly describe the graph-based and content-based used
in AdaGraph to compute user-based feature vectors.
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2.1 Graph-Based Features

In this part we utilize the original social friendship graph connecting users. We
consider the social network as undirected graph G = (V, E), where V is the set
of nodes and E is the set of edges. eij ∈ E denotes a relationship between nodes
vi and vj ∈ V .

Definition 1. Local Clustering Coefficient (LCC). Given vi ∈ V , let DFi =
{vj ∈ V |eij ∈ E} be the direct friends of vi. LCCi represents the local clustering
coefficient of vi, and equals to:

LCC(vi) =
|ejk : vj , vk ∈ DFi, ejk ∈ E|

|DFi|(|DFi| − 1)
(1)

LCC is one of the graph-based features that are hard to fake [6]. LCC of a
node is the ratio between the number of existing links among its direct neighbors
and the number of links that could possibly exist among them [11]. LCC is used
to quantify the extent to which the direct neighbors of a node are connected to
each other. Due to decentralized nature of AdaGraph, we assume that every node
calculates its LCC locally by keeping track of two-hop neighbors (i.e., neighbors
of the neighbors).

Definition 2. Average Neighbors Clustering Coefficient (ANCC). We define
ANCC of node vi as the average of LCCes computed by DFi.

ANCC is used to quantify the connectedness of the neighborhood of a node.
Madden et al. [12] show that majority of OSN users are more skeptical regarding
the acceptance of new friendship requests from strangers. Therefore, it is hard
for spammers to have strongly connected neighborhood surrounding them. Thus,
ANCCes of legitimate users are commonly higher than those of spammers.

2.2 Content-Based Features

A recent study [13] shows that spammers generate posts using complex tem-
plates such as finite-state machines to evade spam detection methods. Although,
finite-state machines increase the number of different spam posts that can be
generated, all of the generated posts follow a structured content, for example
[mentions of other users + some text + URLs + hashtags of trending topics].
Furthermore, spam posts still have some words in common such as “look at this
video” or “gain more”, etc. Therefore, AdaGraph adopts the following content-
based features.

Definition 3. Average Posts Similarity (APS). Let Pi be the set of posts shared
by vi, and pair(j,k) be the pair of two posts pj and pk in Pi. We define the average
posts similarity of vi as follows:

APS(vi) =
1

(|Pi|
2

)
∑

pair(j,k)∈Pi

pj ∩ pk
pj ∪ pk

(2)
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This feature leverages the similarity among the posts shared by a single user. We
define post similarity using jaccard coefficient, such that for every post pair of a
user, we divide the intersection (i.e., the number of common words in the post
pair) by the total number of words in the post pair. Due to decentralized nature
of AdaGraph, we assume that posts are publicly available and can be collected
by other nodes.

Definition 4. Mentions Ratio (MR). Spammers add mentions to random users
to increase the visibility of their content. Accordingly, we define MR of a user
ui as the number of mentions which refer to a username not included in DFi to
the total number of posts generated by ui.

Definition 5. URL Ratio (UR). Spammers embed malicious URLs in their
posts to direct the users to their websites. Thus, we define UR as the the ratio
of the number of posts containing a URL to the total number of posts a user has
(i.e., |URLs|/|Pi|).
Definition 6. Hashtags Ratio (HR). Hijacking trending topics in OSNs has
been a widely adopted strategy among spammers to reach wider audience. There-
fore, we define HR as the number of trending topics associated with user posts
to the total number of posts (i.e., |Hashtahs|/|Pi|).

3 Graph-Based Spam Detection

In this section, we present the core of AdaGraph. First, we illustrate the con-
struction of user similarity graph, followed by the details of the local clustering
algorithm. Afterwards, we present the quick community adaptation algorithm
used for tracing the evolution of users behaviors represented in detected com-
munities over time. Furthermore, we discuss the computational complexity of
AdaGraph and present the adopted lexical analysis approach to spot spammers
communities among detected ones.

3.1 Similarity Graph Construction

The first step of AdaGraph is to construct users similarity graph from the social
graph. To build a massively parallel approach, we allow every node in the social
graph to participate in similarity graph construction. Initially, every node starts
by creating similarity edges among itself and its social neighbors. The edges are
created by connecting any pair of nodes having cosine similarity of their feature
vectors greater than specific threshold. So as, the weight of an edge connecting
node i and node j equals to:

w(eij) =
xi.xj

||xi||.||xj || (3)

where, xi is the feature vector of node i and xj is the feature vector of node j.
Particularity, the feature vector of a node has the following values [LCC, ANCC,
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APS, MR, UR, HR] as defined in Sect. 2. If the weight w(eij) is greater than the
threshold ε, then an edge connecting node i and node j is added to the graph with
weight equals to w(eij) (see Fig. 1, the thickness of an edge reflects its weight).
Afterwards, every node enlarges the similarity graph further by exploring the
possibility of creating more similarity edges with the neighbors of its currently
direct neighbors.

3.2 Clustering by Community Detection

Our objective is to find the topological communities inside the constructed simi-
larity graph. Let us first define similarity graph as an undirected weighted graph
G = (V, E), where V is the set of nodes and E is the set of similarity edges,
where eij ∈ E denotes cosine similarity between nodes vi and vj ∈ V that is
computed as defined in Eq. 3. Commonly, finding communities is well-know as
community detection and is defined as:

Definition 7. Community Detection. A community detection C, also known as
graph clustering, is a mapping

C : G → G′
1 × . . . × G′

n (4)

that partitions G into n non-empty, node-disjoint subgraphs G′
1 × . . .×G′

n repre-
senting a set of communities or clusters. A widely used quality measure for com-
munity detection is the modularity Q of the clustering C(G) [14], that assigns a
quality value q to the clustering C(G) defined by

q :=
∑

i

(w(eii) − b2i ) (5)

where bi =
∑

j w(eij), where eij represents an edge in community i for which the
target node of the edge lies in community j. The higher the quality value q is, the
better the detected community is. One possible definition for C is to maximize
Q over all clustering C(G) [14].

AdaGraph employs recently developed decentralized diffusion-based commu-
nity detection strategy [15]. In particular, every node in the similarity graph
starts by joining the node with the maximum cosine similarity among its direct
friends to form a community. Afterwards, in successive iterations every node
chooses to quit its current community and join one of its neighbour’s if this
brings some modularity gain. As described in method selectCommunity in Algo-
rithm 1, nodes select the dominant community in their neighborhood to join
(i.e., the community with the highest sum of weights). This step is iteratively
repeated until no node wants to change its community as it already represents
the dominant one of all its neighbors. Thereafter, the topological communities
detected in the similarity graph represent the different user behavioral patterns.
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Algorithm 1. Community Detection Methods
Result: Community Structure Ct+1

Procedure selectCommunity(node u)
forall the C ∈ NeighborCommunity(u) do

q(C) ← sum(weuj )|Cj = C
end
Cu ← Cj |q(Cj) = max(q(C))

Procedure changeCommunity(node u)
Cunew ← selectCommunity(u)
if Cu �= Cunew then

Cu ← Cunew

forall the x ∈ Neighbor(u) do
changeCommunity(x)

end

end

3.3 Community Structure Adaptation

OSNs are dynamic by nature due to rapidly evolving social activities and inter-
actions among users. Therefore, the constructed similarity graph must be contin-
uously updated to cope with evolving users’ behaviors. Thus, we have integrated
adaptive modularity-based methods for identifying and tracing the changes in
the communities structure of the constructed similarity graph. The similarity
graph is updated by either inserting or removing a node or set of nodes, or by
either introducing or deleting an edge or set of edges. We have modeled these
graph changes as a collection of simple events namely: newNode, removeNode,
newEdge and removeEdge. AdaGraph starts by extracting initial community
structure C0, by detecting the communities exist in the first snapshot of the net-
work. Thereafter, this initial structure is continuously updated for the successive
snapshots by applying different adaptation methods as illustrated in Algorithms
2 and 3.

Algorithm 2. Node Simple Events
Result: An updated Community Structure Ct+1

Procedure newNode(node u)
Cu ← selectCommunity(u)
Update Ct+1 : Ct+1 ← (Ct \ Cu) ∪ (Cu ∪ u)

Procedure removeNode(node u)
Cu ← (Cu \ u)
forall the v ∈ Neighbor(u) do

removeEdge(evu)
end
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– newNode(V+u): a new node u with its associated edges are introduced,
such that u could come with no or more than one new edge(s). When u
joins the similarity graph, it assigns itself to the dominant community in its
neighborhood as illustrated in method newNode.

– removeNode(V−u): node u with its adjacent edges are removed from the
graph. As shown in methods removeNode, when an existing node u is of a
community C is removed, all of its adjacent edges are removed as a result.
Consequently, the resulting community structure might change, hence, neigh-
bors of that removed node re-evaluate their community memberships as illus-
trated in the next method removeEdge.

Algorithm 3. Edge Simple Events
Result: An updated Community Structure Ct+1

Procedure newEdge(edge evu)
if v and u are new nodes then

Ct+1 ← Ct ∪ {v, u}
else if Cv = Cu then

Ct+1 ← Ct

else
changeCommunity(u)
changeCommunity(v)

Procedure removeEdge(edge evu)
if (v, u) is a single edge then

Ct+1 ← (Ct \ {v, u}) ∪ {v} ∪ {u}
else if either v (or u) is of degree one then

Ct+1 ← (Ct \ Cv) ∪ {v} ∪ {Cv \ v}
else if Cv �= Cu then

Ct+1 ← Ct

else
changeCommunity(u)
changeCommunity(v)

– newEdge(E+e): a new edge e is introduced, we can divide it further into two
cases: an intra-community edge (both nodes belong to the same community)
or an inter-community edge (connecting two communities). In the first case, no
change happens to the community structure (as detailed in method newEdge).
Yet, the interesting situation happens when e is an inter-community edge, as
its presence could possibly make source and destination nodes change their
community memberships. Consequently, these nodes notify their neighbors in
case of change, so as cascading updates could take place if further changes are
required (as detailed in method changeCommunity).

– removeEdge(E−e): an existing edge e in the graph is removed. Similarly
to edge addition, edge removal can be divided into two case, such that the
edge to be removed e is either an inter-community edge or intra-community
edge. In the first case, the removal of e will strengthen the current com-
munity structure and cause no change to it. However, in the second case,
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edge removal might cause community split. Therefore, the edge source and
destination nodes re-evaluate their community memberships and notify their
neighbors in case of change.

3.4 Lexical Analysis of Posts

As aforementioned, the core of AdaGraph is to detect different behavioral pat-
terns in the user similarity graph by performing community detection. However,
spotting spam patters among detected ones is not straightforward. So as, further
lexical and semantic analysis is required to efficiently spot spammers communi-
ties among extracted ones. Specially, spammers can use automated spinning to
avoid duplicate detection, such that they can create new versions with vaguely
similar meaning but sufficiently different appearance. Therefore, in AdaGraph
we apply lexical analysis of the most frequent words to determine if those words
or their synonyms are commonly used by spammers. AdaGraph integrates Gav-
agai lexicon4 that learns the words synonyms and their related n-grams terms.
Accordingly, we identify a set of trusted nodes in the social graph and these
nodes are responsible for labeling any of detected communities as spam if the
majority of the users belonging to these communities frequently use spam words
or their lexical related terms.

3.5 Complexity Analysis

The model cost is expected to be low given that every node performs its local
computation independently of the other nodes. We discuss the complexity of
AdaGraph in terms of communication traffic among all the nodes in the OSN.
By our adopted work for decentralized community detection, the algorithm com-
plexity is O(N ∗ D ∗ R), where N is the total number of users in the similarity
graph, D is the average node degree, and R is the total number of rounds needed
for the algorithm to converge5 [15]. This step requires that all the nodes are online
at the time of its execution; however, it is also a process that is performed once
and that is incrementally updated only. Moreover, as we demonstrate through
experiments on real OSN data, the convergence time of our solution is very
realistic and achievable (see Sect. 4.3).

4 Evaluation

AdaGraph applies vertex-centric approach which is proved to be scalable, effi-
cient and fast. Our algorithms are implemented in GraphLab6, with two different
distributed execution modules. In the first module, nodes participate in creating
the similarity graph using their feature vectors. Thereafter, the control is moved

4 Available via http://lexicon.gavagai.se/.
5 R depends on the topological properties of the underlying graph.
6 https://turi.com/products/create/.

http://lexicon.gavagai.se/
https://turi.com/products/create/
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Table 1. Twitter datasets used in our experiments.

Twitter dataset US Active UK Active US Passive

Tweets 453,519 489,484 360,927

Legitimate accounts 17,322 19,312 12,128

Suspended accounts 2,072 1,617 3,109

Social-graph edges 1,357,806 1,187,036 2,349,314

Similarity-graph edges 2,149,414 2,297,150 3,339,617

Fig. 2. The tweeting distribution in Twitter datasets in log scale.

to the second module that performs the community detection algorithm. In the
following subsections, we thoroughly evaluate the performance of AdaGraph in
terms of the accuracy of spam detection. We compare AdaGraph with different
centralized and supervised binary classification approaches, utilizing the Weka
tool7, namely: K-means (KM) with number of clusters = 2, Decision Tree (DT)
and Random Forest (RF).

4.1 Datasets

We have collected our dataset from Twitter using Twitter streaming API8

from May 2015 to July 2016. We have accessed Twitter’s API using privileged
accounts, collecting users’ tweets and the social graph connecting these users.
In order to identify the spammers, we have queried the status of all accounts
regularly to check if any got suspended for abusive behavior. Upon suspension,
we identify suspended accounts as spammers. Table 1 lists the details of the
collected datasets. The first two datasets (US Active and UK Active) are col-
lected from users with high level of posting tweets located in United States and
United Kingdom, respectively. Yet, the third dataset (US Passive) is collected
from users located in United States with low level of posting activity. Accord-
ingly, in Fig. 2 we show the tweeting distribution for the collected datasets in
log scale. As shown, tweeting distribution follows power law probability distrib-
ution, such that there is uneven distribution of number of tweets being posted
7 http://www.cs.waikato.ac.nz/ml/weka/.
8 https://dev.twitter.com/rest/public.

http://www.cs.waikato.ac.nz/ml/weka/
https://dev.twitter.com/rest/public
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Fig. 3. The weight distribution in the generated similarity graphs for Twitter datasets
in log scale.

by users. Majority of users post few tweets, whereas there is small number of
highly active users who post large number of tweets.

4.2 Generated Similarity Graph

As aforementioned, the user similarity graph is constructed in a fully decentral-
ized manner, such that each node explores its surrounding neighborhood pro-
gressively to add further similarity edges. Furthermore, as mentioned in Sect. 3.1,
nodes add similarity edges if the similarity weight is greater than the threshold ε.
We allow nodes to determine freely the value of ε, such that each node computes
the average weight of its current edges, and sets the average weight as value
for ε. As shown in Table 1, the average number of added edges in the similarity
graph is almost equal to 50% of the existing edges in the social graph. Accord-
ingly, AdaGraph connects only highly similar nodes instead of creating a fully
connected graphs.

Figure 3 depicts the similarity weight distribution obtained for each dataset
in log scale. As shown, the similarity weight distribution follows power law prob-
ability distribution similarly to the tweeting distribution. Furthermore, the sim-
ilarity weight distribution spans over wider range in US Active and UK Active
compared to US Passive. Particularly, in US Passive 91.5% of the similarity
weight is less than 0.25, and this resulted from the low post frequency of users
in this dataset. Therefore, we can infer that the more active posting behavior
of users, the more strong edges are be added in the similarity graph. Addition-
ally, AdaGraph can successfully adapt to different social activities of the users
and accordingly create the user similarity graph to reflect the underlying user
behavior.

4.3 Adaptive Community Detection

As aforementioned, every node repeatedly runs the community detection, until
communities structure does not change any more (i.e., the convergence is
reached). Figure 4(a) depicts the number of rounds required till convergence, and
number of extracted communities per round. As shown, in the very beginning
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Fig. 4. Community detection results of AdaGraph. (a) Number of iterations required
for convergence. (b) Number of detected communities per each snapshot. (c) The mod-
ularity gain obtained per each snapshot.

the number of communities is very large, every node starts to form a community
with one of its direct neighbors. However, over time nodes join the dominant
communities in their neighborhood, as a result the communities start to merge
and the number of communities continues to decrease. In order to identify the
communities that contain spammers, we have construct a list of 500 words that
are commonly used by spammers associated with their semantically similar terms
and n-grams (see Sect. 3.4). Further, for every node we select the most frequent
words used in its tweets. Accordingly, the collected word list per community
is checked against a list of common spam words. A community is identified as
spam if majority (i.e., more than 50%) of its members use common spam words
in their tweets. The results show that the percentage of spam communities is
17.3%, 21.6% and 23.5% in US Active, UK Active and US Passive, respectively.

Additionally, we study the adaptability of AdaGraph with dynamic and
evolving graphs. We started by loading 50% to form the basic structure, such
that we constructed the similarity graph using only 50% of nodes from the social
graph and 50% of their associated tweets. Afterwards, we simulated the network
evolution by adding the remaining nodes/tweets via a series of 25 growing snap-
shots. Figure 4(b) depicts the number of detected communities per snapshot as
well as Fig. 4(c) shows the resulted modularity of the detected communities per
snapshot. Furthermore, we have noticed that the changes caused by incremen-
tally adding the snapshots are localized, such that on average 15% to 17% of old
nodes got affected by the change and re-evaluate their communities member-
ship. Consequently, AdaGraph dynamically adapts to the topological changes
of evolving graphs. Moreover, AdaGraph adapts incrementally with no need to
start community detection from scratch.

Furthermore, we study the effect of ε as a graph sparsification parameter, as
well as the ability of AdaGraph to extract communities in denser graphs. Accord-
ingly, we have repeated the community detection experiments with another gen-
erated user similarity graphs in which all edges are added even though the
weight is less than ε. Consequently, the new generated user similarity graphs
are denser than those generated having edges with weight greater than ε. The
obtained results show that AdaGraph maintains the same convergence rate and
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Fig. 5. The performance gain achieved by AdaGraph compared with centralized and
supervised methods. The reported values are the average of achieved performance
across the three datasets. (c) AdaGraph performance using only the first month snap-
shot of the data.

structure of detected communities with denser graphs, though the execution
time is almost double the execution time of ε sparsificated graphs. Specifi-
cally, with ε sparsificated graphs the execution time is 15.4, 17.7, and 13 min
for US Active, UK Active and US Passive, respectively. On the other hand,
with denser graphs the execution time is 39, 35.9, and 26.9 min for US Active,
UK Active and US Passive, respectively. Therefore, by disregarding a large frac-
tion of low-weight edges that are insignificant for the task, running times of
community detection algorithms are reduced.

4.4 Performance Comparison

We calculate the accuracy of AdaGraph using True Positive Rate and False
Positive Rate, that are defined as the following: (1) True Positive Rate (TPR):
we calculate TPR as the fraction of spammers that are successfully detected.
(2) False Positive Rate (FPR): we calculate FPR as the fraction of legitimate
users that are identified as spammers.

We have updated all of the supervised machine learning algorithms to be per-
formed in online learning fashion. Instead of executing them in batch learning
manner that uses the entire training dataset at once, we have used the monthly
updates of the data in a sequential order to update the predictors by retrain-
ing them with misclassified data points from future data. On the other hand,
AdaGraph is already developed to capture the evolving changes in social net-
work. For the comparison, we update the user similarity graph with sequence of
monthly data.

Figure 5 depicts the detection performance comparison of AdaGraph with
the different centralized and supervised classification methods. As shown, Ada-
Graph outperforms all binary classification methods especially when limited data
is available. Specifically, the gap between AdaGraph and other methods in pre-
diction accuracy for the first month is around 14,1%. Namely, the performance
of supervised classification methods gets increased as the available training data
increases (i.e., starting from the sixth month). On the other hand, AdaGraph cre-
ates an evolving similarity graph and continuously clusters users more accurately
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from the first timestamp, such that TPR of AdaGraph is the highest (92.3%).
Furthermore, AdaGraph follows a decentralized approach that enables to process
small chunks of data in parallel, as well as AdaGraph requires no retraining as
supervised classification methods do. Thus, AdaGraph rapidly adapts to concept
drift that occurs in the system (user behavior), while other approaches require
retraining with the new emerging patterns.

Furthermore, AdaGraph has the lowest FPR, which means that graph-based
clustering successfully detect spammers with minimum effect on the legitimate
users. Specifically, we can see that FPR in AdaGraph can be steadily main-
tained under 0.3%, as shown in Fig. 5(b), while the rate of RF method (the best
binary classification method) starts with 2% and drops to 0.39% with increase
of the training data. Consequently, the community detection approach adopted
in AdaGraph perfectly categorizes the existing behavioral patterns into more
homogeneous and accurate clusters than binary classification.

Additionally, we have further analyzed AdaGraph considering only the data
collected in the first snapshot. In this experiment, we want to study the minimum
number of posts needed to achieve good TPR meanwhile the FPR is kept low.
Figure 5(c) depicts the weekly detection performance of AdaGraph in the first
month. As shown, lowest TPR of AdaGraph is more than 75% while the FPR is
less than 1.6% during the first week when the average number of available posts is
14 post across the three datasets. Hence, AdaGraph has an acceptable accuracy
with very limited data. The first key reason behind AdaGraph good performance
is the hybrid features that AdaGraph employs, i.e., the graph-based and con-
tent based features. Secondly and most importantly, the community detection
algorithm categorizes user into more homogeneous and accurate clusters than
binary classification.

5 Related Work

The first family of spam detection mechanisms includes techniques using black-
lists to identify URL on OSNs websites directing to spam content [1,2]. How-
ever, URL blacklisting has several practical challenges. First, those blacklists are
publicly available, hence spammers can evade them by changing their domain
names or hiding them behind some redirecting pages. Second, URL blacklisting
becomes ineffective with the spread usage of URL shortening services such as
bit.ly and t.co. Therefore, different techniques have been proposed to analyze
the redirection chains of URLs and their correlations [3]. Yet, those techniques
are not designed as online detection tools, since they either have long lag-time
or limited efficiency.

Furthermore, a rich corpus of research work lies in adopting supervised
machine learning based methods using hybrid features extracted from textual
content and OSN friendship graph. For example, Hongyu et al. [4] propose to
train a binary classifier with hybrid features including user social degree, yet
spammers can increase their social degree by purchasing more followers. Thus,
Yang et al. [6] employ graph-based features that are hard to fake such as local
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clustering coefficient and betweenness centrality. More recently, [16] suggests an
unsupervised solution to spam detection based on sybil defense mechanism. The
proposed scheme starts by identifying non-spammers (i.e., non-sybils) by apply-
ing a clustering algorithm on social graph. The authors focus their analysis on
intensive URL sharing, yet instead of using URL blacklisting, they add new
user-link edges to the social graph by connecting users sharing the same URL.
However, the assumption that sybil nodes form tight-knit communities does not
presist as shown in recent studies [17].

6 Conclusion

In this paper, we have introduced AdaGraph that is a novel decentralized and
unsupervised spam detection framework in contrast to existing centralized and
supervised approaches. AdaGraph resembles graph-based spam detection tech-
nique that detects spam using graph clustering on top of a newly constructed
user similarity graph which encodes within its topology a holistic view of all
behavioral interactions and patterns of OSN users. More importantly, AdaGraph
integrates community detection algorithm that categorizes the existing user
behavioral patterns into more homogeneous and accurate clusters than binary
classification. The proposed approach achieves detection accuracy upto 92.3%
and false positive rate less than 0.3%. Additionally, AdaGraph is scalable and
massively parallel that suitably fits DOSNs and OSNs environments.
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Abstract. Civitas is the first fully remote e-voting protocol which
ensures verifiability and coercion resistance at the same time. In 2011,
Shirazi et al. found a security flaw on the credential management process
during Civitas’ registration phase and proposed solutions to avoid this
drawback.

In this paper, we describe some attacks found during the Civitas’
registration phase. We show that Shirazi’s solutions cannot be used in
practical situations and/or doesn’t ensure coercion-resistance. Then, we
present a fully remote e-voting protocol that addresses these drawbacks.

Our protocol aims to separate voter’s registration data from voter’s
vote into two different bulletin boards. Merging this data will only be
done by tallying authorities to identify and tally valid votes. Moreover,
our protocol uses a new ballot’s encryption function that ensures coer-
cion resistance in a different manner. Compared to Civitas, we use a
secure registration phase and we reduce the computational complexity
of tallying phase from quadratic to linear time.

Keywords: Electronic voting · Internet voting · Coercion-resistance ·
Civitas

1 Introduction

Many governments are turning to the use of e-voting systems to ensure the
conduct of elections in more efficient, faster, easier, cheaper and attractive way
than the traditional voting process.

Fully remote e-voting protocols allow voters to vote anywhere. They must
satisfy several security requirements related to voting process. One of the hardest
security requirements seems to be the coercion resistance. So, how to ensure that
a voter doesn’t vote under a threat of a coercer? In 2008, Clarkson et al. [1] define
the first fully remote e-voting protocol, called Civitas, which ensures coercion
resistance and verifiability at the same time. Civitas protocol is an improvement
of the JCJ protocol defined by Juels et al. in 2005 [14].
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In Civitas, to ensure coercion resistance, each voter owns a credential deliv-
ered by trusted registration authorities. This credential is casted by voter within
its ballot to validate it. Neither the voter nor the adversary can prove or verify
the validity or the invalidity of the credential. Thus, the adversary cannot control
voter’s choice and is also confused about the validity of the casted ballot. Civitas
received much research interest, and several improvements have been proposed
in the literature. In [3,10], authors propose solutions to reduce the complexity
of Civitas’ tallying phase from quadratic to linear. In [11,12], authors propose
an implementation of Civitas by the use of smart cards in order to overcome
credential management problem. However, they based their solutions on a par-
tially remote registration phase. To register, a voter must at first contact in
person a supervised registration authority. Then, he finishes the registration
process remotely with other registration authorities. This contradicts the aim
to define a fully remote e-voting protocol. In [9], Shirazi et al. found an attack
during Civitas’ registration phase. This security flaw arises due to the credential
management in Civitas. Therefore, Shirazi et al. propose extended versions with
intention to overcome this drawback. However, as we will show in this paper,
their solutions cannot be used in practical situations and/or violate the coercion
resistance in certain cases.

In this paper, we discuss the attacks found in Civitas’ registration phase and
we propose a fully remote secure registration protocol. We present also a new
e-voting protocol based on Civitas. The main idea behind our protocol is to
separate voter’s registration data from voter’s vote. In fact, we use two types
of bulletin boards1. The first one, called Credential Bulletin Board (CBB) is
used for registration and authentication of voters. The second one, called Ballot
Bulletin Board (BBB), is used for submitting the votes. Tallying authorities will
then merge the data from the boards to identify and tally valid votes.

Our protocol satisfies security requirements of e-voting process, especially
verifiability and coercion resistance. It is characterized by the fact that it allows
voters to submit valid ballots in the presence of a coercer who forces them to
cast a particular vote.

This paper is organized as follows: first, Civitas protocol is introduced. Sec-
ond, attacks found during Civitas’ registration phase are detailed. Then, we
present a new e-voting protocol based on a secure registration phase. Finally, we
study the security of our e-voting protocol.

2 The Civitas Protocol

In this section, due to the space constraints, we present briefly each phase of
Civitas protocol [1]. The participants involved in this protocol are Supervi-
sor Authority SA, Registrar RE, Registration Authorities RA1, RA2, . . . , RAl,
Tallying Authorities TA1, TA2, . . . , TAn and Voters V1, V2, . . . , Vm. A Bulletin

1 A bulletin board is a public broadcasted channel in which anyone can read and verify
data and no one can erase any information from it.
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Board (BB), is used by these participants to publish all the information needed
for e-voting process.

Initialization. First, SA starts the election and posts on BB a message (p, q, g)
containing the parameters related to cryptosystem ElGamal where p and q are
two large prime numbers, such that q|(p − 1) and g a generator of the order q
subgroup of Z∗

p . Note that Civitas uses ElGamal threshold encryption over a pre-
established secret key noted sk shared jointly among tallying authorities. The
public key related to this secret key is noted pk. In what follows, the encryption
of a message m with ELGamal encryption under the public key pk and a random
value r is noted EncG(m, pk, r) = (Xm, Ym) = (gr,m.pkr).

Second, the registrar RE publishes on BB the list of legitimate voters with
their public keys. Note that each voter owns two keys: a registration key and
a designation key. Voter’s registration key is used by registration authorities to
authenticate voters during the registration phase. Voter’s designation key is used
by voters to provide fake credentials if they are under a threat of a coercer during
the voting phase.

Then, for each voter, registration authorities jointly generate a credential
noted Cj used to prove voters’ legitimacy. For this, each RAi chooses randomly
a secret credential share ci,j for the voter Vj . The credential Cj related to Vj is
computed from the product of ci,j . A public credential share Si,j is associated
to each private credential share ci,j and published by RAi on BB using ElGamal
encryption, such as Si,j = (Xi,j , Yi,j) = (gεi,j , ci,jpkεi,j ), where εi,j is randomly
chosen in Zq.

After all registration authorities have published Si,j , the public credential Sj

related to the private credential Cj can be computed as the product of public
values Si,j , such as: Sj =

∏l
i=1 Si,j = (

∏l
i=1 gεi,j ,

∏l
i=1 ci,jpkεi,j ).

Registration. During this phase, each voter Vj contacts registration authorities
to obtain his credential. Here, it will be assumed that voters and registration
authorities are already authenticated2. The registration protocol runs as follows:

1. Vj asks each RAi to send him the share ci,j of his private credential Cj .
2. Each RAi computes S′

i,j = (gε′
i,j , ci,jpkε′

i,j ) where ε′
i,j ∈R Zq.

3. Each RAi sends secretly to Vj the credential share ci,j , the encrypted creden-
tial share S′

i,j , the random value ε′
i,j and a Designated-Verifier Re-encryption

Proof (DV RP ) due to Hirt and Sako [17]. This proof is convincing only Vj

that S′
i,j is a re-encryption of the public credential share Si,j .

4. Vj verifies that S′
i,j is computed correctly from the values ci,j and ε′

i,j . He
also verifies the DV RP proof.

5. After retrieving all credential shares, Vj computes his private credential as
Cj =

∏l
i=1 ci,j .

2 Each registration authority will authenticate voters using their registration keys.
Note that we do not detail identification and authentication mechanism used in
Civitas protocol.
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Vote. To vote, each voter posts on BB an unsigned ballot noted BVj
which

contains his encrypted vote vj and his encrypted credential Cj such that:

BVj
= (EncG(vj , pk, rvj

), EncG(Cj , pk, rCj
), Pw, Pk)

where rCj
, rvj

∈R Zq, and Pw, Pk are zero-knowledge proofs. Pw shows that
EncG(vj , pk, rvj

) encrypts a valid vote vj . It is based on a 1-out-of-L re-encryption
proof defined by Hirt and Sako in [17]. Pk shows that Vj knows rCj

and rvj
. It is

based on the technique defined by Camenisch and Stadler in [4] and impede an
adversary to submit values dependently on previously published BVj

.
If a voter votes under a threat of a coercer, he may submit a fake credential3

Cj and an invalid encryption EncG(Cj , pk, rCj
) within his BVj

. The coercer
cannot verify the validity of Cj . Then, Vj can submit another BVj

with a valid
credential during a secret moment in the absence of the coercer.

Tallying. The Tallying phase involves the following steps:

1. For each casted BVj
, tallying authorities check Pw and Pk. They eliminate

ballots with invalid proofs.
2. According to re-voting policy4, tallying authorities eliminate ballots posted

with the same credential Cj by applying the Plaintext Equivalence Test
(PET)5 [5] on each pair (EncG(Cj , pk, rCj

), EncG(Cj′ , pk, rCj′ )) for j �= j′

of encrypted credentials casted on BB.
3. Both the list of submitted ballots BVj

and the list of public credentials Sj

are passed as input to a mix-net. For this, each tallying authority apply its
own re-encryption and provide a proof of its validity.

4. To eliminate ballots casted with invalid credentials, tallying authorities apply
PET on all pairs (Sj , EncG(Cj , pk, rCj

)). If PET returns true, the ballot will
be counted in the tally.

5. Tallying authorities run a distributed decryption on valid ballots and compute
the final voting result.

Note that if BB includes N casted ballots, applying PET during step 2 and
4 of tallying process causes worst-case running time. Thus, the tallying process
involves quadratic time complexity of O(N2), which depends on the number of
all casted ballots.

3 The Insecurity of Civitas’ Registration Phase

In Civitas protocol, during the registration phase, authors do not specify what
happens if a voter Vj received an invalid credential share ci,j from a dishonest
3 The voter uses his private designation key to provide, to an adversary, a fake DV RP

proof proving the validity of his fake credential.
4 If voters can re-vote, then only the last ballot with valid credential is counted, the

other ones, submitted with duplicate credentials, are eliminated. If voters cannot
re-vote, then all ballots casted with the same credential are eliminated.

5 Given a pair of encrypted credentials EncG(C1) and EncG(C2), PET checks if C1 =
C2 without revealing any information on C1 or C2.
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registration authority RAj . If the public credential Sj is computed from pub-
lic credential shares Si,j published by all registration authorities, a dishonest
authority can imped voters from voting simply by sending invalid credential
shares. Thus, voters cannot compute their secret credentials and cannot cast
valid ballots. This attack has been described by Shirazi et al. in [9]. Two solu-
tions are proposed by the authors in [9] to avoid this attack. In the first solution,
the voter must fix a subset of honest registration authorities before requesting
his credential shares. This seems to be impracticable in real situations. In the
one hand, it is extremely difficult for the voter to decide, from the beginning,
on the set of trusted registration authorities. In the other hand, if one of the
set of trusted registration authorities is under the influence of an attacker, the
described attack will be still possible.

The second solution proposed by Shirazi et al. assumes that each voter must
select a random subset of registration authorities and contact them to receive his
credential shares. The size of this subset must be greater than one half of the total
number of registration authorities. Then, the voter must contact once more each
trusted registration authority to reveal the subset of honest authorities whom
sent him valid credential shares. This solution don’t ensure coercion resistance if
the voter is accompanied by a coercer who forces him to select a specific subset of
registration authorities. Moreover, an attacker can modify the distribution of the
generated credentials if he knows in advance the random subset of registration
authorities that the voter will contact. This attack will be described in detail
below.

In Civitas’ protocol, the authors claim that the protocol used to construct
credentials ensures a uniform distribution of the generated credentials. However,
in what follows, we show that Civitas’ registration protocol allows a dishonest
registration authority to influence the distribution of the generated credentials.
This attack is similar to the one found by Gennaro on Pedersen’s distributed
key generation (DKG) protocol [2].

The attack occurs when a dishonest registration authority noted RA1 wants
to modify the last bits of the public credential Sj = (Xj , Yj) related to Vj .
Assume that RA1 wants to change the value of Sj such that the last bit of Xj and
Yj will be 0. The adversary RA1 will wait until all registration authorities pub-
lish public credential shares Si,j . Then he computes S∗

j = (
∏l

i=1 Xi,j ,
∏l

i=1 Yi,j).
If S∗

j ends with 0, he will submit correct share S1,j to Vj . Otherwise, RA1 sends
either an invalid credential share with an invalid DV RP proof to Vj or simply
abstains from sending a credential share. He also can simply copy any share
posted by other registration authorities. As described in Civitas, this breaks the
execution of the registration process. In all cases, RA1 will force the interruption
of the registration process. All registration authorities will then re-run the reg-
istration protocol. In fact, RA1, or other dishonest registration authorities, can
force the re-run of this protocol several times until they get the value S∗

j end-
ing with 0. This breaks the assumption of uniform distribution of the generated
credentials.
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The attack described above is also applicable in the second solution pro-
posed by Shirazi et al. [9]. Assuming that the voter contacts RA1 to receive
his credential share, and that RA1 knows in advance the selected arbitrary sub-
set of registration authorities, RA1 can decide whether he will be or not in
the subset of trusted authorities (noted SET ) selected by the voter. Accord-
ing to his goal, RA1 can force Sj to be S1

j = (
∏

i∈SET Xi,j ,
∏

i∈SET Yi,j) or
S2

j = (
∏

i∈{SET\RA1} Xi,j ,
∏

{SET\RA1} Yi,j). He can also cooperate with other
dishonest registration authorities to force the value of Sj ending with specific
bit values.

4 Our Electronic Voting Protocol

In this section, we present the whole process of our e-voting protocol. Our proto-
col is based on a registration phase which is secure against the attacks described
in Sect. 3. In our protocol, we consider the use of a pairwise of credentials for
each voter. One credential will be used for authentication, and the other one to
hide the vote value during voting phase. We will also consider the use of indexes
that are associated to voters in order to reduce the computational complexity
during tallying phase. Note that our protocol is based on a new ballot’s encryp-
tion function which allows voters to submit valid ballots in the presence of a
coercer who forces them to cast a particular vote.

In what follows, we describe at first the communication model and the adver-
sary capabilities. Then, we present in detail the process of each phase of our
e-voting protocol.

4.1 Communication Model

Our e-voting protocol includes a Supervisor Authority noted SA, a set of l
Registration Authorities RA1, RA2, . . . , RAl, a set of n Tallying Authorities
TA1, TA2, . . . , TAn and a set of m Voters V1, V2, . . . , Vm. We consider the use of
two bulletin boards. The first one is the Credentials Bulletin Board (CBB), the
second one is the Ballots Bulletin Board (BBB). During the registration phase,
we use an untapabble channel between voters and registration authorities. Dur-
ing the registration and the voting phases, we use anonymous channels for all
messages published by voters.

4.2 Adversary Capabilities

We consider that our e-voting protocol is secure against an adversary with the
following capabilities:

– The adversary can corrupt up to t − 1 of the l registration authorities such
that (t−1) ≤ l/2. The adversary can also corrupt up to t−1 of the n tallying
authorities such that (t − 1) ≤ n/2. Thus, in both cases, the majority of
authorities are honest.
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– During the registration phase, an adversary cannot simulate voters. However,
voters can be accompanied by a coercer when they submit their public creden-
tials. He can coerce voters by forcing them to abstain or to submit a particular
public credentials.

– During the voting phase, voters can be accompanied by a coercer when they
cast their ballots. He can coerce voters by forcing them to abstain or to submit
a particular vote. He can also force voters to sell or surrender their credentials.

– It will be assumed that an adversary cannot drop or inject messages on CBB
and BBB.

– An adversary cannot spy on the network channel between the voter and the
registration authorities during the registration phase. During voting and reg-
istration phases, we assume the existence of anonymous channels to avoid that
an adversary identify the sender of a message casted on CBB and BBB.

– The adversary can perform any polynomial-time computation.

4.3 Notations

Let p and q denote two large prime numbers, such that q|(p − 1). Let further
Gq denote a subgroup of prime order q in Z∗

p , such that computing discrete
logarithms in this group is infeasible. Moreover, g and h denote independently
selected generators of Gq. Note that we perform all the computations in Zq.

In our e-voting protocol, instead of ElGamal encryption, we use a variant
of the encryption function defined by Schoenmakers in [6]. In what follows, the
encryption of a message m under the public key pk and a random value r ∈R Zq

is noted Enc(m, pk, r) and includes the pair of values Am and Bm, such as:

Enc(m, pk, r) = (Am, Bm) = (gr, pkm+r)

In order to simplify this notation, we omit pk and r when they are clear from
context and we simply use Enc(m).

4.4 Our Secure Protocol of the Registration Phase

In this subsection, we define a registration protocol which is secure against
attacks described in Sect. 3. During our registration phase, each voter Vj needs
to have two credentials. The first one is the authentication credential noted C1j .
It’s used by the voter to prove its legitimacy. The second one is the ballot cre-
dential noted C2j . It’s used under the vote encryption to hide the value of vote
and to ensure incoercibility.

In what follows, we present at first the modified initialization phase of our
protocol. Second, we present the secure protocol of our registration phase. Finally
we studied the security of our registration protocol.

Initialization. First, tallying authorities use the DKG protocol defined in [13]
to jointly generate a secret and public keys (sk, pk) without resorting to a
trusted party. Second, the supervisor SA posts on CBB the list of eligible voters
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V1, V2, ..., Vm with their public keys. As Civitas, we assume that each voter owns
a registration key to authenticate during registration phase, and a designation
key used to provide fake credentials. In addition, the supervisor SA publishes on
BBB the list of standard encryptions of valid votes. Let L be the total number
of candidates. The list (Enc(v1), Enc(v2), ..., Enc(vL)) contains encryptions of
valid votes (v1, v2, ..., vL).

Therefore, each registration authority chooses randomly secret credential
shares c1i,j and c2i,j (related to private credentials C1j and C2j) for each voter
Vj and publishes on CBB the values S1i,j and S2i,j such as:

[S1i,j = Enc(c1i,j , pk, ε1i,j), S2i,j = Enc(c2i,j , pk, ε2i,j)]

where ε1i,j and ε2i,j are randomly chosen in Zq.

Our registration protocol. Here, it will be assumed that voters and regis-
tration authorities are already authenticated. The registration protocol runs as
follows:

1. Vj contacts each RAi to receive shares c1i,j and c2i,j of his private credentials
C1j and C2j .

2. Each RAi sends secretly to Vj the shares c1i,j and c2i,j , and two proofs
DVRP1 and DVRP2 convincing only Vj that S1i,j and S2i,j are valid.
DVRP1 shows that S1i,j = (gε1i,j , pkc1i,j+ε1i,j ) is the re-encryption of
(g0, pkc1i,j ). Here, it will be assumed that (g0, pkc1i,j ) is the initial encrypted
credential share and that (gε1i,j , pkc1i,j+ε1i,j ) is the re-encrypted creden-
tial share computed by RAi

6. Thus, DVRP1 proves that (gε1i,j /g0) and
(pkc1i,j+ε1i,j /pkc1i,j ) have the same discrete logarithm for bases g and pk,
respectively. In the same manner, DVRP2 convinces only Vj that S2i,j is
valid.

3. Vj verifies DVRP1 and DVRP2 proofs. We define the set QUAL of honest
registration authorities who sent valid shares and proofs. Vj chooses the set
QUAL such that |QUAL| ≥ t and computes Enc(QUAL).

4. Vj computes his private credentials C1j and C2j from valid received shares
c1i,j and c2i,j . Note here that C1j and C2j are computed as the sum of
secret shares c1i,j and c2i,j such that C1j =

∑
i∈QUAL c1i,j and C2j =∑

i∈QUAL c2i,j . Then, Vj computes his public credentials S1j = Enc(C1j)
and S2j = Enc(C2j).

5. Vj computes his encrypted index Enc(indexj). We assume that a specific
index noted indexj is assigned for each voter. This index can be considered
as the voter’s rank in CBB. It will be used by tallying authorities during the
tallying phase to find easily on CBB the values S1i,j and S2i,j associated to
Vj .

6. Vj provides a zero-knowledge proof noted ZKPVj
, based on the technique

of [4], proving knowledge of random values used to compute S1j , S2j ,
Enc(QUAL), and Enc(indexj). This proof avoid that an adversary publish
messages in function of previously submitted values.

6 Compared to Civitas, RAi doesn’t compute an additional encrypted share S1′
i,j and

Vj doesn’t have to verify later the validity of S1′
i,j .
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7. Finally, Vj publishes on CBB, an unsigned message noted DVj
which contains

the following elements:

DVj
= [S1j , S2j , Enc(QUAL), Enc(indexj),ZKPVj

]

Note here, that to ensure resistance coercion during the registration phase, we
allow voters to submit DVj

more than once. In addition, only a single valid value
DVj

can be used by each voter to vote. If a dishonest voter publishes several valid
DVj

and used them to cast several ballots, tallying authorities detect this during
the tallying phase and eliminate all these ballots.

Security against attacks and coercion resistance. To avoid the attack
described by Shirazi et al. (see Sect. 3), we ask each voter to compute his cre-
dential from valid credential shares received from a subset QUAL7 of trusted
registration authorities. The value of QUAL and the public credentials S1j and
S2j are computed by the voter and published on CBB in encrypted form under
DVj

. In other words, S1j and S2j are not computed from all public credential
shares S1i,j and S2i,j published by all registration authorities and a dishonest
authority cannot imped voters from voting if he send them an invalid credential
shares.

To provide a solution for the attack described at the end of the Sect. 3, in
our registration protocol, the public credential S1j and S2j are not computed
from the public values S1i,j and S2i,j published by registration authorities but
from a subset of the valid credential shares that voter received such that S1j =
Enc(

∑
i∈QUAL c1i,j) and S2j = Enc(

∑
i∈QUAL c2i,j). Since a dishonest authority

cannot re-run the registration process and have no information on the values c1i,j

and c2i,j , he cannot influence the distribution of the generated credentials beside
the values S1i,j and S2i,j that he will publish. Reasoning in the same way, even
a set of dishonest registration authorities cannot modify the distribution of the
generated credentials.

To ensure coercion resistance during the registration process, we use the same
idea proposed by Civitas during the voting process. The idea is based on the fact
that voters can reveal fake credentials for their real credentials to a coercer. Note
that each voter can re-publish several times DVj

. The coercer may force the voter
to register correctly or not in front of him. In both cases, the voter will use fake
credentials8. The coercer may also wants the voter to abstain from registering. In
all cases, the voter behaves however the coercer asks, and submits another valid
DVj

when he is alone. It will be assumed that there are secret moments in time
wherein a voter is not accompanied by the coercer. Note here that unlike the
voting phase, the registration phase can be spread over several weeks or months.
Thus, each voter can find a private moment to register.
7 Note that the voter is the only one who can determine the subset QUAL. This is

due to the DV RP proof which convinces only the voter that the credential share is
valid.

8 In the first case, the coercer knows it and wants to prevent voter from registering,
and in the second case, the voter can use fake credentials without being caught by
the coercer.
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4.5 Voting Phase

To vote, each voter Vj chooses a valid vote vj and posts on BBB an unsigned
message which contains his ballot BVj

such as:

BVj
= [Enc(vj − C2j), S̃1j , Enc( ˜indexj), ˜ZKPVj

]

where S̃1j is the encryption of C1j and Enc( ˜indexj)9 is the encryption of indexj .
˜ZKPVj

is based on the technique of [4] and proves knowledge of random values

used to encrypt Enc(vj − C2j), S̃1j and Enc( ˜indexj).

Resisting Coercion. The coercer may force the voter to submit a valid ballot
BVj

or not. If the coercer forces the voter to submit a particular vote, the voter
does so with a fake ballot credential and a valid authentication credential10. Let
coercer vote be vc. The voter Vj chooses one credential share c2k,j and claims
that c2fake

k,j = c2k,j + vc − vj . Vj casts a valid encrypted ballot which contain his
real vote vj in encrypted form such as:

Enc(vj −C2j , pk, λj) = (g
λj , pk

vc+λj−c2fake
k,j

−∑i∈{QUAL\k} c2i,j ) = (g
λj , pk

vj+λj−∑i∈QUAL c2i,j )

where λj is randomly chosen in Zq. Thus, Vj can submit a valid ballot BVj

despite the presence of the coercer.
Otherwise, if the coercer forces the voter to sell or reveal his credentials,

the voter does so with fake credentials. The coercer may also force the voter to
abstain from voting. In these cases, the voter behaves however the coercer asks,
and votes when he is alone.

4.6 Tallying Phase

This phase is inspired from the modified version of Civitas protocol presented
in [3] which reduces the tallying time process from quadratic to linear time.
Furthermore, this solution fits perfectly with our protocol and enables us to
verify the validity of DVj

and BVj
. Our tallying protocol runs as follows:

A. Regarding BBB
1. Tallying authorities verify ˜ZKPVj

in ballots BVj
posted on BBB and

eliminate invalid ones.

9 Enc( ˜indexj) will be used to eliminate invalid ballots with invalid votes or invalid
authentication credentials. Note also that the use of this index during the tallying
phase reduce the tallying process from quadratic to linear complexity in the number
of casted ballots [3].

10 To prevent a coercer from re-using the authentication credential to submit another
vote, it will be assumed that the first valid ballot casted into BBB will be considered.
The other ones will be eliminated.
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2. Tallying authorities eliminate duplicated ballots BVj
casted with a same

authentication credential S̃1j
11. For this, we use the linear-time scheme

proposed by Smith and Weber [7,8] on values S̃1j .
3. Then, tallying authorities add an additional number of fake BVj

for each
voter [3]. This prevents discovering who has cast a vote. The resulting
list of ballots is passed as input to a first re-encryption mix-net which
outputs:

(Enc(vj − C2j)′, S̃1
′
j , Enc( ˜indexj)′)

B. Regarding CBB
1. Tallying authorities verify ZKPVj

related to DVj
posted on CBB and

eliminate invalid ones.
2. Then, a random number of fake DVj

are added by trusted authorities on
CBB to avoid knowing voters who have voted or simply registered when
indexes will be decrypted (same as step A.3.). The resulting list is passed
as input to a re-encryption mix-net which outputs:

(S1′
j , S2′

j , Enc(QUAL)′, Enc(indexj)′)

C. Regarding CBB and BBB
1. Tallying authorities jointly decrypt Enc(indexj)′ on CBB and

Enc( ˜indexj)′ on BBB. Public credentials and ballots with invalid
indexes will be removed. They also decrypt Enc(QUAL)′ and retrieve
for each indexj the values Ŝ1j =

∏
i∈QUAL Enc(c1i,j) and Ŝ2j =∏

i∈QUAL Enc(c2i,j) from BBB. Recall that these values are published
by registration authorities during the initialization phase. Thus, tallying
authorities create a list of tuples:

(Enc(vj − C2j)′, S̃1
′
j , S1′

j , S2′
j , Ŝ1j , Ŝ2j , Enc(indexj)′)

2. These tuples are passed to a re-encryption mix-net which outputs tuples:

(Enc(vj − C2j)′′, S̃1
′′
j , S1′′

j , S2′′
j , Ŝ1

′
j , Ŝ2

′
j , Enc(indexj)′′)

3. For each tuple, tallying authorities apply PET on (S1′′
j , Ŝ1

′
j), and PET

on (S2′′
j , Ŝ2

′
j). This eliminate tuples formed from invalid DVj

submitted
by voters during the registration phase, and tuples formed from fakes DVj

added during step B.2.
4. Then, for each tuple, tallying authorities apply PET on (S̃1

′′
j , S1′′

j ) to
remove tuples formed from ballots with invalid authentication credential
C1j , and tuples formed from fake ballots generated during step A.3.

11 Note that we keep only the first ballot BVj , the other duplicated ballots with the
same authentication credential are eliminated.



366 W. Neji et al.

5. Tallying authorities remove all remaining tuples casted with the same
index. For this we use the linear-time scheme of Smith and Weber [7,8]
on values Enc(indexj)′′. Note that in this step, if there are tuples with the
same index, this implies that a dishonest voter publishes several public
valid credentials DVj

and used them to cast several ballots BVj
.

6. Then, for each valid tuple, tallying authorities compute Enc(vj) =
Enc(vj − C2j)′′ ∗ S2′′

j and apply PET on Enc(vj) and each element in
the list of standard encryptions of valid votes. This allows to detect and
remove invalid encrypted votes.

7. Finally, tallying authorities jointly decrypt valid ballots and publish the
final voting result. Let us take the case of a binary vote in which voters
have to answer with 1 (yes) or 0 (no). Suppose that at least M vot-
ers cast valid ballots. Tallying authorities collect valid encrypted votes
Enc(vj) = (Avj

, Bvj
) and use the Lagrange interpolation to compute the

value
∏M

j=1 [Avj
]sk. Then, they compute R =

∏M
j=1 Bvj

/[
∏M

j=1 Avj
]sk =

pk
∑M

j=1 vj . Note that computing the value of v1 + v2 + .....vM is possible
for a reasonable size of M [15]. To prove the validity of the final result,
tallying authorities show that R is correct by using proof of the equality
of two discrete logarithms [16] proving that

∏M
j=1 Avj

and
∏M

j=1 Bvj
/R

have the same discrete logarithm for bases g and pk, respectively.

Note that if BBB includes N casted ballots, applying PET during steps C.3.,
C.4., and C.6. does not cause worst-case running time. In fact, if CBB includes
K casted DVj

for each ballot BVj
on BBB, then the total number of formed

tuples (with merged data from boards CBB and BBB) is K ∗ N . Clearly, if K is
independent of N for all ballots, then our tallying process runs in O(N) time.

5 Security Analysis

Civitas relies on a set of trust assumptions to ensure the trustworthiness of
the whole protocol. We assume that our protocol is based on the same trust
assumptions with some modifications. In this section, we first discuss the modi-
fied trust assumptions. Second, we present the most important security require-
ments ensured by our e-voting protocol.

5.1 Trust Assumptions

In Civitas, it was assumed that each voter trusts at least one registration author-
ity. We replace this assumption by a new one, such that:

New Trust Assumption 1. Each voter trusts at least t of the registration
authorities and the channel from the voter to the voter’s trusted registration
authorities is untappable.

It was assumed that the majority of registration authorities are honest, thus
at most we have t − 1 dishonest registration authorities. In our secure modified
registration protocol, the voter must select the set QUAL such that the size
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of QUAL is greater than t. Otherwise, a dishonest voter may cooperate with a
subset of dishonest registration authorities by revealing the values of his private
credentials.

In our protocol, instead of ElGamal encryption which is secure under the
decisional Diffie-Hellman assumption (DDH), we use the encryption function
defined by Schoenmakers [6]. The security of this encryption function is based
on the computational Diffie-Hellman (CDH) assumption. Therefore, we add the
following assumption:

New Trust Assumption 2. Under the CDH assumption, it is impossible to
break the encryption of messages.

The encryption of a message m under the public key pk and a random value
r is defined as Enc(m, pk, r) = (Am, Bm) = (gr, pkm+r). For a dishonest party
knowing the public values pk = gsk, Am = gr and Bm = pkm+r, breaking the
encryption of m implies computing pkm (for a reasonable size of m [15]). To
be able to do that, the dishonest party have to compute pkm = Bm/gsk∗r from
the values Bm, pk = gsk and Am = gr. This implies computing gsk∗r from the
values gsk and gr. Recall that the CDH assumption states that it is infeasible
to compute gsk∗r given gsk and gr. Thus, the dishonest party cannot break the
encryption of messages.

5.2 Security Requirements

E-voting protocols must satisfy security requirements of voting process. In this
paper, we focus our analysis on the following requirements:

– Privacy. All casted ballots must be secret and/or no traceability between the
voter and his ballot can be established.
In our protocol, an adversary cannot know values from encrypted elements
under BVj

and DVj
published on BBB and CBB (see Sect. 5.1 - New Trust

Assumption 2). Moreover, all proofs are zero-knowledge. Thus, any informa-
tion related to votes cannot be known from these proofs. To ensure anonymity,
both the list of DVj

and BVj
are passed to mix-nets during steps A.3., B.2. and

C.2. of tallying phase (see Sect. 4.6). In addition, tallying authorities generate
fake BVj

and DVj
during steps A.3. and B.2. of tallying phase (see Sect. 4.6)

to anonymize ballots and credentials, and to avoid knowing voters who have
been registered or voted when decrypting indexes.

– Coercion-Resistance. This property defends voters from coercion and pre-
vent selling of votes.
Our protocol ensures coercion during registration and voting phases. During
both phases, if a voter Vj is under the threat of a coercer, he behaves however
this coercer asks with fake private credentials. Then, during a private moment,
Vj can submit another valid values DVj

and BVj
with his real credentials C1j

and C2j . Only valid values casted with valid credentials will be taken into
account by authorities during tallying phase. The coercer cannot detect the
real values submitted by the voter because tallying authorities generate addi-
tional fake DVj

and BVj
for each voter.
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Note that neither the voter nor the coercer can prove or verify the validity or
the invalidity of private credentials C1j and C2j used under the encryption
of DVj

and BVj
. In addition, the encryption of voter’s choice Enc(vj − C2j)

is computed using C2j . Therefore, Vj cannot prove the validity of his choice
and cannot sell his vote.
Thus, the coercer cannot control voter’s choice and the voter cannot sell his
vote. In both cases, the adversary will be confused about the validity of the
submitted values.

– Verifiability. Verifiability is composed of two sub-properties:
- Individual verifiability: Each voter can check if his ballot has been cor-

rectly recorded.
In our protocol, each voter can verify that submitted values DVj

and BVj

are correctly recorded simply by consulting CBB and BBB.

- Universally verifiability: Any party can check the validity of the tallying
process and the validity of the final voting result.
In our protocol, we assume that tallying authorities use verifiable re-
encryption mix-nets based on zero-knowledge proofs. Thus, each tallying
authority must provide proofs of his honesty during tallying process. Each
voter (or any party) can check the validity of the tallying by verifying the
validity proofs of resulted lists obtained from the mix-nets in each step.

6 Conclusion

In this paper, we showed that Civitas’ registration phase is insecure and sub-
ject to some attacks. For this purpose, we proposed a fully-remote incoercible
e-voting protocol based on a new registration protocol which is secure against
the described attacks and which ensures a uniform distribution of the generated
credentials. In addition, compared to Civitas, we reduce the complexity of tal-
lying phase from quadratic to linear time. Our e-voting protocol becomes then
more secure and requires less computational costs than Civitas protocol.

Moreover, the proposed protocol is based on a new ballot’s encryption func-
tion that prevents voters from proving the validity of their encrypted votes and
allows them to vote even if they are under a threat of a coercer.

As future researches, we intend to propose solutions to implement our e-
voting protocol from a practical point of view. It is an interesting open issue
whether we can contribute to implement a secure fully remote e-voting protocol
which can be used within real world elections.

References

1. Clarkson, M., Chong, S., Myers, A.: Civitas: a secure remote voting system. In:
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fúr Informatik
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Abstract. Nowadays, software systems have become an essential element in
our daily life. To ensure the quality and operation of software, testing activities
have become primordial in the software development life cycle (SDLC). Indeed,
software bugs can potentially cause dramatic consequences if the product is
released to the end user without testing. The software testing role is to verify that
the actual result and the expected result are consistent and ensure that the system
is delivered without bugs. Many techniques, approaches and tools have been
proposed to help check that the system is defect free. In this paper, we highlight
two software testing techniques considered among the most used techniques to
perform software tests, and then we perform a comparative study of these
techniques, the approaches that supports studied techniques, and the tools used
for each technique. We have selected the first technique based on the 2014
survey [62] that heighted the motivations for using the Model-based-testing, and
by analyzing the survey results we have found that some MBT limits are ben-
efits in Risk based testing, the second technique in our study.

Keywords: Software systems � Software testing � Software testing
approaches � Model-based testing � Risk-based testing

1 Introduction

Software system consists of a number of separate programs, configuration files, which
are used to set up these programs, system documentation, which describes the structure
of the system, and user documentation, which explains how to use the system and web
sites for users to download recent product information [59]. Nowadays, software sys-
tems have become an essential part of our daily life. We use these software systems daily
and have generally tried to keep them updated as much as possible. While in many times
these software systems do not work as expected. Therefore, creating high-quality
software is an intellectual challenge. Generally this quality is ensured by a test activity.
However, this activity is time consuming, and too demanding as far as resources are
concerned, and it is essential to ensure a certain percent of software quality. Indeed, a
defect in software can have serious consequences for users and companies. These
consequences may cause trivial issues viz; loss of money, time, business credibility
or even loss of life. This was the case, for example in medicine in 1985, the Therac 25,
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was a radiation therapy machine for treating cancer. A dysfunction of software has led to
an overdose of radiation and was the cause of several deaths. Also the flight 501 failure
of Ariane 5 in 1996 caused by a problem in specification, the estimated loss of this
failure is 8.5 BILLION dollars. And more recently, on 6 January 2010, the German bank
card holders designed by Gemalto had the unpleasant surprise of not being able to use
their cards in some terminals. However, even if this bug lasted only one day, Gemalto
has estimated the cost associated between 6 and 10 million. These accidents show that
regardless of the scope of the software, it is necessary to validate and verify its operation
and quality before using it. To ensure the quality and operation of software, testing
activities have become primordial in the software development life cycle (SDLC).
Indeed, software testing is a process of validating and verifying that a software product
works as expected. Recently, the Software testing activity has changed dramatically, the
complexity of IT systems has increased, the applications areas have been expanded, and
the costs and consequences of bugs became higher, turning testing into an essential
activity that should not be overlooked during the software development cycle. Testing is
a vital part of software development, and it is important to start it as early as possible,
and to make testing a part of the process of deciding requirements [60]. For that, in this
present paper, we will present the tools, the processes, and the approaches of existing
testing techniques. Also, this paper offers a detailed comparison between these testing
techniques, especially, two major techniques viz; the model based testing technique
(MBT), which is an application of model-based design to perform software testing or
system testing. Models can be used to represent the desired behaviour of a System Under
Test (SUT), or to represent testing strategies and a test environment; and the risk based
testing technique (RBT), which is a type of software testing that functions as an orga-
nizational principle used to prioritize the tests of features and functions in software,
based on the risk of failure, the function of their importance and likelihood or impact of
failure [61].

The rest of this paper is organized as follows. Section 2 exposes general processes
of MBT and RBT techniques, used tools and stockholders of each technique. Section 3
presents a classification of approaches related to each technique. Section 5 present
some MBT and RBT Advantages and Limits, Sect. 6 discuss and presents the results of
our analysis. Finally, Sect. 7 describes conclusion and future work.

2 MBT and RBT Processes

2.1 Model-Based Testing

The MBT (Model-Based Testing) is a form or a technique that aims to automatically
generate test cases from formal specification or models describing the expected
behaviour of the system under test. The behaviour model or formal specification are
built from requirements and represents the software characteristics. It consists in
managing and listing the requirements, creating a behavioural model of the SUT based
on this list of requirements in order to generate abstracts tests cases and Requirements
Traceability Matrix (RTX) by using the selection criteria that aim the model coverage
and detect certain types of fault. The tests cases generated are then concretized, making
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them executable on the SUT, the actual result and the expected result are then com-
pared in order to get a verdict. Based on MBT application steps, used tools and
stockholders, we present the following process.

As shown in Fig. 1 above, the process of Model-based testing can be splitted into
five main steps. These steps will be explained further below.

• Requirements management: The first step of model based testing is to collect
customer needs, desires and constraints, manage and classify them as requirements.
This first step is potentially the most important step in a process of testing software
such as MBT. Requirement management step in MBT involves the collection,
analysis, prioritization, validation, definition and control of all customer business

Fig. 1. Model-based testing general process
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requirements, it serves to create a requirement repository that is the basis of com-
munication between analysts and testers and is define in a structured way the
expected result for the software, in different terms (functional, technical, security,
load and response time…).

• Modelling: The main purpose of the modelling step in MBT is to model the system
requirements, it consists in creating a behaviour model that describes the expected
behaviour of the system under test and suitable for test purposes, this model is
created by a tester analyst using requirements resulting from requirements man-
agement step and described in many ways, depending on the discipline. It can be
described by use of diagrams, tables, text, or other kinds of notations. It might be
expressed in a mathematical formalism or informally, where the meaning is derived
by convention kinds of notations. They might be expressed in a mathematical
formalism or informally, where the meaning is derived by convention.

• Generation: The generation step is realized on the basis of a test generator which
takes as input the model designed in the modelling step and the test selection criteria
selected by the test analyst and produces the abstract test cases from the model and a
requirements traceability matrix that illustrates the link between tests and model
elements covered by the tests.

• Concretization: The concretization step consists to translate the abstracts test cases
to executables test cases in order to be executed on SUT. It consists in making the
link between the model elements and the system’s concrete elements, and involving
specific adapters and manual intervention that requires the expertise of the test
engineer.

• Execution: The execution step can be manually or automatically. In this phase, all
the test cases are executed on the system under test, eventually the obtained results
are then compared with the expected results to give a verdict for test cases and
consequently give a status on the operation of the product [1, 2, 13, 15–18].

2.2 Risk-Based Testing

When we cannot test exhaustively, we must test selectively and achieve better with less
in time and resources and without affecting the product quality. The RBT is a software
testing technique or method that uses risk as a basis for test planning, It uses risk to
select, prioritize and manage the appropriate tests during test execution and conse-
quently to make sure that the limited time and resources are used to test the most
important things [3, 5]. In simple terms, Risk is an undesirable event whose appearance
is not certain and having as consequence negative results on the project objectives such
as impact on completion date, costs, the quality, the company image, etc. Thus, the risk
may be considered as the composition of two factors viz; the probability of occurrence
of an undesirable event and the severity of the potential consequences of the unde-
sirable event. Based on RBT application steps, used tools and stockholders [3, 7, 62],
we present in Fig. 2 below, the process of risk-based testing that can be divided into
five main steps.
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• Requirements management: As the MBT process, RBT process start with
requirements management step to extract and identify requirements from system
specifications.

• Risks identification: Identifying risks is an absolutely essential activity in RBT
process, it involves making a list of everything that might potentially come up and
disrupt the normal flow of project, and provides the indicators that allows the
organization to identify major risks before they impact operations and hence the
business. It consists to identify and describe all requirements in terms of risk
involved in the project. Thus at the end of this step all risk items are identified.

• Analysis and Evaluation: Risk analysis and evaluation is the second step of risk
management in RBT process. It consists in studying the risks identified in risk
identification phase, categorizing them, determining the level of risk by specifying
likelihood and impact of the risk and then assigning the level of risk to each item.

Fig. 2. Risk-based testing general process
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• Mitigation/Reduction: The objective of Risk mitigation step is to reduce the Risk
Impact or Risk Probability. It consists in looking for risk Mitigation where tests are
built to mitigate the risk.

• Execution: The execution step in RBT consists in executing test cases resulting
from reduction step according to prioritization and acceptance criteria identified in
the risks report.

3 MBT and RBT Approaches Classification

3.1 Model-Based Testing Approaches Classification

Arilo et al. [16, 19] have classified MBT approaches into four categories, some of these
approaches use UML diagrams, whereas, the others use a non-UML notations to
represent software requirements or software internal structure. This classification is
described and detailed in the form of table as show in Table 1 below.

Utting et al. [2] have defined a taxonomy of model based testing that allows the
characterization of different approaches to model-based testing, they have defined three
general classes viz; model specification, test generation and test execution. Each of these
classes is divided into various categories viz; model specification: It is divided into
scope, characteristics and paradigm categories; test generation: It is divided into test
selection criteria and technology categories; and test execution: It is divided into online
test execution and offline test execution. Based on this taxonomy, Utting et al. have
classified a collection of existing approaches in order to show the characteristics of those
approaches to target various application domains. They have classified the existing
approaches into two main categories: approaches to model-based test case generation
and approaches to model-based test input generation. Felderer et al. [6] have defined a
novel classification of model-based security testing approaches. They have classified the
existing approaches into two dimensions viz; automated test generation and risk. The
first dimension describes how much of the system and the security requirements is
captured by formal models. The second dimension “risk” can have the values integrated
into the model or not integrated into the model. Anand et al. [58] have performed a

Table 1. Classification of MBT approaches

Classifications Approaches

C1 Model representing software requirements is described using UML
diagrams

C2 Model representing software requirements is described using non-UML
notation

C3 Model representing software internal structure is described using UML
diagrams

C4 Model representing software internal structure is described using any
non-UML notation
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survey of methodologies for automated software test case generation. They have clas-
sified the MBT approaches into three categories viz; axiomatic approaches that use
scenario-oriented notations, finite state machine approaches that use state-oriented
notations, and labelled transition system approaches that use process-oriented notations.

3.2 Risk-Based Testing Approaches Classification

In other respects, for RBT technique, Erdogan et al. [5] have classified the approaches
that use both tests and risks into two global categories, some approaches when risk is
used to focus testing, and others when test is used to focus risk. It defines the first
category for test-based risk analysis (TR), and the second category for risk-based
testing (RT). In Table 2 below we expose the approaches studied by Erdogan et al. [5]
and Alam et al. [3] in order of this classification. Otherwise, depending on main focus,
Erdogan et al. have classified RBT approaches into eight categories viz;

• Approaches that combine risk analysis and testing at a general level as
Amland2000, Felderer2012, Felderer2013 and Redmill2004 and Redmill2005;

• Approaches with main focus on model-based risk estimation as Gleirscher2011,
Gleirscher2013 and Ray2013;

• Approaches with main focus on test-case generation as Kloos2011, Nazier2012 and
Xu2012;

• Approaches with main focus on test-case analysis as Chen2003, Chen2002 and
Entin2012;

• Approaches based on automatic source code analysis as Wong 2005 and
Hosseingholizadeh2010;

• Approaches targeting specific programming paradigms as Kumar2009 and
Rosenberg1999;

• Approaches targeting specific applications as Bai2009, Bai2012, Casado2010 and
Zech2011;

• Approaches’ aiming at measurement in the sense that measurement is the main issue
as Schneidewind2007 and Souza2009.

Table 2. TR & RT approaches classification

TR category RT category

Wong 2005 [39]
Schneidewind2007
[49]
Bach- Inside-
Out1999 [52]

Amland2000 [20], Felderer2012 [21], Felderer2013 [22],
Felderer2015, Redmill2004 [23], Redmill2005 [24], Yoon 2011 [25],
Gleirscher2011 [26], Gleirscher2013 [27], Ray2013 [28], Kloos2011
[29], Nazier2012 [30], Wendland2012 [31], Xu2012 [32],
Zimmermann2009 [33], Chen2003 [34], Chen2002 [35], Entin2012
[36], Stallbaum2008 [37], Hosseingholizadeh2010 [38], Kumar2009
[40], Rosenberg1999 [41], Bai [42, 43], Casado2010 [44], Murthy2009
[46], Zech2011 [47], Zech2012 [48], Souza2010 [50],
Bach-Outside-In1999 [51], Paul2002 [52], Stålhane2003 [54] and
Palanivel2014 [9]
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4 MBT and RBT Supporting Tools

To benefit fully from any technique or approach asMBT orRBT, the automation supports
are required to automate as much as possible and to increase the reliability of the software
testing process. In MBT, the challenge is that from a formal, semi-formal or informal
models generate complete test cases without human interference. On the other hand, in
RBT approach, the challenge is how to manage, select, and evaluate risk in testing
process. In this context, when practitioners want to adopt anMBT or RBT approach, they
therefore seek associated tools. For MBT, a number of model-based testing tools have
been proposed [8, 10–12, 18]. We can classify these tools in different criteria viz; tool
category: Commercial (CL), Open Source (OS) or Academic (AC); model type: UML,
SysML, FSM, EFSM, Textual Models (TM), and more; and test type: Functional Testing
(FT), Non Functional Testing (NFT), Structural Testing (ST). The Table 3 below
describes these tools according to these criteria. For RBT, the most used tools are test
management systems that support RBT approaches [14]. Table 4 exposes some of the test
management tools that support RBT and some tools intended for RBT technique.

Table 3. MBT tools classification

Tool Category Model type Software area Test
type

4Test CL TM All FT
BPM-Xchange CL BPMN All FT
Conformiq
Creator

CL Activity Diagrams
& DSL

All FT

Conformiq
Designer

CL UML State
Machines and QML

All FT

DTM CL Custom activity
model

All ST

MaTeLo CL Markov chains All FT
MBTsuite CL UML, BPMN All FT
RT-Tester CL UML, SysML and

Matlab
All (embedded real-time
systems)

FT

Smartesting
CertifyIt

CL UML, OCL and
BPMN

All (Enterprise IT
applications)

FT

Microsoft’s
SpecExplorer

CL model programs in
C#, FSM/ASM

All FT

TEMPPO
Designer
(IDATG)

CL Task flow model All FT

TestCast CL UML State
Machines

All (Embedded Systems) FT &
ST

TestOptimal CL FSM & E-FSM All FT &
NFT

T-VEC CL Simulink All (Embedded Systems) ST

(continued)
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5 MBT and RBT Advantages and Limits

The MBT and RBT solutions are highly effective testing techniques that can be used to
perform and manage software testing. Each solution has distinct benefits and limits. In
this context, Legeard [4], has classified the major MBT benefits that solved some
problems of classical approaches into six areas viz; SUT fault detection, reduced testing
cost and time, improved test quality, requirements defect detection, tractability man-
agement, and requirements evolution. Also, he discussed some of fundamental limi-
tations that limit the usage areas of MBT approaches. In the other hand, Alam [3] in his
paper highlight some benefits and limits of RBT. Table 5 present some major
advantages and disadvantages of RBT and MBT Approaches.

Table 3. (continued)

Tool Category Model type Software area Test
type

Conformiq’s
Qtronic

CL UML, QM & TM All FT

Test Designer CL UML All FT
LTG [2, 57] CL UML, OCL and B

abstract machines
All FT

mbt OS FSM/EFSM All FT
GraphWalker OS FSM All (nondeterministic

systems)
FT

JTorX [2, 56] OS(AC) LTS All FT
Modbat OS EFSM Specialized for API testing

of program libraries
FT

ModelJUnit OS FSM & EFSM All FT
OSMO OS Model programming

Java
All FT

PyModel OS Python source All ST
Tcases OS TM All FT
JSXM AC SXM All FT
MISTA AC PrT net All FT &

NFT
MoMuT::UML AC UML state machines

& OOAS
All FT

MOTES AC EFSM All (Embedded Systems) FT
AGEDIS AC UML (AML) All (Component based

distributed Systems)
FT

ParTeG AC UML & OCL All FT
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Table 4. RBT tools classification

Tool Category Model type Software area Test
type

HP Quality Center CL - All FT
Kristoffer Tool [14] AC - All FT &

NFT
NORIZZK.COM (SaaS
platform)

CL - All FT &
NFT

Sonata OS - All FT &
NFT

Casado Framework [45] AC Transaction
Model

Web services models
and standards

NFT

ReQtest(SaaS platform) CL - All FT &
NF

SOASense™ framework
[40]

AC - Aspect oriented
programming

ST

Hosseingholizadeh Tool
[38]

AC - All ST

RBTTool [55] AC-OS - All FT
RiteDAP [37] AC Activity

diagrams
All FT

Table 5. MBT and RBT limitations and advantages

Ref. Remaining problems (Limits) Solved problems (Advantages)

Hartman
et al. [53]
Arilo
et al. [19]
Monalisa
et al. [18]

MBT approach
• Cannot manage outdated
requirements when the software
evolves

• One of practical limitations of model
based testing is tester skills; the
model designers must be able to
design the models, in addition to
being experts in the application area

• Difficulty to analyze failed tests when
any of the generated tests is failed

• Difficulty to model some parts of the
system under test

• Requires a formal specification or
model to carry out testing

• Test cases are tightly coupled to the
model; the change of model gives
rise to a generation of altogether
different test cases

MBT approach
• Allows improving the bugs’ detection
in system under test

• Allows reducing testing time and
costs

• Allows improving testing quality and
therefore software quality

• The fact that the model is derived
from the requirements allows to start
very early in system cycle life and so
allows to detect defaults in
requirements

• Allows the traceability management
between requirements and the
abstract model through the
requirements traceability matrix
generated in generating step in MBT
process

(continued)
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6 Analyse and Discussion

Both studied techniques have their own processes, approaches, tools, merits and
demerits. For risk-based testing, all approaches described in this paper use risk to
prioritize what to test and focus on activities related to risk identification, analysis and
prioritizing. Most RBT approaches are black-box testing that takes as input software
requirements. In this category we find some approaches which are intended to func-
tional testing as Amland, Chen, Bach, and others that are proposed for non functional
testing as Zech, Xu and Bai. Otherwise, for white-box testing, we find a limited number
of RBT approaches which are intended to Structural testing like Wong and

Table 5. (continued)

Ref. Remaining problems (Limits) Solved problems (Advantages)

• Writing test cases that cover dynamic
aspects of the system dependent on
the engineer expertise

• Difficulty to detect all the differences
between model and implementation

• Allows to easily adapting the model
to the new changes contributed to
system under test and re-generate test
case what makes easy adaptation of
requirement’s evolution and reduce
the maintenance costs

• Using MBT approach in testing
activity allows to high level of
automation and to generate high
volumes of non-repetitive useful tests

Mottahir
et al. [3]
Erdogan
et al. [5]
Felderer
et al. [7]

RBT approach
• When some risks are not identified or
marked as low, may cause problems
in future if they become a reality

• Managing traceability between
requirements and tests is too
expensive

• Difficulty to associate concretes test
cases to risks identified too abstract

• Sometimes, some mitigation are very
expensive in cost and time

• Difficulty to identify and select the
right stakeholders for risk assessment

RBT approach
• Allows optimizing available time and
resources without affecting product
quality

• The RBT activities can be started
early in system cycle life and
discovered defaults

• Test in risk order gives the highest
likelihood to discovering defects in
severity order and therefore allows
risking reducing

• When time, money and resources are
limited, RBT reduces the number of
tests for adapting with available
resources without impacting product
quality

• In RBT the communication is based
on risk that is understandable by all
stakeholders

• Prioritize testing tasks more
efficiently

• Allows to detect high risk defects in
software and therefore to reduce risks

A Comparative Study of Software Testing Techniques 383



Hosseingholizadeh. For model-based testing, the general idea is that from an explicit
behaviour model that represents behaviour of system under test, generate test cases to
validate the expected behaviour of the system under test. Based on studied classifi-
cations and after analyzing different approaches of model-based testing, we concluded
that we can also classify existing MBT approaches according to different criteria viz;
testing type, testing level, testing sources, and notation type used to represent testing
sources. This classification is very detailed and it facilitates the selection of MBT
approaches according to the test context (Table 6).

Based onMBT Approaches Characterization proposed by Arilo and Guilherme [19],
we expose some approaches in order of proposed classification (Tables 7, 8, 9 and 10).

Table 6. MBT approaches classification

Criteria Categories

Testing type • Category approaches which are intended to functional testing
• Category approaches which are intended to non functional testing
• Category approaches which are intended to Structural testing

Testing level • Category approaches which are intended to system level testing
• Category approaches which are intended to integration level testing
• Category approaches which are intended to unit/component level testing
• Category approaches which are intended to regression level testing

Testing source • Category approaches which uses software requirements as testing
source

• Category approaches which uses software internal structure as testing
source

Testing notation
type

• They uses Graphical notation to describe and represent testing source
• They uses Textual/Scripting notation to describe and represent testing
source

• They uses Symbolic (completely mathematical) notation to describe and
represent testing source

Table 7. MBT approaches classification in term of testing type

Functional testing Non-functional testing Structural testing

Abdurazik2000, Crichto 2001,
Chen2002, Cavarra2003,
Botaschanjan2004, Andrews2005,
Bernard2006, Sokenou2006

Bousquet1999, Garousi2006,
Mandrioli1995, Offutt1999b,
Parissis1996, Pretschner2001,
Richardson1992, Rumpe2003,
Felderer2012

• Xu2006
• Kim1999
• Chang1999
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Table 8. MBT approaches classification in term of testing level

Unit/Component testing Integration testing System testing Regression testing

• Kim1999
• Dalal999
• Briand2006
• Barbey1996

• Bertolino2003
• Bertolino2005
• Beyer2003
• Chen2005

• Abdurazik2000
• Briand2004
• Crichton2001
• Legeard2004

• Briand2002
• Chen2002
• Den2004
• Tahat2001

Table 9. MBT approaches classification in term of testing source

Software requirements Software internal structure

Ammann1994, Bernard2006, Belletini2005,
Cavarra2003, Friedman2002 and Offut1999

Kim1999, Legard2004, Chang1999,
Garousi2006 and Xu2006

Table 10. MBT approaches classification in term of testing notation type

Graphical notation Textual notation Symbolic notation

Bertolino2003, Briand2002,
Kansomkeat2003, Lund2006,
Sokenou2006 and Zhen2004

Bousquet1999,
Mandrioli1995, Tahat2001,
Hartmann&Nagin2004 and
Tan2004

• Legeard2004
• Richardson1996
• Ammann1994

Table 11. RBT approaches classification in term of testing type

Functional testing Non-functional testing Structural testing

Amland2000,
Bach-Outside-In1999,
Bach-Inside-Out1999,
Chen2003, Chen2002,
Paul2002, Scheafer,
Felderer2012, Stallbaum2008,
Zimmermann2009,
Wendland2012, Stålhane and
Souza2010

Bach-Outside-In1999,
Palanivel201, Zech2011,
Zech2012, Murthy2009,
Casado2010, Xu2012,
Bai2009

Rosenberg1999,
Hosseingholizadeh2010
and Wong 2005

Table 12. RBT approaches classification in term of testing level

Unit/Component
testing

Integration testing System testing Regression
testing

Paul2002,
Wong 2005

Paul2002,
Wong 2005

Amland2000,
Bach-Outside-In1999,
Bach-Inside-Out1999, Paul2002,
Stallbaum2008,
Zimmermann2009 and
Wendland2012

Chen2003,
Chen2002
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For RBT technique, After Analyzing existing approaches, we concluded that we
can also classify them according to the following criteria: Testing type, Testing level,
Testing sources, and Notation type used to represent testing sources if exist (Tables 11,
12, 13 and 14).

7 Conclusion and Perspective

In this paper, we have studied the main two techniques of software testing. The idea of
the first technique is to use the abstractions of a system under test and its environment
to automatically generate test cases. MBT consists to create an abstract system model
that specifies the behaviour of the SUT, and then generate test cases. The key points of
MBT are the modelling behaviour of the SUT for test generation, the test generation
strategies and techniques, and the concretization of abstract tests into concrete, exe-
cutable tests. The second is a technique that aims to minimize the software risks and
testing problems. RBT consists of a set of activities regarding risk factors identification
associated to software requirements. Once identified, the risks are prioritized according
to its likelihood and impact and the test cases are projected based on the strategies or
approaches for treatment of the identified risk factors. The test efforts are continuously
adjusted according to the risk monitoring. Based on our study between MBT and RBT
techniques we are identifying the following research tasks in the area of model-based
testing and risk based testing viz; Proposition of a meta-model that represent
model-based testing technique; Proposition of a meta-model that represent risk-based
testing technique; Proposition of a novel testing approach based on model based testing
and risk based testing techniques to overcome some testing limitations; and Make some
case studies by applying the novel testing approach to obtain empirical results and
compare our approach over existing approaches.

Table 13. RBT approaches classification in term of testing source

Software requirements Software internal structure

Amland2000, Chen2003, Chen2002, Bach1999,
Redmill2004, Redmill2005, Felderer2012, Zech2011,
Zech2012, Entin2012, Stallbaum2008,
Zimmermann2009, Wendland2012, Stålhane2003,
Souza2010 and Bai2009

Rosenberg1999,
Hosseingholizadeh2010 and
Wong 2005

Table 14. RBT approaches classification in term of testing notation type

UML notation Non UML notation

Stålhane, Chen2002, Chen2003, Entin2012,
Stallbaum2008, Wendland2012, Stallbaum2008 and
Wendland2012

Felderer2012, Felderer2013,
Zech2012 and Xu2012
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Abstract. Integrating digital into the DNA of their business model is an
essential part of business success for companies across industries today.
The digital transformation has become a critical management issue and
requires new ways of managerial thinking. In this context, we address
the specificity of digital projects compared to IT projects in general, to
innovate during the implementation of digital projects following their
trends generated by digital transformation, while respecting the triangle
“Quality, Price, Duration”. To do this, we adopt a methodology based
on describing the management tasks and roles of digital project manager
to identify obstacles to digital transformation in digital project manage-
ment, then analyze these obstacles to countermeasure them and propose
a new knowledge based system “KBS” based on the feedback of digital
experiences.

Keywords: Risk management · Digital project management · Digital
transformation · Critical affecting factors · Management innovation

1 Introduction

According to the investigation data announced by the Standish Group Interna-
tional, Inc., in 2003, among the 13,522 investigated projects in terms of the stan-
dards Group International, Inc., only 34% of projects were completed successfully,
15% of projects were canceled before completion, and 51% of projects were com-
pletedbutweredoubted, because theywere overbudget, over schedule and soon [1].

Companies typically ensure that their employees have the technical skills they
need to work on whatever tasks they are assigned, but, as Jim Johnson, Chairman
of the Standish Group, has said, “When projects fail, it is rarely technical” [2].

Integrating and exploiting new digital technologies are one of the most urgent
challenges for companies today. Across industries, they face increasing pressure
to make their digital transformation a strategic priority and to embrace the
opportunities presented by recent digital technologies.

Digital projects have been hamstrung by numerous issues over recent years:
cost, complexity, cavalier management. . . all have endangered project comple-
tion [3]. So what are the barriers to change and what can be done to reduce the
risks and improve project management?
c© Springer International Publishing AG 2017
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2 IT Project and IT Project Management

As to IT project, there different definitions. Q. Zhang thinks that in IT project
mainly refers to the information management systems of computers. Y. Li men-
tions three features of IT projects: Urgency, Uniqueness, Uncertainly [1].

Regarding IT project management, there are different definitions as well.
According to Z.Y. Li, IT project management based on information technology,
a special type of project management, and a new kind of project management
that came into being and is being improved continuously with the development
of information technology [4].

N. Zhang and P. Wang thinks that IT project management refers to the
management practice which ensures the smooth execution of engineering sys-
tem development methods, based on the theories of management science, and
integrating with the development practice of IT products as well as a serie activ-
ities. L. Xu puts forward three features of IT project management: abstractness,
timeliness of information communication, and uncertainty [5].

3 Project Management in the Era of Digital
Transformation

New technologies such as digital projects are becoming commonplace, which is
something that has changed consumer’s expectations and behaviors for good,
services must be fast and easy-to-use, fully transparent, always available and
multi-device access.
What does project manager do? Here are some thoughts:

– Optimization of time and modules to be implemented, and which directly
impact the planning and the cost of the project;

– Exploring of the potential of feedback to maximize the quality of projects
and foster new and innovative ideas;

– Adapting communication approach by providing stakeholders with rapid
access to real-time project information.

In this paper, digital project management refers to a series of activities in
which cost, personnel, progress, quality, risk file, etc. are analyzed, managed,
and controlled so that digital projects can be completed in terms of the budget,
scheduled progress and quality [6].

4 Obstacles of Digital Transformation in Digital Project
Management

Digital project management is developing rapidly in the era of digital transfor-
mation, but it encounters some obstacles. The major ones are as follows:
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1. Undefined Goals – When goals are not clearly identified, the whole project and
team can suffer. When upper management cannot agree to or support unde-
fined goals, the project in question typically has small chance to succeed [7].

2. Scope Changes – Also known as scope creep, occur when the project manage-
ment allows the project’s scope to extend beyond its original objectives [6].

3. Improper Risk Management – Learning to deal with and plan for risk is
another important piece of project management training [8].

4. Ambiguous Contingency Plans – It’s important for project managers to know
what direction to take in pre-defined “what-if” scenarios [6].

5. Poor Communication – Project managers provide direction at every step of
the project, so each team leader knows what’s expected [6].

6. Impossible Deadlines – A successful project manager knows that repeatedly
asking a team for the impossible can quickly result in declining morale and
productivity [6].

7. Resource Deprivation – In order for a project to be run efficiently and effec-
tively, management must provide sufficient and put the right resources in the
right way.

5 Analysis of Affecting Factors of Digital Transformation
in the Digital Project Management

Fishbone Diagram is a kind of method that is used to analyze factors affecting
a certain problem. The factors are found by brainstorming, classified together
with the problem to be resolved according to their relevance, and finally form a
diagram with key factors marked.

In this paper, Fishbone Diagram is applied to analyze the major factors that
affect digital project management. There are two steps: analyzing the problem’s
structure and drawing the fishbone diagram.

The key factors that affect digital project management in a digital transfor-
mation time are shown by the fishbone diagram, i.e. Fig. 1.

Fig. 1. Fishbone diagram of critical affecting factors of digital project management
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6 Countermeasures for the Existing Problems in Digital
Project Management

Feedback is a reflection process used to draw positive and negative lessons from
ongoing or completed projects. In this process, we look at the approach devel-
oped, the methods used, the outputs produced, the role and level of involvement
of the actors involved, and the means used.
The main stages of feedback are:

– Choice of project, for which the process will be implemented;
– Definition of the modalities (individual and/or collective information of a grid

or a questionnaire);
– Designation and role of the various stakeholders in the process;
– Collection and analysis of information;
– Capitalization of lessons learned;
– Valuing and making available these lessons;
– Possible implementation of an action plan to change practices.

In order to countermeasure the various problems mentioned in the previous para-
graphs, and in order to exploit the potential of feedback for the implementation
of digital projects. We suggest the establishment of a knowledge base system
(KBS) allowing to automatically make available the feedback to all the stake-
holders at any stage of the project.

This KBS must have as input an analysis grid, that must be organized by
project step, and on each step, it is necessary to specify positive and negative
lessons, identify the used technologies, etc. It must be informed by different
stakeholders to collect different viewpoints on it. It can also be used as a basis
for the construction of analysis or maintenance guides (implemented for strategic
projects. Or, in order to draw as many useful lessons as possible from different
actors in the project, internal as well as external.). Then, as output, feedback,
that can be used to improve and innovate in new digital projects to be imple-
mented, to control project risks, to increase quality and reduce the duration of
project implementation, which directly impacts the cost of the project.
In this way, we will overrode the problems already mentioned as follows:

1. Defining goals and objectives: Before communicating with customers, project
managers should make a good preparation for requirement work, then ask
customers to confirm them. To do this, he must make a preliminary research
in the KBS of its entity, to exploit the potential of older experiences that
have some same objectives and goals, to reuse and improve them.

2. Project scope: Clients and supervisors may ask for changes on project, and
it takes a strong project manager and by using the KBS, he can do a simple
research on it to evaluate each request and decide how and if to implement it.

3. Risk management: Risk management is essentially a planning strategy. Then,
the KBS help to identify potential problem areas can lead to a smooth and
successful project.
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4. Communication: In digital project management, project manager’s communi-
cation includes four aspects, i.e. customers, team members, top management,
and other stakeholders involved in the projects. If communication can be con-
ducted as early as possible and as positively as possible, then communication
efficiency will be highly improved. So by using the KBS, the manager can
reuse some successful communication plans.

5. Deadlines: Digital project consists of a set of modules, some are common,
according to the type of projects. The KBS will allow the project manager
to identify these modules, consult the time consumed by them to set realistic
deadlines or reuse some implemented modules if the feedback is positive to
optimize the duration of the implementation.

6. Personnel: The feedback (by using the KBS) can help choose team members
carefully according to the cycle length of the projects and assure the conti-
nuity of the right people during the process of the projects. So, it will help to
place the right people in the right positions.

7. Innovation and creativity: The trick is finding a strategy that allows full
sight of the project, but doesn’t suffocate creativity and innovation [9]. We
highlight three novel ways we can integrate on the digital management project
strategy through the KBS: learn from the knowledge base system, consider
the company management structure, and automate the project’s processes.

7 Conclusion

The major factors that affect digital project management which are illustrated on
theFishbonediagram,must be dealtwithby thedigital project enterprises through
a healthy communication with their project management, and by integrating the
Knowledge Based System and constant innovation to explore effectively the poten-
tial of feedback and therefore perfect there digital project management.
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Abstract. The use of internet is becoming larger, in more and more diverse
situations, going from messaging, e-mailing, video and data transfers, to cloud
computing, and internet of things (IoT). Users are willing to connect to any
wireless access technology, anywhere and anytime to satisfy the ‘ABC’ (Always
Best Connected). This leads to vertical handovers (VH). VH differs from hor-
izontal handover (i.e., the transfer of connections between two base stations or
access points with the same access technology). The transfer must be without
session breaks.
In this paper, we propose a new hybrid decision method for VH decision

process, named FGRA combining Fuzzy sets and Gray Relational Analysis
(GRA) to perform more efficient VH decisions. Moreover, our combination
allows the VHs to be seamless, without session ruptures. This new method is
compared with the normal MADM methods GRA and TOPSIS, known for their
efficiency in this context, in terms of number of handovers, and the QoS offered
in every decision point. Our new hybrid method gives better results than the
classical ones through the simulation scenarios’ results we perform.

Keywords: MADM � Multi-access environment � Mobile networks � Vertical
handover � Wireless networks

1 Introduction

Always more users are using internet wirelessly anywhere, to connect to the best access
network available anytime, to profit from services like data, voice and video trans-
mission, and IoT. This provokes vertical handovers (VHs), this means changing the
network type (e.g., 3G to Wi-Fi). It must be fast and efficient enough, not to cause
session breaks, this supposes that the VH must be well managed. This is ensured by
Mobile IPv6 (MIPv6), Fast Handover for Mobile IPv6 (FHMIPv6) [4] and “Media
Independent Handover” MIH (IEEE 802.21), standardized in 2009. The VH process is
divided into three principal steps: VH discovery, VH decision and VH execution.
Different techniques were used in this context, like Neural networks, Artificial intel-
ligence, Fuzzy logic and MADM methods. In this work, we combine GRA with fuzzy
sets, to deal with imprecisions in the attribute values.
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The next section is the background of our work, the third section discusses our
proposal to optimize the VH decision, using our combination, the fourth section dis-
cusses the simulation results, and the conclusion will be the fifth section of this paper.

2 Background

The VH problem was tackled in many works. In [3], the authors present an investi-
gation on network selection criteria’s interdependence, and their effects on criteria’s
importance, and the current research trend in the application of MADM algorithms to
network-selection problems in HWNs. [6] introduces a novel utility-based approach
supporting multiple client classes, a bandwidth sharing policy and a “controlled
unfairness” scheme is achieved by combining distinct priority classes with logarithmic
utility functions. Some of the modified MADM algorithms used in the context of VH
are cited in [7, 9–11, 13]. In [13], A.T. Gumus et al. propose a fuzzy Analytical
Hierarchical Process (Fuzzy-AHP) and Fuzzy-GRA to select the most appropriate
Hydrogen Energy Storage (HES) method for Turkey from the alternatives of tank. The
steps of GRA are:

1. Decision matrix Dmn is filled with the attribute values for every alternative:

Dmn ¼
d11 . . . d1n
..
. . .

. ..
.

dm1 � � � dmn

0
B@

1
CA ð1Þ

2. Normalization: We used the sum method, to have the normalized matrix Rmn [12]:

ri j ¼ di jPm
1 di j

ð2Þ

3. Weighting: The weight of each criterion is determined and multiplied by attributes.

Vi j ¼ ri j �Wj ð3Þ

4. Compute the best and worst ideal alternative:

Vþ ¼ max Vij
� �

; for benefit criteria; and min Vij
� �

; for cost criteria: ð4Þ

5. Compute the GRA coefficient (GRC) for each alternative:

GRCi ¼ 1Pm
1 vij � Vj

�� ��þ 1
ð5Þ

6. Ranking in decreasing order.
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3 Our Proposal

We propose a combination of GRA and the fuzzy sets, named FGRA. The decision
matrix will be fuzzy, i.e. dij ¼ li j;mi j; ui j

� �
. The distance between two fuzzy sets

vij li j;mi j; ui j
� �

and Vj Lj;Mj;Uj
� �

, is Eq. 4. Table 1 shows the linguistic variables.

vij � Vj ¼ lij � Lj
� �þ mij �Mj

� �þðuij � UjÞ ð6Þ

Numeric attributes used for TOPSIS and GRA are in the values shown in Table 2,
to simulate data gathered during the discovery phase, in a movement scenario designed
by IEEE 802.21 tutorial [5]. For FGRA, we used linguistic variables in Table 3.

Table 1. Fuzzy numbers corresponding to linguistic variables used as attribute values

Very poor (VP) (1, 1, 2) Fair (F) (3, 4, 5)
Poor (P) (1, 2, 3) Medium good (MG) (4, 5, 6)
Medium Poor (MP) (2, 3, 4) Good (G) (5, 6, 7)
Very good (VG) (7, 8, 8)

Table 2. Numeric interval values used to simulate data gathered in the discovery phase

Network F (Kbps) Av (%) S (%) D (ms) L (*106) EC (1–7) C (1–7) J (ms)

GPRS/2.5G 21.4–171.2 50–100 50 50–70 50–80 2 1 3–20
EDGE/2.75G 43.2–345.6 40–100 50 20–60 25–70 2 2 3–20

UMTS 144–2000 40–100 60 20–40 15–65 4 4 3–20
HSDPA/HSUPA 14 Mbps 50–100 60 10–50 10–80 4 5 3–20
LTE 10–300 Mbps 40–100 65 10–30 10–40 7 7 3–20

Wifi a,b,g 8–54 Mbps 40–100 60 130–200 30–70 3 1 3–20
Wifi n 72–450 Mbps 30–100 65 100–140 20–60 3 1 3–20

Wifi ac 433–1300 Mbps 50–100 70 90–110 10–40 5 2 3–20
Wimax 70 Mbps 40–100 60 60–100 10–70 7 5 3–20

Table 3. Linguistic variables used as attribute values in our fuzzy GRA simulation scenario

Network F Av S D L EC C J

GPRS/2.5G VP P F VG VG P P G
EDGE/2.75G P MP F G VG P P MG
UMTS F F G F MG MG F F
HSDPA/HSUPA MG MG G P F G F MP
LTE G G VG VP P VG G P
Wifi a,b,g F F MP F F P VP F
Wifi n G MG F P MP MP P MP
Wifi ac VG G MG VP P F MP P
Wimax G G G P P G MG MP
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4 Results and Discussion

The Figs. 1 and 2 illustrate respectively the results returned applying TOPSIS and
GRA using numeric values as inputs, and FGRA, taking fuzzy sets as inputs.

The results are compared in terms of number of VHs, number of ranking reversals
and the QoS offered. FGRA produces less handovers and no ranking abnormality. The
number of VHs and the ranking reversals made by each method is shown in Fig. 3.

Fig. 1. Results returned by applying TOPSIS (a) method and GRA (b)

Fig. 2. Results returned by applying the fuzzy GRA method

Fig. 3. Number of VHs (a) and rank reversals (b) occurred using different MADM methods
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FGRA is the best among the compared methods seeing the QoS, the number of
performed VHs (4), and no ranking abnormalities, but this combination is to be verified
with real metrics, to see its efficiency in real time conditions.

5 Conclusion

In this work, we propose a new hybrid decision making method named fuzzy GRA,
combining GRA and the fuzzy sets, in the context of the VH decision making. We
compared this hybrid method with GRA and TOPSIS, which are known for their
efficiency in the VH context. We establish that FGRA method isn’t sensible to these
small variations in weight vectors returned by different weighting methods. We also
conclude that FGRA is the best with a low number of VHs, and no ranking reversal,
this performance has to be verified for all traffic classes. More combinations still have
to be tried to offer a better QoS to users anytime, to access all services they want.
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Abstract. Establishing the scalability of a concurrent algorithm a pri-
ori, before implementing and evaluating it on a concrete multi-core plat-
form, seems difficult, if not impossible. In the context of search data
structures however, according to all practical work of the past decade,
algorithms that scale share a common characteristic: They all resemble
standard sequential implementations for their respective data structure
type and strive to minimize the number of synchronization operations.

In this paper, we present sequential proximity, a theoretical frame-
work to determine whether a concurrent search algorithm is close to its
sequential counterpart. With sequential proximity we take the first step
towards a theory of scalability for concurrent search algorithms.

1 Introduction

Concurrent search data structures (CSDSs), such as linked lists and skip lists,
are fundamental building blocks of modern software, ranging from operating
systems, such as the Linux kernel [15], to key-value stores, such as RocksDB [6].
A vast amount of work has been dedicated to the development of correct and
scalable CSDS algorithms [3–5,7–10,14,17].

To establish the correctness of such algorithms, several formal tools are avail-
able. For instance, linearizability [12] helps determine the safety of CSDS algo-
rithms. Similarly, in terms of liveness, we can prove whether a CSDS algorithm
is lock-free or wait-free [11].

In contrast, no formal tool is available for establishing the scalability of a
CSDS algorithm, namely that the algorithm delivers better performance when
the number of threads accessing the data structure increases. A non-scalable
CSDS that resides in an application’s critical path eventually becomes a perfor-
mance bottleneck that needs to be replaced by an alternative design. Ideally, we
would like to be able to prove that an algorithm is scalable without the need to
evaluate the algorithm on every single workload and multi-core platform.

Defining a formal theory of scalability is an onerous task, since such a theory
would need to take into account a multitude of different architectures, diverse set
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of workloads, etc. In this work, we follow an indirect approach: Instead of formal-
izing scalability, we create a formal framework that captures when a CSDS is sim-
ilar to its respective sequential search data structure. Our work is based on the
vast amount of prior practical work that points to a single direction for achiev-
ing scalability: Strip down synchronization (i.e., every construct that induces
coordination of concurrent threads), which is a major impediment to scalability.
To achieve minimal synchronization, all existing patterns for designing concur-
rent data structures do, directly or indirectly, promote concurrent designs that
are close to their sequential counterparts: concrete CSDS algorithms [10,13],
RCU [17], RLU [16], OPTIK [8], ASCY [4], etc.

Comparing a CSDS and a sequential search data structure in a formal way is
challenging (e.g., how to compare the number of stores or where stores are issued
between a CSDS and its respective sequential counterpart, etc.) In this paper,
we tackle this challenge by introducing sequential proximity (SP), a theoretical
framework composed of ten formal properties that can be used to establish
whether a CSDS algorithm is close to a reference sequential counterpart. SP can
be viewed as a first step towards formalizing the scalability of CSDS algorithms.

Sequential Proximity: Overview. Our ten SP properties (Table 1) are defined
with respect to the three basic operations of a CSDS: search, insert, and delete,
for retrieving, adding, and removing an element from a set, respectively.

Table 1. The ten commandments of SP.SP1−4 concern search oper-
ations. In a sequential design,
search operations (i) are read-
only, (ii) do not block, (iii) do
not restart, and (iv) do not
allocate any memory. SP1−4

enforce the exact same behav-
ior as (i)–(iv) for concurrent
search operations. SP2−5 con-
cern parsing the set before
performing an update (i.e.,
insert or delete). Essentially,
the parse phase of an update
operation traverses the set to
find the node(s) to be modi-
fied. In a sequential data struc-
ture, parsing is identical to
searching, hence searching and parsing share SP2−4. SP5 replaces SP1 for pars-
ing, to capture the fact that concurrent designs (e.g., [7,9]) might retain some
minimal helping strategy in order to “clean-up” the data structure. SP6 concerns
both insertions and deletions. In a sequential design, no writes are issued if the
operation is unsuccessful (e.g., a deletion does not find the target element in the
set). SP6 enforces the same behavior for concurrent algorithms: An unsuccess-
ful update cannot perform any stores or atomic operations after parsing. SP7
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restricts the ability of an update operation to restart due to concurrency. SP7

does not have any correspondence in sequential algorithms, as the latter never
restart. Intuitively, an update in a CSDS can only restart when a concurrent
update of another thread modifies the same nodes as the current update. SP8

and SP9 restrain the amount of synchronization allowed when modifying the
structure during insertions and deletions. We define the maximum number of
shared memory stores (or atomic operations) and the locations of these stores in
a concurrent design with respect to the sequential counterpart per data struc-
ture. Finally, SP10 captures the fact that deleting an element from a set should
not allocate memory.

A CSDS algorithm is said to be sequentially proximal if it satisfies SP1−4

for search, SP2−9 for insert, and SP2−10 for delete operations.

Overall, we believe that SP can be used in guiding the design of scalable
CSDS algorithms, detecting whether a CSDS algorithm is likely to scale, and
optimizing existing CSDS designs by “fixing” one or more SP properties.

Roadmap. The rest of the paper is organized as follows. In Sect. 2, we recall
background notions on CSDSs and describe the machinery we use to formulate
the SP properties. We describe the SP properties in Sect. 3. We conclude the
paper of SP in Sect. 4. Due to space limitations, we defer the reader to the
technical report [1] for the precise definitions of some parts of our vocabulary,
proofs of relations between SP properties and classic progress conditions, proofs
that two known concurrent linked lists are sequentially proximal, related work,
as well as concrete examples of the applicability of SP.

2 Preliminaries

In this section, we define sequential and concurrent search data structures and
we introduce the formalism used to define our ten SP properties.

2.1 Search Data Structures

A search data structure (SDS) corresponds to a set of elements and operations
for retrieving, storing, and removing elements. The main operations of a SDS are
the search, insert, and delete operations. In this work, we consider linked lists,
hash tables, skip lists, and binary search trees, which are all widely-used SDSs.
Queues and stacks are not SDSs as they do not provide search operations.

The insert and delete operations are update operations used for inserting and
removing elements, respectively. An update operation can be divided into two
phases: parse and modify. For instance, an insertion in a sorted linked list first
looks for the position where the element has to be inserted. The actual insertion
can then happen during a modify phase. The typical flow of an update operation
in a SDS is depicted in Fig. 1. The parse phase takes place first and returns a
boolean value which indicates whether it can be followed by a modification. If the
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returned value is true (e.g., deleting an element that exists), the modification can
be attempted. Otherwise, if the returned value is false (e.g., deleting an element
that does not exist), the parse phase did not find a valid state to apply the
subsequent modification. After a successful parse phase, the modify phase takes
place (which always returns true in sequential SDSs).

Sequential Specification. The sequential specification of a SDS, denoted
SpecSDS , can be constructed using the notion of a set. At the beginning of
a history of SpecSDS the set is empty, thus every search operation returns false.
If an insert operation is called and the element is not in the set, the element is
inserted into the set and true is returned. Otherwise, the set remains unchanged
and false is returned. If a delete operation is called for an element that belongs
to the set, the element is removed from the set and true is returned. Otherwise
the set remains unchanged and false is returned.

Concurrent Search Data Structures (CSDSs). In CSDSs, the modify phase
of update operations can return two values other than true, namely false and
restart. These two additional transitions appear as dashed lines in Fig. 1.

On the one hand, a modification can return false either due to concurrency
(e.g., the element was concurrently deleted by another process), or because the
algorithm enters the modify phase, although the operation cannot be completed.
On the other hand, a modification might return restart due to conflicting con-
currency (i.e., another process modifies the same vicinity of the structure).

The sequential and concurrent SDSs that we consider in this work are imple-
mentations of SpecSDS . We assume they have been proven correct in their respec-
tive environments (i.e., when used by one process for sequential and by several
for CSDSs). We consider that fulfilling SpecSDS in a concurrent context means
ensuring linearizability [12].

2.2 Language

Fig. 1. Flow diagram of an update oper-
ation. The transitions in dashed lines are
only feasible in concurrent SDSs.

To describe CSDS algorithms, we con-
sider a formal language [2] that we
extend to capture specific character-
istics of CSDSs. We present here a
quick overview of its classic features
and a more detailed description of
the additions we introduce to capture
the notions needed to define sequential
proximity.

Shared Memory Locations. These
are the unit of memory, accessible by
every process, on which read and write
instructions operate atomically.
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Local and Global Instructions. Each process executes a sequential program
(of a Turing-complete language) augmented with instructions to interact with
the shared memory. The language uses a standard syntax and semantics for
boolean and numerical literals, variables, and expressions. It also features point-
ers, conditionals expressions, and branching (labels and goto instructions).

Each process maintains a state (set of local variables and execution context)
and executes elementary local or global instructions. Shared memory allocations,
and any instruction that takes as operand a shared memory location, are consid-
ered global instructions. There are six types of global instructions: allocate, read,
write, compare-and-swap, try-lock, and unlock. A read(l) instruction retrieves the
content of the shared memory location l and a write(v, l) writes the value of the
local variable v to shared memory location l.

Compare-and-swap. In one atomic step, a compare-and-swap(l, old, new) instruc-
tion reads the content v of the shared memory location l, and, if v = old, it writes
value new in l. In any case, compare-and-swap returns v.

Try-lock and Unlock. In one atomic step, the try-lock(l) instruction tests if the
value v contained in the shared memory location l is true, and, in this case, it
writes false in l. In any case, try-lock returns v. The try-lock instruction can be
used to implement a traditional blocking lock operation by repeatedly executing
try-lock until it returns true. The unlock(l) instruction writes true in l.

Allocate. allocate takes a list of local variables as argument and fills each variable
with the address of a newly allocated shared memory location. Note that the
use of allocate is closely related to the notion of node, defined below, that plays
an important role in the definition of the SP properties.

Operations Delimiters. To capture the implementation of CSDSs, additional
dummy statements are introduced to delimit the beginning and the end of search,
insert, and delete operations. For update operations (i.e., insert and delete), addi-
tional statements are used to localize the beginning and the end of the parse and
modify phases: beg-parse, end-parse, beg-modify, and end-modify. The statement
end-parse returns a boolean indicating if the update is possible (i.e., the target
value is not already present in the set for insert operations, or is present for
delete operations). The statement end-modify returns true, false, or restart, indi-
cating respectively that the operation succeeded, failed, or has to be restarted.
For op ∈ {search, insert, delete} the dummy statement entry op v (resp. exit op b)
denotes the beginning (resp. end) of an operation of type op on the data structure
(resp. returning a boolean b, indicating success or failure).

States, Transitions, and Executions. A program state σ is a tuple
(pc, locals, globals) where pc associates to each process the current value of its
program counter, locals associates values to the local variables of each process,
and globals to shared memory locations. The transition function TF associates
to a state σ and a process p the program state σ′ reached after p executes its next
instruction in state σ. A triple (σ, p, σ′) s.t. TF (σ, p) = σ′ is called a transition.

An execution is a sequence of transitions t0, t1, . . . s.t. ∀i ≥ 0, ti =
(σi, pji , σi+1), where pji ∈ {p0, p1, . . .}. Furthermore, σ0 designates the initial
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state in which each process is about to execute its first instruction and all the
local variables and shared memory locations are uninitialized.

Histories. A history is a sequence of tuples (p, st) where st is an entry or exit
statement and p is a process. To any execution π, we associate history hs(π)
defined as the subsequence of the transitions of π corresponding to entry and
exit statements, labelled by the processes taking them.

Given a history H, we denote by H|p the history formed by the subsequence
of the tuples of H taken by p. Statements s = (p, entry op v) and s′ = (p′,
exit op′ b) of a history H are said matching if p = p′, op = op′, s precedes s′

in H, and if there is no (p, exit op b′) statement in H between s and s′. An
entry statement of a history H that has no matching exit in H is said pending.
A history H is said sequential if H = en0, ex0, en1, ex1, . . . where for all i ≥ 0,
eni and exi are matching entry and exit statements. A sequential history that
does not end with a pending entry statement is said to be a complete sequential
history. A history H is well-formed if for each process p, H|p is sequential.

Consider any execution π s.t. hs(π) is a well-formed history, and ten a tran-
sition of π corresponding to an entry statement executed by process p. We define
opTrans(ten, π) as the subsequence of π formed by the transitions of p from ten

to the next transition tex corresponding to an exit statement by p. If the oper-
ation entered in ten is pending in hs(π)|p, there is no such transition tex and
opTrans(ten, π) is defined as the sequence of transition taken by p in π starting
from ten.

Parse-modify Patterns. For an execution π s.t. hs(π) is well-formed, let us
consider a transition ten taken by process p that corresponds to an entry op v
statement with op ∈ {insert, delete} and let tex be the matching exit tran-
sition. We defer for the moment the case of ten corresponding to a pending
entry statement in hs(π). We say that the operation entered in ten follows a
parse-modify pattern if it follows the flow illustrated by Fig. 1. Formally, if we
consider pm(opTrans(ten, π)) the subsequence of transitions of opTrans(ten, π)
corresponding to beg-parse, end-parse, beg-modify and end-modify statements,
then (a) pm(opTrans(ten, π)) starts with a beg-parse statement, (b) each beg-
parse is immediately followed by an end-parse, (c) an end-parse returning true
is immediately followed by a beg-modify statement, (d) if an end-parse or end-
modify statement returns false, it is the last transition of pm(opTrans(ten, π))
and tex returns false, (e) a beg-modify is immediately followed by an end-modify
statement, (f) if an end-modify statement returns true, it is the last transition
of pm(opTrans(ten, π)) and tex returns true, and (g) an end-modify statement
returning restart is immediately followed by a beg-parse statement.

If the transition ten is pending in hs(π)|p, we consider that opTrans(ten, π)
follows a parse-modify pattern if π can be extended to an execution in which ten

has a corresponding tex statement and the (now complete) operation entered in
ten follows a parse-modify pattern.

Consider an entry transition ten of an execution π s.t. opTrans(ten, π) follows a
parse-modify pattern. We define the integer numberOfParsePhases(ten, π)
(resp. numberOfModifyPhases(ten, π)) as the number of transitions
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corresponding to beg-parse (resp. beg-modify) statements in opTrans(ten, π).
We also define the sequence parsePhase(ten, π, k) (resp. modifyPhase(ten,
π, k)), for any k in 1, . . . , numberOfParsePhases(ten, π) (resp. 1, . . . ,
numberOfModifyPhases(ten, π)), as the subsequence of opTrans(ten, π)
starting at the k-th beg-parse (resp. beg-modify) statement and ending at the next
following end-parse (resp. end-modify) statement (or at the end of opTrans(ten, π)
if there is no such statement).

Positions of Global Transitions. We say that an execution π s.t. hs(π) is
well-formed has no global transition outside operations if each global transition
of π belongs to some opTrans(ten, π) with ten an entry transition of π.

Similarly, we state that an execution π has no global update
transition outside parse and modify phases if, for any entry transi-
tion ten of an insert or delete operation, any global transition of
opTrans(ten, π) belongs to either the set parsePhase(ten, π, k) (for some k in
1, . . . , numberOfParsePhases(ten, π)) or modifyPhase(ten, π, k′) (for some k′

in 1, . . . , numberOfModifyPhases(ten, π)).

Well-formed Executions. An execution π is well-formed if it verifies: (a) hs(π)
is a well-formed history, (b) transitions never read uninitialized variables, (c) for
any transition ten corresponding to an entry op v statement with op ∈ {insert,
delete}, the operation entered in ten follows a parse-modify pattern, (d) π has no
global transition outside operations, and (e) π has no global update transition
outside parse and modify phases.

A program Prog is said well-formed if all the executions it allows are well-
formed. The set of all the executions allowed by Prog is denoted [[Prog]]. The
remaining of the paper considers only well-formed programs.

2.3 Nodes and Allocation Sets

Nodes and Shared Memory Management. We assume that a SDS imple-
mentation provides the notion of node that captures the set of shared memory
locations that are allocated and freed/unlinked together. It is assumed that one
allocate statement allocates a list of shared memory locations corresponding to
exactly one node. For example, in an external tree, a single operation can allo-
cate shared memory locations logically corresponding to an internal node and
to a leaf. The SP properties rely on that a separate allocate instruction is used
for each of these two nodes.

To capture this relation between nodes and allocate instructions, we define,
for any execution π and any transition tal corresponding to an allocate instruc-
tion, the set NodeAlloc(tal, π) of the memory locations it reserves.

Memory reclamation is orthogonal to designing correct CSDSs and is typi-
cally handled by an external garbage collector. For clarity reasons, we do not
consider memory reclamation in our model: Once a node is unlinked from the
data structure (becomes unreachable, see below), the corresponding shared mem-
ory area is never reused.
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Read and Written Locations. For any execution π and any transition t
of π, we denote by wloc(t) (resp. rloc(t)) the set that contains the shared
memory location written (resp. read) by the instruction corresponding to t. If
t corresponds to a local instruction, a global read, or an allocate instruction,
then wloc(t) = ∅. If t corresponds to a write(v, l), try-lock(l), unlock(l), or a
compare-and-swap(l, old, new) global instruction, then wloc(t) = {l}. Similarly,
rloc(t) = ∅ if the instruction executed during t is a local instruction, a global
write, or an allocate instruction, while rloc(t) = {l} if it is a read(l), try-lock(l),
or a compare-and-swap(l, old, new). By an abuse of terminology, we will refer to
instructions issued by a transition t s.t. wloc(t) �= ∅ as write instructions.

For each transition ten of π that corresponds to a process p execut-
ing an entry op v statement, we define the set WrittenLoc(ten, π) (resp.
ReadLoc(ten, π)) of shared memory locations written (resp. read) during the
operation started at ten as follows:

WrittenLoc(ten, π) =
⋃

t∈opTrans(ten,π)

wloc(t)

ReadLoc(ten, π) =
⋃

t∈opTrans(ten,π)

rloc(t).

Writing to Nodes Allocated by Others. Consider a well-formed execution
π and any entry transition ten corresponding to an entry op v statement by a
process p. Let S be a subsequence of opTrans(ten, π), and let us denote by w(S)
the subsequence of transitions of S corresponding to global write instructions.
We define opAlloc(ten, π) as the set of shared memory locations allocated by p
during the operation starting by ten. Formally:

opAlloc(ten, π) =
⋃

t∈al(opTrans(ten,π))

NodeAlloc(t, π),

where al(opTrans(ten, π)) is the subsequence of opTrans(ten, π) transitions that
issue allocate instructions.

We now define the set OtherNodeWrites(S, ten, π) of the transitions of S
writing into shared memory locations that have not been allocated by p during
the operation it started at ten. Formally, OtherNodeWrites(S, ten, π) is the
maximal subset of w(S) such that:

opAlloc(ten, π) ∩
⎛

⎝
⋃

t∈OtherNodeWrites(S,ten,π)

wloc(t)

⎞

⎠ = ∅.

2.4 Solo Executions, Relative Nodes, and Reachability

Capturing the idea that a CSDS issues stores in a similar region as a respective
sequential one is challenging: It is difficult to define what a “similar region” is.
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To overcome this challenge, we define the notions of sequential freedom and solo
executions and then introduce the concept of relative nodes. We then show how
relative nodes can be used to construct sets of read and written nodes. Finally,
we define the notion of reachability and the set of nodes that are freed during
an operation.

Sequential Freedom. An execution π is in a steady state, if there is no entry
statement pending in hs(π). A program Prog is sequentially free if, starting from
any steady state, an operation taking steps alone terminates.

Solo Execution. A solo execution by a program Prog of a history S ∈ SpecSDS

corresponds to the execution of each operation of S by Prog in a solo (i.e.,
running the operation alone with no real concurrency) manner. Formally, con-
sider a complete sequential history S = en0, ex0, en1, ex1, . . . , enn, exn s.t.
S ∈ SpecSDS . Let Σ be the sequence pj0 , pj1 , ..., pjn of process identifiers
that execute operations en0, en1, ..., enn, respectively (a process identifier might
appear several times). We call solo execution of history S by program Prog, and
denote by se(S, Prog,Σ), the execution of Prog in which pj0 executes alone the
transitions of the operation entered in en0 and exited in ex0, then followed by
pj1 executing alone the operation entered in en1, etc.

Relative Nodes. A relative node corresponds to a pair (a, b) ∈ N×N in an exe-
cution π, if there is a transition ten in π that corresponds to an entry statement
s.t. this entry statement appears in the a-th position in hs(π) and the sequence
al(opTrans(ten, πS)) contains at least b elements. For example, if there exists a
relative node (5, 2) in an execution π, then this node has a “one-to-one” corre-
spondence with the second allocate statement that was executed during the fifth
operation.

Using relative nodes, we abstract away from memory locations and instead
of comparing writes, we can compare the nodes where those writes are issued
to. This abstraction allows us to compare writes (by comparing nodes) between
a CSDS and a sequential SDS in order to capture property SP9. We use relative
nodes only on solo executions. We assume that in any solo execution of a given
sequential history S, the operations of the CSDS and those of the respective
SDS allocate the same nodes and in the same order.

Given an execution π, we define rel(a, b, π) for a, b ∈ N to be a transition
tal of π. If rel(a, b, π) = tal, this means that there is an entry statement in
the a-th position of history hs(π) that has a corresponding transition ten in
π and there are at least b elements in al(opTrans(ten, π)) issuing an allocate
instruction with tal being the b-th such transition. If there exist no such a and
b, then rel(a, b, π) =⊥.

Read and Written Nodes. For defining the read and written nodes of an
operation we first define the set S which contains all the relative nodes of an
execution π.

S = {(a, b) ∈ N × N : rel(a, b, π) �=⊥}
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We can now define the sets of read and written nodes that contain relative nodes.
ReadNodes(ten, π) is the set of pairs (a, b) ∈ S satisfying:

ReadLoc(ten, π) ∩ NodeAlloc(rel(a, b, π), π) �= ∅.

Similarly, WrittenNodes(ten, π) is the set of pairs (a, b) ∈ S that satisfy:

WrittenLoc(ten, π) ∩ NodeAlloc(rel(a, b, π), π) �= ∅.

These sets are used in defining property SP9 in Sect. 3.

Reachability and the Root Pointer. Consider an execution π and a transi-
tion t of π such that, after t, a pointer pt points to a shared memory location
l. Since π is well-formed, l was allocated by an allocate statement. Let tal be
the corresponding transition in π. l satisfies l ∈ NodeAlloc(tal, π). We define
reachable(pt, 1)t as the set NodeAlloc(tal, π). For a set of shared memory loca-
tions M , we denote by pointers(M) the locations of M that corresponds to
pointers.1 We define recursively for any x > 0:

reachable(pt, x + 1)t =
⋃

pt′∈pointers(reachable(pt,x)t)

reachable(pt′, 1)t.

Intuitively, reachable(pt, x)t captures the set of shared memory locations that
are reachable from pt by following a path traversing at most x nodes. Those
locations are reachable immediately after transition t has been executed in π
but before the transition succeeding t in π has been executed. We additionally
define reachable(pt,∞)t =

⋃
x>0 reachable(pt, x)t the set of all shared memory

locations accessible from pt.
We assume that each data structure provides an init operation that is exe-

cuted before any other operation. The init operation, as the name implies, is
used for initializing the data structure. For example, for a linked list, init could
allocate the head and tail of the list to simplify the execution of the upcoming
operations. We denote with root (and call it root pointer) any pointer that points
to a memory location that was allocated during the first allocate statement of
init. For instance, init for linked list has to first allocate the head node, so the
root pointer points to this head node.

Reachable and Freed Nodes. In a sequential setting, freed nodes are the ones
removed by a delete operation. In order to define freed nodes, we first have to
define the nodes that are reachable from a pointer pt. Using reachable, for a
transition t ∈ π we define ReachableNodes(pt, π)t as the set of pairs (a, b) ∈ S
satisfying:

NodeAlloc(rel(a, b, π), π) ∩ reachable(pt,∞)t �= ∅,

1 Locations containing pointers could be differentiated from other locations if they
contain a pointer type. This could be easily done by for example marking the last
bit of the value residing in such a location.
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where S is the set of relative nodes defined earlier. ReachableNodes includes the
nodes that contain at least one location reachable from pt just after transition t.

For a tuple (ten, tex) in a sequential history hs(π), we define
FreedNodes(ten, π) = InitialNodes \ FinalNodes, where InitialNodes =
ReachableNodes(root, π)ten and FinalNodes = ReachableNodes(root, π)tex .

The above definition captures the idea that freed nodes are the nodes that
were reachable from a root pointer at the beginning of the operation, but are not
anymore reachable at the end. Note that the definition of FreedNodes makes
sense only for solo executions and is helpful when restricting the number (SP8),
as well as the region of stores (SP9).

Logical Deletion. Many CSDSs [9,10] perform deletions in two steps: (i) mark
the node to be deleted, and (ii) do the actual deletion (i.e., physical removal).

In the technical report [1], we formally define logical deletions. Addition-
ally, we define when a transition is a cleaning-up store, meaning a transition
that physically removes a marked node from the data structure. Intuitively, a
cleaning-up store is defined as a transition that after it is performed in an exe-
cution, makes a reachable node of the data structure to be unreachable (based
on reachable).

3 Sequential Proximity (SP)

In this section, we define the ten SP properties. The first five properties describe
characteristics of traversals: search operations and parse phases. The last five
describe modifications due to update operations.

3.1 Traversals

Traversals correspond to search operations or parse phases of update oper-
ations. More precisely, for an entry transition ten in execution π, we
define traversals(ten, π). If ten is a search entry transition (i.e., ten exe-
cutes an entry search v statement), then traversals(ten, π) corresponds
to {opTrans(ten, π)}. If ten is an update entry transition (i.e., ten exe-
cutes an entry op v statement where op ∈ {insert, delete}), then
traversals(ten, π) corresponds to {parsePhase(ten, π, k), 1 ≤ k ≤ n} where
n = numberOfParsePhases(ten, π).

SP1: Read-only Traversal. No global memory is written during traversals.

Definition 1 (SP1). A program Prog has op read-only traversals if for each
entry op transition ten in π ∈ [[Prog]], there is no transition executing a write
instruction in any sequence of traversals(ten, π).

SP2: Non-blocking Traversal. Traversals must not block (e.g., do not wait
for a lock to be released). To define this property, we first define the notion of a
non-blocking process. Intuitively, a process is non-blocking if there is a constant
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n such that no global memory location is read more than n times. Also, in every
n steps that the process takes, at least one global memory location is read.

In detail, we say that a process p is n steps non-blocking in tr(p) =
t1, t2, . . . , te, where tr(p) is a contiguous subsequence of opTrans(ten, π) with
an entry transition ten taken by process p in execution π, if ∃n ∈ N s.t.:

– no more than n transitions from tr(p) execute a global read instruction to the
same memory location;

– for all r ∈ {1, 2, . . . , e}, consider k = �r/n s.t. (k + 1) · n ≤ e, then
there is a transition that issues a global read in the sequence of transitions:
tk·n+1, . . . , t(k+1)·n.

Definition 2 (SP2). A program Prog has op non-blocking traversals if there
exists an n ∈ N such that: For every entry op transition ten taken by a process
p in execution π ∈ [[Prog]], p is n steps non-blocking in every sequence of
traversals(ten, π).

SP3: No Back-step Traversal. Only forward progress is allowed in traversals:
When moving from a node a to a b during traversal, node a is never visited
again.

For this property, we first define the notion of no back-steps. More precisely,
consider a contiguous subsequence tr(p) of opTrans(ten, π) where ten is an entry
transition taken by a process p in π. We say that process p has no back-steps if,
for any pair of transitions tr, tr′ appearing in this order in tr(p) with rloc(tr) =
rloc(tr′) = {�} and � ∈ NodeAlloc(tal, π), every transition t taken between tr
and tr′ in tr(p) verifies rloc(t) ⊆ NodeAlloc(tal, π).

Definition 3 (SP3). A program Prog has op no back-step traversals if for
every entry op transition ten taken by a process p in π ∈ [[Prog]], in every sequence
trav in traversals(ten, π), process p has no back-steps in trav.

SP4: No allocation Traversal. Traversals do not allocate any memory.

Definition 4 (SP4). A program Prog has op no allocation traversals if for
every entry op transition ten in π ∈ [[Prog]], there is no transition executing an
allocate instruction in any sequence of traversals(ten, π).

SP5: Read-clean Traversal. Traversals might issue stores only for cleaning-up
purposes.

Definition 5 (SP5). A program Prog has op read-clean traversals if for every
entry op transition ten in π ∈ [[Prog]], if a transition tw executes a write instruc-
tion in a sequence of traversals(ten, π), tw is a cleaning-up store.

3.2 Modifications

For an update entry transition ten in π, we define modifications(ten, π) to
be the set of sequences {modifyPhase(ten, π, k), 1 ≤ k ≤ n} where n =
numberOfModifyPhases(ten, π).



Sequential Proximity 417

SP6: Read-only Unsuccessful Modification. An unsuccessful operation
(e.g., trying to insert an element that is already present) does not issue any
write in a solo execution.

Definition 6 (SP6). A program Prog has op read-only unsuccessful modifica-
tions, if, for any complete sequential history S ∈ SpecSDS and any sequence
of processes P , the solo execution π = se(S, Prog, P ) verifies that: For every
entry op transition ten in π that has a matching exit op false statement in hs(π),
it is the case that modifications(ten, π) = ∅.
SP7: Conflict Restart Modification. The modify phase of an update oper-
ation can restart if there is a conflict with a concurrent operation. This type of
conflict corresponds to the modification of similar nodes by concurrent opera-
tions. To capture when concurrent operations are allowed to conflict and restart,
we check if such a conflict exists in the underlying sequential data structure.

We first introduce some auxiliary definitions. Two entry transitions ten0 and
ten1 are said conflict-free in a solo execution π, if (WrittenNodes(ten0 , π) ∪
FreedNodes(ten0 , π))∩(WrittenNodes(ten1 , π)∪FreedNodes(ten1 , π)) = ∅. An
entry transition ten is called restart-free in an execution π, if opTrans(ten, π) does
not contain an end-modify transition with a restart result. Given an execution
π and two operations op1 and op2, we say that an execution π′ is an extension
of π by op1 and op2, if π is a prefix of π′ followed by the transitions of the
operations op1 and op2 executed by two processes (possibly concurrently) until
their corresponding exit transitions.

Consider two programs ProgS and ProgC and S′ = S, en0, ex0, en1, ex1 a
complete sequential history, where S is a history and for every i ∈ {0, 1}, eni

corresponds to an entry statement and exi is its matching exit statement. Let us
consider the following notations:

– πS = se(S′, P rogS , PS) and πC = se(S, ProgC , PC), for PS and PC any
sequences of processes;

– ten0 and ten1 the transitions corresponding to the entry statements en0 and
en1 in πS .

The triple t = (S′, P rogS , P rogC) is said to be a valid restart triple if ten0 and
ten1 are not conflict-free in πS or if, for any extension πC′ of πC by operations
en0 and en1, the transitions corresponding to the entry statements en0 and en1

in πC′ are restart-free.

Definition 7 (SP7). A program ProgC has valid conflict restart modifications,
with respect to a sequential search data structure ProgS, if for all complete
sequential histories S with at least four tuples, triple (S, ProgS , P rogC) is valid
restart triple.

SP8: Number of Stores per Modification. SP8 defines the number of stores
allowed per modification. SP8 depends on a respective sequential SDS and on
whether the operations of the concurrent algorithm are blocking or not. The
distinction between blocking and non-blocking is made due to the fact that a
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Table 2. SP9: Upper bounds on the number of writes (i.e., stores, lock acquisitions,
and CAS operations).

lock-based algorithm needs to acquire a lock and then issue its modification store.
In contrast a non-blocking algorithm applies its modification simultaneously with
a compare-and-swap statement.

Definition 8 (SP8). A program ProgC has a sequential number of stores per
modification, with respect to a sequential search data structure ProgS, if the
number of stores per modify phase is bounded by the maximum number of sequen-
tial writes and freed nodes, as defined in Table 2. Specifically, the upper bounds
of Table 2 hold for all modi ∈ modifications(ten, π) where ten is an update
entry op transition in π ∈ [[Prog]]. CASOps(S) corresponds to the set of tran-
sitions that execute a compare-and-swap instruction in the sequence of tran-
sitions S. AcquiredLocks(S) corresponds to the transitions from S that suc-
cessfully acquired a lock (i.e., transitions that executed a try-lock statement
that returned true). MaxFreedNodes(typ) is defined as the maximum num-
ber of freed nodes during the sequential execution of an operation of type typ.
MaxOtherNodeWrites(typ) is defined as the maximum number of writes issued
during the sequential execution of an operation op of type typ to nodes that were
not allocated by operation op. The number of stores are constrained depending
on whether the CSDS operation is blocking or not.

SP9: Region of Stores per Modification. The following property restricts
the nodes that an operation writes during a modification, with respect to a
sequential SDS.

We first define the written nodes during all the modify phases of an operation.
To do this, we define all the memory locations that were written during all the
modify phases:

WrittenMLoc(tenπ) =
⋃

t∈modi : modi∈modifications(ten,π)

wloc(t)

WrittenMNodes(ten, π) is the set of pairs (a, b) ∈ N×N s.t. rel(a, b, π) �=⊥ that
satisfies:

WrittenMLoc(ten, π) ∩ NodeAlloc(rel(a, b, π), π) �= ∅.
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Definition 9 (SP9). A program ProgC has a valid region of stores per modifi-
cation with respect to a sequential search data structure ProgS if it writes to simi-
lar nodes as ProgS during modifications. Formally, for every complete sequential
history S and any sequence of processes PC and PS, consider the solo executions
πC = se(S, ProgC , PC) and πS = se(S, ProgS , PS). Since hs(πC) = hs(πS), for
every entry transition ten in πC , there is a corresponding entry transition ten′ in
πS. SP9 is satisfied2 if the following holds for every update transition ten in πC :
If ten executes

– an insert statement, then WrittenMNodes(ten, πC) =
WrittenNodes(ten′ , πS);

– a delete statement, then WrittenMNodes(ten, πC) ⊆
WrittenNodes(ten′ , πS) ∪ FreedNodes(ten′ , πS).

SP10: No Allocation Modification. No memory is allocated during modifi-
cations.

Definition 10 (SP10). A program Prog has op no allocation modifications if
for every entry op transition ten in π ∈ [[Prog]] there is no transition executing
an allocate instruction for any sequence in modifications(ten, π).

4 Concluding Remarks

In this paper, we defined sequential proximity (SP), a formalization that captures
the closeness of concurrent search data structures (CSDSs) and their sequential
counterparts. Based on prior work, we argued that sequentially-proximal algo-
rithms, namely algorithms which follow SP, are scalable. As a result, we claim
that SP is the first step towards a formal theory for proving that a CSDS algo-
rithm is likely to be scalable. We believe that from a practitioner’s point of view,
adherence to the SP properties can lead to scalable implementations and help
avoid commonly introduced bottlenecks in CSDSs.

2 For randomized data structures, such as skip lists [18], we assume that the underlying
random number generator produces the exact same sequences of numbers for both
ProgS and ProgC .
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Abstract. Spark is a new promising platform for scalable data-parallel
computation. It provides several high-level application programming
interfaces (APIs) to perform parallel data aggregation. Since execution
of parallel aggregation in Spark is inherently non-deterministic, a natural
requirement for Spark programs is to give the same result for any execu-
tion on the same data set. We present PureSpark, an executable formal
Haskell specification for Spark aggregate combinators. Our specification
allows us to deduce the precise condition for deterministic outcomes from
Spark aggregation. We report case studies analyzing deterministic out-
comes and correctness of Spark programs.

1 Introduction

Spark [1,29,30] is a popular platform for scalable distributed data-parallel com-
putation based on a flexible programming environment with concise and high-
level APIs. Spark is by many considered as the successor of MapReduce [15,25].
Despite its fame, the precursory computational model of MapReduce suffers
from I/O congestion and limited programming support for distributed problem
solving. Notably, Spark has the following advantages over MapReduce. First,
it has high performance due to distributed, cached, and in-memory computa-
tion. Second, the platform adopts a relaxed fault tolerant model where sub-
results are recomputed upon faults rather than aggressively stored. Third, lazy
evaluation semantics is used to avoid unnecessary computation. Finally, Spark
offers greater programming flexibility through its powerful APIs founded in func-
tional programming. Spark also owes its popularity to a unified framework for
efficient graph, streaming, and SQL-based relational database computation, a
machine learning library, and the support of multiple distributed data storage
formats. Spark is one of the most active open-source projects with over 1000
contributors [1].

In a typical Spark program, a sequence of transformations followed by
an action are performed on Resilient Distributed Datasets (RDDs). An RDD
is the principal abstraction for data-parallel computation in Spark. It repre-
sents a read-only collection of data items partitioned and stored distributively.
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RDD operations such as map, reduce, and aggregate are called combinators. They
generate and aggregate data in RDDs to carry out Spark computation. For
instance, the aggregate combinator takes user-defined functions seq and comb:
seq accumulates a sub-result for each partition while comb merges sub-results
across different partitions. Spark also provides a family of aggregate combina-
tors for common data structures such as pairs and graphs. In Spark computation,
data aggregation is ubiquitous.

Programming in Spark, however, can be tricky. Since sub-results are com-
puted using- multiple applications of seq and comb across partitions concurrently,
the order of their applications varies on different executions. Because of indefi-
nite orders of computation, aggregation in Spark is inherently non-deterministic.
A Spark program may produce different outcomes for the same input on differ-
ent runs. This form of non-deterministic computation has other side effects.
For instance, the private function AreaUnderCurve.of in the Spark machine learn-
ing library computes numerical integration distributively; it exhibits numerical
instability due to non-deterministic computation. Consider the integral of x73

on the interval [−2, 2]. Since x73 is an odd function, the integral is 0. In our
experiments, AreaUnderCurve.of returns different results ranging from −8192.0 to
12288.0 on the same input because of different orders of floating-point compu-
tation. To ensure deterministic outcomes, programmers must carefully develop
their programs to adhere to Spark requirements.

Unfortunately, Spark’s documentation does not specify the requirements for-
mally. It only describes informal algebraic properties about combinators to ensure
correctness. The documentation provides little help to a programmer in under-
standing the complex, and sometimes unexpected, interaction between seq and
comb, especially when these two are functions over more complex domains, e.g.
lists or trees. Inspecting the Spark implementation is a laborious job since public
combinators are built by composing a long chain of generic private combinators—
determining the execution semantics from the complex implementation is hard.
Moreover, Spark is continuously evolving and the implementation semantics may
change significantly across releases. We therefore believe that a formal specifica-
tion of Spark combinators is necessary to help developers understand the program
semantics better, clarify hidden assumptions about RDDs, and help to reason
about correctness and sources of non-determinism in Spark programs.

Building a formal specification for Spark is far from straightforward. Spark
is implemented in Scala and provides high-level APIs also in Python and Java.
Because Spark heavily exploits various language features of Scala, it is hard to
derive specifications without formalizing the operational semantics of the Scala
language, which is not an easy task by itself. Instead of that, we have developed
a Haskell library PureSpark [4], which for each key Spark combinator provides
an abstract sequential functional specification in Haskell. We use Haskell as a
specification language for two reasons. First, the core of Haskell has strong formal
foundations in λ-calculus. Second, program evaluation in Haskell, like in Scala,
is lazy, which admits faithful modeling of Spark aggregation. Through the use
of Haskell we obtain a concise formal functional model for Spark combinators
without formalizing Scala.
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An important goal of our specification is to make non-determinism in various
combinators explicit. Spark developers can inspect it to identify sources of non-
determinism when program executions yield unexpected outputs. Researchers
can also use it to understand distributed Spark aggregation and investigate its
computational pattern. Our specification is also executable. A programmer can
use the Haskell APIs to implement data-parallel programs, test them on dif-
ferent input RDDs, and verify correctness of outputs independent of the Spark
programming environment. In our case studies, we capture non-deterministic
behaviors of real Spark programs by executing the corresponding PureSpark

specifications with crafted input data sets. We also show that the sequential
specification is useful in developing distributed Spark programs.

Our main contributions are summarized below:

– We present formal, functional, sequential specifications for key Spark aggre-
gate combinators. The PureSpark specification consists of executable library
APIs. It can assist Spark program development by mimicking data-parallel
programming in conventional environments.

– Based on the specification, we investigate and identify necessary and sufficient
conditions for Spark aggregate combinators to produce deterministic outcomes
for general and pair RDDs.

– Our specification allows to deduce the precise condition for deterministic out-
comes from Spark aggregation.

– We perform a series of case studies on practical Spark programs to validate our
formalization. With PureSpark, we find instances of numerical instability in
the Spark machine learning library.

– Up to our knowledge, this is the first work to provide a formal, functional spec-
ification of key Spark aggregate combinators for data-parallel computation.

2 Preliminaries

Let A be a non-empty set and � : A × A → A be a function. An element i ∈ A
is the identity of � if for every a ∈ A, it holds that a = i � a = a � i. The
function � is associative if for every a, a′, a′′ ∈ A, a � (a′ � a′′) = (a � a′) � a′′;
� is commutative if for every a, a′ ∈ A, a � a′ = a′ � a. The algebraic structure
(A,�) is a semigroup if � is associative. A monoid is a structure (A,�,⊥) such
that (A,�) is a semigroup and ⊥ ∈ A is the identity of �. The semigroup (A,�)
and monoid (A,�,⊥) are commutative if � is commutative.

Haskell is a strongly typed purely functional programming language. Simi-
lar to Scala, Haskell programs are lazily evaluated. We use several widely used
Haskell functions (Fig. 1). fst and snd are projections on pairs. null tests whether
a list is empty. elem is the membership function for lists; its infix notation is
often used, as in 0 ‘elem‘ []. (++) concatenates two lists; it is used as an infix
operator, as in [False] ++ [True]. map applies a function to elements of a list.
reducel merges elements of a list by a given binary function from left to right.
foldl accumulates by applying a function to elements of a list iteratively, also
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Fig. 1. Basic functions

from left to right. concat concatenates elements in a list. concatMap applies
a function to elements of a list and concatenates the results. lookup finds the
value of a key in a list of pairs. filter selects elements from a list by a predicate.

In order to formalize non-determinism in distributed aggregation, we define
the following non-deterministic shuffle function for lists:

shuffle! :: [α] → [α]
shuffle! xs = ... −− shuffle xs randomly

A random monad can be used to define random shuffling. Instead of explicit
monadic notation, we introduce the chaotic shuffle! function in our presentation
for the sake of brevity. Thus, shuffle! [0, 1, 2] evaluates to one of the six possible
lists [0, 1, 2], [0, 2, 1], [1, 0, 2] [1, 2, 0], [2, 0, 1], or [2, 1, 0] randomly. Using shuffle!,
more chaotic functions are defined.
map! :: (α → β) → [α] → [β]
map! f xs = shuffle! (map f xs)

concatMap! :: (α → [β]) → [α] → [β]
concatMap! f xs = concat (map! f xs)

Chaotic map! shuffles the result of map randomly, concatMap! concate-
nates the shuffled result of map. For instance, map! even [0, 1] evaluates
to [False,True] or [True,False]; concatMap! fact[2, 3] evaluates to [1, 2, 1, 3] or
[1, 3, 1, 2] where fact computes a sorted list of factors (note that the two sub-
sequences [1,2] and [1,3] are kept intact).
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repartition! :: [α] → [[α]]
repartition! xs = let ys = shuffle! xs ...

in yss −− ys == concat yss

The function repartition! shuffles a given list and partitions the shuffled list into
several non-empty lists. For instance, repartition! [0, 1] results in [[0], [1]], [[1],

[0]], [[0, 1]], or [[1, 0]]. The chaotic function can be implemented by a random
monad easily; its precise definition is omitted here.

3 Spark Aggregation

Resilient Distributed Datasets (RDDs) are the basic data abstraction in Spark.
An RDD is a collection of partitions of immutable data; data in different parti-
tions can be processed concurrently. We formalize partitions by lists, and RDDs
by lists of partitions.

type Partition α = [α] type RDD α = [Partition α]

The Spark aggregate combinator computes sub-results of every partitions in
an RDD, and returns the aggregated result by combining sub-results.
aggregate :: β → (β → α → β) → (β → β → β) → RDD α → β
aggregate z seq comb rdd = let presults = map! (foldl seq z) rdd

in foldl comb z presults

More concretely, let z be a default aggregated value. aggregate applies foldl seq
z to every partition of rdd. Hence the sub-result of each partition is accumulated
by folding elements in the partition with seq. The combinator then combines
sub-results by another folding using comb.

Note that the chaotic map! function is used to model non-deterministic inter-
leavings of sub-results. To exploit concurrency, Spark creates a task to compute
the sub-result for each partition. These tasks are executed concurrently and
hence induce non-deterministic computation. We use the chaotic map! function
to designate non-determinism explicitly.

A related combinator is reduce. Instead of foldl, the combinator uses reducel
to aggregate data in an RDD.
reduce :: (α → α → α) → RDD α → α
reduce comb rdd = let presults = map! (reducel comb) rdd

in reducel comb presults

Similar to the aggregate combinator, reduce computes sub-results concurrently.
The chaotic map! function is again used to model non-deterministic computa-
tion.

Sub-results of different partitions are computed in parallel, but the aggre-
gate combinator still combines sub-results sequentially. This can be further par-
allelized. Observe that several sub-results may be available simultaneously from
distributed computation. The Spark treeAggregate combinator applies comb to
pairs of sub-results concurrently until the final result is obtained. In addition to
concurrent computation of sub-results, treeAggregate also combines sub-results
from different partitions in parallel.
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In our specification, two chaotic functions are used to model non-
deterministic computation on two different levels. The map! function models
non-determinism in computing sub-results of partitions. The apply! function
(introduced below) models concurrent combination of sub-results from differ-
ent partitions. It combines two consecutive sub-results picked chaotically, and
repeats such chaotic combinations until the final result is obtained. Observe
that the computation has a binary-tree structure with comb as internal nodes
and sub-results from different partitions as leaves.
apply! :: (β → β → β) → [β] → β
apply! comb [r] = r
apply! comb [r, r’] = comb r r’
apply! comb rs = let (ls’, l’, r’, rs’) = ... −− rs == ls’ ++ [l’, r’] ++ rs’

in apply! comb (ls’ ++ [comb l’ r’] ++ rs’)

treeAggregate:: β → (β→α→β) → (β→β→β) → RDD α → β
treeAggregate z seq comb rdd = let presults = map! (foldl seq z) rdd

in apply! comb presults

The treeReduce combinator optimizes reduce by combining sub-results in
parallel. Similar to treeAggregate, two levels of non-deterministic computation
can occur.
treeReduce :: (α → α → α) → RDD α → α
treeReduce comb rdd = let presults = map! (reducel comb) rdd

in apply! comb presults

Pair RDDs. Key-value pairs are widely used in data parallel computation. If
the data type of an RDD is a pair, we say that the RDD is a pair RDD. The
first and second elements in a pair are called the key and the value of the pair
respectively.
type PairRDD α β = RDD (α, β)

In a pair RDD, different pairs can have the same key. Spark provides combi-
nators to aggregate values associated with the same key. The aggregateByKey
combinator returns an RDD by aggregating values associated with the same key.
We use the following functions to formalize aggregateByKey:

hasKey :: α → Partition (α, β) → Bool
hasKey k ps = case (lookup k ps) of

Just → True
Nothing → False

hasValue :: α → β → Partition (α, β) → β
hasValue k val ps = case (lookup k ps) of

Just v → v
Nothing → val

addTo :: α → β → Partition (α, β) → Partition (α, β)
addTo key val ps = foldl (λr (k, v) → if key == k then r else (k, v):r) [(key, val)] ps

The expression hasKey k ps checks if key appears in a partition of pairs. hasValue
k val ps finds a value associated with key in a partition of pairs. It evaluates to the
default value val if key does not appear in the partition. The expression addTo
key val ps adds the pair (key, val) to the partition ps, and removes other pairs with
the same key.
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The aggregateByKey combinator first aggregates all pairs with the value z

and the function mergeComb in each partition. If values vs are associated with
the same key in a partition, the value foldl mergeComb z vs for the key is pre-
aggregated. Since a key may appear in several partitions, all pre-aggregated
values associated with the key across different partitions are merged using
mergeValue.

aggregateByKey :: γ → (γ → β → γ) → (γ → γ → γ) → PairRDD α β → PairRDD α γ
aggregateByKey z mergeComb mergeValue pairRdd =

let mergeBy fun left (k, v) = addTo k (fun (hasValue k z left) v) left
preAgg = concatMap! (foldl (mergeBy mergeComb) []) pairRdd

in repartition! (foldl (mergeBy mergeValue) [] preAgg)

In the specification, we accumulate values associated with the same key by merge-

Comb in each partition, keeping a list of pairs of a key and the partially aggregated
value for the key. Since accumulation in different partitions runs in parallel, the
chaotic concatMap! function is used to model such non-deterministic compu-
tation. After all partitions finish their accumulation, mergeValue merges values
associated with the same key across different partitions. The final pair RDD can
have a default or user-defined partitioning. Since a user-defined partitioning may
shuffle a pair RDD arbitrarily, it is in our specification modeled by the chaotic
repartition! function.

Pair RDDs have a combinator corresponding to reduce called reduceByKey.
reduceByKey merges all values associated with a key by mergeValue, following
a similar computational pattern as aggregateByKey. Note that every key is
associated with at most one value in resultant pair RDDs of aggregateByKey
or reduceByKey.
reduceByKey :: (β → β → β) → PairRDD α β → PairRDD α β
reduceByKey mergeValue pairRdd =

let merge left (k, v) = case lookup k left of Just v’ → addTo k (mergeValue v’ v) left
Nothing → addTo k v left

preAgg = concatMap! (foldl merge []) pairRdd
in repartition! (foldl merge [] preAgg)

Spark also provides a library, called GraphX, for a distributed analysis of graphs.
See [12] for a formalization of some of its key functions.

4 Deterministic Aggregation

Having deterministic outcomes is desired from all aggregation functions. If
a function may return different values on different executions, the function is
often not implemented correctly. A program with explicit assumptions on the
input data is also desirable. Otherwise, the program may work correctly on
certain data sets but produce unexpected outcomes on others where implicit
assumptions do not hold [27]. We now investigate conditions under which Spark
aggregation combinators always produce deterministic outcomes. Proofs of the
given lemmas can be found in [12]. Proofs of some crucial lemmas have also been
formalized using Agda [4].
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We first show how to deal with non-deterministic behaviors in the aggregate
combinator. Consider a variant of the formalization of aggregate from Sect. 3:
aggregate’::β → (β → α → β) → (β → β → β) → RDD α → β
aggregate’ z seq comb rdd = let presults = perm (map (foldl seq z) rdd)

in foldl comb z presults

Observe that we changed the application of the chaotic map! function with an
application of the permutation perm after the regular map function. The function
composition perm(map ...) is a concrete instantiation of map!, that is, a function
that permutes its list argument. Notice that perm can be pushed inside map:

perm (map f xs) == map f (perm xs).

Assume that rdd was obtained from a list xs by splitting and permuting, that is,
rdd == perm’ (split xs) where split :: [α] → [[α]] satisfies xs == (concat . split) xs.
We can therefore rewrite the computation of presults in aggregate’ to
let pres = perm (map (foldl seq z) (perm’ (split xs))),

After pushing perm inside map, we obtain
let pres = map (foldl seq z) ((perm . perm’) (split xs)).

Since perm . perm’ is also a permutation perm”, we have
let pres = map (foldl seq z) rdd’

where rdd’ is another RDD obtained from xs by splitting and shuffling. Let us
call (deterministic) instances of repartition! as partitionings. As a consequence,
we focus only on proving if calls to aggregateD defined below have deterministic
outcomes for different partitionings of a list into RDDs:
aggregateD:: β → (β → α → β) → (β → β → β) → RDD α → β

aggregateD z seq comb rdd = let pres = map (foldl seq z) rdd
in foldl comb z pres

Moreover, we define deterministic versions of reduce

reduceD :: (α → α → α) → RDD α → α

reduceD comb rdd = let presults = perm (map (reducel comb) rdd)
in reducel comb presults

and also treeAggregateD and treeReduceD in a similar way.
In the following, given a function f that takes an RDD as one of its parameters

and contains a single occurrence of the chaotic map! (respectively concatMap!)
function, we use fD to denote the function obtained from f by replacing the
chaotic map! (respectively concatMap!) with a regular map (respectively con-
catMap). A similar reasoning can show that it suffices to check whether calls to
fD have deterministic outcomes for different partitionings on a list into RDDs.

For better readability, standard mathematical notation of functions is used
in the rest of this section. We represent a Haskell function application f x1 . . .
xn as f(x1, . . . , xn).
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4.1 aggregate

In this section, we give conditions for deterministic outcomes of calls to the
aggregate combinator aggregate(z, seq ,⊕, rdd) for z ::β, seq ::β×α → β, ⊕ ::β×
β → β, and rdd ::RDD α. We first define what it means for calls to the aggregate

combinator to have deterministic outcomes.
Definition 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes if

aggregateD(z, seq ,⊕, part(L)) = foldl(seq , z, L) (1)

for all lists L and partitionings part.

Conventionally, aggregate is regarded as a parallelized counterpart of foldl.
For example, the sequential aggregate function in the standard Scala library
ignores the ⊕ operator and is implemented by foldl. This is why we characterize
deterministic aggregate as foldl in Definition 1. Our characterization, however,
does not cover all aggregate calls that always give the same outputs. In particular,
it does not cover an aggregate call where ⊕ is a constant function, which is,
however, quite suspicious in a distributed data-parallel computation and should
be reported.

We give necessary and sufficient conditions for aggregate calls to have
deterministic outcomes in several lemmas, culminating in Corollary 1. The
first lemma allows us to check only conditions on seq and ⊕ over all pos-
sible pairs of lists instead of enumerating all possible partitionings on lists.
For brevity, we use 〈p1〉 for foldl(seq , z, p1), and img()foldl(seq , z) for the
image of foldl(seq , z, L) for any list L. That is, img(foldl(seq , z)) = {y |
there is a list L such that foldl(seq , z, L) = y}.

Lemma 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff:
1. (img(foldl(seq , z)),⊕, z) is a commutative monoid, and
2. for all lists p1, p2 :: [α], 〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉.

Note that condition 2 in Lemma 1 is equivalent to saying that 〈·〉 is a list
homomorphism to the monoid (img(foldl(seq , z)),⊕, z) [6].

The lemma below further helps us reduce the need of testing conditions over
all possible pairs of lists to conditions over elements of α × img(foldl(seq , z)).

Lemma 2. Let ⊕ be associative on γ = img(foldl(seq , z)) and z be the identity
of ⊕ on γ. The following are equivalent:

1. for all lists p1, p2 :: [α],
〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉, (2)

2. for all elements d ::α and e :: γ,

seq(e, d) = e ⊕ seq(z, d). (3)

Summarizing the lemmas, we get the following corollary:

Corollary 1. Calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes iff
1. (img(foldl(seq , z)),⊕, z) is a commutative monoid and
2. for all d ::α and e :: img(foldl(seq , z)), it holds that seq(e, d) = e ⊕ seq(z, d).
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4.2 reduce

This section explores conditions for deterministic outcomes of calls to
reduce(⊕, rdd) for ⊕ ::α×α → α and rdd ::RDD α. We use the function reduceD

defined in the introduction of Sect. 4. For reduce, we assume that for any non-
empty list, all partitions of its partitioning are non-empty (otherwise the result
of reduce is undefined).

We define deterministic outcomes for reduce as follows.

Definition 2. Calls to reduce(⊕, rdd) have deterministic outcomes if

reduceD(⊕, part(L)) = reducel(⊕, L) (4)

for all lists L and partitionings part.

We reduce the problem of checking if reduce has deterministic outcomes to
the problem of checking if aggregate has deterministic outcomes by the following
lemma.
Lemma 3. Calls to reduce(⊕, rdd) have deterministic outcomes iff calls to
aggregate(Nothing, seq ′,⊕′, rdd) have deterministic outcomes, where seq ′ and
⊕′ are as follows:

seq’ x y = case x of
Nothing → Just y
Just x’ → Just (x’ ⊕ y)

(⊕’) x y = case (x, y) of (Nothing, y’) → y’
(x’, Nothing) → x’
(Just x’, Just y’) → Just (x’ ⊕ y’) .

Combining Corollary 1 and Lemma 3, we get the condition for deterministic
outcomes of reduce(⊕, rdd) calls.

Corollary 2. Calls to reduce(⊕, rdd) have deterministic outcomes iff (α,⊕) is
a commutative semigroup.

4.3 treeAggregate and treeReduce

This section gives conditions for deterministic outcomes of calls to the following
two aggregate combinators:

1. treeAggregate(z, seq ,⊕, rdd) for z ::β, seq ::β × α → β, ⊕ ::β × β → β, and
rdd ::RDD α; and

2. treeReduce(⊕, rdd) for ⊕ ::α × α → α, rdd ::RDD α.

Different from aggregate and reduce, the tree variants have another level of
non-determinism modeled by apply!. The chaotic function effectively simulates
non-deterministic computation with a binary-tree structure (Sect. 3).

To define calls to treeAggregate and treeReduce to have deterministic out-
comes, we use the functions treeAggregateT and treeReduceT obtained by
adding an explicit deterministic instantiation of apply! to treeAggregateD and
treeReduceD.
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Definition 3. Calls to treeAggregate(z, seq ,⊕, rdd) and treeReduce(⊕, rdd)
have deterministic outcomes if

treeAggregateT(apply , z, seq ,⊕, part(L)) = foldl(seq , z, L) (5)

and
treeReduceT(apply ,⊕, part(L)) = reducel(⊕, L) (6)

respectively for all lists L, partitionings part, and instantiations apply of apply !.

The following two propositions state necessary and sufficient conditions for
the treeAggregate and treeReduce combinators to have deterministic outcomes.

Proposition 1. Calls to treeAggregate(z, seq ,⊕, rdd) have deterministic out-
comes iff calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes.

Proposition 2. Calls to treeReduce(⊕, rdd) have deterministic outcomes iff
calls to reduce(⊕, rdd) have deterministic outcomes.

4.4 aggregateByKey and reduceByKey

We proceed by investigating conditions for the following combinators on pair
RDDs:

1. aggregateByKey(z, seq ,⊕, prdd) for z :: γ, seq :: γ ×β → γ, ⊕ :: γ × γ → γ, and
prdd ::PairRDD α β; and

2. reduceByKey(⊕, prdd) for ⊕ ::β × β → β and prdd ::PairRDD α β.

We define an auxiliary function filterkey that obtains a list of all values associated
with the given key from a list of pairs.
filterkey :: α → [(α, β)] → [β]
filterkey [] = []
filterkey k (k, v):xs = v:(filterkey k xs)
filterkey k ( , ):xs = filterkey k xs

Deterministic outcomes of calls to aggregateByKey are now defined using the
function aggregateByKeyD as follows.

Definition 4. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic
outcomes if

lookup(k, aggregateByKeyD(z, seq ,⊕, part(L))) = foldl(z, seq ,filterkey(k, L))

for all lists L of pairs, partitionings part, and keys k.

Finally, the following proposition states the conditions that need to hold for
calls to aggregateByKey to have deterministic outcomes.

Proposition 3. Calls to aggregateByKey(z, seq ,⊕, prdd) have deterministic
outcomes iff calls to aggregate(z, seq ,⊕, rdd) have deterministic outcomes.
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We define when calls to reduceByKey have deterministic outcomes via
reduceByKeyD.

Definition 5. Calls to reduceByKey(⊕, prdd) have deterministic outcomes if

lookup(k, reduceByKeyD(⊕, part(L))) = reducel(⊕,filterkey(k, L))

for all list L of pairs, partitioning part, and key k.

Proposition 4. Calls to reduceByKey(⊕, prdd) have deterministic outcomes
iff calls to reduce(⊕, rdd) have deterministic outcomes.

4.5 Discussion

Our conditions for deterministic outcomes are more general than it appears.
In addition to scalar data, such as integers, they are also applicable to RDDs
containing non-scalar data, such as lists or sets. In our extended set of case
studies, we will prove deterministic outcomes from a distributed Spark program
using non-scalar data [12].

Corollary 1 gives necessary and sufficient conditions for calls to aggregate to
have deterministic outcomes. Instead of checking whether aggregate computes
the same result on all possible partitionings on any list for given z, seq , and
comb, the corollary, instead, allows us to investigate properties for all elements
of img(foldl(seq , z)) × img(foldl(seq , z)) and α × img(foldl(seq , z)). Our precise
conditions reduce the need of checking all partitionings to checking all elements
of Cartesian products. It appears that deterministic outcomes from calls to com-
binators can be verified automatically. The problem, however, remains difficult
for the following reasons:

(a) The domain img(foldl(seq , z)) can be infinite and in general not computable.
(b) Even if α and img(foldl(seq , z)) are computable, seq and ⊕ may not be

computable. Näıvely enumerating elements in α and img(foldl(seq , z)) would
not work.

(c) Testing equality between elements of img(foldl(seq , z)) can be undecidable.

Given seq ::β × α → β, recall that img(foldl(seq , z)) is a subset of β. A sound
but incomplete way to avoid (a) in practice is to test the properties of ⊕ on all
elements of β instead. If a counterexample is found for some elements of β, the
counterexample may not be valid in a real aggregate call because it may not
belong to img(foldl(seq , z)). In practical cases, the sets α and β are finite (such as
machine integers) and equality between their elements is decidable. Even for such
cases, checking if outcomes of aggregate are deterministic is still difficult since
seq and ⊕ might not terminate for some input. In many real Spark programs,
however, seq and ⊕ are very simple and thus computable (for instance, with only
bounded loops or recursion). A semi-procedure to test these conditions might
work on such practical examples.
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5 Case Studies

We evaluated advantages of our PureSpark specification on several case stud-
ies. In this section, we first analyze a Spark implementation of linear classifica-
tion. Using the treeAggregate specification and its criteria for deterministic out-
comes, we construct inputs yielding non-deterministic outcomes from the Spark
implementation. Second, we analyze an implementation of a standard scaler and
find a non-deterministic behavior there, too. Yet more case studies are provided
in [12].

5.1 Linear Classification

Linear classification is a well-known machine learning technique to classify data
sets. Fix a set of features. A data point is a vector of numerical feature values. A
labeled data point is a data point with a discrete label. Given a labeled data set,
the classification problem is to classify (new) unlabeled data points by the labeled
data set. A particularly useful subproblem is the binary classification problem.
Consider, for instance, a data set of vital signs of some population; each data
point is labeled by the diagnosis of a disease (positive or negative). The binary
classification problem can be used to predict whether a person has the particular
disease. Linear classification solves the binary classification problem by finding
an optimal hyperplane to divide the labeled data points. After a hyperplane is
obtained, linear classification predicts an unlabeled data point by the half-space
containing the point. Logistic regression and linear Support Vector Machines
(SVMs) are linear classification algorithms.

Consider a data set {(�xi, yi) : 1 ≤ i ≤ n} of data points �xi ∈ R
d labeled by

yi ∈ {0, 1}. Linear classification can be expressed as a numerical optimization
problem:

min
�w∈Rd

f(�w) with f(�w) = ξR(�w) +
1
n

n∑

i=1

L(�w; �xi, yi)

where ξ ≥ 0 is a regularization parameter, R(�w) is a regularizer, and L(�w; �xi, yi)
is a loss function. A vector �w corresponds to a hyperplane in the data point
space. The vector �wopt attaining the optimum hence classifies unlabeled data
points with criteria defined by the objective function f(�w). Logistic regression
and linear SVM are but two instances of the optimization problem with objective
functions defined by different regularizers and loss functions.

In the Spark machine learning library, the numerical optimization problem
is solved by gradient descent. Very roughly, gradient descent finds a local min-
imum of f(�w) by “walking” in the opposite direction of the gradient of f(�w).
The mean of subgradients at data points is needed to compute the gradient of
f(�w). The Spark machine learning library invokes treeAggregate to compute
the mean. Floating-point addition is used as the comb parameter of the aggre-
gate combinator. Since floating-point addition is not associative, we expect to
observe non-deterministic outcomes (Proposition 1).
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Consider the following three labeled data points: −1020 labeled with 1, 600
labeled with 0, and 1020 labeled with 1. We create a 20-partition RDD with
an equal number of the three labeled data points. The Spark machine learn-
ing library function LogisticRegressionWithSGD.train is used to generate a logistic
regression model to predict the data points −1020, 600, and 1020 in each run.
Among 49 runs, 19 of them classify the three data points into two different
classes: the two positive data points are always classified in the same class, while
the negative data point in the other. The other 30 runs, however, classify all three
data points into the same class. We observe similar predictions from SVMWith-

SGD.train with the same labeled data points. 37 out of 46 runs classify the data
points into two different classes; the other 9 runs classify them into one class.
Interestingly, the data points are always classified into two different classes by
both logistic regression and linear SVM when the input RDD has only three
partitions. As we expected from our analysis of the function, non-deterministic
outcomes were witnessed in our Spark distributed environment.

5.2 Standard Scaler
Standardization of data sets is a common pre-processing step in machine learn-
ing. Many machine learning algorithms tend to perform better when the training
set is similar to the standard normal distribution. In the Spark machine learn-
ing library, the class StandardScaler is provided to standardize data sets. The
function StandardScaler.fit takes an RDD of raw data and returns an instance of
StandardScalerModel to transform data points. Two transformations are available
in StandardScalerModel. One standardizes a data point by mean, and the other
normalizes by variance of raw data. If data points in raw data are transformed by
mean, the transformed data points have the mean equal to 0. Similarly, if they
are transformed by variance, the transformed data points have the variance 1.

The StandardScaler implementation uses treeAggregate to compute statis-
tical information. It uses floating-point addition to combine means of raw
data in different partitions. As in the previous use case, since floating-point
addition is not associative, StandardScaler does not produce deterministic out-
comes (Sect. 4.3). In our experiment, we create a 100-partition RDD with values
−1020, 600, 1020 of the same number of occurrences. The mean of the data set is
(−1020×n+600×n+1020×n)/(3n) = 200 where n is the number of occurrences
of each value. The data point 200 should therefore be after standardization trans-
formed to 0. In 50 runs on the same data set in our distributed Spark platform,
StandardScaler transforms 200 to a range of values from −944 to 1142, validating
our prediction of a non-deterministic outcome.

6 Related Work

MapReduce modeling and optimization. In the MapReduce (MR) compu-
tation, various cost and performance models have been proposed [16,18,25,31].
These models estimate the execution time and resource requirements of MR jobs.
Karloff et al. developed a formal computation model for MR [21] and showed
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how a variety of algorithms can exploit the combination of sequential and par-
allel computation in MR. We are not aware of a similar work in the context of
Spark. To the best of our knowledge, our work is the first to address the problem
of formal, functional specification of Spark aggregation. Verifying the correct-
ness of a MR program involves checking the commutativity and associativity of
the reduce function. Xu et al. propose various semantic criteria to model com-
monly held assumptions on MR programs [28], including determinism, partition
isolation, commutativity, and associativity of map/reduce combinators. Their
empirical survey shows that these criteria are often overlooked by programmers
and violated in practice. A recent survey [27] has found that a large number of
industrial MR programs are, in fact, non-commutative. Recent work has pro-
posed techniques for checking commutativity of bounded reducers automati-
cally [13]. Because it is non-trivial to implement high-level algorithms using the
MR framework, various approaches to compute optimized MR implementations
have been proposed [17,23,24]. Emoto et al. [17] formalize the algebraic con-
ditions using semiring homomorphism, under which an efficient program based
on the generate-test-aggregate programming model can be specified in the MR
framework. Given a monolithic reduce function, the work in [23] tries to decom-
pose reduce into partial aggregation functions (similar to seq and comb in this
paper) using program inversion techniques. Mold [24] translates imperative Java
code into MR code by transforming imperative loops into fold combinators using
semantic-preserving program rewrite rules.

Numerical Stability under MapReduce. Several works try to scale up
machine learning algorithms for large datasets using MapReduce [14,25]. To
achieve numerically stable results across multiple runs [5,26], for example, pre-
venting overflow, underflow and round-off errors due to finite-precision arith-
metic, a variety of techniques are proposed [26]: generalizing sequential numeri-
cal stability techniques to distributed settings, shifting data values by constants,
divide-and-conquer, etc. We showed that simulating machine learning algorithms
using our specification enables early detection of points of numerical instability.

Relational Query Optimization. Relational query optimization is an exten-
sively researched topic [11,20]: the goal is to obtain equivalent but more efficient
query expressions by exploiting the algebraic properties of the constituent oper-
ators, for instance, join, select, together with statistics on relations and indices.
For example, while inner joins commute independent of data, left joins commute
only in specific cases. Query optimization for partitioned tables has received less
attention [2,19]: because the key relational operators are not partition-aware,
most work has focused on necessary but not sufficient conditions for query equiv-
alence. In contrast, we investigate determinism of Spark aggregate expressions,
constructed using partition-aware seq and comb combinators. We describe neces-
sary and sufficient conditions under which these computations yield deterministic
results independent of the data partitions.

Deterministic Parallel Programming. In order to enable deterministic-
by-default parallel programming [7–10,22], researchers have developed several
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programming abstractions and logical specification languages to ensure that
programs produce the same output for the same input independent of thread
scheduling. For example, Deterministic Parallel Java [7,8] ensures exclusive
writes to shared memory regions by means of verified, user-provided annotations
over memory regions. In contrast, deterministic outcomes from Spark aggrega-
tion depend on algebraic properties like commutativity and associativity of seq
and comb functions and their interplay.

7 Conclusion

In this paper, we give a Haskell specification for various Spark aggregate com-
binators. We focus on aggregation of RDDs representing general sets, sets of
pairs, and graphs. Based on our specification, we derive necessary and sufficient
conditions that guarantee deterministic outcomes of the considered Spark aggre-
gate combinators. We investigate several case studies and use the conditions to
predict non-deterministic outcomes. Our executable specification can be used
by developers for more detailed analysis and efficient development of distributed
Spark programs. We also believe that our specifications are valuable resources
for research communities to understand Spark better.

There are several future directions. The conditions for deterministic out-
comes of aggregate combinators could be used for: (i) creating fully mechanized
proofs for properties about data-parallel programs; (ii) developing automatic
techniques for detecting non-deterministic outcomes of data-parallel programs;
and (iii) synthesizing deterministic concurrent programs from sequential specifi-
cations. We have formalized the proofs of some crucial lemmas in Agda [4]. Using
Scalaz [3], verified Haskell specifications can be translated to Spark programs to
ensure determinism by construction.
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Abstract. The predominant notion for specifying problems to study
distributed computability are tasks. Notable examples of tasks are con-
sensus, set agreement, renaming and commit-adopt. The theory of task
solvability is well-developed using topology techniques and distributed
simulations. However, concurrent computing problems are usually speci-
fied by objects. Tasks and objects differ in at least two ways. While a task
is a one-shot problem, an object, such as a queue or a stack, typically
can be invoked multiple times by each process. Also, a task, defined in
terms of sets, specifies its responses when invoked by each set of processes
concurrently, while an object, defined in terms of sequences, specifies the
outputs the object may produce when it is accessed sequentially.

In a previous paper we showed how tasks can be used to specify one-
shot objects (where each process can invoke only one operation, only
once). In this paper we show how the notion of tasks can be extended to
model any object. A potential benefit of this result is the use of topol-
ogy, and other distributed computability techniques to study long-lived
objects.

Keywords: Distributed problems · Formal specifications · Tasks ·
Sequential specifications · Linearizability · Long-lived objects

1 Introduction

A predominant formalism for specifying one-shot distributed problems, espe-
cially in distributed computability, is through the notion of a task [12]. Tasks
are one-shot because each process invokes exactly one operation, and receives
exactly one response. We think of the operation invoked by the process as its pro-
posal, or its input value, and of the response, as its output value. Informally, a task
is specified by an input/output relation, defining for each set of processes that
may run concurrently, and each assignment of inputs to the processes in the set,
the valid outputs of the processes. A central task is consensus, where processes
agree on one of the proposed input values. In k-set agreement, processes agree on
at most k different input values. Thus, 1-set agreement is the same as consensus.
Tasks have been intensively studied in distributed computability, leading to an
understanding of their relative power [8], to the design of simulations between
c© Springer International Publishing AG 2017
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models [2], and to the development of a deep connection between distributed
computing and topology [7].

In concurrent computing, problems are typically specified sequentially,
instead of as tasks, because it is harder to reason about concurrent specifica-
tions. Tasks and objects model in a different way the concurrency that naturally
arises in distributed systems: while tasks explicitly state what might happen
when a set of processes run concurrently, objects only specify what happens
when processes access the object sequentially.

An object is specified in terms of a sequential specification, i.e., an automa-
ton describing the outputs the object produces when it is accessed sequentially.
There are various ways of defining how the object behaves when it is accessed
concurrently by several processes. The linearizability [11] consistency condition
is a way of producing a sequential execution out of a concurrent execution, which
then can be used against the object specification. Linearizability is very popular
because it is local, namely, one can consider linearizable object implementations
in isolation, and their composition is guaranteed to be linearizable. Also, lin-
earizability is a non-blocking property, which means that a pending invocation
(of a total operation) is never required to wait for another pending invocation
to complete.

Contributions. In a previous paper [4] we showed how tasks can be used to
specify one-shot objects (where each process can invoke only one operation,
only once). In this paper we show how the notion of tasks can be extended
to model any object. More precisely, for any object X, we describe how to
construct a task TX , the long-lived task derived from X, with the property that
an execution E is linearizable with respect to X if and only if E satisfies TX .
Then we explore the opposite direction, namely, transforming long-lived tasks
to sequential objects. As shown in [4,13], there are tasks (in the usual sense)
that cannot be expressed as objects. Notable examples are the set agreement
and immediate snapshot tasks. Interval-sequential objects, introduced in [4],
are a generalization of sequential objects, which can describe any pattern of
concurrent invocations. We show that from any long-lived task T can be obtained
an interval-sequential object XT such that an execution E satisfies T if and only
if E is interval-linearizable with respect to XT . Thus, interval-sequential objects
and long-lived tasks have the same expressive power.

Related work. Tasks and objects have largely been independently studied. The
first to study the relation between tasks and objects was Neiger [13] in a brief
announcement in 1994, where he noticed that there are tasks, like immedi-
ate snapshot [1], with no specification as sequential objects. An object mod-
eling the immediate snapshot task is necessarily stronger than the immedi-
ate snapshot task, because such an object implements test-and-set. In contrast
there are read/write algorithms solving the immediate snapshot task and it is
well-known that there are no read/write linearizable implementations of test-
and-set. Therefore, Neiger proposed the notion of a set-sequential object, that
specifies the values returned when sets of processes access it simultaneously.
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Then, one can define an immediate snapshot set-sequential object, and there are
set-linearizable implementations. Much more recently, it was again observed that
for some concurrent objects it is impossible to provide a sequential specification,
and concurrency-aware linearizability was defined [9], and studied further in [10].
In [4] we initiated an in-depth study of the relation between tasks and objects.
We introduced the notion of interval-sequential object, and showed that it can
model any task. Also, we showed that a natural extension of the notion of a task
is expressive enough to specify any one-shot object.

Set linearizability and concurrency-aware linearizability are closely related
and both are strictly less powerful than interval-linearizability to model tasks.

Transforming the question of wait-free read/write solvability of a one-shot
sequential object, into the question of solvability of a task was suggested in [6].
That transformation takes a sequential object X and produces a task TX such
that X is solvable in the read/write wait-free crash-failure model of computation
if and only if TX is solvable in that model. In TX , processes produce outputs for
X and an additional snapshot. Our construction here and in [4] is reminiscent
to the construction in [6].

2 Tasks and Objects

2.1 Tasks

A simplicial complex, or complex for short, is a generalization of a graph. A com-
plex is a collection of sets closed under containment. The sets of a complex are
called simplices. A graph consists of two types of simplices: sets of dimension
1, namely edges (which are sets of vertices), and sets of dimension 0, namely
vertices. A 2-dimensional complex consists of simplices of 3 vertices, simplices of
2 vertices, and simplices of 1 vertex. It is always required that if a simplex is in
the complex, all its subsets also belong to the complex.

Formally, a task is a triple 〈I,O,Δ〉, where I and O are complexes, with
I containing valid input configuration to the processes and O containing valid
output configurations. Each simplex of I has the form {(id1, x1), . . . , (idk, xk)},
where the id′

is are distinct ID’s of processes and the x′
is are inputs. The vertices of

I are its singleton sets. The meaning of an input simplex σ is that the processes
in σ might start with those inputs in the simplex. The output complex O is
defined similar.

In Fig. 1 part of the input complex I for 2-set agreement, for 3 processes,
is illustrated. It is the part where each process proposes as input its own id.
The simplex σ represents the initial configuration where each processes proposes
as input its own id. Inside a vertex is the id of the process, and outside is
its input value. The edges of σ are input simplexes, where only two processes
participate, and the third process never wakes up. The vertices of σ represent
initial configurations where only one process participate.

Each simplex of the output complex represents the decisions of the processes
in some execution solving the task. Vertices are labeled, on the inside with ids,
and on the outside with decision values. For instance, in σ1 the decisions are p, r
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Fig. 1. An input simplex σ and the corresponding output complex Δ(σ), for 2-set
agreement task.

and p, respectively for p, q, r. Notice that there is no simplex in the center, there
is a hole, because the processes are not allowed to decide 3 different values in
2-set agreement. An example of a 1-dimensional simplex is σ3, where p decides
p and q decides q.

The relation Δ states that if a process sees only itself in an execution, it
should decide its own input value. For instance, Δ of input vertex for p contains
only the output vertex of p labeled p at the top corner of O. Similarly, if p and q
see each other in an execution, where r does not participate, Δ of the input edge
for p and q contains only σ3. Finally, Δ(σ) contains all triangles of O, because
it specifies output values when all three processes see all input values.

The function Δ is the artefact that relates valid inputs and outputs. Formally,
Δ is a function mapping each input simplex σ ∈ I to a subcomplex Δ(σ) ⊆ O
such that each output simplex τ ∈ Δ(σ) has the same cardinality as σ and both
simplexes, σ and τ , contain the same ID’s of processes. In words, Δ(σ) describes
all possible output configurations in executions in which only the processes in σ
participate in the computation and all of them run to completion.

Tasks have their own notion of solvability, that is, a mechanism to distinguish
between valid from invalid executions, with respect to a given task. Let E be an
execution in which every participating process decides an output value (to its
unique invocation). Namely, there are no pending invocations in E. Let σE be
the set with all pairs (idi, xi), where xi is the input of process idi, and, similarly,
let τE be the set with all pairs (idi, yi), where yi is the output of process idi.
Then, we say that E satisfies a task T if τE ∈ Δ(σE), i.e., the processes decide
an output assignment that agrees with the specification of the task.

2.2 Objects

A long-lived sequential object, or object for short, allows each process to invoke
any number of times any of the operations provided by the object. For example,
in a stack, each process can invoke push and pop operation as many times as
it wants, in any order. Typically, a long-lived object is formally specified in
terms of a sequential specification, i.e., an automaton describing the outputs
the object produces when it is accessed sequentially. Thus, an execution with
concurrent operations needs to emulate somehow an allowed sequential behavior
of the automaton.
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There are various ways of defining what it means for an execution to be valid
with respecto a sequential specification (or the meaning of emulating a sequential
behavior of the automaton). One of the most popular consistency conditions is
linearizability [11].

Given a sequential specification of an object, an execution is linearizable if it
can be transformed into a sequential one such that (1) it respects the real-time
order of invocation and responses and (2) the sequential execution is recognized
by the automaton specifying the object. Thus, an execution is linearizable if,
for each operation call, it is possible to find a unique point in the interval of
real-time defined by the invocation and response of the operation, and these
linearization points induce a valid sequential execution.

Linearizability is very popular to design components of large systems because
it is local, namely, one can consider linearizable object implementations in isola-
tion and compose them without sacrificing linearizability of the whole system [5].
Also, linearizability is a non-blocking property, which means that a pending
invocation (of a total operation, i.e., an operation that always can be invoked
regardless of the state of the automaton) is never required to wait for another
pending invocation to complete.

2.3 Limitations of the Standard Semantics of Task

It has been observed [4] that tasks are too weak to represent some objects, under
the usual semantics of a task described above. We briefly recall the following
example from [4].

Consider a restricted queue O for three processes, p, q and r, in which, in
every execution, p and q invoke enq(1) and enq(2), respectively, and r invokes
deq(). If the queue is empty, r’s dequeue operation gets ⊥.

Suppose, for contradiction, that there is a corresponding task TO =
(I,O,Δ), that corresponds to O. The input complex I consists of one
vertex for each possible operation by a process, namely, the set of ver-
tices is {(p, enq(1)), (q, enq(2)), (r, deq())}, and I consists of all subsets of
this set. Similarly, the output complex O contains one vertex for every
possible response to a process, therefore it consists of the set of ver-
tices {(p, ok), (q, ok), (r, 1), (r, 2), (r,⊥)}. It should contain a simplex σx =
{(p, ok), (q, ok), (r, x)} for each value of x ∈ {1, 2,⊥}, because there are exe-
cutions where p, q, r get such values, respectively. See Fig. 2.

Now, consider the three sequential executions of the figure, α1, α2 and α⊥.
In α1 the process execute their operations in the order p, q, r, while in α2 the
order is q, p, r. In α1 the response to r is 1, and if α2 it is 2. Given that these
executions are linearizable for O, they should be valid for TO. This means that
every prefix of α1 should be valid:

{(p, ok)} = Δ((p, enq(1))
{(p, ok), (q, ok)} ∈ Δ({(p, enq(1), (q, enq(2)})

σ1 = {(p, ok), (q, ok), (r, 1)} ∈ Δ({(p, enq(1), (q, enq(2), (r, deq())}) = Δ(σ)
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Fig. 2. Counterexample for a simple queue object

Similarly from α2 we get that

σ2 = {(p, ok), (q, ok), (r, 2)} ∈ Δ(σ)

But now consider α3, with the same sequential order p, q, r of operations, but
now r gets back value 2. This execution is not linearizable for O, but is accepted
by TO because each of the prefixes of α3 is valid. More precisely, the set of inputs
and the set of outputs of α2 are identical to the sets of inputs and set of outputs
of α3.

3 Long-Lived Tasks

Tasks provide a compact and static formalism for specifying one-shot distrib-
uted problems. Could it be that long-lived objects can be specified as a task?
Is it possible to have a static representation of a queue or list? As explained
above, tasks are not expressive enough to model even restricted queues or stacks
in which each process can execute at most one operation. However, the task
formalism can be extended to handle long-lived objects.

In order to model long-lived objects, the task formalism has to be extended
to deal with two issues: (1) each process might invoke several operations (in
any order) and (2) model valid executions, i.e., executions that are linearizable
with respect to the object (which in the end involves modeling the interleaving
pattern in a given execution).

A long-lived task is a triple 〈I,O,Δ〉, where I and O are input and output
complexes and Δ is a function from simplexes of I to subcomplexes of O. A
main difference with regular tasks is the meaning of input and output vertices
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and the solvability condition, which will be slightly modified. Roughly speaking,
for a long-lived task, a vertex of I represents the invocation of an operation by
a particular process. Then, an input simplex σ ∈ I represents a collection of
invocations (maybe all of them by the same process) that are to be performed
on the object, and Δ(σ) is the subcomplex containing all allowed responses the
invocations in σ might obtain, in all sequential interleavings. We will use Fig. 3
as a running example.

3.1 Modeling Multiple Invocations

Let X be any sequential object. To make things simple, we will treat each invo-
cation as unique by tagging each of them with an invocation ID made of a pair
composed of the ID of the invoking process and an additional integer which
makes invocations of the same process to the same operation type unique.

Let Inv be the infinite set with all invocations to X. Each element in Inv
has the form Inv(idi, op type, inputi). Then, I is the complex containing every
finite subset of Inv as simplex. Thus, I is a simplex of infinite dimension whose
faces are of finite dimension. Note that simplices in I might contain invocations
by the same process.

The output complex O has the responses to the invocations in I. Let Res be
the infinite set with all response values X might produce to the invocation in Inv.

Fig. 3. An input simplex of the long-lived task modeling the stack in which p executes
a push and a pop and q a push. Two ways of drawing the output complex are shown.
The one on the bottom emphasizes the role of the map Δ: input vertices are sent to
corner output vertices, edges are sent to edges on the boundary of O, and σ is sent to
all of O.
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The output complex O is the complex containing every finite set in Inv ×Res×
2Inv, where 2Inv is the power set of Inv. Thus, each vertex in O is a triple with
an invocation, a response to the invocation and set of invocations. This set is
called set-view and is the mechanism to model valid sequential executions, as
explained below.

3.2 Modeling Valid Executions

Let E be sequential execution accepted by X in which every invocation has a
matching response. We would like to represent that execution and its interleaving
pattern as an output simplex in O, that is, we identify that sequential interleav-
ing and the output values as correct and encode it somehow in O. It turns out
that this can be easily done by adding to each response in E, the set of invo-
cations preceding the response in E. These are the set-views mentioned before.
Intuitively, the set-view of a response is the set of all invocation a process sees
when computing the output for its invocation. Thus, the set-view of a response
is a subset of the set of all invocations in E.

Let σE be the set with all invocation in E and τE be set of all pairs invocation,
response in E, each of them with its corresponding set-view. The importance of
the set-views is that they together fully capture the interleaving pattern in E.
More precisely, two executions E and E′ (not necessarily sequential) induce
the same set of set-views (namely, τE = τE′) if and only if they have the same
interleaving pattern, i.e., they are the same execution. Therefore, using set-views,
we can model valid executions.

We can now define the mapping Δ: for every input simplex σ ∈ I, Δ(σ)
is the subcomplex of O containing τE , as defined above, for every sequential
execution E accepted by X with only invocations in σ and every invocation has
a matching response.

3.3 Solvability Condition

Se far we have encoded all valid sequential executions with the help of the set-
views. Now we need a way to identify any execution as valid, namely, as one
which is linearizable with respect to X.

For a given sequential object X, let TX = 〈I,O,Δ〉 be the long-lived task
constructed from X as described above. Consider any execution E without pend-
ing operations let σE and τE be the simplexes defined above from E. Then, we
say that E satisfies TX if there is a simplex λ ∈ Δ(σE) such that for every
(inv, resp, view) ∈ τE there is a (inv′, resp′, view′) ∈ λ such that inv′ = inv,
resp′ = resp and view′ ⊆ view. Intuitively, E satisfies the task if its set-views
can be sequentially arranged so that the sequence induce an execution in Δ(σE),
hence, by construction, accepted by X.

Theorem 1. Let X be any sequential object and let TX be the long-lived task
derived from X. Consider any execution E without pending operations. Then, E
is linearizable with respect to X if and only if E satisfies TX .
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Proof. We first show that if E is linearizable then E satisfies TX . By lineariz-
ability, E can be transformed into a sequential execution S accepted by X such
that S respects the real-time order of E. Consider the simplexes σE , σS , τE and
τS obtained from E and S. We have that σE = σS because E and S have the
same invocations. Also, τS ∈ Δ(σE), by the definition of TX and because S is
accepted by X. Pick any (inv, resp, view) ∈ τE and let (inv′, resp′, view′) ∈ τS
with inv′ = inv. Since S is a linearization of E, it must be that resp′ = resp.
Observe that if we prove that view′ ⊆ view, then it follows that E satisfies TX .
For the sake of contradiction, assume that view′ ⊃ view. Then, in the sequential
execution S, the invocation inv appears after the response of an invocation inv∗

in view′ \ view. However, since inv∗ /∈ view, hence, the response of inv occurs
before inv∗ in E, from which follows that S does not respect the real-time order
in E. A contradiction.

We now show that if E satisfies TX then E is linearizable. Let σE and τE
be the simplexes induced by E. Since E satisfies TX , there is a λ ∈ Δ(σE) such
that for every (inv, resp, view) ∈ τE there is a (inv′, resp′, view′) ∈ λ such that
inv′ = inv, resp′ = resp and view′ ⊆ view. By definition, λ is induced by a
sequential execution S accepted by X. Let σS and τS be the simplexes induced
by S. Note that E and S contain the same invocations and responses. If we
prove that S respects the real-time order in E, then S is a linearization of E. By
contradiction, suppose the opposite. Then, there are invocations inv and inv′

such that the response of inv appears before inv′ in E but the response of inv′

appears before inv in S. Let viewE and viewS be the set-views of inv in E
and S. Thus, inv′ /∈ viewE and inv′ ∈ viewS , and hence viewS � viewE . A
contradiction. Then, S is a linearization of E. �	

We stress that set-views are not output values produced by processes, they
are a mechanism to identify executions as correct. An alternative way to think of
set-views is that they model the memory of a long-lived object in a static man-
ner. It is also worth to stress that the set-views of any execution (possibly non
sequential) are essentially snapshots: each set-view contains its corresponding
invocation and every pair of set-views are comparable under containment.

Remark 1. If a long-lived task is restricted so that each process executes at most
one operation and every set-view is the empty set, then we obtain a regular task
and the solvability condition is equivalent to the usual solvability condition for
tasks.

4 Interval-Sequential Objects

A natural question is if we can do the opposite direction of the construction
described in the previous section. Namely, if for every long-lived task there is an
object such that any execution satisfies the task if and only if it is linearizable
with respect to the object. As shown in [4,13], there are tasks (in the usual
sense) that cannot be expressed as objects, e.g., the set agreement and immediate
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snapshot tasks. Generally speaking, the reason is that tasks (and hence also long-
lived tasks) have the ability to describe executions in which there are concurrent
invocations, which cannot be naturally described with sequential objects (this
can be done at the cost of getting counterintuitive objects, like objects that can
predict future invocations).

Interval-sequential objects, introduced in [4], are a generalization of sequen-
tial objects. Intuitively, they allow concurrent invocations by more than a single
process in some states. As we shall see later, these objects can model long-lived
tasks.

4.1 The Notion of an Interval-Sequential Object

To generalize the usual notion of a sequential object e.g. [3,11], instead of con-
sidering sequences of invocations and responses, we consider sequences of sets of
invocations and responses. An invoking concurrency class C ⊆ 2Inv, is a non-
empty subset of the set of invocations Inv such that C contains at most one
invocation by the same process. A responding concurrency class C, C ⊆ 2Res, is
defined similarly, where Rev is the set of possible responses.

Interval-sequential execution. An interval-sequential execution h is an alternat-
ing sequence of invoking and responding concurrency classes, starting in an
invoking class, h = I0, R0, I1, R1, . . . , Im, Rm, where the following conditions
are satisfied.

1. For each Ii ∈ h, any two invocations in1, in2 ∈ Ii are by different processes.
Similarly, for Ri ∈ h if r1, r2 ∈ Ri then both responses are from distinct
processes.

2. Let r ∈ Ri for some Ri ∈ h. Then there is in ∈ Ij for some j ≤ i, such that
res is matching response for in and furthermore, there is no other in′ such
that in and in′ are from the same processes and in′ ∈ Ij′ , j < j′ ≤ i.

In words, an interval-sequential execution h consists of matching invocations
and responses, perhaps with some pending invocations with no response.

Interval-sequential object. An interval-sequential object X is a (not necessarily
finite) Mealy state machine (Q, 2Inv, 2Res, δ) whose output values R are respond-
ing concurrency classes R of X, R ⊆ 2Res, are determined both by its current
state s ∈ Q and the current input I ∈ 2Inv, where I is an invoking concurrency
class of X. There is a set of initial states Q0 of X, Q0 ⊆ Q. The transition
relation δ ⊆ Q × 2inv × 2Res × Q specifies both, the output of the automaton
and its next state. If X is in state q and it receives as input a set of invocations
I, then, if (R, q′) ∈ δ(q, I), the meaning is that X may return the non-empty
set of responses R and move to state q′. We stress that always both I and R are
non-empty sets.
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Interval-sequential execution of an object. Consider an initial state q0 ∈ Q0 of
X and a sequence of inputs I0, I1, . . . Im. Then a sequence of outputs that X
may produce is R0, R1, . . . Rm, where (Ri, qi+1) ∈ δ(qi, Ii). Then the interval-
sequential execution of X starting in q0 is q0, I0, R0, q1, I1, R1, . . . , qm, Im, Rm.
However, we require that the object’s response at a state uniquely determines the
new state, i.e. we assume if δ(q, Ii) contains (Ri, qi+1) and (Ri, q

′
i+1) then qi+1 =

q′
i+1. Then we may denote the interval-sequential execution of X, starting in q0

by h = I0, R0, I1, R1, . . . , Im, Rm, because the sequence of states q0, q1, . . . , qm is
uniquely determined by q0, and by the sequences of inputs and responses.

Notice that X may be non-deterministic, in a given state qi with input Ii
it may move to more than one state and return more than one response. Also,
sometimes it is convenient to require that the object is total, meaning that, for
every singleton set I ∈ 2Inv and every state q in which the invocation inv in I
is not pending, there is an (R, q′) ∈ δ(q, I) in which there is a response to inv in
R. In what follows we consider only objects whose operations are total.

Our definition of interval-sequential execution is motivated by the fact that
we are interested in well-formed executions h = I0, R0, I1, R1, . . . , Im, Rm. Infor-
mally, the processes should behave well, in the sense that a process does not
invoke a new operation before its last invocation received a response. Also, the
object should behave well, in the sense that it should not return a response to
an operation that is not pending.

Representation of interval-sequential executions. An interval sequential execu-
tion h = I0, R0, I1, R1, . . . , Im, Rm can be represented by a table, with a column
for each element in the sequence h, and a row for each process. A member in ∈ Ij
invoked by pk (resp. a response r ∈ Rj to pk) is placed in the kth row, at the
2jth column (resp. (2j + 1)th column). Thus, a transition of the automaton will
correspond to two consecutive columns, Ij , Rj . See Fig. 4.

Interval-sequential objects include as particular cases sequential objects and
the set-sequential objects and its corresponding set linearizability consistency
condition suggested in [13].

Remark 2 (Sequential and Set-sequential objects). Let X be an interval-
sequential object, (Q, 2Inv, 2Res, δ). Suppose for all states q and all I, if δ(q, I) =
(R, q′), then |R| = |I|, and additionally each r ∈ R is a response to one in ∈ I.
Then X is a set-sequential object. If in addition, |I| = |R| = 1, then X is a
sequential object in the usual sense.

4.2 An Example: The Validity Problem

Consider an object X with a single operation validity(x), that can be invoked by
each process, with a proposed input parameter x, and a very simple specification:
an operation returns a value that has been proposed. This problem is easily
specified as a task. Indeed, many tasks include this apparently simple property,
such as consensus, set-agreement, etc. It turns out that the validity task cannot
be expressed as a sequential object. As an interval-sequential object, it is formally
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specified by an automaton, where each state q is labeled with two values, q.vals is
the set of values that have been proposed so far, and q.pend is the set of processes
with pending invocations. The initial state q0 has q0.vals = ∅ and q0.pend = ∅.
If in is an invocation to the object, let val(in) be the proposed value, and if r
is a response from the object, let val(r) be the responded value. For a set of
invocations I (resp. responses R) vals(I) denotes the proposed values in I (resp.
vals(R)). The transition relation δ(q, I) contains all pairs (R, q′) such that:

– If r ∈ R then id(r) ∈ q.pend or there is an in ∈ I with id(in) = id(r),
– If r ∈ R then val(r) ∈ q.vals or there is an in ∈ I with val(in) = val(r), and
– q′.vals = q.val ∪ vals(I) and q′.pend = (q.pend ∪ ids(I)) \ ids(R).

Fig. 4. An execution of a validity object, and the corresponding part of an interval-
sequential automata

On the right of Fig. 4 there is part of a validity object automaton. On the
left of Fig. 4 is illustrated an interval-sequential execution with the vertical red
double-dot lines: I0, R0, I1, R1, where I0 = {p.validity(1), q.validity(2)}, R0 =
{p.resp(2)}, I1 = {r.validity(3)}, R1 = {q.sfresp(3), r.resp(1)}.

The interval-linearizability consistency notion described in subsection 4.3 will
formally define how a general execution (blue double-arrows in the figure) can be
represented by an interval-sequential execution (red double-dot lines), and hence
tell if it satisfies the validity object specification. The execution in Fig. 4 roughly
shows that the validity object has no specification as a natural sequential object:
if one tries to transform the execution into a sequential one respecting real-time
order, then always an invocation outputs a value that has not been proposed,
namely, the invocation “predicts” the future.

4.3 Interval Linearizability

Interval-sequential come with its own consistency condition, called interval lin-
earizability, that generalizes the linearizability condition of sequential objects.
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Given an interval-sequential specification of an object, an execution is interval
linearizable if it can be transformed into an interval-sequential execution such
that (1) it respects the real-time order of invocation and responses and (2)
the interval-sequential execution is recognized by the automaton specifying the
object.

In other words, an execution is interval-linearizable if, for each operation call,
it is possible to find two points, defining an interval, in the interval of real-time
defined by the invocation and response of the operation, and these linearization
intervals induce a valid interval-sequential execution. Although being more gen-
eral, and hence expressive, interval linearizability retains the good properties of
linearizability of being local and non-blocking.

We can now complete the example of the validity object. In Fig. 5 there is
an interval linearization of the execution in Fig. 4.

Fig. 5. An execution of a validity object

Remark 3 (Linearizability and set-linearizability). When restricted to interval-
sequential executions in which for every invocation there is a response to it in
the very next concurrency class, then interval-linearizability boils down to set-
linearizability. If in addition we demand that every concurrency class contains
only one element, then we have linearizability.

5 Interval-Sequential Objects = Long-Lived Tasks

In this section, we finally show that long-lived tasks and interval-sequential
objects have the same expressiveness power, i.e., they are able to describe the
same set of distributed problems.

5.1 From Interval-Sequential Objects to Long-Lived Tasks

Let X be an interval-sequential object. Using the construction in Sect. 3, one
can obtain a long-lived task TX modeling X. The only difference is that, when
defining Δ(σ), we consider all valid executions of X in which only the invocations
in σ appear. Some of these executions might be non-sequential, i.e., they might be
strictly interval-sequential executions but that is not a problem, the interleaving
pattern in those executions can be succinctly modeled by the set-views. The
solvability conditions remains the same.

The proof of the following theorem is almost the same as the proof of Theo-
rem 1, we just need to replace the word linearizability by interval linearizability.
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Theorem 2. Let X be any interval sequential object and let TX be the long-
lived task derived from X. Consider any execution E without pending operations.
Then, E is interval-linearizable with respect to X if and only if E satisfies TX .

5.2 From Long-Lived Tasks to Interval-Sequential Objects

Let T = 〈I,O,Δ〉 be a long-lived task. We require the task is well-defined in the
following sense. We say that T is well-defined if its set-views have the snapshot
property: for every σ ∈ I, for every τ ∈ Δ(σ), the set-views in τ satisfy the
following: (1) for every v ∈ τ , its set-view contains the invocation in v and (2)
for every u, v ∈ τ , the set-views of u and v are comparable under containment.

In what follows we consider only well-formed long-lived tasks. It can be
checked that the tasks constructed from interval-sequential objects above are
well-formed.

We define an interval-sequential object XT from T as follows. The set of
invocations, Inv, is the infinite set with all invocations in I and the set of
responses, rev, is the infinite set with all responses in O. The set of states
Q contains every pair (I,R) where I and R are finite sets of Inv and Res,
respectively. The interval-sequential object XT has one initial state: (∅, ∅).

The transition function δ is defined as follows. Let E be an execution without
pending operations that satisfies T . Let σE and τE be the simplexes induced
by E. Since E satisfy T , there is a simplex λ ∈ Δ(σE) such that for every
(inv, resp, view) ∈ τE there is a (inv′, resp′, view′) ∈ λ such that inv′ = inv,
resp′ = resp and view′ ⊆ view. Since T is well-defined, the set-views in λ
can be ordered V1 ⊂ V2 ⊂ . . . ⊂ Vm (with Vm = σE). Set W0, V0 = ∅. For
i = 1, . . . ,m, let Ii = Vi \ Vi−1, Ri = {resp : ∃inv ∈ Vi, (inv, resp, Vi) ∈ λ} and
Wi = ∪j=1,...,iRi. One can check that the sequence S = I1, R1, I2, R2, . . . , Im, Rm

has the form a interval sequential execution. The reason is that Ri contains
every matching response, resp, to an invocation, inv ∈ Vi, whose set-view is
precisely Vi. Then, inv can be completed with resp right after Ii because, at
that point, the set-view of inv is the needed one, i.e., Vi (see Fig. 6). Then, for
every i = 1, . . . , m, δ((Vi−1,Wi−1), Ii) contains ((Vi,Wi), Ri). In other words,
XT accepts the interval-sequential execution S obtained from λ. We repeat the
previous construction for every such execution E.

Theorem 3. Let T be any long-lived task and let XT be the interval-sequential
object derived from T . Consider any execution E without pending operations.
Then, E satisfies T if and only if E is interval-linearizable with respect to XT .

Proof. We first show that if E satisfies T then E is interval linearizable with
respect to XT . Let σE and τE be the simplexes induced by E. Since E satisfies
T , there is a λ ∈ Δ(σE) such that for every (inv, resp, view) ∈ τE there is a
(inv′, resp′, view′) ∈ λ such that inv′ = inv, resp′ = resp and view′ ⊆ view.
By construction, λ induces an interval sequential execution S accepted by XT .
Note that E and S contain the same invocations and responses. If we prove
that S respects the real-time order in E, then S is an interval linearization of
E. By contradiction, suppose the opposite. Then, there are invocations inv and
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Fig. 6. From output simplexes to interval-sequential. The two simplexes have set-views
with the snapshot property. Each invocation in a set-view is represented by its subindex.
The corresponding interval-sequential executions are shown at the right.

inv′ such that the response of inv appears before inv′ in E but the response of
inv′ appears before inv in S. Let viewE and viewS be the set-views of inv in
E and S. Thus, inv′ /∈ viewE and inv′ ∈ viewS , and hence viewS � viewE . A
contradiction. Then, S is an interval linearization of E.

We now show that if E is interval linearizable with respect to OT then E
satisfies T . By interval linearizability, E can be transformed into an interval
sequential execution S accepted by XT such that S respects the real-time order
of E. Consider the simplexes σE , τE obtained from E. We have that E and S have
the same invocations. By construction, there is a λ ∈ Δ(σE) that induces S in
XT . Since S is an interval linearization of E and the execution S is induced by λ,
for any (inv, resp, view) ∈ τE , there is a (inv′, resp′, view′) ∈ λ with inv′ = inv
and resp′ = resp. Observe that if we prove that view′ ⊆ view, then it follows
that E satisfies TO. For the sake of contradiction, assume that view′ ⊃ view.
Then, in the interval sequential execution S, the invocation inv appears after
the response of an invocation inv∗ ∈ view′ \ view. However, since inv∗ /∈ view,
the response of inv occurs before inv∗ in E, from which follows that S does not
respect the real-time order in E. A contradiction. �	
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Abstract. Recently, there has been an increased research interest in
telecommunication network pricing, which leads to many proposals for
new pricing schemes motivated by different objectives namely: to max-
imize service provider’s revenue, to guarantee fairness among users and
to satisfy QoS requirements for differentiated network services.

In present paper, we consider a Bertrand model with N rational Ser-
vice Providers (SPs) that offer homogeneous telecommunication services
to customers. We assume that all SPs offer the same services and seek to
persuade more customers in the same market, we model this conflict as
a non-cooperative game. On the one hand, each SP decide his policies of
price and Quality of Service (QoS) in order to maximize his profit. On
the other hand, we assume that the customers are boundedly rational
and make their subscription decisions probabilistically, according to Luce
choice probabilities. Furthermore, they decide to which SP to subscribe,
each one may migrate to another SP or alternatively switch to “no sub-
scription state” depending on the observed price/QoS. In this work, we
have shown that the SP s have an interest in confusing customers i.e.
more than the customers are irrational, the SP s earn more.

Keywords: Pricing · QoS · Bounded rationality · Nash equilibrium ·
Luce choice probabilities

1 Introduction

Currently the theory of games is widely used to analyze the behavior of customers
and service providers in the telecommunications market. The competition in
terms of prices and QoS among SPs entails the formation of non-cooperative
games.
c© Springer International Publishing AG 2017
A. El Abbadi and B. Garbinato (Eds.): NETYS 2017, LNCS 10299, pp. 457–471, 2017.
DOI: 10.1007/978-3-319-59647-1 33
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In this paper we consider that the market consists of N SPs and boundedly
rational customers. In order to optimize his revenues, each rational SP decide
a best responses of his price pi and his QoS qi. As SPs share the same mar-
ket, therefore, behavior of each depends on those of his opponents and those
of customers. In this work, we present a model to calculate a single criteria
Nash equilibrium (price) for several SPs, taking into account Bertrand’s model
in game theory, which implies that players (SP s) only choose prices. Our model
is mainly inspired from the paper [3], where the authors have considered that
the rationality of SPs and have constructed a Markov model that derive the
behavior of customers depending on the strategic actions of the SPs, to study a
non-cooperative game for pricing problem considering QoS as an extra decision
parameter. But in our case, we will write that the demand for a SP is related
to the size of the market (number of consumers) and the probability of choosing
it; to make the model of the application non-linear, and take into account the
degree of irrationality of users (λ).

Rationality implies that each customers has to reason to increase his own
payoff. In other words, he possesses all the information on the market that allow
him to rationalize his choice, so he is able to maximize his own gain. John
V. Neumann and Morgenstern justified the idea of maximizing the excepted
payoff in their work [13]. In the real world, the assumption of “full rationality”
almost never holds. This real world “Bounded rationality” is one of the major
impediments to applying conventional game theory in the real world.

Bounded rationality of consumers means that: rather than choosing the opti-
mal action, customers choose an action that gives them a higher payoff with
higher probability. In particular, we adopt the Luce model of probabilistic choice,
that determines the probability with which a customer will decide to subscribe
with a given SPi. We consider also that the bounded rationality of consumers
can be measured by a degree of irrationality that can be expressed by, λ, with
λ = 0 corresponding to the rational behavior and λ → 1 corresponding to the
totally random choice.

In related works, bounded rationality of the players (SPs) have studied in
many researches. The authors of papers [14–17] proposed that partial informa-
tion can be modeled as marginal profiles. Namely, players decide their strategy
according to their respective marginal profit. In the paper [3] the authors have
modeled the behavior of customers towards the telecommunications market and
the bounded rationality of the services providers, the migration or the dynamic
behavior of customers in the field of telecommunications is formalized in the form
of a chain of markov; In this dynamic system the authors have shown to demon-
strate theoretically and numerically the stability of the equilibrium between the
players who are the SPs. But the concept of bounded rationality on customers
are little studied especially in telecommunication market. The authors of the
article [1] considered a Bertrand oligopoly model by modeling the rationality of
consumers who make their purchasing decisions in a probabilistic way, accord-
ing to the Luce model; This business model is aimed at companies of all kinds;
that is more general. In the article [22], the authors proposed a model of sales
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prices by taking into account the way the company follows to present its prices
to consumers and it is this way that confuses them. The authors of the article [2]
were able to introduce the concept of confusion of customers in the telecommu-
nications market and proposed a competitive price model between two rational
SP s; The model proposed in this work is based on the price parameter without
using the other pole of the strategies of SP s which is QoS quality of service.
The authors investigated the impact of customer confusion on a market of two
SP s. In our work we will extend the study by proposing a new competitive
model between N SP s that take their strategies according to price and quality
of service QoS. Our model will be based on a new formulation of the demand
which is made nonlinear and we will adapt the probabilistic model of Luce used
in the article [1] for the case of the telecommunications market.

This rest paper is organized as follows: In Sect. 2, we present the modeling
of customer behavior using the Luce probabilistic model. Next, we describe the
utility model of SP s and the gain of users in the telecommunications market
in the sense of the Bertrand model in Sect. 3. Finally, we give a theoretical
and numerical analysis obtained on the models proposed in this study and we
conclude this paper with perspectives in Sects. 4, 5 and 6 respectively.

2 Customer Behavior Model

The modeling of customer behavior is a very important task when one is studying
economically a market. In the telecommunications market, the authors P. Maille,
M. Naldi and B. Tuffin [18] modeled this behavior in the form of a Markov chain.
In this study, we use the Luce model to mathematics the discrete choice of clients
by exploiting the softmax function or the normalized exponential function [19],
as in the article [20].

2.1 The Luce Model

The Luce model is a first probabilistic choice model that incorporates boundedly
rational choice of customers [4,5]. By using this model, customers can select the
SP that maximize their payoff with higher probabilities, but not necessarily the
best response with probability one. More precisely, the choice probabilities for
specific strategies are proportional to the expected payoffs associated with such
strategies. We augment this framework by including a free parameter λ that
determines a degree of customers irrationality.

When customers faced with a choice among different alternatives i ∈ {1..N},
the perfectly rational decision maker always chooses the most preferred option(s)
i ∈ {arg max

i
(ui)}, where ui is a profit of users who have chosen SP i. In contrast,

to capture bounded rationality, we assume that customers choose alternative
i ∈ {1..N} with probability, as in [21], is given by:

ρi =
exp(ui/λ)

N∑

j=1

exp(uj/λ)
(1)
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where, λ ∈ [0, 1], is a degree of irrationality of customers to the telecommuni-
cations market. As λ increases (approximates 1), the customer is less likely to
choose the offer (the SP ) with the highest expectation and he will not explore
other offers from other SP s; So in this case the choice is random and t is said
that the customer choice is irrational. But, If λ decreases (approaches 0); the
client is likely to make a rational choice.

2.2 Utility and Behaviors Models

We consider that the utility ui of customers that are subscribed with SPi is a
function that depends on the strategies price pi and QoS qi of SP i:

ui(pi, qi) = vi(qi) − pi (2)

where vi(qi) are a revenues of customers that are subscribed with SP i.
We assume that the customers never decide to subscribe with more than

one SP, i.e. each consumer has (N + 1) different choices, so, the probability a
customers will decide to subscribe with SP i is:

ρi(p,q) =
exp

(
vi(qi)−pi

λ

)

1 +
N∑

j=1

exp
(

vj(qj)−pj

λ

) (3)

3 The Bertrand Model of the Market

In telecommunication market the SP s can compete on several variables, for
example, they can compete based on their choices of prices and QoS. The most
basic and fundamental competition pertains to pricing choices. The Bertrand
Model is examines the interdependence between rivals decisions in terms of
pricing decisions. In this section, we present the utility for all the SP s that
offer homogeneous services to customers, as well as the gain of customers in the
telecommunications market.

3.1 Utility Model

We consider a population of, n, customers, therefore the expected demand of, SP
i, is given by, nρi(p,q). So, the utility function of, SP i, is exactly the difference
between his revenues, nρi(p,q)pi, and the fee paid to buy a given amount of
bandwidth μi:

Πi(p,q) = nρipi − Fi(ρi, qi)

= nρipi − ϑiμi(n, ρi, qi) (4)

where ϑi is the price of unit of bandwidth and μi(ρi, qi) is the amount of band-
width required by SP i to guarantee the promised QoS qi, which has the following
form:

μi (n, ρi, qi) = (nρi)gi (qi) + hi (qi) (5)
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where n is a number of customers in the market and gi (qi) and hi (qi) are positive
increasing functions.

The profile function of SP i becomes:

Πi(p,q) =
n exp

(
vi(qi)−pi

λ

)

1 +
N∑

j=1

exp
(

vj(qj)−pj

λ

) (pi − ϑigi (qi)) − ϑihi (qi) . (6)

3.2 The Profit of Users in This Market

The real gain of users in the telecommunication market is normally not depended
only at his subscription in SPi, but it’s depended in secondary at the strategies
of anothers SP−i. We propose in this part the modelisation of this profit.

The revenue of user u if he chooses the subscription at SPi is:

Ru
i (P ∗) = ui(pi, qi) −

N∑

j=1,j �=i

βu
j (p∗

i − p∗
j ) (7)

Where:

– βu
j ∈ [0, 1] ∀j ∈ [1, N ] and j �= i is the sensitivity of the user u at the

motivating strategies of adversaries of its SPi. If βu
j → 0 then the user u is

faithful to his SPi, but if βu
j → 1 then the user u is totally attracted by the

offer of the operator SPj and in this case we are not talking about the fidelity
of u.

– P ∗ is the vector of Nash Equilibrium Prices.

Then, the profit (welfare) of user u in the telecommunication market is the
accumulate of his revenue in the all SPs, its presented in this equation:

Gu(P ∗) =
N∑

i=1

Ru
i (P ∗) (8)

4 Analyse of the Non-cooperative Game

The noncooperative game between rational SPs is formulated as follows: consider
a market with, N , SPs, who decide their price and QoS strategies in order to
maximize their individual utility/payoff, Πi(.). These SPs are selfish, hence they
do not cooperate with each other to manage their policies. We consider that Pi

and Qi are respectively the price and QoS strategy set of SP i.
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4.1 Learning Nash Equilibrium Price

Definition of Nash equilibrium of the price game: We consider a game of
strategic form of N -players

Γ = {N , P1, ..., PN ,Π1, ...,ΠN}, (9)

where Pi is the set of price strategies of player i and Πi its utility function.

Definition 1. Nash equilibrium specifies a strategy p∗
i ∈ Pi for each player i

(with i = 1, .., N) in such a way that:

Πi(p∗, q) = max
pi∈Pi

Π(p∗
1, ..., p

∗
i−1, pi, p

∗
i+1, ..., p

∗
N , q), (10)

When the vector of QoS parameters, q, of all providers is fixed to a certain
predetermined point.

Below, we analyze the competitive prices for N SP s that maximize their utilities.
To do so, we demonstrate the existence and uniqueness of the game equilibrium
between N SP s, after we calculate the equilibrium point. To analyze equilibrium
of the game, we need to find properties on the utility function.

Algorithm 1. Best Response algorithm
1: Initialization of price vectors;
2: For each SPi i ∈ N at iteration t:

– pt+1
i = argmax

pi∈Pi

(
Πi(p

t, q)
)

Algorithm 2 describes how to algorithmically and graphically determine Nash
equilibria.

Algorithm 2. Graphically finding the Nash equilibria of the game
1: Initialization of price vectors p1 and p2 ;
2: For all possible values of p2, find the set BR1( p2) of p1 values maximizing Π1( p1,

p2, q).
3: For all possible values of p1, find the set BR1( p1) of p2 values maximizing Π2( p2,

p1, q).
4: On a same graphic, plot the best response functions p1 = BR1( p2) and p2 =

BR2(p1), as illustrated Fig. 1.
5: The set of Nash equilibria is the (possibly empty) set of intersection points of those

functions.
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4.2 The Price Equilibrium

In this part, we consider that SPs have fixed their QoS, q, at some predetermined
point, q̄, and we consider only the price game. The utility function (6) become:

Πi(pi,p−i) =
n exp

(
v̄i−pi

λ

)

1 +
N∑

j=1

exp
(

v̄j−pj

λ

) (pi − ϑiḡi) − ϑih̄i. (11)

where v(q̄i) = v̄i, ḡi = gi(q̄i) and h̄i = hi(q̄i) are positive real constants. An
important derivative property of relation (3) is that:

∂ρi

∂pi
= −ρi(1 − ρi)

λ
,

Proof

∂ρi

∂pi
=

∂(
exp( v̄i−pi

λ )
1+

N∑

j=1
exp
(

v̄j−pj
λ

) )

∂pi

=

∂ exp( v̄i−pi
λ )

∂pi
(1 +

N∑

j=1

exp
(

v̄j−pj

λ

)
) −

∂(1+
N∑

j=1
exp
(

v̄j−pj
λ

)
)

∂pi
exp

(
v̄i−pi

λ

)

(1 +
N∑

j=1

exp
(

v̄j−pj

λ

)
)2

=

− exp( v̄i−pi
λ )

λ (1 +
N∑

j=1

exp
(

v̄j−pj

λ

)
) +

(exp( v̄i−pi
λ ))2

λ

(1 +
N∑

j=1

exp
(

v̄j−pj

λ

)
)2

= − exp
(

v̄i−pi

λ

)

λ(1 +
N∑

j=1

exp
(

v̄j−pj

λ

)
)

+
(exp

(
v̄i−pi

λ

)
)2

λ(1 +
N∑

j=1

exp
(

v̄j−pj

λ

)
)2

= −ρi

λ
+

ρ2i
λ

= −ρi(1 − ρi)
λ

therefor, the profit derivative for SP i is:

∂Πi(pi,p−i)
∂pi

= −n (pi − ϑiḡi)
ρi(1 − ρi)

λ
+ nρi, ∀i = 1..N (12)

with second derivative
∂2Πi(pi,p−i)

∂p2
i

= −n (pi − ϑiḡi)
ρi(1 − ρi)(2ρi − 1)

λ2
− 2n

ρi(1 − ρi)

λ
(13)
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Lemma 1 (Existence of Equilibrium). Considering the game of levels of
price which arose when the QoS vector is fixed to all SP s, there exists at least
a Nash equilibrium price, of SP s game, if the price he satisfied this condition:
pi > ϑiḡi − 2λ

2ρi−1

Proof. Equation 13 represent the second derivative of the utility function 11
relative to the price. The condition for this function as strictly concave is:

∂2Πi(pi,p−i)

∂p2
i

< 0,

then − n (pi − ϑiḡi)
ρi(1 − ρi)(2ρi − 1)

λ2
− 2n

ρi(1 − ρi)

λ
< 0,

F inally pi > ϑiḡi − 2λ

2ρi − 1
,

Lemma 2 (Uniqueness of Equilibrium). The most common method to show
uniqueness is the following condition of Rosen [11]. Moulin [12], (see, for exam-
ple, [6]):

∂2Πi

∂p2
i

+
∑
j �=i

∣∣∣∣
∂2Πi

∂pi∂pj

∣∣∣∣ < 0. (14)

Proof. To prove the uniqueness of equilibrium, we check the correctness of the
following inequality:

∂2Πi

∂pi∂pj
=

(
n (pi − ϑiḡi)

λ2

(
2ρ2

i − ρi

)
+

n

λ
ρi

)
ρj ,

so:
∑
j �=i

∣∣∣∣
∂2Πi

∂pi∂pj

∣∣∣∣ =
∣∣∣∣
n (pi − ϑiḡi)

λ2

(
2ρ2

i − ρi

)
+

n

λ
ρi

∣∣∣∣
∑
j �=i

ρj

=

∣∣∣∣
n (pi − ϑiḡi)

λ2
(2ρi − 1) +

n

λ

∣∣∣∣ ρi(1 − ρi), (15)

from (13) and (15) we have:
∂2Πi

∂p2
i

+
∑

j �=i

∣
∣
∣
∣

∂2Πi

∂pi∂pj

∣
∣
∣
∣ = ρi(1 − ρi)

(

− n(pi−ϑiḡi)(2ρi−1)

λ2 − 2n
λ +

∣
∣
∣
∣
n (pi − ϑiḡi)

λ2
(2ρi − 1) +

n

λ

∣
∣
∣
∣

)

,

if
(

n(pi−ϑiḡi)
λ2 (2ρi − 1) + n

λ ≥ 0
)
, i.e. pi ≥ ϑiḡi − λ

2ρi−1 then

∂2Πi

∂p2
i

+
∑
j �=i

∣∣∣∣
∂2Πi

∂pi∂pj

∣∣∣∣ = −nρi(1 − ρi)

λ
< 0,

if
(

n(pi−ϑiḡi)
λ2 (2ρi − 1) + n

λ ≤ 0
)
, i.e. pi ≤ ϑiḡi − λ

2ρi−1 then

∂2Πi

∂p2
i

+
∑
j �=i

∣∣∣∣
∂2Πi

∂pi∂pj

∣∣∣∣ =
−nρi(1 − ρi)

λ

(
2 (pi − ϑiḡi)

λ
(2ρi − 1) + 3

)

when pi > ϑiḡi − 3λ
2(2ρi−1)
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4.3 Price of Anarchy

The concept of the social surplus [7] or total cost [8], is defined as the maximum
of the sum of utilities of all agents in the systems (i.e. Providers). It is well known
in game theory that selfishness of the agent, as in a Nash equilibrium, typically
does not lead to a socially effective situation. As a measure of efficiency loss due
to divergence of interests of users, we use the price of anarchy (PoA) [9], the
latter is a measure of the loss of efficiency due to the selfishness of the actors.
This loss was defined in [9] as the ratio of the worst comparing the measure of
the overall efficiency (to be selected) at the end of non-cooperative game played
between the actors, to the optimum value of this measure efficiency. A PoA
close to 1 indicates that the equilibrium is about socially optimal, and then the
consequences of selfish behavior are relatively benign. The term price of anarchy
was used by Koutsoupias and Papadimitriou [9]. As in [10], measuring the loss of
efficiency due to the selfishness of the actors as the quotient of the social welfare
obtained at the Nash equilibrium and the maximum value of social welfare:

PoA =
minp,q̄ WNE(p, q̄)
maxp,q̄ W (p, q̄)

(16)

where W (p, q̄) =
N∑

i=1

Πi(p, q̄) is a function of welfare and WNE(p, q̄) =

N∑

i=1

Πi(p∗, q̄) is a sum of utilities of all actors in the Nash equilibrium.

5 Numerical Analysis of the Game

In this section, we turn now to discuss how to take gain from our analytical
findings. We propose to numerically study the gaming market taking account of
previous expression of utility of the SPs. For illustrative purpose, we consider two
homogeneous SPs seeking to maximize their earnings. Until we contraindicate,
the parameter values are summarized in Table 1.

Table 1. Parameters setting used for numerical examples

n N v̄1 v̄2 λ P1 = P2

100 2 25 20 0.7 [1 : 1000]

ḡ1 ḡ2 h̄1 h̄2 ϑ1 ϑ2

5 10 4 6 1.5 1

We used the Algorithm 2 for plotting the best response curves of both
providers on the same graph highlights the Nash equilibria of the game. Those
curves are shown in Fig. 1. This figure shows that Nash equilibria of the game
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Fig. 1. Graphical determination of nash equilibria. One solution here (circled point).

Fig. 2. Convergence to the price nash equilibrium

is unique and this reflects what we found in the theoretical study of the unique-
ness of the Nash equilibrium. The equilibrium obtained graphically is exactly
the point of intersection between the curve of the vector BR1(P2) and that of
the BR2(P1).

The Fig. 2 represent the convergence curves Nash Equilibrium Prices for both
SPs. The best dynamic response algorithm used in this framework converges to a
unique Nash equilibrium. We also notice that the algorithm has turned approx-
imately 10 iterations, which shows the rapidity of the speed of convergence.
Then this simulation of Algorithm 1 is able to converge efficiently to the Nash
equilibrium price.
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Fig. 3. Equilibrium prices w.r.t degree of irrationality of users

5.1 Impact of Users Degree of Irrationality on the Equilibrium
Price

In this simulation, we have undergone a discretization, at regular step, at the
interval of λ. Figure 3 shows the influence of the degree of irrationality on price
equilibrium. In the interval where the degree of irrationality is low (λ < 0.35)
i.e. the choice the users is often rational; the SP1, which starts the games with
proportionately high prices, has decreased its price to attract more customer and
increased his PayOff. While, the SP2, which starts the games with motivating
prices, began to increase its price to ensure its profit. And with high degrees of
irrationality, the SPs raise their prices without worrying about the opponent’s
strategy as clients make irrational decisions.

5.2 Impact of Unit of Bandwidth on the Equilibrium Price

In this simulation, we have undergone a discretization, at regular step, at the
interval of ϑi i ∈ {1, 2}. Figure 4 shows the influence of price of unit of bandwidth
on price equilibrium. The figure shows that it is clear that when the unit price
of bandwidth increases, all SPs are obliged to increase their price strategy with
the goal of keeping at least their current beneficence.

5.3 Impact of Users Degree of Irrationnality on the Their Gain

To validate our model of user gain to the telecommunications market presented
in the Eq. 8, we simulate by varying the degree of irrationality of the users and
calculating their gain. Figure 5 shows that when users make decisions about the
choice of SP in a rational way, their gain in the market increases. While, during
a random selection of the SP from users, their gain decreases. In summary, the
more customers are confused by their SP s, more their gain decreases in this
market.
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Fig. 4. Equilibrium prices w.r.t degree of unit of requested bandwidth

Fig. 5. Users gain w.r.t degree of irrationality

5.4 Impact of Users Sensitivity on the Their Gain

In this section, we consider a user u that subscribes to the services of the SP1

(i.e. βu
1 = 0) and we vary the sensitivity βu

2 , To the strategy of SP2, to see its
impact on the user’s gain u. We notice from Fig. 6 that when the sensitivity
βu
2 of user u increases, the social gain of u decreases in the telecommunications

market. And this result is actually seen in this market, So that when a user
subscribes to the services of a SPi and as soon as the SPj offers services more
motivating than the SPi, The user u feels bad about his choice.

5.5 Equilibrium Efficiency

In this part, we will use the concept of the anarchy price presented in the Sect. 4
to discuss the effectiveness of the Nash equilibrium. The Fig. 7 shows the PoA
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Fig. 6. Users gain w.r.t sensitivity

variation curve as a function the λ which represents the users degree of irra-
tionality.. In that figure, we first notice that the price of anarchy increases when
λ increases. When the degree of irrationality is low, i.e. users make their choice
decisions rationally, the price of anarchy is low and what shows that the sum
of the optimal utilities is greater than the sum of utilities to equilibrium; which
shows that the SPs are selfish and each one seeks to maximize its profit. While
in the case where the price of anarchy approaches 1, the SPs are not selfish and
each one takes consolidation the strategy of his opponent to finally fall into the
state of equilibrium.

Fig. 7. Price of anarchy w.r.t degree of irrationality
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6 Conclusion

In this work we have modeled and studied the impact of customer behavior in
the telecommunications market using the mathematical tool of non-cooperative
game theory. First, we modeled the competition between SPs according to two
parameters: price and QoS taking into account the probability of choosing the
SPs. On the other hand, we proposed a model of the gain of users in the telecom-
munications market. We have demonstrated the existence and uniqueness of the
Nash equilibrium, then we applied the Best response Algorithm for learning Nash
equilibrium. We have shown that SP s in the telecommunications market have
an interest in confusing customers, which means; more customers are irrational,
SP s earn more.

In future work, we propose to study this system by considering the variability
of the rationality of customers i.e. seek to model the function of rationality. Client
rationality is a function to be modeled that depends on a set of parameters such
as those related to customer behavior themselves and those related to offers
trapped or confused by the SP s in the telecommunications market.
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Abstract. Energy consumption is of main concern in the field of Wire-
less Video Sensor Networks (WVSNs) where energy resources are limited,
consisting only in the battery of the sensor nodes that determines their
lifetime. In this paper, we propose an empirical parametric model to pre-
dict the energy consumption of a High Efficiency Video Coding (HEVC)
based video encoder in its intra-only mode, used in the context of the
next generation WVSNs. Such model is of great interest to adapt the
waste of energy of the encoding phase to the remaining energy budget of
the node, while meeting the required video quality. The proposed model
predicts the energy consumption, considering the adopted Quantization
Parameter (QP) and the Frame Rate parameter (FR). A Raspberry Pi 2
card based video sensor node is used for modelling and validation, con-
sidering different configurations and spatial resolutions. The obtained
results demonstrate that the proposed model describes well the occurred
energy dissipation during the video encoding phase, with an average pre-
diction error of 4.5%.

Keywords: Profiling and modelling · Energy consumption · Video com-
pression · H.265/HEVC · Next generation wireless video sensor network ·
Raspberry Pi 2

1 Introduction

Wireless sensor networks (WSNs) have attracted a wide range of disciplines,
where close interactions with the physical world are essential. WSNs are new
tools to capture information from the environment at a scale, both in time
and space, previously hard to achieve [4]. Each node is battery powered and
changing this component is, in general, undesirable and even impossible in some
applications. Therefore, many efforts have been made in order to propose energy-
efficient communication protocols in order to extend node’s lifetime as much as
possible [7,10]. The availability of low-cost CMOS image sensors has enabled
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the emergence of the field of next generation Wireless Video Sensor Networks
(WVSNs) [15,17]. Each node in a WVSN captures pictures or video sequences
from the environment, processes it, then routes it towards the destination. Such
nodes have allowed the development of new applications for the WVSNs, an
example is given by Karlsson et al. [8] for Zoo video monitoring system called
The Digital Zoo, funded by the EU regional development. The approach uses the
WVSNs to collect multimedia information about animals and their surrounding.
The WVSN have introduced new research challenges to the field of WSN. In fact,
the amount of data generated by an image sensor is much higher than other types
of sensors. A QVGA image (320 × 240) at 12 bits per pixel will generate 115 200
bytes of data as presented by Karlsson et al. [8]. This exceeds by far the available
RAM memory on a typical wireless sensor node. Moreover, a video sensor node
spends its lifetime encoding and transmitting the video signal. According to Lu
et al. [9], the video encoding phase consumes a significant amount of energy.
Therefore, in order to extend the video node lifetime, the consumed energy
during the video compression should be decreased, while maintaining the desired
video quality. Consequently, a mathematical model is needed in order to predict
the consumed energy by the video encoder. This model enables the node to adapt
its configuration, considering its remaining energy as well as the targeted video
quality, in order to extend its lifetime.

In this paper we propose an empirical energy consumption model for a High
Efficiency Video Coding (H.265/HEVC) intra-only video encoder considering
the QP and the FR parameters. The HEVC video coding standard is the last
compression standard finalized in late 2012 and designed to achieve multiple
goals, including coding efficiency, ease of transport system integration and data
loss resilience, as well as implementability using parallel processing architectures.
Furthermore, since the motion compensation and the motion estimation in inter
GOP generate a significant energy consumption, we adopt the intra video coding
for more energy efficiency. In addition, intra coding is essential for high quality
mobile video communication and industrial video applications since it enhances
video quality, prevents error propagation, and facilitates random access [18]. One
can intuitively say that the energy decreases with the increasing of QP and when
lowering FR. However, the main question that we are trying to answer is how
does energy decrease when only intra-image coding is used? The answer will help
to model the consumed energy by any HEVC intra-only mode based encoder,
and will further allow us to optimize the consumed energy in WVSNs.

The rest of this paper is organized as follows: in Sect. 2, a brief overview of
the previous works given on the subject is presented. In Sect. 3, the proposed
mathematical model for energy consumption prediction during the video com-
pression is derived. In Sect. 3, we validate the proposed model under different
configurations. Finally, Sect. 5 concludes the paper.

2 Related Works

Several studies have contributed on energy consumption analysis of video-coding
standards.
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Vanne et al. [16] analyse the rate-distortion-complexity of HEVC reference
video codec (HM) and compare the results with AVC reference codec (JM).
Profiling results show that the average software complexity ratios of HM and JM
encoders are 3.2x in the All-intra case. This paper also reveals the bottlenecks
of HM codec and provides implementation guidelines for future real-time HEVC
codecs.

Alaoui et al. [1] propose a model to predict the energy consumption of a
H.264/AVC intra-only based encoder designed for the WVSNs, with respect to
the considered QP and FR values. In fact, in this paper, the authors compare
the energy consumption of the intra-only mode against the inter mode (i.e. GOP
IPPPP) and prove the energy efficiency of the first mode. Finally, the proposed
model is applied on the encoder under different configurations (i.e. resolution, QP
and FR). However, the authors perform the tests as simulations on a computer
and not on an actual sensor node.

Bossen et al. [2] present an overview of the complexity in both HEVC encoder
and decoder and recommend to use the HM implementation of the HEVC stan-
dard. However, the authors do not propose a model for complexity behaviour in
the HEVC encoder.

Hergoltz et al. [5] propose a model that describes the energy consumption
of the HEVC decoder for intra coded videos with a prediction error of 3.2%.
However, we are interested by the encoding phase.

Saab et al. [13] propose the profiling of the HEVC standard using the Valgrind
tool [14] to determine the cost of each function and instruction of the encoding
phase. The results show that, in an HEVC encoding process, about 48% of
the instructions are memory related and about 20% are arithmetic operations.
Except that, the author did not propose a model of energy consumption in HEVC
standard.

Finally Rodr et al. [12] present an energy model for an intra-only HEVC video
encoder. It estimates the energy consumed by the HEVC encoder, in a frame by
frame basis, considering two factors: the QP and the spatial information of each
frame. Experimental validation reports prediction errors that are, on average,
below 10% for full HD videos and 5% for 832×480 videos. However, the proposed
analytic expression of the model remains complex.

3 The Proposed Model

The main purpose of this section is to find the analytic expression of f(.), defined
as follows:

E(QP,FR) = f(QP,FR) (1)

In order to find the appropriate analytic expression, we adopt the approach that
is based on profiling the HEVC using Perf in a Raspberry Pi 2 (RPI2) Card.
Figure 1 shows the RPI2 card we used for testing with the camera module. Perf
is a profiling tool dedicated to Linux 2.6+ systems. The Perf tool offers a rich
set of commands to collect and analyse performance and trace data, especially
“perf stat”. An execution example of “perf stat” command is presented in Fig. 2.
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Fig. 1. Raspberry Pi 2 Card and the camera module

Fig. 2. Execution example of “perf stat” on an encoding process

Such an approach will provide us an accurate overview of the number of the
consumed clock cycles. Then, according to Dai et al. [3], the energy consumed
during the video encoding could be approached by:

E(N) = N ∗ C ∗ V 2
dd + Vdd ∗ (I0e

Vdd
nVT (

N

f
)) (2)

where N is the number of clock cycles, C is the average capacitance switched per
cycle, Vdd is the supply voltage, I0 is the leakage current, f is the clock speed,
VT is the thermal voltage and n a processor dependent constant.

In order to derive the appropriate model, extensive tests were carried out for
energy measurements using several video sequences. The ITU-T [6] recommends
for the selection of appropriate video test sequences to consider the spatial and
temporal perceptual information of the scenes, noted in the following SI and
TI respectively. In fact, these parameters reflect the compression difficulty as
well as the level of impairment that is suffered when the scene is transmitted.
Furthermore, it is important to choose sequences that span a large portion of
the spatial-temporal information domain.

Figure 3 presents several sequences of different resolutions providing TI-
SI pairs that cover several regions of the SI-TI domain. In fact, four video
sequences were selected: Container and Mother-daughter in QCIF size, Foreman
and Mobile in CIF size. As can be seen, the considered set of video sequences
covers a large area, showing its TI-SI diversity. In fact, according to the Fig. 4,



476 A. Ait-Beni-Ifit et al.
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Forman CIF size
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Fig. 3. Illustration of the chosen video sequences of different resolutions and content
features
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Fig. 4. The TI-SI diagram

this set includes video sequences representing contents with a moderate TI and SI
ranging from low to high (i.e. Foreman and Mobile), while others represent con-
tents with a moderate SI and TI ranging from low to high (i.e. Mother-daughter
and Container).

3.1 Modelling the Consumed Energy as a Function of QP

To achieve the H.265/HEVC profiling we have carried out several compression
operations considering six values of QP ranging from 0 to 51 via the HM-11.0
implementation. Profiling is achieved through the Perf tool under RPI2 Card
to estimate the total number of clock cycles. With the use of Perf, we man-
aged to gather the exact number of cycles of each type of operation in all
functions of HEVC (i.e. prediction, transformation, quantization and entropy
coding). Figure 5 illustrates the behaviour of the normalized consumed cycles
during the video compression of the tested video sequences. We can notice that
the number of cycles, and hence the consumed energy, decreases when the QP is
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Fig. 5. Normalized number of clock cycles while varying QP

increased. This can be explained by when increasing the QP value, the quanti-
zation becomes more severe, generating macroblocks with more null coefficients.
Having many null coefficients leads to the reduction of the complexity of the
entropy encoding process.

Figure 5 shows the behaviour of a reduction factor dependent on QP, we call
it α(QP ). This factor decreases the maximal consumed energy Emax, which is
reached at QP = 0. Furthermore, α(QP ) reaches its maximum value of 1 at
QP = QPmin = 0 and its minimum value at QP = QPmax = 51. Based on all
the above mentioned arguments, we propose to model α(.) as follows:

α(QP ) = exp(−a ∗ QP ) (3)

where a is a coefficient dependent on the content obtained by minimizing the
Root Mean Squared Error (RMSE) between the measured and the predicted
data.

The corresponding value of a in Eq. 3 for each sequence, is determinated by
curve fitting optimisation [11]. The results of this operation is reported by Fig. 6.
Points are the measured coefficients and the curves are the predicted ones by
the proposed model of Eq. 3. As can be seen, the proposed model describes well
the behaviour of the measured coefficients.

3.2 Modelling the Consumed Energy as a Function of FR

The FR parameter is the second factor that we consider to predict the energy
consumption of our video encoder. We can change the FR in the HM imple-
mentation by varying the parameter named Frame Skip (FS). The relationship
between these two parameters is given as follows:

FS =
⌈

FRmax

FR

⌉
− 1 (4)

Figure 7 represents the number of normalized clock cycles while varying the
FS. As can be seen, energy decreases with the increasing of the FS, leading to
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Fig. 6. Measured data and its approximation using the proposed model of Eq. 3
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the decreasing of the FR. This can obviously be explained by when reducing
the FR, the FS is increased and hence less frames are encoded. Consequently, a
considerable reduction of the consumed energy is observed. Note that the FRmax

of the tested video sequences is 30 fps and using Eq. 4 one can deduce the tested
FRs. Also, we notice that the incrementation of the FS by one reduces the energy
by about the half and so on, which is an obvious and expected behaviour.

Figure 8 shows the behaviour of a reduction factor that is FS-dependent.
We name it β(FS). This factor actually reaches its maximum value of 1
at FS = FSmin = 0 and quickly decreases toward its minimum value at
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Fig. 8. Measured data and its approximation using the proposed model of Eq. 5

FS = FSmax = 29. In addition, this factor does not attain the zero value
since there is at least one frame to be encoded. Based on the above mentioned
arguments we propose to model β(.) as follows:

β(FS) =
1

2FS
+ b (5)

where b is a content dependent parameter obtained by minimizing the RMSE
between the measured and the predicted data. As shown in Fig. 8, the proposed
model in Eq. 5 can model the behaviour of the reduction factor β(FS) accurately.

3.3 The Global Model

The energy consumed is reduced by a QP-dependent reduction factor and an
FR-dependent reduction factor. Therefore we propose the following formulation
of the global model:

E(QP,FR) = Emax × α(QP ) × β(
⌈

FRmax

FR

⌉
− 1) (6)

Emax is the maximum value of energy, reached for the pair (QPmin, FRmax).
Summarizing, we expose in Fig. 9 the overall behaviour of the normalized video
encoding energy consumption while varying QP and FR, using the model of
Eq. 6.
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Fig. 9. Illustration of the normalized energy consumption considering QP and FR using
the model of Eq. 6

4 Model Application

In this section, we apply the proposed model on seven other sequences using
seven different values of QP and FR. The model parameters a and b values of
each sequence are set, as a first approach in this paper, to the average values of
a = 0.01736 and b = 0.07049. We report in Table 1 the Measured Value (MV),
the Predicted Value (PV) and the Prediction Error (PE) for each sequence and
considered configuration. MV is obtained by normalizing the measured number
of clock cycles for each configuration in terms of QP and FR. PV is obtained
using the proposed model in Eq. 6, for each of the pairs (QP,FR) listed in Table 1.
As can be seen, the PE varies from 1.8% for the Basketball-drill sequence to 10%
for the Bosphorus sequence, even if the the model parameters values are not the

Table 1. The tests results considering different sequences, of different resolutions under
different configurations

Seq Res QP FR MV PV PE

Bus QCIF 15 1 0, 038 0, 059 2%

Hall QCIF 25 7.5 0.126 0.158 3.2%

Soccer QCIF 25 3.75 0, 050 0.101 5%

News CIF 15 30 0, 368 0.439 7%

Tennis CIF 40 6 0, 075 0.050 2.5%

Basketball 832 × 480 30 3.75 0.046 0.064 1.8%

Bosphorus Full HD 15 30 0.711 0.818 10%
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optimal ones. As shown in Table 1, the average prediction error of the proposed
model in Eq. 6 is about 4.5%.

5 Conclusion

In this paper we have proposed an empirical parametric model to predict the
energy consumed by the encoding phase, considering the HEVC intra-only video
encoding standard, used in an energy constrained context such as the WVSN.
Specifically, we have demonstrated that this energy, given a configuration of (QP,
FR), could be approximated by the maximum consumed energy value undergo-
ing QP-dependent then FR-dependent reductions. Finally, the proposed model
was validated and applied on different sequences of different resolutions and con-
sidering different configurations. This model can be even better by automating
the selection of the models parameters a and b; this is actually our ongoing work.

References

1. Alaoui-Fdili, O., Fakhri, Y., Corlay, P., Coudoux, F.X., Aboutajdine, D.: Energy
consumption analysis and modelling of a H.264/AVC intra-only based encoder
dedicated to WVSNs. In: 2014 IEEE International Conference on Image Processing
(ICIP), pp. 1189–1193. IEEE (2014)

2. Bossen, F., Bross, B., Suhring, K., Flynn, D.: Hevc complexity and implementation
analysis. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1685–1696 (2012)

3. Dai, R., Wang, P., Akyildiz, I.F.: Correlation-aware qos routing with differential
coding for wireless video sensor networks. IEEE Trans. Multimedia 14(5), 1469–
1479 (2012)

4. Fahmy, H.M.A.: Wireless Sensor Networks: Concepts, Applications, Experimen-
tation and Analysis. Signals and Communication Technology, vol. 1. Springer,
Heidelberg (2016)

5. Herglotz, C., Springer, D., Eichenseer, A., Kaup, A.: Modeling the energy consump-
tion of HEVC intra decoding. In: 2013 20th International Conference on Systems,
Signals and Image Processing (IWSSIP), pp. 91–94. IEEE (2013)

6. ITU-T RECOMMENDATION, P.: Subjective video quality assessment methods
for multimedia applications (1999)

7. Kafi, M.A., Djenouri, D., Ben-Othman, J., Badache, N.: Congestion control proto-
cols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutorials 16(3),
1369–1390 (2014)

8. Karlsson, J.: Wireless video sensor network and its applications in digital zoo.
Ph.D. thesis (2010)

9. Lu, X., Wang, Y., Erkip, E.: Power efficient h. 263 video transmission over wireless
channels. In: Proceedings of 2002 International Conference on Image Processing
2002, vol. 1, pp. I–533. IEEE (2002)

10. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing proto-
cols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutorials 15(2),
551–591 (2013)

11. Pilotte, P.: Curve fitting toolbox, 17 December 2015. http://www.mathworks.com/
products/curvefitting/

http://www.mathworks.com/products/curvefitting/
http://www.mathworks.com/products/curvefitting/


482 A. Ait-Beni-Ifit et al.

12. Rodr, R., Alonso, M., Mart, J., Mayo, R., Quintana-Ort, E., et al.: Time and
energy modeling of an intra-only hevc encoder. In: 2015 Visual Communications
and Image Processing (VCIP), pp. 1–4. IEEE (2015)

13. Saab, F., Elhajj, I., Kayssi, A., Chehab, A.: Profiling of hevc encoder. Electron.
Lett. 50(15), 1061–1063 (2014)

14. Seward, J., Nethercote, N., Weidendorfer, J.: Valgrind 3.3-Advanced Debugging
and Profiling for GNU/Linux applications. Network Theory Ltd., Bristol (2008)

15. Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimedia
(2009)

16. Vanne, J., Viitanen, M., Hamalainen, T.D., Hallapuro, A.: Comparative rate-
distortion-complexity analysis of hevc and avc video codecs. IEEE Trans. Circuits
Syst. Video Technol. 22(12), 1885–1898 (2012)

17. Yap, F.G., Yen, H.H.: A survey on sensor coverage and visual data captur-
ing/processing/transmission in wireless visual sensor networks. Sensors 14(2),
3506–3527 (2014)

18. Zhang, Y., Kwong, S., Zhang, G., Pan, Z., Yuan, H., Jiang, G.: Low complexity hevc
intra coding for high-quality mobile video communication. IEEE Trans. Industr.
Inf. 11(6), 1492–1504 (2015)



Author Index

Abouabdellah, Abdellah 391
Aboutajdine, Driss 472
Acharya, H.B. 151
Ait El Hadj, Maryem 86
Ait Omar, Driss 457
Ait-Beni-Ifit, Achraf 472
Alaoui-Fdili, Othmane 472
Antoniadis, Karolos 405
Atifi, Meriem 373
Atig, Mohamed Faouzi 272
Avin, Chen 231
Ayache, Meryeme 166

Baslam, Mohamed 457
Ben Rajeb, Narjes 355
Benchaïba, Mahfoud 248
Benkaouz, Yahya 86
Blanchard, Peva 222
Blibech, Kaouther 355
Bouajjani, Ahmed 272
Bouikhalne, Belaid 457

Castañeda, Armando 206, 439
Chen, Yu-Fang 421
Cobb, Jorge A. 151
Cohen, Louis 231
Corlay, Patrick 472
Coudoux, François-Xavier 472

Dahmani, Soufiane 15
Debnath, Joyati 3
Derevenetc, Egor 133
Diaz, Marcio 288
Dolev, Shlomi 51, 307

El Bouzekri El Idrissi, Younés 391
El Marraki, Mohamed 3
Elmallah, Ehab S. 151
Erradi, Mohammed 86, 166
Er-rouidi, Mohamed 27, 40

Fakir, Mohamed 457
Faouzi, Hassan 27, 40

Fischer, Bernd 255
Freisleben, Bernd 86, 166

Gabli, Mohammed 15
Garbinato, Benoît 322
Georgiou, Chryssis 51
Girdzijauskas, Sarunas 338
Gouda, Mohamed G. 151
Guerraoui, Rachid 222, 405

Hadjistasi, Theophanis 117
Hassani, Rachida 391
Hong, Chih-Duo 421

Kermarrec, Anne-Marie 109
Khankin, Daniel 307
Khoumsi, Ahmed 166
Kuznetsov, Petr 175

La Torre, Salvatore 255
Laghmari, Khalil 101
Lamsaadi, Mohamed 27
Leghris, Cherkaoui 396
Lengál, Ondřej 421
Lotfi, Dounia 3

Mamouni, Abdelaziz 373
Mandal, Partha Sarathi 69
Mansouri, Mouâd 396
Marcoullis, Ioannis 51
Marsala, Christophe 101
Marzak, Abdelaziz 373
Merbouha, Abdelkrim 40
Mermri, El Bekkaye 15
Meyer, Roland 133
Mittal, Nupur 109
Mokhlissi, Raihana 3
Mondal, Kaushik 69
Moro, Arielle 322
Moses, Yoram 206
Moudni, Houda 27, 40
Mouncif, Hicham 27, 40
Mu, Shin-Cheng 421



Narayan Kumar, K. 272
Neji, Wafa 355
Nguyen, Truc L. 255
Nicolaou, Nicolas 117

Olivares, Javier 109
Outanoute, M’hamed 457

Parlato, Gennaro 255
Pattanayak, Debasish 69

Rahmani, Moufida 248
Rajsbaum, Sergio 439
Ramdani, Mohammed 101
Raynal, Michel 206, 439
Reaz, Rezwana 151
Rieutord, Thibault 175
Roy, Matthieu 206

Saivasan, Prakash 272
Schiller, Elad M. 51
Schmid, Stefan 69, 231
Schwarzmann, Alexander A. 117
Schweizer, Sebastian 133
Serghini, Abdelhafid 15
Sinha, Nishant 421
Soliman, Amira 338
Stainer, Julien 222, 405

Talmage, Edward 191
Touili, Tayssir 288
Trigonakis, Vasileios 405

Wang, Bow-Yaw 421
Welch, Jennifer L. 191

Zablotchi, Igor 222

484 Author Index


	Preface
	Organization
	Keynote Presentations
	Another Look at the Implementation of Read/Write Registers in Crash-Prone Asynchronous Message-Passing Systems
	Tasks, Objects, and the Notion of a Distributed Problems
	Atomic Shared Objects for Distributed Systems: Consistency, Latency, Reconfigurations
	Contents
	Networking
	An Innovative Combinatorial Approach for the Spanning Tree Entropy in Flower Network
	1 Introduction
	2 Related Work
	2.1 The Bipartition Approach
	2.2 The Reduction Approach

	3 The Construction and the Topological Properties of the Flower Network
	3.1 The 2-Flower Graph
	3.2 The k-Flower Graph:

	4 The Number of Spanning Trees of a Flower Network
	4.1 The Number of Spanning Tree of a 2-Flower Graph:
	4.2 The Number of Spanning Tree of a k-Flower Graph:

	5 The Spanning Tree Entropy in Flower Network
	6 Comparison with Other Networks Having the Same Average Degree
	7 Conclusion
	References

	A Dynamic Genetic Algorithm Approach to the Problem of UMTS Network Assignment
	1 Introduction
	1.1 Related Work

	2 Problem Statement and Model Presentation
	2.1 Model Presentation
	2.2 Improvement of Mathematical Modeling

	3 Dynamic Genetic Algorithm Approach
	3.1 Proposed Solution Method Using Genetic Algorithms
	3.2 Genetic Algorithm and Dynamic Weights

	4 Application
	4.1 Data Description
	4.2 Computational Results

	5 Conclusion
	References

	Improving Network Lifetime of Ad Hoc Network Using Energy Aodv (E-AODV) Routing Protocol in Real Radio Environments
	Abstract
	1 Introduction
	2 AODV Protocol
	3 Related Works
	4 Proposed Work: Algorithm for Energy Efficient AODV
	4.1 Graph Construction
	4.2 Running Dijkstra Algorithm
	4.3 Media Transmission Error

	5 Simulation and Results
	5.1 Simulation Environment
	5.2 Performance Metric
	5.3 Results

	6 Conclusion
	References

	A Fuzzy-Based Routing Strategy to Improve Route Stability in MANET Based on AODV
	1 Introduction
	2 Related Work
	3 Applied Methods and Routing Protocol
	3.1 Fuzzy Logic
	3.2 Ad Hoc On-Demand Distance Vector (AODV) Routing Protocol

	4 Fuzzy AODV
	5 Simulation and Results
	6 Conclusion
	References

	Distributed Algorithms
	Self-stabilizing Reconfiguration
	1 Introduction
	2 System Settings
	3 Self-stabilizing Reconfiguration Scheme
	3.1 The Reconfiguration Stability Assurance Layer
	3.2 Reconfiguration Management
	3.3 Joining Mechanism (JoinMec)

	4 Applications of the Reconfiguration Scheme
	5 Conclusion
	References

	Convergence of Even Simpler Robots without Position Information
	1 Introduction
	1.1 The Context: Tiny Robots
	1.2 Our Motivation: Even Simpler Robots
	1.3 The Challenge: Convergence
	1.4 Our Contributions
	1.5 Related Work
	1.6 Paper Organization

	2 Preliminaries
	2.1 Model
	2.2 Notation and Terminology

	3 Convergence Algorithms
	3.1 Convergence for LD
	3.2 Convergence for OLA

	4 Impossibility and Optimality
	5 Simulation
	6 Discussion
	6.1 Termination for OLA Model
	6.2 Extension to d-Dimensions

	7 Conclusion
	References

	ABAC Rule Reduction via Similarity Computation
	1 Introduction
	2 Related Work
	3 Attribute-Based Access Control
	4 K-Nearest Neighbors
	5 ABAC-PC: ABAC Policy Clustering
	5.1 Rule Profiling
	5.2 Similarity Computation
	5.3 Clustering
	5.4 Generalization
	5.5 Correctness

	6 Experimental Results
	7 Conclusion
	References

	A Distributed Recommender System Based on Graded Multi-label Classification
	1 Introduction
	2 State of the Art
	3 Proposed Distributed Recommender System
	4 Experiments
	5 Conclusion and Future Work
	References

	Multithreading Approach to Process Real-Time Updates in KNN Algorithms
	1 Introduction
	2 Background
	3 UpKNN Algorithm
	3.1 Classify
	3.2 Merge

	4 Evaluation
	4.1 UpKNN's Performance

	5 Conclusions
	References

	Atomicity
	Oh-RAM! One and a Half Round Atomic Memory
	1 Introduction
	2 Models and Definitions
	3 SWMR Algorithm Oh-SAM
	4 MWMR Algorithm Oh-MAM
	5 Reducing the Latency of Read Operations
	6 Empirical Evaluations
	7 Conclusions
	References

	Locality and Singularity for Store-Atomic Memory Models
	1 Introduction
	2 Related Work
	3 Concurrent Programs
	4 Robustness
	4.1 Minimal Violations
	4.2 Cycles

	5 Locality
	6 Singularity
	7 Instrumentation
	References

	Policies
	Policy Expressions and the Bottom-Up Design of Computing Policies
	1 Introduction
	2 Preliminaries About Policies
	2.1 Intervals
	2.2 Attributes
	2.3 Requests
	2.4 Predicates
	2.5 Decisions
	2.6 Rules
	2.7 Policies
	2.8 Complete Policies

	3 Definition of Policy Expressions
	4 Enforcement of Policy Expressions
	5 Bases of Policy Expressions
	6 Properties of Policy Expressions
	7 Related Work
	8 Concluding Remarks
	References

	Aspect-Oriented State Machines for Resolving Conflicts in XACML Policies
	1 Introduction
	2 Conflict Categorization
	3 Conflict Resolution Strategy
	3.1 Prioritization of Permissions Approach
	3.2 Context-Based Approach

	4 Implementation
	5 Conclusion
	References

	Agreement and Consensus
	Agreement Functions for Distributed Computing Models
	1 Introduction
	2 Preliminaries
	3 Agreement Functions
	4 Properties of the -model
	5 Characterizing Fair Adversaries
	5.1 Set Consensus Power
	5.2 Fair adversaries
	5.3 Task Computability in Fair Adversarial Models

	6 Agreement Functions Do not Always Tell it All
	7 Related Work
	8 Concluding Remarks
	References

	Anomalies and Similarities Among Consensus Numbers of Variously-Relaxed Queues
	1 Introduction
	1.1 Related Work

	2 Model, Definitions, and Background
	2.1 Relaxed Data Types
	2.2 Consensus Numbers

	3 Characterizing the Space of Relaxed Queues
	4 Two Example Results
	5 Filling the Space
	6 Conclusion
	References

	Early Decision and Stopping in Synchronous Consensus: A Predicate-Based Guided Tour
	1 Introduction
	1.1 t-Resilient Crash-Prone Synchronous System
	1.2 The Consensus Problem
	1.3 Bounds on the Number of Rounds
	1.4 Content of the Paper

	2 The Three Early Deciding/Stopping Predicates
	2.1 PCount (P1): a Predicate Based on the Counting of Crashed Processes
	2.2 PDif (P2): a Round-based Differential Predicate
	2.3 PPref0 (P3): A Knowledge-Based Unbeatable Predicate

	3 Consensus Algorithms Based on the Predicates
	3.1 An Algorithm Based on PDif (P2)
	3.2 An Algorithm Based on PCount (P1)
	3.3 An Algorithm Based on PPref0 (P3)

	4 Comparing the Predicates
	5 Conclusion
	References

	The Disclosure Power of Shared Objects
	1 Introduction
	2 Model and Problem Statement
	2.1 Processes
	2.2 Schedule Reconstruction Object

	3 SR and Consensus
	4 The SR Hierarchy
	4.1 Fetch-and-Increment
	4.2 Compare-and-Swap: A Surprising Result
	4.3 Multiple Atomic Append: Every Level Is Populated
	4.4 SWAP3: the Hierarchy is Infinite

	5 A SR-Based Universal Construction
	6 Conclusion
	References

	Clustering-Based Techniques
	Competitive Clustering of Stochastic Communication Patterns on a Ring
	1 Introduction
	2 Model
	3 The Challenge of Dynamic Clustering
	4 Deterministic and Competitive Clustering
	5 Analysis
	5.1 A Cost Breakdown
	5.2 Competitive Ratio

	6 Related Work
	7 Conclusion
	References

	Toward a Resource Availability Measurement in Peer to Peer Systems
	1 Introduction
	2 Resource Availability Measurement
	2.1 Calculation of Resource Availability

	3 Simulation
	4 Conclusion
	References

	Verification
	Concurrent Program Verification with Lazy Sequentialization and Interval Analysis
	1 Introduction
	2 Verification Approach
	2.1 The General Scheme
	2.2 Multithreaded Programs
	2.3 Lazy Sequentialization Schema
	2.4 Value Analysis

	3 Implementation
	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Parity Games on Bounded Phase Multi-pushdown Systems
	1 Introduction
	2 Bounded Phase Multi Pushdown Systems
	2.1 Bounded Phase

	3 Parity Games
	4 Bounded Phase Parity Games on MPDS 
	5 Some Results on Parity Games
	6 Decidability of Bounded Phase Parity Games
	6.1  Decidability of a 1-Phase Game
	6.2 Decidability of a k Phase Game 

	7 Lower Bounds for Bounded Phase Parity Game
	References

	Reachability Analysis of Dynamic Pushdown Networks with Priorities
	1 Introduction
	2 Model Definition
	3 Modeling Programs with P-DPNs
	4 Execution Hedges
	5 Priority Structures
	6 Representing Infinite Sets of Configurations of a P-DPN
	7 Computing pre* Images of P-DPNs
	8 Related Work
	9 Conclusion
	References

	Security and Privacy
	Monitorability Bounds via Expander, Sparsifier and Random Walks
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Graph Expansion

	4 Expander Overlay Network Construction
	4.1 Distributed Construction of Overlay Network

	5 Sparse Expander Graphs for Monitoring
	6 Measuring Monitoring Success
	7 Anonymity
	8 Discussion
	References

	A Location Privacy Estimator Based on Spatio-Temporal Location Uncertainties
	1 Introduction
	2 Definitions and Modeling
	3 Location Privacy Estimator
	3.1 Computation of Spatio-Temporal Uncertainties
	3.2 Estimator

	4 Experiments and Results
	4.1 Dataset
	4.2 Localization Attacks
	4.3 Experimental Settings and Results

	5 Related Work
	6 Conclusion and Future Work
	References

	AdaGraph: Adaptive Graph-Based Algorithms for Spam Detection in Social Networks
	1 Introduction
	2 Spam Detection Features
	2.1 Graph-Based Features
	2.2 Content-Based Features

	3 Graph-Based Spam Detection
	3.1 Similarity Graph Construction 
	3.2 Clustering by Community Detection 
	3.3 Community Structure Adaptation
	3.4 Lexical Analysis of Posts
	3.5 Complexity Analysis

	4 Evaluation
	4.1 Datasets
	4.2 Generated Similarity Graph
	4.3 Adaptive Community Detection
	4.4 Performance Comparison

	5 Related Work
	6 Conclusion
	References

	Incoercible Fully-Remote Electronic Voting Protocol
	1 Introduction
	2 The Civitas Protocol
	3 The Insecurity of Civitas' Registration Phase
	4 Our Electronic Voting Protocol
	4.1 Communication Model
	4.2 Adversary Capabilities
	4.3 Notations
	4.4 Our Secure Protocol of the Registration Phase
	4.5 Voting Phase
	4.6 Tallying Phase

	5 Security Analysis
	5.1 Trust Assumptions
	5.2 Security Requirements

	6 Conclusion
	References

	Software Engineering
	A Comparative Study of Software Testing Techniques
	Abstract
	1 Introduction
	2 MBT and RBT Processes
	2.1 Model-Based Testing
	2.2 Risk-Based Testing

	3 MBT and RBT Approaches Classification
	3.1 Model-Based Testing Approaches Classification
	3.2 Risk-Based Testing Approaches Classification

	4 MBT and RBT Supporting Tools
	5 MBT and RBT Advantages and Limits
	6 Analyse and Discussion
	7 Conclusion and Perspective
	References

	Software Project Management in the Era of Digital Transformation
	1 Introduction
	2 IT Project and IT Project Management
	3 Project Management in the Era of Digital Transformation
	4 Obstacles of Digital Transformation in Digital Project Management
	5 Analysis of Affecting Factors of Digital Transformation in the Digital Project Management
	6 Countermeasures for the Existing Problems in Digital Project Management
	7 Conclusion
	References

	Using Fuzzy Gray Relational Analysis in the Vertical Handover Process in Wireless Networks
	Abstract
	1 Introduction
	2 Background
	3 Our Proposal
	4 Results and Discussion
	5 Conclusion
	References

	Concurrency and Specifications
	Sequential Proximity
	1 Introduction
	2 Preliminaries
	2.1 Search Data Structures
	2.2 Language
	2.3 Nodes and Allocation Sets
	2.4 Solo Executions, Relative Nodes, and Reachability

	3 Sequential Proximity (SP)
	3.1 Traversals
	3.2 Modifications

	4 Concluding Remarks
	References

	An Executable Sequential Specification for Spark Aggregation
	1 Introduction
	2 Preliminaries
	3 Spark Aggregation
	4 Deterministic Aggregation
	4.1 aggregate
	4.2 reduce
	4.3 treeAggregate and treeReduce
	4.4 aggregateByKey and reduceByKey
	4.5 Discussion

	5 Case Studies
	5.1 Linear Classification
	5.2 Standard Scaler

	6 Related Work
	7 Conclusion
	References

	Long-Lived Tasks
	1 Introduction
	2 Tasks and Objects
	2.1 Tasks
	2.2 Objects
	2.3 Limitations of the Standard Semantics of Task

	3 Long-Lived Tasks
	3.1 Modeling Multiple Invocations
	3.2 Modeling Valid Executions
	3.3 Solvability Condition

	4 Interval-Sequential Objects
	4.1 The Notion of an Interval-Sequential Object
	4.2 An Example: The Validity Problem
	4.3 Interval Linearizability

	5 Interval-Sequential Objects = Long-Lived Tasks
	5.1 From Interval-Sequential Objects to Long-Lived Tasks
	5.2 From Long-Lived Tasks to Interval-Sequential Objects

	References

	Communication
	Joint Price and QoS Competition with Bounded Rational Customers
	1 Introduction
	2 Customer Behavior Model
	2.1 The Luce Model
	2.2 Utility and Behaviors Models

	3 The Bertrand Model of the Market
	3.1 Utility Model
	3.2 The Profit of Users in This Market

	4 Analyse of the Non-cooperative Game
	4.1 Learning Nash Equilibrium Price
	4.2 The Price Equilibrium
	4.3 Price of Anarchy

	5 Numerical Analysis of the Game
	5.1 Impact of Users Degree of Irrationality on the Equilibrium Price
	5.2 Impact of Unit of Bandwidth on the Equilibrium Price
	5.3 Impact of Users Degree of Irrationnality on the Their Gain
	5.4 Impact of Users Sensitivity on the Their Gain
	5.5 Equilibrium Efficiency

	6 Conclusion
	References

	Profiling and Modelling of HEVC Intra Video Encoder's Energy Consumption for Next Generation WVSNS
	1 Introduction
	2 Related Works
	3 The Proposed Model
	3.1 Modelling the Consumed Energy as a Function of QP
	3.2 Modelling the Consumed Energy as a Function of FR
	3.3 The Global Model

	4 Model Application
	5 Conclusion 
	References

	Author Index



