
Chapter 10
Ordered Fuzzy Candlesticks

Adam Marszałek and Tadeusz Burczyński

Abstract The purpose of this chapter is to present how Ordered Fuzzy Numbers
(OFNs) can be used with financial high-frequency time series. Considering this
approach the financial data are modeled using OFNs called further ordered fuzzy
candlesticks. Their use allows modeling uncertainty associated with financial data
and maintaining more information about price movement at an assumed time inter-
val than compared to commonly used price charts (e.g., Japanese Candlestick chart).
Furthermore, in a simple way, it is possible to include the information about volume
and the bid-ask spread. Thanks to the well-defined arithmetic of OFNs, one can be
used in technical analysis or to construct models of fuzzy time series in the form
of classical equations. Examples of an ordered fuzzy moving average indicator and
ordered fuzzy autoregressive process are presented.

10.1 Introduction

High-frequency financial data are observations on financial variables such as quota-
tions of shares, futures, or currency pairs, quoted daily or at a finer timescale. Data
containing themost complete knowledge about quotations of the financial instrument
are prices corresponding to each single transaction made on this instrument. They
are at the same time the data of the highest possible frequency called ultra-high-
frequency data or simply tick-by-tick data.

High-frequency financial data possess unique features absent in data measured
at lower frequencies, and analysis of these data poses interesting and unique
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challenges to econometric modeling and statistical analysis [16]. Analysis of tick-
by-tick data is very difficult, among others, due to the very large number of observa-
tions, irregular spacing between observations, occurrence price patterns, and long-
lived dependencies. For various reasons, high-frequency data may contain erroneous
observations, data gaps, and even disordered sequences. Moreover, Lo and Mackin-
lay consider that the financial market is a complex, nonstationary, noisy, chaotic, and
dynamic system but it does not follow a random walk [7]. The main reason is that
a huge amount of information is reflected in the financial market. The main factors
include an economic condition, political situation, traders’ expectations, catastro-
phes, and other unexpected events. Thus one can conclude that stock market data
should be considered in the framework of uncertainties.

Making investment decisions based on observation of each single quotation is
very difficult or even impossible. Therefore a large part of investors very often use
price chart analysis tomakedecisions.Theprice charts (e.g., the JapaneseCandlestick
chart) are used to illustratemovements in the price of a financial instrument over time.
Note that in using the price chart, a large part of the information about the process is
lost; for example, using the Japanese Candlestick chart with daily frequency, for one
day, we know only four prices (i.e., open, low, high, and close), while in this time the
price has changed hundreds of times. In spite of this, Japanese Candlestick charting
techniques are very popular among traders and allow for achievingmore than average
profits. More details about the Japanese Candlesticks and trading techniques based
on them can be found in [12].

In our previous papers [8–10] we showed how we can use fuzzy logic, that is,
Ordered Fuzzy Numbers (OFNs) defined in Chap. 4 (see also [1–3, 5, 13, 14]), to
model uncertainty associated with financial data and to keep more information about
price movement. The idea, construction methods, and an example of an application
of ordered Fuzzy Candlesticks are specifically recalled in this work. In addition some
new concepts are also presented.

10.2 Ordered Fuzzy Candlesticks

Generally, in our approach, a fixed time interval of financial high frequency data is
identified with Ordered Fuzzy Numbers and it is called ordered Fuzzy Candlestick
(OFC). The general idea is presented in Fig. 10.1. Note that the orientation of the
OFN shows whether the ordered Fuzzy Candlestick is long or short. Information
about movements in the price are contained in the shape of the f and g functions. In
this sense, functions f and g do not depend directly on the variable tick but depend
on the relationship between the parameters A and B. In the following sections the
details of constructing the ordered Fuzzy Candlestick are presented.

Previous works listed two cases of construction of ordered Fuzzy Candlesticks.
The first assumes that the functions f and g are functions of predetermined type;
moreover, the shapes of these functions should depend on two parameters (e.g.,
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Fig. 10.1 Draft of general concept of ordered Fuzzy Candlestick

linear). Then the ordered Fuzzy Candlestick for a given time series can be defined
as follows.

Definition 1 Let {Xt : t ∈ T } be a given time series and T = {1, 2, . . . , n}. The
ordered Fuzzy Candlestick is defined as an OFN C = ( f, g) that satisfies the follow-
ing conditions 1–4 (for a long candlestick) or 1′–4′ (for a short candlestick).

1. X1 ≤ Xn .
2. f : [0, 1] → R is continuous and increasing on [0, 1].
3. g : [0, 1] → R is continuous and decreasing on [0, 1].
4. S1 < S2, f (1) = S1, f (0) = min

t∈T Xt − C1, g(1) = S2 and g(0) is such that the

ratios
Fg

A
and

Ff

B
are equal.

1′. X1 > Xn .
2′. f : [0, 1] → R is continuous and decreasing on [0, 1].
3′. g : [0, 1] → R is continuous and increasing on [0, 1].
4′. S1 < S2, f (1) = S2, f (0) = max

t∈T Xt + C2, g(1) = S1 and g(0) is such that

the ratios
Ff

A
and

Fg

B
are equal.

In the above conditions the ordered Fuzzy Candlestick center (i.e., added interval)
is designated by parameters S1, S2 ∈ [mint∈T Xt ,maxt∈T Xt ] and can be computed
as different kinds of averages (e.g., arithmetic, weighted, or exponential). C1 and
C2 are arbitrary nonnegative real numbers that further extend the support of fuzzy
numbers and can be computed, for example, as the standard deviation or volatility of
Xt . The parameters A and B are positive real numbers that determine the relationship
between the functions f and g. They can be calculated as the mass of the desired area
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with the assumed density (see Fig. 10.1). Numbers Ff and Fg are the fields under
the graph of functions f −1 and g−1, respectively.

Example 1 Trapezoid OFC
Suppose that f and g are linear functions in the form:

f (x) = (
b f − a f

)
x + a f and g(x) = (

bg − ag
)
x + ag (10.1)

then the ordered Fuzzy CandlestickC = ( f, g) is called a trapezoid OFC, especially
if S1 = S2 where it can also be called a triangular OFC.

Example 2 Gaussian OFC
The ordered Fuzzy Candlestick C = ( f, g) where the membership relation has
a shape similar to the Gaussian function is called a Gaussian OFC. It means that f
and g are given by functions:

f (x) = f (z) = σ f

√−2 ln(z) + m f and g(x) = g(z) = σg

√−2 ln(z) + mg

(10.2)

where, for example, z = 0.99x + 0.01.

The procedure of determining the parameters of the function f and g is shown
in Algorithm 1 and the examples of realizations of trapezoid and Gaussian ordered
Fuzzy Candlesticks are presented in Fig. 10.2.

Algorithm 1: Calculations of Trapezoid and Gaussian OFC

1: read time series Xt for t = 0, 1, . . . , T
2: for Xt compute values of min Xt , max Xt , S1, S2, C1, C2, A, and B
3: if X0 ≤ XT then
4: a f = min Xt − C1 m f = S1
5: b f = S1 σ f = min Xt−C1−S1√−2 ln(0.01)
6: f (x) = (b f − a f )x + a f f (z) = σ f

√−2 ln(z) + m f

7: ag = A
B (S1 − min Xt + C1) + S2 mg = S2

8: bg = S2 σg = − A
B σ f

9: g(x) = (bg − ag)x + ag g(z) = σg
√−2 ln(z) + mg

10: else
11: a f = max Xt + C2 m f = S2
12: b f = S2 σ f = max Xt+C1−S2√−2 ln(0.01)
13: f (x) = (b f − a f )x + a f f (z) = σ f

√−2 ln(z) + m f

14: ag = B
A (S2 − max Xt − C2) + S1 mg = S1

15: bg = S1 σg = − B
A σ f

16: g(x) = (bg − ag)x + ag g(z) = σg
√−2 ln(z) + mg

17: end if-else
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Fig. 10.2 Examples of trapezoid and Gaussian OFC

The second case of construction of ordered Fuzzy Candlesticks assumes that the
functions f and g are defined in a similar way to the empirical distribution in the
statistical sciences and called an empirical OFC. The calculation procedure of an
empirical OFC is shown in Algorithm 2, whereas the example of realizations is
presented in Fig. 10.3.

Algorithm 2: Calculations of Empirical OFC

1: read time series Xt for t = 0, 1, . . . , T
2: for Xt compute values of S1, S2, C1 and C2
3: sorting in ascending data Xt
4: Yt := sort (Xt )

5: divide data Yt into two subsets
6: Y (1)

t := {Yi : Y0 ≤ Yi ≤ S1} ∪ {Y0 − C1}
7: Y (2)

t := {Yi : S2 ≤ Yi ≤ YT } ∪ {YT + C2}
8: compute empirical cumulative distribution functions

CDF1 and CDF2 associated with Y
(1)
t and Y (2)

t , respectively
9: if X0 ≤ XT then
10: f is approximation of function

{
CDF1

∣
∣[Y0−C1,S1]

}−1

11: g is approximation of function
{
(1 − CDF2)

∣∣[S2,YT +C2]
}−1

12: else
13: f is approximation of function

{
CDF1

∣∣[Y0−C1,S1]
}−1

14: g is approximation of function
{
(1 − CDF2)

∣
∣[S2,YT +C2]

}−1

15: end if-else
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Fig. 10.3 Example of empirical OFC

10.3 Volume and Spread

10.3.1 Volume

In technical analysis the prices are by far the most important. However, another piece
of important information about price movement is volume. Volume is the number of
entities traded during the time period under study. It is used to confirm trends and
chart patterns. Any price movement up or down with relatively high volume is seen
as a stronger, more relevant move than a similar move with weak volume [11].

In the case of ordered Fuzzy Candlesticks, adding extra information about volume
is very easy, enough to calculate the parameters A and B using the density associated
with volume or for empirical OFC, and enough to calculate the empirical distribution
using prices repeated by volume times. The example of ordered Fuzzy Candlesticks
without and with volume information are presented in Fig. 10.4.

10.3.2 Spread

A spread (bid-ask spread) is simply defined as the price difference between the
highest price that a buyer is willing to pay (bid price) for an asset and the lowest
price that a seller is willing to accept to sell it (ask price). It is important to remember
that spreads are variable, meaning they will not always remain the same and will
change sporadically. These changes are based on liquidity, which may differ based
on market conditions and upcoming economic data. In an over-the-counter market,
dealers act as market makers by quoting prices at which they will buy and sell a
security or currency. In this case, the spread represents the potential profit that the
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Fig. 10.4 Example of Gaussian OFC without and with volume information

Fig. 10.5 Example of Gaussian OFC without and with spread information

market maker can make from this activity, and it’s meant to compensate it for the
risk of market making. On the other hand, it is a cost for traders.

In the case of ordered Fuzzy Candlesticks, it is possible to add extra information
about the bid-ask spread by calculating the parameters S1, C1 and S2, C2, using the
bid price and ask price, respectively. The examples of ordered Fuzzy Candlesticks
without and with spread information are presented in Fig. 10.5.
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Fig. 10.6 The daily Japanese Candlestick chart of the dataset with realization of a classical and
ordered fuzzy simple moving average

10.4 Ordered Fuzzy Candlesticks in Technical Analysis

10.4.1 Ordered Fuzzy Technical Analysis Indicators

Ordered FuzzyCandlesticks areOrdered FuzzyNumbers, hence, thanks to theirwell-
defined arithmetic [1, 4, 13] can be used to construct a fuzzy version of technical
analysis indicators such as the simple moving average.

The classical simple moving average (SMA) with order s at a time period t is
given by formula

SMAt (s) = 1

s
(Xt + Xt−1 + · · · + Xt−s+1) (10.3)

where Xt is the observation (real) at a time period t (e.g., closing prices).
Now, the ordered fuzzy simple moving average (OFSMA) with order s at a time

period t is also given by formula (10.3) but the observations Xt are OFC at a time
period t . Figure10.6 shows the results of realization of classical (line with xcross
symbol) and ordered fuzzy (triangle symbols) simple moving average with order
equal to 14 for the dataset covering the period of 80days from 02-03-2016 till 02-06-
2016 of quotations of EUR/PLN. Figure10.6 also shows the ordered fuzzy simple
moving average defuzzification by the center of gravity operator (line with circle
symbol). In technical analysis the moving average indicator usually is used to define
the current trend.Notice that the ordered fuzzymoving averagedetermines the current
trend by orientation of the ordered Fuzzy Candlesticks: if orientation is positive then
then the trend is long, else the trend is short. The process of fuzzification of the other
technical indicators can be done by analogy.
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Fig. 10.7 Empirical ordered Fuzzy Candlesticks as technical indicator

10.4.2 Ordered Fuzzy Candlestick as Technical Analysis
Indicator

The method of construction of ordered Fuzzy Candlesticks can be used directly as a
technical analysis indicator by doing the calculation of OFC over a moving window
of observations (ticks). The size of the window can be defined as the number of
observations (e.g., last 100 ticks) or the time (e.g., last 10min). Figure10.7 shows
the results of realization of empirical ordered Fuzzy Candlesticks as a technical
indicator with window size equal to 15min for the dataset covering the period of 1
hour from 3 PM till 4 PM of 02-06-2016 of quotations of EUR/PLN.

Indicators are used as a secondary measure to the actual price movements and add
additional information to the analysis of securities. Indicators are used in two main
ways: to confirm price movement and the quality of chart patterns, and to form buy
and sell signals. The most common type of indicators is called oscillators and they
fall in a bounded range. Oscillator indicators have a range, for example, between zero
and 100, and signal periods where the security is overbought (near 100) or oversold
(near zero). In a simple way the indicator based on ordered Fuzzy Candlesticks can
be presented in the form of an oscillator by applying normalization. An example
of empirical ordered Fuzzy Candlesticks as an oscillator indicator is presented in
Fig. 10.8.

10.5 Ordered Fuzzy Time Series Models

Thanks to the well-defined arithmetic of OFNs, it is possible to construct models
of fuzzy time series, such as an autoregressive process (AR), where all input values
are OFC, and the coefficients and output values are arbitrary OFNs, in the form of
classical equations, without using rule-based systems.
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Fig. 10.8 Empirical ordered Fuzzy Candlesticks as oscillator indicator

The classical autoregressive model (AR(p)) is one where the current value of
a variable, depends only upon the values that the variable took in previous periods
plus an error term [15]. In the presented approach, an ordered fuzzy autoregressive
model of order p, denoted OFAR(p), in a natural way is fully fuzzy AR(p) and can
be expressed as

Xt = α0 +
p∑

i=1

αi X t−i + εt (10.4)

where Xt−i are the ordered Fuzzy Candlesticks at a time period t , αi are fuzzy
coefficients given by arbitrary OFNs, and εt is an error term.

Estimation of OFAR(p) Model

The least squares method is proposed for the estimation of fuzzy parameters
αi = ( fαi , gαi ) in the OFAR(p) model and one is defined using a distance measure.
The measure of the distance between two OFNs is expressed by the formula:

d(A, B) = d (( f A, gA), ( fB, gB)) = ‖ f A − fB‖L2 + ‖gA − gB‖L2 (10.5)

where ‖ · ‖ is a metric induced by the L2-norm. Hence, the least squares method for
OFAR(p) is to minimize the following objective function,

E =
∑

t

d

(

Xt , α0 +
p∑

i=1

αi X t−i

)

(10.6)

Forecasting Using the OFAR(p) Model

Forecasts of the OFAR(p) model are obtained recursively in a similar way as for
the classical AR(p) model. Let t be the starting point for forecasting. Then, the
one-step-ahead forecast for Xt+1 is
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X̂ t+1 = α0 +
p∑

i=1

αi X t+1−i . (10.7)

The result of the forecast is an Ordered FuzzyNumber, which includes three kinds
of predictions:

• Point forecast: Given by the value of a defuzzification operator (for defuzzification
operators see [2, 6])

• Interval forecast: Given by the subset of support of the OFN in its classical
meaning

• Direction forecast: Given by orientation of the OFN.

10.6 Conclusion and Future Works

In this chapter, the representation of financial data using the concept of the ordered
Fuzzy Candlestick is described. The ordered Fuzzy Candlestick holds more infor-
mation about the prices than the classical Japanese Candlestick. Moreover, it is also
possible to include information about the volume and spread. Based on well-defined
arithmetic of Ordered Fuzzy Numbers, the proposed approach enables us to build the
technical analysis indicators and the fuzzy financial time series models in the simple
form of classical equations. It allows reducing the size ofmodels compared tomodels
based on fuzzy-rule-based systems. For future work, our approach can be extended
by adding the concept of fuzzy random variables, which can allow for the simulation
of models and their application in many other areas of financial engineering.
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8. Marszałek, A., Burczyński, T.: Financial fuzzy time series models based on ordered fuzzy
numbers. In: Pedrycz,W., Chen, S.M. (eds.) Time Series Analysis,Modeling andApplications:
A Computational Intelligence Perspective, pp. 77–95. Springer, Berlin (2013)
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