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Witold Kosiński (1946–2014)



Foreword

I met Witek Kosiński 20 years ago (almost to the day), as at that time he was
appointed by the Institute of Computer Science, Polish Academy of Sciences, as a
reviewer for my DSc (habilitation) thesis. His review was quite positive (!) and
from that time we developed a long-lasting friendship. Later, both of us were
associated with the Polish-Japanese Academy of Information Technology and
together we supervised a few students, introduced new courses (e.g., puzzle-based
learning), worked on several research grants, and wrote a few research papers. He,
with his wife Ewa, visited us in the United States and stayed with us in our home;
they also planned to visit us in Australia. Unfortunately, time had run out for him.

It is my privilege to write the foreword for this book. First, I consider Witek one
of the best friends I had in life. Second, his warm personality, sense of humor, and
amazing intelligence made him a very special person in the lives and careers of so
many people. Finally, the book covers many topics that were close to Witek’s heart
—fuzzy sets, fuzzy systems, Ordered Fuzzy Numbers—to name a few. He also had
a keen interest in applications of his research, and thus the third part of the book
contains 11 application-oriented chapters.

Witek—you’ll live in our memories forever. We miss you.

February 2017 Zbigniew Michalewicz
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Memories of Professor Witold Kosiński

Professor Witold Kosiński, Polish mathematician and computer scientist, specialist
in the fields of mathematical theory of continuous media and various methods of
artificial intelligence with particular focus on fuzzy logic, conducted creative and
very intense research activities for more than 40 years, combining research with
broad international cooperation and regular teaching.

Scientific Development

Witold Kosiński was born in Kraków on August 13, 1946. He attended the Juliusz
Slowacki High School in Warsaw in the years 1960–1964.

In 1969, he graduated from the University of Warsaw, the Faculty of
Mathematics and Mechanics, obtaining his M.Sc. degree in mathematics for the
thesis, “On the Existence of Two Variables Satisfying Some Differential
Inequality.” His supervisor was Prof. Jan Rychlewski, later a member of the Polish
Academy of Sciences.

Directly upon graduation he became a member of the Department of Mechanics
of Continuous Media in the Institute of Fundamental Technological Research of the

Józef Kubik, Mariusz Kaczmarek
Institute of Mechanics and Applied Computer Science,
Kazimierz Wielki University, Bydgoszcz, Poland, e-mail: mkk@ukw.edu.pl
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Polish Academy of Sciences, where he continued to develop his scientific quali-
fications by participation in doctoral studies.

In 1972, he obtained his Ph.D. degree in technical sciences with his dissertation,
“Linear Theory of Rheological Materials with Internal Structural Changes.” His
supervisor was Prof. Piotr Perzyna, a great scientist and author of one of the
important directions within viscoelasticity theory. Very soon, Dr. Kosiński’s ability
to combine mathematical methods with a modern approach to mechanics of
deformable dissipative materials resulted in a number of achievements. In the years
1972–1974, he coauthored 19 research papers, 10 of which were published in the
renowned Bulletin of the Polish Academy of Sciences.

In 1984 his research related to dissipative media led to the summarizing article
on the equations of dissipative materials’ evolution resulting in the title of Doctor of
Sciences (habilitation) in mechanical engineering being conferred upon him by the
Scientific Council of the Institute of Fundamental Technological Research of the
Polish Academy of Sciences. Finally, in 1993 his extensive research and teaching
activities became the basis of granting him the title of full professor of technical
sciences by the President of the Republic of Poland.

Scientific and Academic Achievements (Part I)

For most of his professional career Prof. Kosiński was affiliated with the Institute of
Fundamental Technological Research of the Polish Academy of Sciences (1972–
2001). In that period, he achieved numerous original results that contributed to
international research on thermodynamics of materials with memory and materials
with internal variables.

Those studies also concerned thermal waves in nonelastic media with so-called
second sound effect, and were carried out jointly with other coauthors including,
among others, V.A. Cimmelli, K. Frischmuth, K. Saxton, R. Saxton, W. Wojno, and
P. Perzyna. Other studies on thermodynamics of porous media saturated with liquid
were performed with the cooperation of K. Hutter, J. Kubik, M. Cieszko, and M.
Kaczmarek. The monograph entitled Clear-cut Nature of Initial and Boundary-value
Solutions in the Theory of High and Low Non-elastic Strain in Scope of Hyperbolic
Problems (W. Kosiński, Ed., Ossolineum, 1979) aroused much interest. Particular
recognition was gained by the monograph, Field Singularities and Wave Analysis in
Continuum Mechanics (W. Kosiński, Ellis Horwood, Mathematics and
Applications, 1986), which formulated the foundations of the kinematic theory of
discontinuity surface propagation, the velocity of which depends on a nonlinear
medium’s properties. The aforementioned range of Prof. Kosiński’s research on
mechanics of continuous media includes over 100 published scientific papers, two
monographs, and contributions to nine multiauthored volumes.

x Memories of Professor Witold Kosiński



Scientific and Academic Achievements (Part II)

In 1999, Prof. Kosiński started his scientific and teaching activities at the
Polish-Japanese Academy of Information Technology (PJAIT; formerly the
Polish-Japanese Institute of Information Technology), where he served as a member
of the Senate and Council of the IT faculty. In 1999–2005, he acted as the PJAIT
vice-president for research. He was the head of the Multimedia and Artificial
Intelligence Department, and then the Smart Systems Department and Research
Center. He was also a coordinator of specializations in Intelligent Data Processing
Systems, and Business and Administration Support Systems.

PJAIT-related activities came together with Prof. Kosiński’s growing scientific
interests in information technology and intelligent systems, with an emphasis on
neural networks, image processing, fuzzy logic, and nature-inspired optimization
algorithms. Those interests could be seen even earlier. In the 1990s, he coauthored
some articles on fuzzy numbers and neuro-fuzzy systems, for example, “Fuzzy
Numbers and Their Quotient Space with Algebraic Operations” (W. Kosiński,
P. Slysz, Bulletin of Polish Academy of Sciences: Mathematics, 1993) and “General
Mapping Approximation Problems Solving by Neural Networks and Fuzzy
Inference Systems” (W. Kosiński, M. Weigl, Systems Analysis Modelling
Simulation, 1998). Later on, his interests in fuzzy systems led towards developing a
new fuzzy arithmetics model described in a number of papers, including “Ordered
Fuzzy Numbers” (W. Kosiński, P. Prokopowicz, D. Ślȩzak, Bulletin of Polish
Academy of Sciences: Mathematics, 2003) and “Evolutionary Algorithm
Determining Defuzzyfication Operators” (W. Kosiński, Engineering Applications
of AI, 2007), and resulting in a number of applications reported in this book.

In summary, Prof. Kosiński’s research interests were characterized by true
interdisciplinarity, openness to new ideas, and the ability to utilize mathematics and
artificial intelligence to model and solve real-world problems. In particular, in his
work he combined a strong background in mechanics and materials engineering
with a good understanding of information technology applications. In our opinion,
this makes his scientific achievements unique and inspiring to others.

Scientific Collaboration

Professor Kosiński developed and maintained broad cooperation with people and
scientific teams at foreign and domestic universities. He was awarded academic
scholarships at the University of Iowa (the Division of Materials Engineering), the
University of Bonn (the Institute of Applied Mathematics), the University of
Heidelberg (the Institute of Mathematics), and the Darmstadt Technical University
(the Institute of Mechanics). He was also a scholarship holder of the Alexander von
Humboldt Foundation (1983–1985 and 1988).
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Professor Kosiński was a visiting professor in the Laboratory Modeling in
Mechanics at the University Pierre and Marie Curie in Paris (1989–1990), in the
Department of Mathematics and Computer Science at Loyola University in New
Orleans (1991), and in the Faculty of Science and Technology at the University
Aix-Marseille III (1994–1995). In addition to France, Germany, and the United
States, he visited universities in several other countries, including Italy and Japan.
He also collaborated with research groups in Poland, at universities in Warsaw,
Bialystok, Bydgoszcz, and Toruń, sharing his broad knowledge, international
experience, and, in particular, his kindness and passion for research.

Teaching and Supervision

Seminars and inspiring scientific discussions conducted by Prof. Kosiński resulted
in a number of joint publications and guided young researchers towards modern
interdisciplinary topics, those that combined the disciplines of computer science,
biology, and industry. It is worth noting that he promoted 11 Ph.D. students, as well
as 148 MSc’s and engineers.

He liked and valued his teaching activities. He treated students with a true
respect and in a friendly manner. For almost 20 years, he shared his knowledge with
students of the Faculty of Mathematics, Physics and Technology at the Kazimierz
Wielki University in Bydgoszcz (formerly the Academy of Bydgoszcz), with the
major of “IT Engineering” that he coestablished. For over 15 years, he gave aca-
demic classes on various IT subjects at PJAIT, where he was one of the key people
forming the teaching program on AI tools and applications.

Professor Kosiński also gave advanced lectures as part of graduate and post-
graduate courses on the analysis of waves, constitutive modeling of nonelastic
media, and thermodynamics of continua with superficial singularities, as well as on
selected issues of mathematics, artificial intelligence, and information technology,
in such units as: the Institute of Fundamental Technological Research of the Polish
Academy of Sciences, the University of Warsaw, the Stefan Banach’s Center, the
University of Iowa, and the University of Rome “La Sapienza.” In the 1990s, he
delivered a truly inspiring graduate course on neural networks at the Faculty of
Mathematics, Informatics and Mechanics at the University of Warsaw, where he
was able to put together various aspects of his background and experience to
provide students with both advanced mathematical foundations and practical
motivation for mastering the AI-based methodologies.
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Scientific and Social Services

An important part of Prof. Kosiński’s activities was his work on editorial boards of
scientific journals such as Archives of Mechanics, Engineering Transactions,
Biblioteka Mechaniki Stosowanej (in Polish), Journal of Applied Mathematics and
Computer Science, and Machine Graphics and Vision. He was also the
editor-in-chief of the international journal, Mathematica Applicanda, published by
the Polish Mathematical Society.

Professor Kosiński was also very active as a member of a number of scientific
societies including the Polish Society of Theoretical and Applied Mechanics, the
Polish Mathematical Society, the Association for Image Processing, the Society of
Interaction of Mathematics and Mechanics, the American Mathematical Society,
and Societas Humboldtiana Polonorum.

He was also involved in important scientific projects of a social character. In
particular, from 2012, he was a member of the Technical Subcommittee for
Mathematics and Computer Science within the Scientific Committee for indepen-
dent research on the causes of the Smoleńsk Catastrophe in 2010.

Personality and Memoires

In his everyday professional life, Prof. Kosiński was characterized by exceptional
elegance, kindliness, openness, an interest in the world, and a sense of humor. He
led a busy social life and was the so-called “life and soul of the party.” He actively
practiced sports (e.g., tennis, diving) and was a keen dancer. Below there are several
opinions of people who knew Witold Kosiński in person. This is how they
remember him:

I met Prof. Witold Kosiński a dozen or so years ago. It was my privilege and honor to give
lab classes to his lectures for 10 years. He liked people and was able to team up with them
regardless of what they were doing. I used to discuss science with him in a train, in a car,
restaurant, namely anywhere. Witold used to bring us to places and people he deemed
worth it. Witold shall always be our spiritus movens, as we believe that, regardless where
he is now, he still counts on us and counts with us.

Jacek Czerniak
Kazimierz Wielki University, Bydgoszcz, Poland

Witek Kosiński was an exceptional man, researcher, and above all, a friend—his warm
personality and a sense of humor made him a very special man. We will miss him a lot!

Zbigniew Michalewicz
University of Adelaide, Adelaide, Australia
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Professor Witold Kosiński’s wide-ranging interests reached far beyond math and computer
science. His scientific intuition unveiled not only basic application of the discussed issue,
but also possible secondary applications, and directions for further research. He made us
believe in ourselves and our ability to succeed as students, professionals, and scientists.

Dariusz Mikołajewski
Kazimierz Wielki University, Bydgoszcz, Poland

Any time I met Prof. Kosiński, I was deeply impressed by his innovative thinking, inter-
esting and far-reaching ideas, and abilities to convey them in a highly convincing way. It is
needless to say that he has made long-lasting contributions to the methodology of fuzzy sets
and computing with fuzzy numbers.

Witold Pedrycz
University of Alberta, Edmonton, Canada

If you asked him for help, he always tried to find the solution which is best for you. He liked
to discuss and was always open to good arguments. He understood that the discussions at
the conferences are an important part of the scientist’s activities.

Piotr Prokopowicz (Former Ph.D. student)
Kazimierz Wielki University, Bydgoszcz, Poland

Since we worked in the same institution, quite often we met briefly, exchanging a few
words. These everyday conversations revealed the benevolent and sociable nature of Prof.
Witold who gladly showed interest to others, offering his support and authority whenever it
was needed. Prof. Kosiński was a man of very open mind and flexible research, an out-
standing scientist but also the organizer, encouraging others to activity. He was extremely
busy but at the same time constantly smiling and bursting with a sense of humor.

Bartłomiej Starosta (Former Ph.D. student)
Polish-Japanese Academy of Information Technology, Warsaw, Poland

I shall remember the Professor as a man who was always smiling, friendly and had an
optimistic attitude towards the world. He was a man who could not imagine the proverbial
“doing nothing.” Once during my visit at the Polish-Japanese Academy of Information
Technology he saw that I was sitting and doing nothing, so he quickly handed to me a copy of
some lectures saying “Krzysztof! Please read it. Onemust not just sit doing nothing like that.”

Krzysztof Tyburek (Former Ph.D. student)
Kazimierz Wielki University, Bydgoszcz, Poland

My Dad was an exceptional person. He was active in many fields, not only of scientific
nature. He was interested in politics, sport, followed international news, and traveled a lot
with Mum. I could talk with him about economics, methods of valuation, and corporate
finance. He also liked spending free time actively, so I learned and practiced skiing with
him, I took part in numerous canoeing weekends, and I played tennis. He had been learning
throughout his entire life, despite all the academic titles which he held.

That’s how I shall remember him.

W. Konrad Kosiński
Warsaw, Poland
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Chapter 1
Introduction to Fuzzy Sets

Michal Jezewski, Robert Czabanski and Jacek Leski

Abstract The subject of this chapter is fuzzy sets and the basic issues related to
them. The first section discusses concepts of sets: classic and fuzzy, and presents
various ways of describing fuzzy sets. The second section is dedicated to t-norms,
s-norms, and other terms associated with fuzzy sets. Subsequent sections describe
the extension principle, fuzzy relations and their compositions, cylindrical extension
and projection of a fuzzy set. The sixth section discusses fuzzy numbers and basic
arithmetic operations on them. Finally, the last section summarizes the chapter.

1.1 Classic and Fuzzy Sets

The concept of a classic set is one of primitive notions, which do not have a definition.
Most frequently a set is understood as a collection of objects (elements) having some
features distinguishing them from other objects, such as the set of positive numbers
less than 100 or the set of aquatic birds. Usually, sets are denoted in uppercase (e.g.,
a set A, B, . . .), whereas objects are in lowercase (e.g., an object x , y, . . .). Each set
may be considered as a subset of an universe of discourse X, which is a “super-set”
containing all possible objects.

In the case of classic sets, a given object x may belong to a set A (be a member
of a set A), or not belong to this set (not be a member of this set), and these two
options are denoted by x ∈ A or x /∈ A. A classic set may be described by means of
the characteristic function (χA) that takes two values: 1 (for the object belonging to
a set A), and 0 (for the object not belonging to a set A) [19]

M. Jezewski (B) · R. Czabanski · J. Leski
Institute of Electronics, Silesian University of Technology, 16 Akademicka Str.,
44-100 Gliwice, Poland
e-mail: michal.jezewski@polsl.pl

R. Czabanski
e-mail: robert.czabanski@polsl.pl

J. Leski
e-mail: jacek.leski@polsl.pl
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Studies in Fuzziness and Soft Computing 356, DOI 10.1007/978-3-319-59614-3_1

3



4 M. Jezewski et al.

χA (x) =
{
1, x ∈ A,

0, x /∈ A.
(1.1)

There are several operations defined on classic sets and the following are consid-
ered to be basic ones [19]:

• product (intersection, conjunction)

A ∩ B = { x ∈ X| x ∈ A and x ∈ B} , (1.2)

• sum (union, disjunction)

A ∪ B = { x ∈ X| x ∈ A or x ∈ B} , (1.3)

• negation (complement)

A = { x ∈ X| x /∈ A} . (1.4)

The above operations can also be defined on the basis of characteristic functions
[19]:

χA∩B = χA (x) ∧ χB (x) = min (χA (x) , χB (x)) , (1.5)

χA∪B = χA (x) ∨ χB (x) = max (χA (x) , χB (x)) , (1.6)

χA (x) = 1 − χA (x) . (1.7)

Example 1.1 Let us consider the expression “The fetal heart rate (FHR) is about
120 bpm,” which can be described by the classic set of FHR values in the interval,
for example, [115, 125], defined in the universeX = [0, 240] ⊂ R. The characteristic
function of this set is shown in Fig. 1.1a. According to the proposed interval, values
121 and 125 equally belong to this set, whereas values 125.1, 130, and 135 equally
do not belong. However, the following observations can arise: a value 121 is closer to
120 than 125, thus it should belong “stronger”, a value 125.1 should be the member
of the set similarly as 125, and finally, a value 135 should belong “less” than 130.
Fuzzy sets allow for taking into account these observations.

Fuzzy sets were introduced and described using membership functions by L.A.
Zadeh in 1965 [24] and have many practical applications [10, 22]. As opposed to a
classic set, in the case of a fuzzy set A an object x may belong to this set with varying
membership degrees in the range [0, 1], where 0 and 1 denote, respectively, lack of
membership and full membership.

One way of describing a fuzzy set A is to provide its membership function μA :
X → [0, 1]. There are various membership functions, three of them are presented
below [5, 16].
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• Gaussian membership function (where c and δ are parameters)

μA (x; c, δ) = exp

(
− (x − c)2

2δ2

)
. (1.8)

The parameter c specifies the center of a function; the parameter δ determines its
dispersion.

• Trapezoidal membership function (where p ≤ q ≤ r ≤ s are parameters)

μA (x; p, q, r, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ p,
x−p
q−p , p < x ≤ q,

1, q < x ≤ r,
s−x
s−r , r < x ≤ s,

0, x > s.

(1.9)

A special case of a trapezoidal function (for q = r ) is a triangular function.
• Singleton (where x0 is a parameter)

μA (x; x0) = δx,x0 =
{
1, x = x0,

0, x 
= x0.
(1.10)

The parameter x0 specifies the location of the singleton, that is, the single value
of x which belongs to a set A (with a membership degree equal to 1).

An example of the Gaussian membership function is presented in Fig. 1.1b, and
trapezoidal, triangular, and singleton functions are illustrated in Fig. 1.2.

0 60 120 180 240
0

0.5

1

x

χ
A
( x
)

0 60 120 180 240
0

0.5

1

x

μ
A
(x
)

(a) (b)

Fig. 1.1 “The fetal heart rate is about 120 bpm”: a the characteristic function of the classic set, b
the Gaussian membership function of the fuzzy set
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Fig. 1.2 Examples ofmembership functions:a trapezoidal (p = 100, q = 120, r = 140, s = 160),
b triangular (p = 110, q = r = 120, s = 130) and c singleton (x0 = 120)

Example 1.2 In the universe X = [0, 240] ⊂ R let us define the fuzzy set A “The
FHR is about 120 bpm.” Such a set can be described by the Gaussian membership
function (1.8) with c = 120 and δ = 4.25, which is shown in Fig. 1.1b. In this case, in
accordance with observations in Example 1.1, the FHR values discussed (121, 125,
125.1, 130, 135) belong to this set with different membership degrees: μA (121) =
0.973, μA (125) = 0.500, μA (125.1) = 0.486, μA (130) = 0.062 and μA (135) =
0.002.

Example 1.3 One more example concerning fetal heart rate can be the expression
“normal FHR,” which means that the FHR value is in the physiological range. Based
on FIGO guidelines, as the range of “normal FHR” values we can assume [110, 150]
bpm and use the classic set of values in this range to describe the expression “normal
FHR.” However, this leads to the situation in which FHR value 151 bpm is not
“normal,” although it seems that it partially is. It suggests that it is better to use a
fuzzy set to describe the expression “normal FHR.”

Example 1.4 Another example can be the expression “new car.” Assuming that a
car is “new” when its age does not exceed three years, the expression “new car” can
be described by the classic set of cars up to the age of three years. However, it results
in a problem similar to the previous example: the car at the age of three years and
one week is not “new,” although it seems that it almost is. Also in this case it is better
to use a fuzzy set.

The above examples suggest that fuzzy sets are a good tool for a formal description
of vague and imprecise expressions such as “value about 120,” “normal FHR,” “new
car,” “medium height,” “high salary,” and so on. Examples of membership functions
shown in Fig. 1.2 could be used to describe expressions such as: (a) “normal FHR,”
(b) the value of FHR is “about 120 bpm,” and (c) FHR value is “exactly 120 bpm.”
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Another way of describing a fuzzy set is to list ordered pairs: an object x and its
membership degree μA (x) ∈ [0, 1] in a set A [5]

A = { (x, μA (x))| x ∈ X} . (1.11)

To describe a fuzzy set, the notation proposed by Zadeh [25] can also be used:

• for discrete universe X (comprising ordered or nonordered objects)

A =
∑
x∈X

μA (x) /x, (1.12)

• for indiscrete universe X

A =
∫
X

μA (x) /x . (1.13)

In the above notation the symbol / is a separator, and symbols
∑

and
∫

denote
idempotent summation.

Example 1.5 In the discrete nonordered universe comprising selected fruits X =
{orange, pineapple, grape, apple, peach, banana, grape f rui t} let us define the
fuzzy set A “Fruits, that the first author likes.” Using the notation proposed by Zadeh
we can write

A = 1.0/orange + 0.6/pineapple + 0.2/grape + 1.0/apple + 0.8/peach
+0.6/banana + 0.5/grape f rui t .

Example 1.6 Let us consider the discrete ordered universe comprising values of pos-
sible temperatures to set in a car air-conditioning system X = {low, 18, 19, . . . , 23
24, high} ⊂ R+, where “low” and “high” mean the lowest and the highest attain-
able temperatures. Using the notation of ordered pairs, the fuzzy set A “Adequate
(according to the second author) temperature in the car” defined in the universe X
can be described as follows

A= {(low, 0.1) , (18, 0.4) , (19, 0.5) , (20, 0.8) , (21, 0.9) , (22, 1.0) , (23, 0.8) ,

(24, 0.4) , (high, 0.1)}.
Example 1.7 The set of FHR values from Example 1.2 using the notation proposed
by Zadeh is described as

A =
∫
R

exp

(
− (x − 120)2

2 · (4.25)2

)/
x .

Various extensions of fuzzy sets were proposed, for example, fuzzy sets of type-2
[26], interval-valued fuzzy sets [8, 11, 21, 26], probabilistic sets [9], rough sets [18],
and intuitionistic fuzzy sets [2].
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1.2 Fuzzy Sets—Basic Definitions

Similarly to classic sets, operations of product, sum, and complement are also estab-
lished for fuzzy sets. Product and sum are defined by means of operators of t-norm
and s-norm:

∀
x∈X

μA∩B (x) = μA (x) �T μB (x) = T (μA (x) , μB (x)) , (1.14)

∀
x∈X

μA∪B (x) = μA (x) �S μB (x) = S (μA (x) , μB (x)) , (1.15)

where �T (T ) and �S (S) are operators of t-norm and s-norm. Both t-norm and
s-norm (also called t-conorm) are mappings [0, 1] × [0, 1] → [0, 1] that satisfy all
necessary conditions [5, 16] presented in Table1.1.

There are various t-norms and s-norms [5, 7, 13, 16, 23, 24, 27], three that are
frequently used are presented below.

• Zadeh t-norm and s-norm:

x �T y = min (x, y) = x ∧ y, x �S y = max (x, y) = x ∨ y. (1.16)

• Algebraic product and algebraic (also called probabilistic) sum:

x �T y = xy, x �S y = x + y − xy. (1.17)

• Lukasiewicz t-norm and s-norm:

x �T y = max (x + y − 1, 0) , x �S y = min (x + y, 1) . (1.18)

The complement of a fuzzy set A is defined as follows [5, 16]

μA (x) = n [μA (x)] , (1.19)

where n denotes a negation function. Minimal assumptions about the function n are:
n is a mapping [0, 1] → [0, 1], n satisfies conditions n(0) = 1, n(1) = 0, and n is

Table 1.1 Necessary conditions for t-norms and s-norms: A1 denotes boundary conditions, A2-
commutativity, A3-monotonicity, and A4-associativity (r, u, x, y, z ∈ [0, 1])

t-norm s-norm

A1 T (x, 1) = x, T (x, 0) = 0 S(x, 1) = 1, S(x, 0) = x

A2 T (x, y) = T (y, x) S (x, y) = S (y, x)

A3 If x ≤ u then T (x, y) ≤ T (u, y) If x ≤ u then S (x, y) ≤ S (u, y)

If y ≤ r then T (x, y) ≤ T (x, r) If y ≤ r then S (x, y) ≤ S (x, r)

A4 T (x, T (y, z)) = T (T (x, y) , z) S (x, S (y, z)) = S (S (x, y) , z)
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Fig. 1.3 Product, sum, and complement of fuzzy sets: a fuzzy sets A and B, b the product of A
and B using Zadeh t-norm (minimum), c the sum of A and B using Zadeh s-norm (maximum), d
complement of a set A using the standard negation

nonincreasing. Depending on specific conditions [5, 16], a negation function can be
strict or strong. The strong negation in the form N (x) = 1 − x (a standard negation)
is most frequently used. Operations of product, sum, and complement are illustrated
in Fig. 1.3.

In addition to definitions of t-norms and s-norms, other concepts that also char-
acterize fuzzy sets are defined [3, 5–7, 16, 20, 23, 27]. Some of them are discussed
below.

• An α-cut set (Aα) and a strong α-cut set (Aα)

Aα = { x ∈ X| μA (x) ≥ α} , Aα = { x ∈ X| μA (x) > α} . (1.20)

• Core of a fuzzy set (Core(A)), that is, the α-cut set with α = 1.
• Support of a fuzzy set (Supp(A)), that is, the strong α-cut set with α = 0.
• Width of a fuzzy set, Width(A) = |x2 − x1|, where x1 and x2 are crossover points
of A defined below.

• Crossover points of a fuzzy set

Crossover (A) =
{
x ∈ X

∣∣∣∣μA (x) = 1

2

}
. (1.21)
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• A fuzzy set is “normal” if its core is not empty.
• A fuzzy set A is “convex” if and only if (iff)

∀
x1,x2∈X

∀
λ∈[0,1] μA [λx1 + (1 − λ) x2] ≥ min [μA (x1) , μA (x2)] . (1.22)

• Two fuzzy sets A and B are equal iff

∀
x∈X

μA (x) = μB (x) . (1.23)

• A fuzzy set A is a subset of a fuzzy set B iff

∀
x∈X

μA (x) ≤ μB (x) . (1.24)

Core(A), Supp(A), Width(A), and Crossover(A) are illustrated in Fig. 1.4. It is worth
noting that Core(A) and Supp(A) specify classic sets (χCore(A)(x) and χSupp(A)(x) in
Fig. 1.4 denote their characteristic functions).
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x

μA(x)

χSupp(A) (x)

χCore(A) (x)

Width(A)

x2x1

Crossover(A)={x1,x 2}

Fig. 1.4 The illustration of core, support, width, and crossover points of a fuzzy set
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1.3 Extension Principle

The extension principle [26] allows for extension of the concept of mathematical
functions (defined on classic sets) to fuzzy sets. In other words, mapping from a
classic set to a classic set is extended to mapping from a fuzzy set to a fuzzy set.

Let y = f (x) be a one-argument function, which is mapping from X to Y, and A
be a fuzzy set defined in a discrete universe X = {x1, x2, . . . , xp}

A = μA (x1) /x1 + μA (x2) /x2 + · · · + μA
(
xp
)
/xp. (1.25)

As a result of mapping a set A by the function f we obtain the following fuzzy
set B (defined in the universe Y) [16]

B = f (A) = μA (x1) / f (x1) + μA (x2) / f (x2) + · · · + μA
(
xp
)
/ f
(
xp
)
, (1.26)

where+ denotes a logical sum. For functions that are not injective (are not one-to-one
mappings), a logical sum is performed using s-norm, and hence we can write [16]

μB (y) =
⎧⎨
⎩

�S
{x | f (x)=y }

μA (x) , f −1 (y) 
= ∅,

0, f −1 (y) = ∅,
(1.27)

where �S stands for a multiargument s-norm, and f −1 (y) denotes the domain of
function y = f (x).

Example 1.8 Suppose we have a fuzzy set A defined in the discrete universe X =
{−3,−2, . . . , 3, 4} ⊂ R

A = {(x1 = −3, 0.8) , (x2 = −2, 0.5) , (x3 = −1, 0.3) , (x4 = 0, 0.5) ,

(x5 = 1, 0.8) , (x6 = 2, 0.1) , (x7 = 3, 0.8) , (x8 = 4, 0.7)} ,

and the function y = f (x) = 2x4, which is the mapping from X to Y. Let us deter-
mine the mapping of A by the function f to the fuzzy set B.

Values of the function f arranged in ascending order are
f (x4) = 0, f (x3) = f (x5) = 2, f (x2) = f (x6) = 32, f (x1) = f (x7) = 162,
f (x8) = 512.
Using (1.27) and Zadeh s-norm (maximum), the fuzzy set B is determined in the

following way
B = {(0, 0.5) , (2,max (0.3, 0.8)) , (32,max (0.5, 0.1)) , (162,max (0.8, 0.8)) ,

(512, 0.7)} = {(0, 0.5) , (2, 0.8) , (32, 0.5) , (162, 0.8) , (512, 0.7)}.

The above description concerned a one-argument function. Now let us consider a
general case, a multiargument function y = f (x1, x2, . . . , xn), which is a mapping
fromX1 × X2 × · · · × Xn toY. Suppose we have fuzzy sets A1, A2, . . . , An , defined
in universesX1,X2, . . . ,Xn , respectively. The mapping of these sets by the function
f leads to the following fuzzy set B (defined in universe Y) [16]
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μB (y) =
⎧⎨
⎩

�S
{ (x1,...,xn)| f (x1,...,xn)=y}

[
μA1 (x1) �T · · · �T μAn (xn)

]
, f −1 (y) 
= ∅,

0, f −1 (y) = ∅.

(1.28)

1.4 Fuzzy Relations

A generalization of the concept of a fuzzy set is the idea of a fuzzy relation [26]. Let
us consider a two-dimensional (binary) fuzzy relation R, which can be described by
the set of ordered pairs: two objects x and y, and the membership degree μR (x, y).
It can be written as [5, 16]

R = { [(x, y) , μR (x, y)]| x ∈ X, y ∈ Y} . (1.29)

The membership degree μR (x, y) can be understood as the degree of relationship
between objects x and y; the higher the value of μR (x, y), the greater is the degree
of relationship. The membership degree μR (x, y) is the value of membership func-
tionμR : X × Y → [0, 1] of fuzzy relation R. The presented two-dimensional fuzzy
relation is also a two-dimensional fuzzy set defined in an universe X × Y.

Example 1.9 In universes X = Y = [100, 160] ⊂ R+ let us define the two-
dimensional fuzzy relation R “Two FHR values (x and y) differ significantly.” As
the membership function of such a relation we can assume

μR (x, y) = 1 − exp

(
− (x − y)2

2δ2

)
,

which for parameter δ = 0.2 is shown in Fig. 1.5.

Example 1.10 Let us consider two discrete universes: X = {3500, 4000, 4500,
5000} ⊂ R+ and Y = {2000, 3000, 3500, 5000, 5500} ⊂ R+, comprising possible
salaries in companies A and B, respectively. In universe X × Y we can define the
following fuzzy relation “The salary of an employee x in a company A is similar to
the salary of an employee y in a company B.”

A relation defined in discrete universes can be described by a relation matrix. In
this case it is as follows

R =

⎡
⎢⎢⎣
0.32 0.88 1.00 0.32 0.14
0.14 0.61 0.88 0.61 0.32
0.04 0.32 0.61 0.88 0.61
0.01 0.14 0.32 1.00 0.88

⎤
⎥⎥⎦ ,
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Fig. 1.5 Example of the
membership function of
two-dimensional fuzzy
relation R “Two FHR values
(x and y) differ
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where rows correspond to elements of the universeX, and columns to elements of the
universeY. In other words, the element R(i, j) determines the degree of relationship
between the i th object in X and the j th object in Y.

In general, a multidimensional fuzzy relation is defined as follows [5, 16]

R = { [(x1, x2, . . . , xn) , μR (x1, x2, . . . , xn)]| x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn} , (1.30)

where μR : X1 × X2 × · · · × Xn → [0, 1] is a membership function of an n-dimen-
sional fuzzy relation R, that is, of an n-dimensional fuzzy set defined in universe
X1 × X2 × · · · × Xn .

Because fuzzy relations are fuzzy sets, they are subject to the same operations
as fuzzy sets, for example, the product of sets or an α-cut set. Additionally, fuzzy
relations may be composed. Let R1 and R2 be relations defined in universes X ×
Y and Y × Z, respectively. Frequently used compositions are “supremum-t-norm”
(R1 ◦ R2) and “infimum-s-norm” (R1 • R2), leading to the relation defined in an
universe X × Z [16]:

μR1◦R2 (x, z) = sup
y∈Y

[
μR1 (x, y) �T μR2 (y, z)

]
, (1.31)

μR1•R2 (x, z) = inf
y∈Y
[
μR1 (x, y) �S μR2 (y, z)

]
. (1.32)

For relations described by relation matrices, the above compositions can be
achieved by multiplication of matrices with multiplication of elements replaced by
t-norm (or s-norm), and the adding of elements replaced bymaximum (orminimum).

Example 1.11 Suppose we have two fuzzy relations: R1 and R2 defined in discrete
universes X = {x1, x2, x3} × Y = {y1, y2} and Y = {y1, y2} × Z = {z1, z2, z3},
respectively, which are described by relational matrices:
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R1 =
⎡
⎣0.5 0.2
0.1 1.0
0.6 0.5

⎤
⎦ , R2 =

[
0.5 0.7 0.2
1.0 0.2 0.8

]
.

The composition “maximum-t-norm” (R1 ◦ R2) with Zadeh t-norm (minimum)
leads to the following relation

R1 ◦ R2 =
⎡
⎣0.5 0.5 0.2
1.0 0.2 0.8
0.5 0.6 0.5

⎤
⎦ ,

where, for example, element (1, 1) was determined as
max (min (0.5, 0.5) ,min (0.2, 1.0)) = max (0.5, 0.2) = 0.5.

1.5 Cylindrical Extension and Projection of a Fuzzy Set

When analyzing fuzzy sets (fuzzy relations) defined in universes of different dimen-
sionality, sometimes there is a need to increase or reduce dimensionality of one of
the sets (one of the relations). To increase or reduce dimensionality, operations of
cylindrical extension and projection were defined [26].

Cylindrical extension of a fuzzy set A leads to a fuzzy set (denoted by Ce(A))
of higher dimensionality. Let us assume we have a fuzzy set A defined in a one-
dimensional universeX. Its cylindrical extension in two-dimensional universeX × Y

is defined as [16]
∀

x∈X,y∈Y
μCe(A) (x, y) = μA (x) , (1.33)

and is illustrated in Fig. 1.6a, which shows the cylindrical extension of the fuzzy set
A from Example 1.2 in the universe X × Y, where Y = [0, 50] ⊂ R.

Example 1.12 Let us consider the cylindrical extension of the fuzzy set A from
Example 1.6; that is,

A= {(low, 0.1) , (18, 0.4) , (19, 0.5) , (20, 0.8) , (21, 0.9) , (22, 1.0) , (23, 0.8) ,

(24, 0.4) , (high, 0.1)},
in the universe X × Y, where Y = {1, 2} ⊂ R+.

Using (1.33) the following fuzzy set is obtained
Ce(A)=0.1/ (low, 1) +0.4/ (18, 1) +0.5/ (19, 1) +0.8/ (20, 1) +0.9/ (21, 1) +
+1.0/ (22, 1) + 0.8/ (23, 1) + 0.4/ (24, 1) + 0.1/ (high, 1)+
+0.1/ (low, 2) + 0.4/ (18, 2) + 0.5/ (19, 2) + 0.8/ (20, 2) + 0.9/ (21, 2) +
+1.0/ (22, 2) + 0.8/ (23, 2) + 0.4/ (24, 2) + 0.1/ (high, 2).

In general, let us assume we have a fuzzy set A defined in an m-dimensional
universe X = X1 × X2 × · · · × Xm . The cylindrical extension of A in an m + n-
dimensional universe XY = X × Y, where Y = Y1 × Y2 × · · · × Yn , is defined
as [16]



1 Introduction to Fuzzy Sets 15

0
60

120
180

240

0

25

50
0

0.5

1

xy

μ
C
e
(A

)(
x
,y
)

−3

0

3

−3

0

3
0

0.5

1

ProjY(A)

x
y

ProjX(A)

μ
A
(x

,y
)

(a) (b)

Fig. 1.6 Cylindrical extension (a) and projection of a fuzzy set (b)

∀
x XY∈XY

μCe(A)

(
x XY

) = μA
(
x X

)
, (1.34)

where x XY and x X denote objects from universes XY and X, respectively.
Projection of a fuzzy set [26] leads to fuzzy sets of lower dimensionality. For

example, let us consider a fuzzy set A defined in a two-dimensional universe X × Y

and described by the membership function presented in Fig. 1.6b. As a result of its
projection in universes X and Y we can obtain two fuzzy sets [16]:

∀
x∈X

μProj
X
(A) (x) = sup

y∈Y
μA (x, y) , (1.35)

and
∀
y∈Y

μProj
Y
(A) (y) = sup

x∈X
μA (x, y) , (1.36)

which are also illustrated in Fig. 1.6b.

Example 1.13 In Example 1.11, the fuzzy relation R1 defined in the universe X =
{x1, x2, x3} × Y = {y1, y2} was presented

R1 =
⎡
⎣0.5 0.2
0.1 1.0
0.6 0.5

⎤
⎦ .

As a result of its projection in universes X and Y, according to (1.35) and (1.36) the
following fuzzy sets can be obtained.

Proj
X

(R1) = max (0.5, 0.2) /x1 + max (0.1, 1.0) /x2 + max (0.6, 0.5) /x3 =
= 0.5/x1 + 1.0/x2 + 0.6/x3,
Proj

Y
(R1) = max (0.5, 0.1, 0.6) /y1+max (0.2, 1.0, 0.5) /y2 = 0.6/y1+1.0/y2.
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In general, let us assumewe have a fuzzy set A defined in an (m + n)-dimensional
universe XY = X × Y. Its projection in an m-dimensional universe X is defined
as [16]

∀
x X∈X

μProj
X
(A)

(
x X

) = sup
xY∈Y

μA
(
x XY

)
, (1.37)

where x X , xY , and x XY denote objects from universes X,Y, and XY, respectively.

1.6 Fuzzy Numbers

Aseparate class of fuzzy sets for describing imprecise expressions related to numbers
(such as “about 5,” “more or less 10,” etc.) is distinguished [26]. Such sets are called
fuzzy numbers and denoted by Ã, B̃, . . . [16]. Usually, fuzzy numbers are regarded as
fuzzy sets that are defined over the real axis and fulfill given conditions; for example,
they are normal, compactly supported, and in some sense convex [15].

Basic operations on fuzzy numbers Ã and B̃ can be defined based on the extension
principle in the following way [16]:

• addition
μ Ã⊕B̃ (z) = sup

{(x,y)|x+y=z }

[
μ Ã (x) �T μB̃ (y)

]
, (1.38)

• subtraction
μ Ã�B̃ (z) = sup

{(x,y)|x−y=z }

[
μ Ã (x) �T μB̃ (y)

]
, (1.39)

• multiplication
μ Ã⊗B̃ (z) = sup

{(x,y)|xy=z }

[
μ Ã (x) �T μB̃ (y)

]
, (1.40)

• division
μ Ã�B̃ (z) = sup

{(x,y)|x/y=z }

[
μ Ã (x) �T μB̃ (y)

]
. (1.41)

Example 1.14 Let us calculate addition, subtraction, multiplication, and division of
the following fuzzy numbers.

Ã = 0.5/ − 2 + 1.0/ − 1 + 0.5/0,

B̃ = 0.8/4 + 1.0/5 + 0.8/6.

It can be noticed that the first number represents a value “about −1” and the
second one “about 5,” because membership degrees for −1 and 5 are equal to 1.
Useful calculations are presented in Table1.2.



1 Introduction to Fuzzy Sets 17

Table 1.2 Arithmetic operations on fuzzy numbers defined based on the extension principle

x y μ Ã (x) μB̃ (y) x + y y − x xy y/x

−2 4 0.5 0.8 2 6 −8 −2

−2 5 0.5 1.0 3 7 −10 −2.5

−2 6 0.5 0.8 4 8 −12 −3

−1 4 1.0 0.8 3 5 −4 −4

−1 5 1.0 1.0 4 6 −5 −5

−1 6 1.0 0.8 5 7 −6 −6

0 4 0.5 0.8 4 4 0 –

0 5 0.5 1.0 5 5 0 –

0 6 0.5 0.8 6 6 0 –

Using (1.38) and Zadeh t-norm (minimum), values of the membership function
of the sum are calculated as follows:

sup
x+y=2

[min (0.5, 0.8)] , sup
x+y=3

[min (0.5, 1.0) ,min (1.0, 0.8)],

sup
x+y=4

[min (0.5, 0.8) ,min (1.0, 1.0) ,min (0.5, 0.8)],

sup
x+y=5

[min (1.0, 0.8) ,min (0.5, 1.0)] , sup
x+y=6

[min (0.5, 0.8)].

Finally we get
μ Ã⊕B̃ (z) = 0.5/2 + 0.8/3 + 1.0/4 + 0.8/5 + 0.5/6 .
Values of the membership function of the subtraction, multiplication, and division

are calculated similarly applying (1.39)–(1.41); final results are given below:
μB̃� Ã (z) = 0.5/4 + 0.8/5 + 1.0/6 + 0.8/7 + 0.5/8,
μ Ã⊗B̃ (z) = 0.5/ − 12 + 0.5/ − 10 + 0.5/ − 8 + 0.8/ − 6 +
1.0/ − 5 + 0.8/ − 4+
+0.5/0,
μB̃� Ã (z) = 0.8/ − 6 + 1.0/ − 5 + 0.8/ − 4 + 0.5/ − 3 + 0.5/ − 2.5 + 0.5/ − 2.
It can be noted that the obtained results represent values: “about 4” (for the sum),

“about 6” (subtraction), “about−5” (multiplication and division), which is consistent
with classic arithmetic, for example, “about −1” + “about 5” = “about 4.”

The considered arithmetic operations were defined based on the extension princi-
ple. Alternatively α-cuts of fuzzy numbers can be used. Figure1.7a shows an α-cut of
a fuzzy set A (see (1.20) in Sect. 1.2). According to the figure, as a result of an α-cut
a classic set described by the interval

[
a−, a+

]
is obtained. Arithmetic operations

on fuzzy numbers Ã and B̃ using α-cuts consist in application of interval arithmetic
to intervals describing α-cuts of these numbers: Ãα = [̃a−, ã+

]
and B̃α = [̃b−, b̃+

]
.

According to [1] arithmetic operations are defined as follows:

(
Ã ⊕ B̃

)
α

= [̃a− + b̃−, ã+ + b̃+
]
, (1.42)(

Ã � B̃
)
α

= [̃a− − b̃+, ã+ − b̃−
]
, (1.43)(

Ã ⊗ B̃
)
α

= [min
(̃
a−b̃−, ã−b̃+, ã+b̃−, ã+b̃+

)
,
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Fig. 1.7 Arithmetic operations on fuzzy numbers using α-cuts

max
(̃
a−b̃−, ã−b̃+, ã+b̃−, ã+b̃+

)]
, (1.44)(

Ã � B̃
)
α

= [min
(̃
a−/b̃−, ã−/b̃+, ã+/b̃−, ã+/b̃+

)
,

max
(̃
a−/b̃−, ã−/b̃+, ã+/b̃−, ã+/b̃+

)]
, if 0 /∈ [̃b−, b̃+

]
. (1.45)

Example 1.15 Suppose we have two fuzzy numbers described by triangular mem-
bership functions:

μ Ã (x) = μ Ã (x; 2, 3, 4) ,

μB̃ (x) = μB̃ (x; 4, 5, 7) ,

which are presented inFig. 1.7b. Let us calculate addition, subtraction,multiplication,
and division of Ã and B̃ using their α-cuts.
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Based on equations of straight lines including sides of triangles we get intervals
describing α-cuts of Ã and B̃ (for any α in the range [0, 1]):

Ãα = [α + 2,−α + 4], B̃α = [α + 4,−2α + 7].
Applying (1.42) we get the interval(
Ã ⊕ B̃

)
α

= [2α + 6,−3α + 11],
where limits are functions describing locations of the beginning and the end of the
interval describing an α-cut of the sum. Because functions are linear, replacing α

with 0 and 1 provides parameters of the triangular membership function of the sum
μ Ã⊕B̃ (x) = μ Ã⊕B̃ (x; 6, 8, 11),

which is shown in Fig. 1.7c.
In a similar way, using (1.43) the results of the subtraction are obtained:

the interval(
Ã � B̃

)
α

= [3α − 5,−2α]
and the membership function

μ Ã�B̃ (x) = μ Ã�B̃ (x;−5,−2, 0),
which is presented in Fig. 1.7d.

Determining the product requiresmore comments. Applying (1.44), theminimum
and the maximum are searched among functions: α2 + 6α + 8, −2α2 + 3α + 14,
−α2 + 16 and 2α2 − 15α + 28. From the analysis of values of these functions for α

in the range [0, 1] the following interval is obtained(
Ã ⊗ B̃

)
α

= [α2 + 6α + 8, 2α2 − 15α + 28
]
.

Limits of the above interval are not linear functions, thus replacing α with 0 and
1 provides only values of x , for which the membership function takes values 0
and 1; that is, μ Ã⊗B̃ (8) = 0, μ Ã⊗B̃ (15) = 1 and μ Ã⊗B̃ (28) = 0. To determine the
membership function of the multiplicationμ Ã⊗B̃ (x), the following equations should
be solved (with respect to α):

α2 + 6α + 8 = x , 2α2 − 15α + 28 = x .
The solutions are as follows:α1,2 = (−3 ± √

1 + x
)
for the first equation, andα1,2 =(

15 ± √
1 + 8x

)
/4 for the second. In the case of the first equation, the function(−3 + √

1 + x
)
is chosen as the membership function because it provides values in

the range [0, 1] for x ∈ [8, 15]. Considering the second equation, for x ∈ [15, 28] the
values in the range [0, 1] are provided by the function

(
15 − √

1 + 8x
)
/4. Finally,

the product is described by the following membership function

μ Ã⊗B̃ (x) =
⎧⎨
⎩

−3 + √
1 + x, 8 ≤ x ≤ 15,(

15 − √
1 + 8x

)
/4, 15 < x ≤ 28,

0, x < 8 or x > 28,

which is shown in Fig. 1.7e.
The result of the division is calculated similarly applying (1.45), however, there

is no need to select solutions of equations since each of them has a single solution.
Finally, we get the membership function
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μ Ã�B̃ (x) =

⎧⎪⎪⎨
⎪⎪⎩

7x−2
2x+1 ,

2
7 ≤ x ≤ 0.6,

4(1−x)
x+1 , 0.6 < x ≤ 1,

0, x < 2
7 or x > 1,

which is presented in Fig. 1.7f.
Analyzing membership functions of the considered fuzzy numbers Ã and B̃ it can

be noted that they represent values “about 3” and “about 5,” because membership
degrees for 3 and 5 are equal to 1. The obtained results of arithmetic operations are
correct; for example, the subtraction provided value “about −2.”

As opposed to classic arithmetic, where two numbers are equal or are not equal, in
fuzzy arithmetic a “partial equality” is possible. One of the methods of determining
the degree of equality is based on the distance between compared fuzzy sets [16].
According to it, the equality index of sets A and B is defined as Eq1 (A, B) =
1 − dp (A, B), where dp (A, B) denotesMinkowski distance between sets described
by membership functions μA (x) and μB (x)

dp (A, B) =
⎛
⎝∫

X

|μA (x) − μB (x)|p dx
⎞
⎠

1
p

, p > 1. (1.46)

Minkowski distance between sets is also the basis of one of themethods of ranking
fuzzy numbers [16]. According to it, to compare fuzzy numbers Ã and B̃, the fuzzy

number C̃ such as Ã ≤ C̃ and B̃ ≤ C̃ is established. The comparison of Ã and B̃
consists in the analysis of their Minkowski distances from C̃ ; it is stated that Ã ≤ B̃
if dp

(
Ã, C̃

) ≥ dp
(
B̃, C̃

)
. Most often C̃ = max

(
Ã, B̃

)
is established based on the

extension principle [16]

μmax( Ã,B̃) (z) = sup
{(x,y)|max(x,y)=z }

[
μ Ã (x) �T μB̃ (y)

]
. (1.47)

Another way of ranking fuzzy numbers is to use their α-cuts [23].
The extension of the concept of fuzzy numbers are Ordered Fuzzy Numbers

(OFNs) proposed in [14, 15]. TheOFNs are ordered pairs of continuous real functions
defined on the interval [0, 1] and their applications are the subject of research [4, 12,
17].

1.7 Summary

The chapter provides the review of basic issues concerning fuzzy sets, which – in
contrast to classic sets – allow for partial membership of objects. As a result fuzzy
sets are a good tool for representing vague and imprecise expressions of natural
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language. Various ways of describing fuzzy sets and concepts related to them were
shown. We discussed the extension principle, which allows for extension of tradi-
tional mathematical functions to fuzzy sets, as well as the idea of fuzzy relation,
which makes possible a formal description of the relationship between two or more
fuzzy sets. Operations of cylindrical extension and projection of a fuzzy set, which
enable increasing and reducing its dimensionality, were also described. A separate
section was dedicated to fuzzy numbers and basic arithmetic operations on them.
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Chapter 2
Introduction to Fuzzy Systems

Robert Czabanski, Michal Jezewski and Jacek Leski

Abstract The following chapter describes the basic concepts of fuzzy systems and
approximate reasoning. The study focuses mainly on fuzzy models based on Zadeh’s
compositional rule of inference. The presentation begins with an introduction of fun-
damental ideas of fuzzy conditional (if-then) rules. A collection of fuzzy if-then rules
formulates the so-called knowledge base,which formally represents the knowledge to
be processed during approximate reasoning. The subsequent sections present formal
definitions related to the compositional rule of inference and approximate reasoning
using a knowledge base. Theoretical considerations are supplemented with practical
examples of fuzzy systems as the foundation ofmanymodern structures. The descrip-
tion includes fuzzy systems proposed by Mamdani and Assilan, Takagi, Sugeno and
Kang, and Tsukamoto.

2.1 Introduction

The main inspiration behind the introduction of fuzzy sets theory was the necessity
for modeling real-world phenomena, which are inherently vague and ambiguous.
Human knowledge about complex problems can be successfully represented using
the imprecise terms of natural language. The theories of fuzzy sets and fuzzy logic
provide formal tools for mathematical representation and efficient processing of such
information.

The term “system” is usually understood as a set of interacting components with
well-defined structure and organized as an intricate whole that can be distinguished
from the “external” environment. A system communicates with the environment
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Fig. 2.1 The typical structure of a fuzzy system

through so-called inputs and outputs. Fuzzy systems are structures based on fuzzy
techniques oriented towards information processing, where the usage of classical
sets theory and binary logic is impossible or difficult. In the literature, terms such as
fuzzy system, fuzzy model, system based on fuzzy rules, fuzzy controller, or fuzzy
associativememory are used interchangeably depending on the application type [16].
Their main characteristic involves symbolic knowledge representation in a form of
fuzzy conditional (if-then) rules.

The typical structure of a fuzzy system (Fig. 2.1) consists of four functional blocks:
the fuzzifier, the fuzzy inference engine, the knowledge base, and the defuzzifier.Both
linguistic values (defined by fuzzy sets) and crisp (numerical) data can be used as
inputs for a fuzzy system. If crisp data are applied, then the inference process is pre-
ceded by fuzzification, which assigns the appropriate fuzzy set to the nonfuzzy input.
The values of input variables are mapped into linguistic values of the output variable
by means of the appropriate method of approximate reasoning (inference engine)
using expert knowledge, which is represented as a collection of fuzzy conditional
rules (knowledge base). In addition to the linguistic values, the numerical data may
be required as the fuzzy system output. In such cases defuzzification methods are
used, which assign the representative crisp data to the resultant output fuzzy set.

Practical applications of fuzzy systems include problems for which the complete
mathematical description is unavailable, or where the usage of the precise (non-
fuzzy) model is uneconomical or highly inconvenient. The ability to process inac-
curate information makes a fuzzy system an excellent tool, for example, for control
processes [12, 19], system identification [11, 20], decision support [24, 33], and
signal and image processing [4, 23].

In the following sections only static fuzzy systems (i.e., systemswhere the outputs
are determined only on the basis of the current input values) are considered. Included
are concepts of knowledge representation in the form of fuzzy conditional rules,
the idea of approximate reasoning, and the description of basic structures of fuzzy
systems.
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2.2 Fuzzy Conditional Rules

One of the fundamental concepts of fuzzy sets theory is a linguistic variable [34]. Its
values are the statements of natural language (terms), which are the labels (descrip-
tions) of fuzzy sets defined on a given universe (space) of discourse. Formally, a
linguistic variable is defined as a quintuple [35]:

X = (N ,L (G) ,X,G,S) , (2.1)

where N is a name of the linguistic variable, L (G) denotes the family of values
of the linguistic variable being a collection of labels of the fuzzy sets defined on the
universeX,G is the set of syntactic rules defined by a grammar determining all terms
inL (G), and S represents the semantics of the variable X , that defines the meaning
of all labels.

As an example we can use a linguistic variable describing the fetal heart rate
(FHR). The name of the variable can be defined as N = “mean FHR”. According
to FIGO guidelines [21], the set of possible linguistic values is a collection of three
labels describing the fetal state as: L = {“normal,” “suspicious,” “pathological”}.
To each of the labels we can assign a fuzzy set Ai : i = 1, 2, . . . , 5, defined on
X = [0, 250] bpm, which represents the range of possible number of heart beats per
min [3]. The examples of membership functions μAi (x) of the fuzzy sets Ai are
shown in Fig. 2.2.

An elementary statement for the linguistic variable X is the fuzzy expression:

X is L A, (2.2)

where L A is a label from the collection L (G), defined by a fuzzy set A on the
universe X. The logical value of the expression is determined on the basis of mem-
bership function μA (x) of the fuzzy set A. In the preceding example, an elementary
statement is:

Fig. 2.2 Examples of membership functions of fuzzy sets defining the values of the linguistic
variable X = “mean FHR”
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“mean FHR” is “normal”,

which value for the measurement 110 bpm is equal to μA3 (x) = 0.5 (see Fig. 2.2).
A more complex fuzzy expression can be obtained by combining two or more

elementary expressions. It can be presented in the conjunctive:

(X1 is L A1) and (X2 is L A2), (2.3)

or the disjunctive form:
(X1 is L A1) or (X2 is L A2), (2.4)

where X1, X2 are linguistic variables with labels L A1 , L A2 defined by the fuzzy sets
A1 and A2, respectively, on the universes X1 and X2.

The value of a complex fuzzy expression for x1 ∈ X1 and x2 ∈ X2 is determined
on the basis of the membership functions of fuzzy sets A1 and A2 [16]:

μA1 (x1) �T μA2 (x2) , (2.5)

for the conjunctive form, and

μA1 (x1) �S μA2 (x2) , (2.6)

for the disjunctive form, where �T denotes a t-norm, and �S an s-norm.
An elementary fuzzy statement can also be expressed in the form of an implication

forming a fuzzy if-then rule (fuzzy conditional statement):

if (X is LA) , then (Y is LB) , (2.7)

defining a relationship between linguistic variables. The statement “X is LA” is
called the antecedent (premise), and the statement “Y is LB” is called the consequent
(conclusion).

A generalized form of the fuzzy conditional statement can be defined as an impli-
cation of complex fuzzy expressions. For the conjunctive form it can be written
as:

if
(
X1 is L A1

)
and

(
X2 is L A2

)
and · · · and (

XN is L AN

)
, (2.8)

then
(
Y1 is LB1

)
,

(
Y2 is LB2

)
, . . . ,

(
YM is LBM

)
,

and for the disjunctive form as:

if
(
X1 is L A1

)
or

(
X2 is L A2

)
or · · · or (

XN is L AN

)
, (2.9)

then
(
Y1 is LB1

)
,

(
Y2 is LB2

)
, . . . ,

(
YM is LBM

)
,
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where X1, X2, . . . , XN are the input linguistic variables; Y1,Y2, . . . ,YM are the out-
put linguistic variables; LA1 , L A2 , . . . , L AN , and LB1 , LB2 , . . . , LBM are their linguis-
tic values, defined with fuzzy sets A1, A2, . . . , AN and B1, B2, . . . , BM on universes
X1,X2, . . . , XN , and Y1,Y2, . . . ,YM , respectively.

Both implications are the fuzzy if-then rules with multiple inputs and multiple
outputs (MIMO). The MIMO fuzzy rule can be decomposed into the corresponding
set of canonical fuzzy if-then rules [16], which are the MISO (multiple inputs and
single output) type of fuzzy conditional statements with conjunctive antecedent:

if
N

and
n=1

(
Xn is L An

)
, then Y is LB . (2.10)

Canonical fuzzy conditional statements are the basics for representing expert
knowledge in a fuzzy system. Using pseudo-vector notation, the canonical fuzzy
if-then rule can be written as

if (X is LA) , then (Y is LB) , (2.11)

which is an N + 1-nary fuzzy relation [4]:

R = ((A1 × A2 × · · · × AN ) =⇒ B) = (A =⇒ B) , (2.12)

defined on X1 × X2 × · · · × XN × Y, with the membership function:

μR (x1, . . . , xN , y) = Φ (μA (x) , μB (y)) , (2.13)

where x = [x1, . . . , xN ]T ∈ X1 × X2 × · · · × XN , y ∈ Y, and depending on the
interpretation of the fuzzy if-then rule, Φ (·, ·) denotes a t-norm (a conjunctive inter-
pretation) [8, 16] or fuzzy implication (logical interpretation) [8, 9, 16].

If the conjunction “and” in the antecedents of the fuzzy if-then rules is represented
by a t-norm T , then:

μA (x) = μA1 (x1) �T μA2 (x2) �T · · · �T μAN (xN ) , (2.14)

where A1, A2, . . . , AN are fuzzy sets representing the values of linguistic variables
in the antecedent of the canonical fuzzy rule.

Hence, for the conjunctive interpretation we get:

μR (x, y) = μR (x1, . . . , xN , y) = μA (x) �Tr μB (y) =
μA1 (x1) �T μA2 (x2) �T · · · �T μAN (xN ) �Tr μB (y) , (2.15)

where �Tr is a t-norm representing the fuzzy if-then rule, whereas for logical inter-
pretation:
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μR (x, y) = μR (x1, . . . , xN , y) = Ψ (μA (x) , μB (y)) =
Ψ

(
μA1 (x1) �T μA2 (x2) �T . . . �T μAN (xN ) , μB (y)

)
, (2.16)

where Ψ (·, ·) denotes a fuzzy implication.
Fuzzy implication is usually introduced using an axiomatic approach [9], where

it is defined as a continuous function Ψ : [0, 1] × [0, 1] → [0, 1], which for each
a, b, c ∈ [0, 1] fulfills five necessary (general) conditions:

P1: if a ≤ c, then Ψ (a, b) ≥ Ψ (c, b),
P2: if b ≤ c, then Ψ (a, b) ≤ Ψ (a, c),
P3: Ψ (0, b) = 1,
P4: Ψ (a, 1) = 1,
P5: Ψ (1, 0) = 0,

and eight recommended (specific) conditions [4]. Properties P3, P4, and P5 are
called falsity, neutrality, and Booleanity, respectively [4, 22]. As examples we can
use Lukasiewicz:

Ψ (a, b) = min (1 − a + b, 1) , (2.17)

Reichenbach:

Ψ (a, b) = 1 − a + ab, (2.18)

and Zadeh fuzzy implication:

Ψ (a, b) = max (1 − a,min (a, b)) . (2.19)

A single fuzzy rule describes a local relationship between the input and output
variables of the fuzzy system within the limits defined by the domain of fuzzy sets
in the rule antecedent. The complete input–output mapping is represented by the
whole collection of fuzzy if-then rules from the knowledge (rule) base. For further
considerations we assume a base consisting of I rules in the form:

R = {
R(i)

}I

i=1 =
{
if

N
and
n=1

(
Xn is L

(i)
An

)
, then Y is L(i)

B

}I

i=1

. (2.20)

A well-defined fuzzy rule base should be complete, consistent, and continuous
[31]. The completeness means that for each value from the input space at least one
rule is activated, that is ∃i=1,2,...,I μA(i) (x) �= 0. The knowledge base is consistent
if there are no rules with the same antecedent but different consequents. And finally,
the knowledge base is continuous if there are no neighboring rules, for which the
result of intersection of fuzzy sets in their consequents is an empty set.

The knowledge base is constructed first by acquiring knowledge about the mod-
eled phenomenon, and next by representing it in a form of fuzzy conditional rules.
In practice, there are three basic methods to create a fuzzy rule base [16]:
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• by using knowledge of a human expert or based on the physical laws describing
the phenomenon (white box modeling),

• by automatically extracting the rules based on numerical data representing the
relationship between inputs and outputs of the phenomenon (black boxmodeling),

• mixed, where part of the knowledge is derived from a human expert and part from
automated extraction (grey box modeling).

The possible applications of a fuzzy system depend, however, not only on the
properly defined knowledge base, but also on the appropriate design of an inference
engine.

2.3 Approximate Reasoning

Inference methods originating from classical logic are based on so-called rules of
inference. A rule of inference is a pattern of reasoning that explains how a conclusion
may be logically derived from a given premise previously assumed to be true. One of
the most commonly used rules of inference is the rule of detachment, often referred
to as modus ponendo ponens (“the way that affirms by affirming”). Modus ponendo
ponens (MPP) is based on two premises. The first is the conditional statement p =⇒
q, namely that “p implies q”. The second assumes that the antecedent p of the
conditional statement is true. From these two premises it can be concluded that the
consequent q is true. The MPP rule can be written as [4]:

Premise I (fact): p
Premise II (rule): p =⇒ q
Conclusion: q

or symbolically:
(p ∧ (p =⇒ q)) =⇒ q. (2.21)

Binary logic assumes only two possibilities: total compliance or total noncompli-
ance of the fact with the implication antecedent. In contrast, fuzzy inference engines
use an approximate reasoning based on the generalized rules of inference. The gen-
eralized modus ponendo ponens (GMPP) may be written as [34]:

Premise I (fact): p′
Premise II (rule): p =⇒ q
Conclusion: q ′
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or:
[
p′ ∧ (p =⇒ q)

] =⇒ q ′, (2.22)

where statements p′ and q ′ are similar, respectively, to p and q.
A conditional fuzzy rule can be defined as a fuzzy relation, and hence, the state-

ments in antecedents and consequents as fuzzy sets. The statement X is LA′ is a fact,
where L A′ denotes the label of a linguistic variable X defined by a fuzzy set A′ on
the universe X. The knowledge is represented by the fuzzy conditional rule “if X is
L A, then Y is LB ,” where L A and LB are the linguistic values of linguistic variables
X and Y , defined by fuzzy sets A and B, on the universes X and Y, respectively.
Consequently, the inference scheme of GMPP takes the form:

Premise I (fact): X is LA′
Premise II (rule): if X is LA, then Y is LB

Conclusion: Y is LB′

or:
[(X is L A′) ∧ (X is L A =⇒ Y is LB)] =⇒ Y is LB ′ . (2.23)

The fuzzy set B ′ is determined using Zadeh’s compositional rule of inference [34].

2.3.1 Compositional Rule of Inference

The compositional rule of inference (CRI), also known as supremum-star composi-
tion [34], is a generalization of an operation for determining the function value. The
first stage of CRI is to construct a cylindrical extension of a fuzzy set A′ (x) from
the universe X to X × Y:

∀
(x,y)∈X×Y

μCe(A′) (x, y) = μA′ (x) . (2.24)

Secondly, an intersection (logical product) of cylindrical extension Ce
(
A′) and fuzzy

relation R is constructed using t-norm T :

∀
(x,y)∈X×Y

μCe(A′)∩R (x, y) = μCe(A′) (x, y) �T μR (x, y)
= μA′ (x) �T μR (x, y) .

(2.25)

The final CRI outcome is a result of the Ce
(
A′) ∩ R projection on Y:

∀
y∈Y

μB ′ (y) = sup
x∈X

[μA′ (x) �T μR (x, y)] . (2.26)
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The fuzzy set B ′ can also be presented as a composition of a fuzzy set A′, which is
an unary fuzzy relation, with conditional fuzzy rule R being a binary fuzzy relation:

B ′ = A′ ◦ R, (2.27)

where ◦ is the operator of the supremum-t-norm composition.
The GMPP for the i th canonical fuzzy if-then rule (2.20) can be written as [16]:

B ′(i) = A′ ◦ R(i) = A′ ◦ (
A(i) =⇒ B(i)

)
, (2.28)

where A′ = A′
1 × A′

2 × · · · × A′
N is a multidimensional fuzzy set that defines the

value of the multidimensional input linguistic variable on the spaceX = X1 × X2 ×
· · · × XN .

The membership function of the conclusion B ′(i) is calculated as follows.

μB ′(i) (y) = sup
x∈X

[
μA′ (x) �Ts μR(i) (x, y)

] =

sup
x∈X

[
μA′

1
(x1) �T μA′

2
(x2) �T · · · �T μA′

N
(xN ) �Ts μR(i) (x1, . . . , xN , y)

]
, (2.29)

where Ts is a t-norm of the supremum-t-norm composition. In the case of the con-
junctive interpretation (2.15) we can write:

μB ′(i) (y) = sup
x∈X

[
μA′ (x) �Ts μA(i) (x) �Tr μB(i) (y)

] =

sup
x∈X

[(
μA′

1
(x1) �T μA′

2
(x2) �T · · · �T μA′

N
(xN )

)
�Ts

(
μA(i)

1
(x1) �T μA(i)

2
(x2) �T · · · �T μA(i)

N
(xN )

)
�Tr μB(i) (y)

]
. (2.30)

And for logical interpretation (2.16) we get:

μB ′(i) (y) = sup
x∈X

[
μA′ (x) �Ts Ψ (μA(i) (x) , μB(i) (y))

] =

sup
x∈X

[(
μA′

1
(x1) �T μA′

2
(x2) �T · · · �T μA′

N
(xN )

)
�Ts

Ψ
(
μA(i)

1
(x1) �T μA(i)

2
(x2) �T · · · �T μA(i)

N
(xN ) , μB(i) (y)

)]
. (2.31)

Under certain conditions [5], logical and conjunctive interpretation of fuzzy con-
ditional rules leads to equivalent inference results.

Equations (2.30) and (2.31) define the membership function of a fuzzy set repre-
senting the resulting conclusion of an inference using only one fuzzy if-then rule. For
a knowledge base consisting of many fuzzy conditional statements it is necessary to
combine conclusions from all individual rules.
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2.3.2 Approximate Reasoning with Knowledge Base

Generally, there are two methods of approximate reasoning that can be applied to
determine the outcome fuzzy set B ′ on the basis of a collection of fuzzy if-then
rules [4]:

• composition-based inference (first aggregate then infer: FATI), where first a com-
bination of all rules from the knowledge base is constructed, and then inference
using the supremum-star composition is conducted,

• individual rule-based inference (first infer then aggregate: FITA), in which the first
step involves inference using the supremum-star composition for each of the rules
individually and then, a combination of inference results is performed.

The FATI process of combining the rules, as well as the stage in the FITA schema
of determining the resulting conclusion, is called aggregation [10]. The aggregation
can be defined by introduction of the concept of the aggregation operator [16], which
for I values x1, x2, . . . , xI ∈ [0, 1] represents a mapping ⊕ : [0, 1]I ⇒ [0, 1]:

x =
I⊕

i=1

xi = ⊕ (x1, x2, . . . , xI ) . (2.32)

There are various definitions of aggregation operator including logical sum, rep-
resented by an s-norm (Mamdani combination [19]), logical product, represented by
a t-norm (Gödel combination [16]), as well as nonmonotonic fuzzy operations that
allow conducting the inference even if part of the knowledge is missing [32]. Most
of them can be defined as special cases of the generalized average operator [4]:

�(α) (x1, . . . , xI ) =
I⊎

(α)
i=1

xi =
[
1

I

I∑

i=1

(xi )
α

] 1
α

, (2.33)

for α ∈ R \ {0}.
Consequently, the first stage of the FATI method can be defined as:

R =
I⊕

i=1

R(i), (2.34)

where R(i) is the i th fuzzy relation.
Next, the outcome fuzzy set B ′

FAT I is determined for an input fuzzy set A′ using
the GMPP:

B ′
FAT I = A′ ◦ R = A′ ◦

[
I⊕

i=1

R(i)

]

, (2.35)
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the membership function of which is defined as

μB ′
FAT I

(y) = sup
x∈X

[
μA′ (x) �Ts μR (x, y)

]

= sup
x∈X

{

μA′ (x) �Ts

[
I⊕

i=1

μR(i) (x, y)

]}

. (2.36)

In the case of the FITA method, first the conclusion of each fuzzy if-then rule is
determined:

∀
i=1,2,...,I

B ′(i) = A′ ◦ R(i), (2.37)

the membership function of which is written as:

μB ′(i) (y) = sup
x∈X

[
μA′ (x) �Ts μR(i) (x, y)

]
. (2.38)

During the next stage, these partial results of the inference are aggregated forming
the outcome fuzzy set:

B ′
F I T A =

I⊕

i=1

(
A′ ◦ R(i)

)
, (2.39)

defined by the membership function:

μB ′
F I T A

(y) =
I⊕

i=1

sup
x∈X

[
μA′ (x) �Ts μR(i) (x, y)

]
. (2.40)

It can be proven [7], that the results of the FATI method are a subset of those
obtained using the FITA procedure:

B ′
FAT I ⊆ B ′

F I T A, (2.41)

that is:
∀
y∈Y

μB
′
FAT I

(y) ≤ μB
′
F I T A

(y) . (2.42)

Usually, for simplicity of calculations, the B ′
FAT I is used instead of B

′
F I T A, under

the assumption that the difference is insignificant [4].
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2.3.3 Fuzzification and Defuzzification

In many applications inputs of the fuzzy systems are defined as crisp numerical
data. However, approximate reasoning requires inputs to be represented as fuzzy
sets. The process of mapping real values x0 = [x01, x02, . . . , x0N ]� ∈ X ⊂ R

N to an
N -dimensional fuzzy set A′ defined on X is called fuzzification. The fuzzification
can be symbolically expressed as a transformation of N -dimensional space into a
multitude of fuzzy sets [16]:

X ⇒ F (X). (2.43)

Using membership functions we can write:

X ⇒ {
μA′ (x)| x ∈ X, μA′ (x) ∈ [0, 1]

}
. (2.44)

Among many definitions of a fuzzification operator, the singleton fuzzifier can be
distinguished:

μA′ (x) = δx,x0 =
{
1, x = x0,
0, x �= x0,

(2.45)

for which both methods of approximate reasoning (FATI and FITA) provide equiv-
alent inference results [5].

The result of approximate reasoning is a fuzzy set B ′ (y), which can be associated
with a specific linguistic label. However, there are applications that require a crisp
numerical inference outcome. The process of calculating a representative numerical
output y0 ∈ Y from the outcome fuzzy set B ′ (y) on Y is called defuzzification.
Defuzzification is a mapping of a multitude of fuzzy sets defined on the space Y to
a single numerical value from Y [16]:

F (Y) → Y. (2.46)

Using membership functions we get:

{μB ′ (y)| y ∈ Y, μB ′ (y) ∈ [0, 1]} → Y. (2.47)

Due to the different criteria for determining which element y0 of the fuzzy set
B ′ (y) should be regarded as the most representative one, there are many definitions
of the defuzzification procedure [6, 14, 31]. One of the most popular is a center of
gravity method (COG), which specifies the result as a center of the area under the
membership function μB ′ (y):

y0 =
∫

Y

y μB ′ (y) dy

∫

Y

μB ′ (y) dy
. (2.48)
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2.4 Basic Types of Fuzzy Systems

Due to a wide range of possible applications there are many different types of fuzzy
systems that have been proposed in the literature thus far [4, 16, 22, 23, 31]. But new
solutions characterized by decreased computation complexity, improved modeling
quality, or greater ease of the linguistic interpretation of the inference results are still
the topic of research. The model proposed by E.H. Mamdani and S. Assilan [19]
is generally regarded as the first fuzzy system presented in the literature. Currently,
it can be considered as the foundation of the fuzzy models family based on if-then
rules with fuzzy sets in antecedents as well as consequents.

2.4.1 Mamdani–Assilan Fuzzy Model

The Mamdani–Assilan fuzzy system (MAFS) uses a set of conditional fuzzy rules
in the canonical form (2.20), which can be determined by a human expert. The
MAFS is based on the conjunctive interpretation of fuzzy rules,where the conjunctive
“and” of a rule antecedent is defined with the t-norm minimum (∧). The inference
results from individual rules are aggregated by applying the s-norm maximum (∨).
The numerical inputs x0 = [x01, x02, . . . , x0N ]� are mapped into fuzzy sets with the
singleton fuzzifier, and the numerical outcome is calculated using the COG method.
The approximate reasoning schema is realized on the basis of Eq. (2.40), which takes
the form:

μB ′ (y) =
I∨

i=1

[μA(i) (x0) ∧ μB(i) (y)] , (2.49)

where

μA(i) (x0) = μA(i)
1

(x01) ∧ μA(i)
2

(x02) ∧ · · · ∧ μA(i)
N

(x0N ) . (2.50)

The above equation defines the so-called firing strength of the i th rule, denoted as
F (i) (x0). Hence, the formula (2.49) can also be written as

μB ′ (y) =
I∨

i=1

[
F (i) (x0) ∧ μB(i) (y)

]
. (2.51)

Using the COG defuzzification we get:

y0 =
∫

Y

y μB ′ (y) dy

∫

Y

μB ′ (y) dy
. (2.52)
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Fig. 2.3 Example of fuzzy inference using the Mamdani–Assilan fuzzy system with two inputs
and the knowledge base consisting of two conditional fuzzy rules

Figure2.3 shows an example of fuzzy inference using MAFS with two inputs and
the knowledge base consisting of two conditional fuzzy rules.

The defuzzification requires high computational complexity, however, some sim-
plifications can be applied. Using the algebraic product t-norm and the arithmetic
mean as the aggregation operator we obtain a Larsen fuzzy system, which is defined
as [16]:

μB ′ (y) = 1

I

I∑

i=1

F (i) (x0) μB(i) (y) . (2.53)

By substitution of (2.53) into (2.52) we get:

y0 =

I∑

i=1
F (i) (x0)

∫

Y

y μB(i) (y) dy

I∑

j=1
F ( j) (x0)

∫

Y

μB( j) (y) dy

. (2.54)
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Denoting the area under a membership function of the fuzzy set B(i) (y) as

A (μB(i) (y)) =
∫

Y

μB(i) (y) dy, (2.55)

and its center of gravity as y(i), we can write:

y0 =

I∑

i=1
F (i) (x0) A (μB(i) (y)) y(i)

I∑

j=1
F (i) (x0) A (μB( j) (y))

. (2.56)

The above solution requires only a single calculation of the areas under the mem-
bership functions and centers of gravity locations for all fuzzy rules. By assuming
additionally thatA (μB(i) (y)) are the same for all I consequents, we get the Sugeno–
Yasukawa fuzzy model [26].

Approximate reasoning without the defuzzification necessity was presented in
papers by Takagi and Sugeno [27] and Sugeno and Kang [25]. The proposed model,
called theTakagi–Sugeno–Kang fuzzy system (TSKFS), is described in the following
subsection.

2.4.2 Takagi–Sugeno–Kang Fuzzy System

The knowledge base of the TSKFS consists of conditional fuzzy rules with the
consequents in the form of classical functions, the arguments of which are the input
numerical data:

R = {
R(i)

}I

i=1 =
{

if
N∧

n=1

(
x0n is L

(i)
An

)
, then y = y(i) (x0)

}I

i=1

, (2.57)

where x0n is an input singleton, x0 = [x01, x02, . . . , x0N ]�, and y(i) (x) is the function
in the i th consequent.

The output of each fuzzy rule is a crisp numerical datum y = y(i) (x0), and the
TSKFS outcome is calculated as a weighted average of individual outputs:

y0 =

I∑

i=1
F (i) (x0) y(i) (x0)

I∑

j=1
F ( j) (x0)

, (2.58)
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where

F (i) (x0) = μA(i)
1

(x01) �T μA(i)
2

(x02) �T · · · �T μA(i)
N

(x0N ) , (2.59)

is the firing strength and �T is a t-norm (usually a minimum or algebraic product).
Equation (2.58) can be interpreted as a mixture of experts, each modeled by a

single fuzzy rule. Each rule defines the relationship between outputs and inputs of
the system in the relevant input range. The weighted average of statements from all
local experts (rules) determines the reasoning result. The weight, represented by the
firing strength of the rule, specifies the influence level of a single expert on the final
inference outcome.

The consequent of the i th TSKFS fuzzy rule can also be understood as a singleton
[4], the location of which is determined by the function y(i) (x):

μB(i) (y) = δy,y(i) =
{
1, y = y(i) (x0) ,

0, y �= y(i) (x0) .
(2.60)

Hence, the TSKFS is usually referred to as the fuzzy system with “moving” single-
tons. The term “moving” relates to the relationship between a singleton location and
the input numerical data. The amplitude (height) of the singleton after the approxi-
mate reasoning is defined by the firing strength of a rule.

The TSKFS consequents are frequently defined as linear functions (first-order
polynomials):

y(i) (x0) = p(i)
0 + p(i)

1 x01 + p(i)
2 x02 + · · · + p(i)

N x0N = p(i)�x′
0, (2.61)

where p(i) is the (N + 1)-dimensional vector of parameters of the function y(i) (x),
and x′

0 denotes the extended input vector:

x′
0 = [

1 x0
]�

. (2.62)

A collection of simple linear functions y(i) (x) allows for modeling the most
complex input–output relationships.Overlapping areas of antecedents in neighboring
rules ensure smooth switching between the local models.

An example of TSKFS inference with two inputs and two conditional fuzzy rules
is shown inFig. 2.4. Themain advantage of theTSKFS is the lowcomputational effort
required to determine the numerical output of the system as the inference process
does not involve defuzzification. However, it does not allow for the application of
different interpretations of the fuzzy rules and different types of aggregation opera-
tors. This is due to the application of singletons in the rules consequents. The artificial
neural network based fuzzy inference system (ANNBFIS) [17] is devoid of such
disadvantages. The ANNBFIS combines the benefits of the usage of a fuzzy set in
the rule consequent (as in theMAFS) together with the dependency of the consequent
location on system inputs (as in the TSKFS) [4, 15, 16]. Another extension of the
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Fig. 2.4 An example of approximate reasoning with Takagi–Sugeno–Kang fuzzy system with two
inputs and two fuzzy if-then rules

TSKFS is the Tsukamoto fuzzy system (TFS) [28]. The main difference between
TSKFSandTFS is themethod of determining the singleton location in the consequent
of the fuzzy rule. In TFS it is defined using a monotonic function as well as a firing
strength of the rule.

2.4.3 Tsukamoto Fuzzy System

The knowledge base of TFS is a collection of fuzzy conditional statements in the
form:

R(i) = if
N∧

n=1

(
x0n is L

(i)
An

)
, then y = f −1

i

(
F (i) (x0)

)
, (2.63)

where fi (y) is a monotonic function in the i th consequent.
For the firing strength equal to F (i) (x0) the consequent is a singleton with the

amplitude F (i) (x0) and the location y(i) such that F (i) (x0) = fi
(
y(i)

)
:
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μB ′(i) (y) = F (i) (x0) δy,y(i) =
{
F (i) (x0) , y = y(i),

0, y �= y(i),
(2.64)

where y(i) = f −1
i

(
F (i) (x0)

)
.

The inference outcome of the TFS is calculated as a weighted average of singleton
locations from all rules, with weights defined as the rules firing strengths:

y0 =

I∑

i=1
F (i) (x0) y(i)

I∑

j=1
F ( j) (x0)

=

I∑

i=1
F (i) (x0) f −1

i

(
F (i) (x0)

)

I∑

j=1
F ( j) (x0)

. (2.65)

An example of the Tsukamoto approximate reasoning with two inputs and two
fuzzy if-then rules is shown in Fig. 2.5.

The TFS is rarely used due to the difficulty in obtaining the conditional fuzzy
rules from a human expert in the form (2.63). For the same reasons the Baldwin
fuzzy system (BFS) [1, 2] is difficult to apply in practice. The BFS represents a

Fig. 2.5 Example of the Tsukamoto approximate reasoning with two inputs and two fuzzy if-then
rules
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different approach to fuzzy modeling, which is not based on Zadeh’s compositional
rule of inference but on reasoning using fuzzy truth value restrictions. The literature
describesmany other interesting proposals of fuzzymodels, including those based on
interval-valued fuzzy sets and type-2 fuzzy sets. A detailed overview can be found,
for example, in [13, 18, 29, 30].

2.5 Summary

In this chapter we discussed basic problems related to the idea of fuzzy systems
based on the Zadeh compositional rule of inference. The presentation started with
explaining the concepts of the linguistic variable and fuzzy conditional statement.
Next, different types of the fuzzy if-then rules and various methods of their mathe-
matical representation were presented. Also, an overview of the compositional rule
of inference proposed by Zadeh was introduced. General theoretical considerations
on approximate reasoning were supplemented with examples of elementary fuzzy
models. We described the basic solutions being the foundation of many modern con-
structions including fuzzy systems ofMamdani–Assilan, Takagi–Sugeno–Kang, and
Tsukamoto.

Acknowledgements This work was supported by the Ministry of Science and Higher Education
funding for statutory activities (BK-220/RAu-3/2016).
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Chapter 3
Ordered Fuzzy Numbers: Sources
and Intuitions

Piotr Prokopowicz and Dominik Ślȩzak

Abstract Most emerging methodologies, before they become well settled, stem
from careful analysis of previous solutions. In that respect, this chapter refers to the
roots of the Ordered Fuzzy Number (OFN) model. First, we outline some drawbacks
of the most popular fuzzy number representations, which inspired us to search for
a new approach. Then we discuss the idea of looking at fuzzy numbers from an
alternative viewpoint. This leads towards formulation of the OFN model comprising
three conceptual steps: (1) representing membership functions of fuzzy numbers
as the pairs of increasing/decreasing components; (2) for each of two components
treated as a locally defined function, inverting the meanings of its domain and its set
of values; and finally (3) treating the obtained pairs of components as the ordered
pairs. By introducing arithmetic operations on such ordered pairs, we obtain the
framework, which is in many cases equivalent to the previous approaches but it also
enables the representation of new information aspects.

3.1 Introduction

The Ordered Fuzzy Number (OFN) model was defined as a result of searching for
simple and flexible algorithms performing calculations on fuzzy numbers [10]. A
more formal description of the OFN model is provided in Chap. 1. Here we focus on
initial inspirations,which canbe helpful to understand themeaningbehindmathemat-
ical formulas for OFN operations. Indeed, if someone with a thorough background
in the theory of fuzzy sets jumps immediately to Sect. 3.5, the first impression might
be confusing. Thus we encourage the readers to study the contents of this chapter
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step by step, in order to realize that the considered model developed primarily by
Witold Kosiński is truly straightforward and easy to handle.

The chapter is organized as follows. In Sect. 3.2, some potential drawbacks
of classically defined fuzzy numbers are explained. In Sect. 3.3, some alternative
proposals regarding how to deal with those drawbacks are outlined. In Sect. 3.4,
we discuss an idea of decomposing the shapes of fuzzy numbers onto ascend-
ing/constant/descending components, that is, expressing fuzzy membership func-
tions in so-called quasi-invertible form that was utilized to redefine fuzzy numbers
in [11]. In Sect. 3.5, we discuss how the idea of operating with quasi-invertible func-
tions led us towards the OFN model. Section3.6 concludes the chapter.

3.2 Problems with Calculations on Fuzzy Numbers

Basic operations on standard fuzzy numbers were discussed in Chap. 1. Two popular
mechanisms of introducing themwere mentioned: via the extension principle [3] and
via interval calculations onα-cuts [1]. In both cases, for both addition and subtraction
operations, their outcomes support increases compared to their inputs. Thus, their
fuzziness increases. After performing several calculation steps, a resulting number’s
support usually becomes extremely broad, whereby information represented by that
number is no longer practically useful.

In [12], we can find amore general summary of problemswith original approaches
to fuzzy arithmetics. Certainly, those problems can be handled using some more
advancedmodels, thus propagation of fuzziness becomesmore tractable during com-
putations [21]. It should also be noted that standard fuzzy arithmetic methods turned
out to be very useful in a number of practical applications [7]. Nevertheless, in some
cases, one may require more straightforward tools for limiting or – sometimes – even
reversing a degree of imprecision represented by fuzzy numbers. This observation
inspired us to search for a new way of representing and computing fuzzy numbers.
Two major goals in front of us were:

1. To introduce an intuitive model enabling us to decrease (not only increase) impre-
cision/inaccuracy as a result of arithmetic operations

2. In addition, to introduce such mechanisms of fuzzy number calculations that
would be easy to understand and implement in practice

The general concept that allowed us to control imprecision during calculations can
be interpreted as a kind of direction of fuzziness [18]. Chapter 4 contains a complete
description of that idea from amathematical perspective. It shows how the considered
OFN model allows us to think about canceling fuzziness while adding/subtracting
opposite or reversed fuzzy numbers. The remainder of this chapter can be treated as
introductory background for that formalism.

http://dx.doi.org/10.1007/978-3-319-59614-3_1
http://dx.doi.org/10.1007/978-3-319-59614-3_4
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3.3 Related Work

Let us present a short preview of other existing approaches to deal with the problem
of increasing imprecision during fuzzy calculations. Generally, we can categorize
such approaches as those refining standard operations [21], those introducing new
operations [19], and those specifying a kind of context of operations [8].

In [19], two additional operations on fuzzy numberswere introduced: nonstandard
subtraction and nonstandard division. Those operations are quite complicated but
indeed it is true that, for fuzzy numbers A, B, C , equation A + B = C is equivalent
to equation C � B = A, where � denotes nonstandard subtraction. In our research,
we kept looking for another solution, as it is not always a good idea to introduce new
operations. It may be problematic from both conceptual and technical perspectives.
In the space of real numbers, subtraction is equivalent to addition of an opposite
number.By analogy, there should benoneed to define a separate subtractionoperation
for fuzzy numbers. The same reasoning can be carried out for multiplication and
division. This can be represented by requirements of a form A − B = A + (−B)

and A/B = A · B−1, which are not addressed in [19].
In [8], Klir presented another approach to operations on fuzzy numbers (bymeans

of fuzzy intervals). His idea takes into account a context of relationship between two
numbers – referred to as a requisite constraint – which may optionally allow a
decrease of fuzziness in calculations. It is effective in solving equations of a type
A + X = B, if we know that X = B − A. However, just as above, this method may
make calculations complicated. The assumption that we are able to set up requisite
constraints for all relevant pairs of quantities for a given calculation is difficult to
track for more complex scenarios. Still, the ideas proposed in [8] seem to be closer to
our way of understanding operations on fuzzy numbers than those in the case of [19].
However, in the OFN model, additional information, a kind of context, is assigned
to particular numbers rather than relationships between them.

The above ideas became a source of our inspiration in 2000–2003, when the OFN
model was formulated. However, the problem of expanding fuzziness is also present
in more recent research. For instance, Dymova et al. proposed the operation called
interval extended zero [6]. It is used to solve linear fuzzy equations. As another
example, Piegat and Landowski utilized RDM (relative distance measure) interval
arithmetics [15]. Furthermore, Stupnanova combined fuzzy operations with prob-
abilistic modeling [20]. Such methods should be compared to the OFN model in
a more detailed way. However, we should remember that all of them aim at better
controlling rather than eliminating/reversing fuzziness during calculations.

3.4 Decomposition of Fuzzy Memberships

The remaining sections include some basic observations and suggestions on how to
change standard representation and meaning of fuzzy numbers. We start by recalling
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the original concept of a fuzzy set [22]. Then we concentrate on the nature of shapes
of standard fuzzy numbers. Finally, we introduce a new representation based on the
already-mentioned inversion of the roles between the domains and the sets of values
for particular components of those shapes.

As we know, a fuzzy set A over a space X is defined as a set of pairs, namely A =
{(x, μA(x)) : x ∈ X}, where μA : X → [0, 1] denotes a fuzzy membership function
that assigns to each element x ∈ X its degree of membership to A. In Sect. 3.5, we
refer to a more general understanding of fuzzy sets. However, for now let us follow
the above formulation and consider a fuzzy number as a fuzzy set over the space of
real numbers R1:

A = {(x, μA(x)) : x ∈ R} (3.1)

As pointed out in Chap.1, each fuzzy number A is supposed to be a normal fuzzy
set; that is, there exists x ∈ R such that μA(x) = 1. Moreover, its support should
be bounded: that is, there exists interval (sA, eA) such that μA(x) >0, if and only if
x ∈ (sA, eA).2 Finally, A is supposed to be a convex fuzzy set and its membership
function should be piecewise continuous.

The convexity of A corresponds to the strict quasi-concavity of function μA or,
equivalently, the strict quasi-convexity of function −μA [4]. Detailed properties of
strict quasi-convexity can be found, for example, in [13]. Saying that function −μA

is strictly quasi-convex (and μA is strictly quasi-concave) means:

∀x,y,z∈R (x < y < z ∧ μA(x) �= μA(z)) ⇒ (μA(y) > min(μA(x), μA(z))) (3.2)

Figure3.1 illustrates a difference between functions that are convex/concave and
strictly quasi-convex/quasi-concave.

According to one of the theorems proved in [13], the fuzzy membership func-
tion μA is strictly quasi-concave within a convex set X , if and only if any segment
(x1, x2] ⊆ X can be divided into three sections such that μA is increasing in the first,
constant in the second, and decreasing in the third section. Moreover, any one or
two of these sections may be empty or degenerated to a single point. Thus, one can
conclude that for a given fuzzy number Awe have values 1−

A, 1+
A ∈ (sA, eA) such that

μA has an increasing part defined over (sA, 1
−
A) and a decreasing part over (1+

A, eA).
There is also a constant part equal to 1 over the interval (or a single point) [1−

A, 1+
A].

The above kind of piecewise representation goes well together with some other
approaches tomodel fuzzy arithmetics, for example, bymeans of so-called L-R num-
bers [5]. For more details on this methodology, let us refer to [2], where L-R numbers
are thoroughly compared to the OFN model. From our perspective, it is especially
interesting that both increasing and decreasing parts of strictly quasi-concave fuzzy

1In the literature, fuzzy numbers are often denoted by ˜A. However, as in our case it does not lead
to any misunderstanding, we simply use notation A.
2sA and eA can be intuitively regarded as a start and end of A. Analogous notation is used in
Chap.4, along with 1−

A and 1+
A . However, inequalities sA < 1−

A ≤ 1+
A < eA that hold for standard

fuzzy numbers will not need to be true in the OFN model.

http://dx.doi.org/10.1007/978-3-319-59614-3_1
http://dx.doi.org/10.1007/978-3-319-59614-3_4
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Fig. 3.1 Examples of functions that are strictly quasi-convex but not convex (left) and strictly
quasi-concave but not concave (right)

membership functions are invertible. Such characteristics are hereinafter referred to
as quasi-invertibility. This enables us to define operations on inverted parts of fuzzy
numbers’ membership functions.

1. Inverted increasing parts of μA and μB are added to each other.
2. Inverted decreasing parts of μA and μB are added to each other.
3. After reinverting both obtained sums, we obtain a function that is treated as

membership μC of fuzzy number C = A + B (see Fig. 3.2).

The above mechanism was studied in the literature as an alternative way of thinking
about fuzzy arithmetics [11]. Although conceptually it does not change the standard
model, it turns out to be very simple to implement in practice. It is also the best
starting point for explaining the OFN model.

3.5 Idea of Ordered Fuzzy Numbers

The quasi-invertibility-based addition procedure recalled in Sect. 3.4 could be alter-
natively rewritten by representing fuzzynumbers A and B as unordered pairs of piece-
wise continuous monotonic functions f A, gA : [0, 1] → R and fB, gB : [0, 1] → R.
In the first step, we would then need to check which of those functions are increas-
ing/decreasing in order to obtain a valid result. However, it would not yet solve the
issue of propagation of imprecision in computations, which was one of our main
motivations while searching for a new model of fuzzy arithmetics.

Let us go back for a while to the discussion in Sect. 3.3. Let us note that one of
the requirements to limit imprecision corresponds to a need of introducing opposite
fuzzy numbers, that is, for each A, defining fuzzy number−A such that A + (−A) =
A − A = 0, where 0 denotes the fuzzy number representation of crisp 0.
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Fig. 3.2 Example of adding standard fuzzy numbers using quasi-invertibility

Fig. 3.3 Example of adding two OFNs. The result is comparable to that obtained in Fig. 3.2

As expressing opposite numbers is hardly possible in standard fuzzy arithmetics,
let us consider a slightly revised notion of fuzzy number. The following definition
includes an imposed order between components representing fuzzy numbers. This
order may be regarded as an additional aspect of information – a kind of fuzzy
number’s context – which is independent of the values of fuzzy memberships. Let us
also note that fuzzy number components are now defined in an inverted way when
compared to standard fuzzy numbers.
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Fig. 3.4 Example of adding two OFNs, where B has a reversed order compared to Fig. 3.3

Definition 1 (Ordered Fuzzy Number) A = ( f A, gA) is an ordered pair of contin-
uous functions f A, gA : [0, 1] → R, called the up part, and the down part of A,
respectively.3

The shape related to the pair ( f A, gA) is not different from the case of (gA, f A).
However, these are two different OFNs (unless f A = gA). They differ by something
that can be interpreted as direction, in some papers also called orientation. Actually,
interpretation related to direction inspired some researchers to propose renaming
the presented model as directed fuzzy numbers or fuzzy numbers with direction.
Moreover, in papers [16–18], the nameKosiński’s FuzzyNumbers is used to honor the
contribution ofWitold Kosiński in a development of the considered model. Although
in this book we keep the original OFN terminology, we believe that the discussion
about the most appropriate name is not over.

Let us notice that it is now possible to define A’s opposite as −A = ( f−A, g−A),
where f−A = − f A and g−A = −gA. In a standardmodel, while adding such numbers
represented as unordered pairs f A, gA : [0, 1] → R and f−A, g−A : [0, 1] → R, we
would need to combine f A with g−A and gA with f−A. However, in the OFN model
– as formally introduced in Chap. 4 – we follow the ordering of component functions
rather than their increasing/decreasing characteristics. Figures3.3 and 3.4 illustrate
more examples. We can see that the ordering of components defining a fuzzy number

3Notation A = ( f A, gA) reflects the original way of referring to the up and down parts introduced
in [10]. Surely, one could also think about a more intuitive naming, for example, ↑A and ↓A instead
of f A and gA, respectively. One could also think about denoting OFNs in a different way, such as
using sign � above A (by analogy to ˜A; see the footnote in Sect. 3.5). Nevertheless, by writing
A = ( f A, gA) we wish to keep consistency with the previous materials.

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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can have a huge influence on results, including the opportunity to reverse fuzziness,
that is, to have outputs that are crisper than inputs.

In our previous works, we paid special attention to direction-related interpretation
of OFNs, that is, the above-mentioned new aspect of information that enables us to
distinguish between pairs ( f A, gA) and (gA, f A). One possibility is to refer here
to a trend of fuzzy observation or measurement [9]. Indeed, decomposition of a
fuzzy number’s membership function onto two ordered components establishes an
interesting background for representation of a trend by means of the up part, which
is a natural beginning, and the down part, which is a natural end of observation.
For example, by reversing the ordering of the OFN’s components one might specify
whether a given observed imprecise value is generally likely to increase or decrease.
Surely, one could claim that such information is expressible also in classical fuzzy
logic by adding new trend-related linguistic variables. However, that would result
in a more complex fuzzy-rule-based representation, leading towards a less intuitive
framework for conducting arithmetic calculations on measurements.

We refer to Chap.4 for further details on possible interpretations of information
represented by the OFN model. For now, let us add that by introducing an order
of components ( f A, gA) and, this way, letting A’s up and down parts be potentially
both increasing and decreasing, we enter a far richer space of outcomes of arithmetic
calculations. In Chap.4 we show that operations on such ordered pairs may lead
towards results that are not interpretable as standard fuzzy numbers, as some elements
of R correspond to multiple memberships. One could think of it as a special case
of some extensions of fuzzy set theory [14]. One could also refer to original ideas
of Lotfi A. Zadeh who, in his paper [22], stated that “The concept in question is
that of fuzzy set, that is a ‘class’ with a continuum of grades of membership.” Thus,
the OFN model could be interpreted as a new way of assigning real numbers with
the continuum of grades of membership. Certainly, further theoretical studies in this
respect are necessary as well.

3.6 Summary

In this chapter, we recalled the roots of the Ordered Fuzzy Number (OFN) model
[10]. We outlined disadvantages of standard fuzzy arithmetics and discussed how
to look at fuzzy numbers in an alternative way, by representing them as ordered
pairs of functions that encode the shapes of fuzzy memberships. In this way, we
obtained a mathematical framework that extends the standard approach including a
new type of information referred to as a direction of a fuzzy number [18].We showed
a kind of evolution of our way of thinking about fuzzy arithmetics, starting from the
classical approach, via quasi-invertible representation of convex fuzzy numbers, and
finishing with formal definition of OFNs. We also discussed how the obtained model
lets us better manage degrees of imprecision during calculations and how one could
interpret fuzzy numbers’ direction.

http://dx.doi.org/10.1007/978-3-319-59614-3_4
http://dx.doi.org/10.1007/978-3-319-59614-3_4
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Chapter 4
Ordered Fuzzy Numbers: Definitions
and Operations

Piotr Prokopowicz and Dominik Ślȩzak

Abstract We outline basic notions and assumptions related to the Ordered Fuzzy
Number (OFN) model. Definitions of mathematical operations, several interpreta-
tions of their results, as well as additional OFN parameters are presented. Some of
them, such as inclination or order, are specific to OFNs, whereas others are equiva-
lent to those present in the well-known convex fuzzy number model. An important
aspect of this part is also a discussion of algebraic properties of the OFN model.

4.1 Introduction

In previous works, we noted that original fuzzy arithmetic operations could have
some limitations. Those limitations were recognized and addressed in different ways
[17, 25]. Many researchers agree that calculations involving fuzzy numbers should
accumulate uncertainty, by compliance with the meaning of a fuzzy number as a
distribution of possibilities [26, 27]. Indeed, this assumption occurs in almost all
interpretations of fuzziness [4, 5]. Although it seems to be natural for many appli-
cations, we would like to point out that in some scenarios it would be truly useful
to derive crisper information from fuzzier inputs, that is, to reverse the uncertainty
accumulation process. We believe that by allowing such reversing one would obtain
a kind of general mathematical model of fuzzy numbers, which – depending on
practical needs – can possess more or less constrained properties.

Following the above way of thinking, we have been seeking a framework that
would include standard fuzzy numbers as special cases. One of the possibilities for
building such a broader space of fuzzy numbers is to rely on the Ordered Fuzzy
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Number (OFN) model [13, 15], that is, proceed with decomposition of membership
functions of fuzzy numbers onto ordered components. By treating those components
as an ordered pair, it becomes possible to model the fuzzy number opposites better,
canceling each other out instead of growing their fuzziness. In this chapter, we look at
such capabilities of OFNs from amathematical perspective and discuss basic proper-
ties and examples of OFN arithmetic operations in order to illustrate computational
straightforwardness and representative richness of the considered approach. We also
pay attention to the role of those objects in the space of OFNs that do not correspond
to fuzzy numbers understood as standard fuzzy sets.

The chapter is organized as follows. In Sect. 4.2, we recall preliminary concepts
of the OFN model. In Sect. 4.3, we discuss how to redefine fundamental notions
of fuzzy sets and numbers for OFNs. In Sect. 4.4, we focus on OFNs that are not
expressible by means of standard fuzzy numbers and, in particular, we show how
to transform them into a convex fuzzy set format. In Sect. 4.5, we outline basic
arithmetic operations and discuss the corresponding algebraic properties of the OFN
model. In Sect. 4.6, we discuss the notion of the OFN’s direction from the perspective
of practical applications. Section4.7 concludes this part.

4.2 The Ordered Fuzzy Number Model

As already recalled in Chap. 3, the considered idea of an alternative way of looking
at fuzzy arithmetics is based on the notion:

Definition 4.1 An Ordered Fuzzy Number (OFN) A is an ordered pair

A = ( f A, gA) (4.1)

of continuous functions f A, gA : [0, 1] → R, called the up part, and the down part
of A, respectively.

It follows from the continuity of f A and gA that their images are bounded intervals.
Let us denote them as U PA = f A([0, 1]) and DOWNA = gA([0, 1]) (see Fig. 4.1).

Considering functions f A and gA as an ordered pair is the crucial difference in
comparing to standard fuzzy numbers that can be represented by means of so-called
L-R notation [4]. By L and R one means left (increasing) and right (decreasing)
components of amembership function of a given fuzzynumber. Such components can
be inverted to form functions assigning real values to the elements of the unit interval
[0, 1] [16]. Standard arithmetic operations on such represented fuzzy numbers are
then defined over the pairs of increasing components and the pairs of decreasing
components. This means that in the classical framework it is impossible to add, for
example, an increasing component of a fuzzy number A to a decreasing component
of another fuzzy number B. In the case of OFNs, such operations are allowed.

As discussed in Chap. 3, shapes related to pairs ( f A, gA) and (gA, f A) are the
same. However, they differ by something that can be interpreted as direction. This

http://dx.doi.org/10.1007/978-3-319-59614-3_3
http://dx.doi.org/10.1007/978-3-319-59614-3_3


4 Ordered Fuzzy Numbers: Definitions and Operations 59

Fig. 4.1 An example of
OFN

new kind of information can be additionally marked graphically with arrows. It can
be seen in Fig. 4.2, which illustrates the following operation.

Definition 4.2 Reversal of direction of A = ( f A, gA) consists in replacing its up
part ( f A) and down part (gA) with each other. The resulting OFN A|− = ( f A|− , gA|−)

is defined as follows, for each α ∈ [0, 1],

f A|−(α) = gA(α) gA|−(α) = f A(α) (4.2)

A|− is called an OFN of reversed direction or a reversed OFN.

To distinguish between different types of OFN directions, let us also introduce the
following characteristics. Herein, parameters sA = f A(0), eA = gA(0) (s / e stands
for start/end) and 1−

A = f A(1), 1
+
A = gA(1) (− / + stands for reaching/leaving a

precise component of a fuzzy number) are useful.

Definition 4.3 For a given A = ( f A, gA), we say that:

• Direction is strictly neutral, if f A = gA; that is, each element belongs equally to
the up and down parts of A.

• Direction is strictly positive for f A �= gA, if 1
−
A < 1+

A , else if 1
−
A = 1+

A and sA < eA.
• Direction is strictly negative for f A �= gA, if 1

−
A > 1+

A , else if 1
−
A = 1+

A and sA > eA.

The above rules define some specific cases of strict direction. Certainly, one can
notice that the reversal operation changes directions; that is, if A is strictly positive
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Fig. 4.2 Reversal operation

(negative), then A|− is strictly negative (positive). However, one can also imagine
pairs ( f A, gA) that do not follow any such neutral/positive/negative characteristics.
For example, one can consider a situation where f A �= gA and at the same time there
is sA = 1−

A = 1+
A = eA. Although such pairs do not possess a strict direction, they

can play an important role in fuzzy arithmetic operations.
Another notion that was introduced within the OFN model is inclination. Its

role is to make a general comparison between the up and down parts of a given
A = ( f A, gA). Below let us refer to the so-called mean inclination:

Definition 4.4 The mean inclination of an OFN A = ( f A, gA) is defined as the
function imA : [0, 1] → R:

imA = ( f A + gA)/2 (4.3)

Let us note that the mean inclination of OFNs with symmetrical shapes is a con-
stant function. It does not depend on direction, in particular, there is imA = imA|− .
Inclination can be used, for example, in a defuzzification process. For more detailed
investigation related to defuzzification methods in the OFN model, refer to [2, 10]
and some further chapters in this book. Below we recall just one example.

Definition 4.5 Let OFN A = ( f A, gA) be given. The result of the center of mean
inclination defuzzification is the real number xA calculated as follows.

xA = (xmin + xmax )/2 (4.4)

where

xmin = min{imA(α) : α ∈ [0, 1]} xmax = max{imA(α) : α ∈ [0, 1]} (4.5)

4.3 Basic Notions for OFNs

There is a huge variety of pairs ( f A, gA), wherein only a part of them is going
to correspond to standard fuzzy numbers, whereas the others may require deeper
interpretation. From the point of view of arithmetic operations, those other numbers –
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called improper OFNs (see Sect. 4.4) – can be treated as abstract objects aimed at
transforming standard inputs into standard outputs. Thus, it is important to understand
the general characteristics of both proper and improper OFNs.

4.3.1 Standard Representation of OFNs

One of the most basic special cases refers to OFNs A = ( f A, gA) with monotonic
functions. If f A and gA are both monotonic, then intervalsU PA and DOWNA retain
the following dependencies.

U PA = [min{sA, 1−
A},max{sA, 1−

A} ] DOWNA = [min{1+
A, eA},max{1+

A, eA} ]
(4.6)

Furthermore, for monotonic f A and gA, it is possible to determine their inverse
functions from R to [0, 1]. Inverse functions are defined in a nontrivial way within
the corresponding intervals U PA and DOWNA. To obtain a kind of continuous
shape, we connect them with a plot of a constant function equal to 1 over interval
CONSTA = [min{1−

A, 1+
A},max{1−

A, 1+
A}] (Fig. 4.3). Thus we have three functions

that can be used to represent monotonic pairs ( f A, gA) in a form more comparable
to standard convex fuzzy numbers recalled in Chap. 1.

This form (or a view) is called a standard representation. The three considered
functions ηU P

A , ηCONST
A , ηDOWN

A are defined as follows, for x ∈ R:

ηU P
A (x) =

{
f −1
A (x) for x ∈ U PA

0 otherwise

ηCONST
A (x) =

{
1 for x ∈ CONSTA

0 otherwise

ηDOWN
A (x) =

{
g−1
A (x) for x ∈ DOWNA

0 otherwise

(4.7)

Fig. 4.3 OFN presented in the standard form corresponding to convex fuzzy numbers

http://dx.doi.org/10.1007/978-3-319-59614-3_1
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The above functions can be called the up part, the constant part, and the down part.
A fuzzy number represented in such a way can be interpreted analogously to the
standard model of convex fuzzy numbers, as outlined in Chap. 1. Properties of the
U PA and DOWNA intervals (equalities 4.6) can be rewritten as

ηU P
A (sA) = 0 ηU P

A (1−
A) = 1 ηDOWN

A (1+
A) = 1 ηDOWN

A (eA) = 0 (4.8)

Similar transformation might also be possible for nonmonotonic up/down parts,
although in such a case we would need to proceed with inversion of curves rather
than functions. This would surely lead us towards the already-mentioned improper
OFN objects. We also need to remember that even pairs of monotonic functions can
correspond to improper OFNs. For example, if f A and gA are both increasing or both
decreasing, then the above-considered three-component representation of A is still
straightforward although it does not correspond to a standard fuzzy number.

4.3.2 OFN Support

Let us extend the concept of support – one of themost fundamental fuzzy set notions –
onto the realm of OFNs. The extension is presented for both a general case and for
OFNs A = ( f A, gA) with monotonic functions f A and gA. This way, just as before,
the monotonicity of components is used as an illustrative special case, for which it
is easier to interpret basic concepts inherited from fuzzy set theory.

A support is an important parameter in analyzing and modeling convex fuzzy
numbers. In many practical situations, calculations involving fuzzy numbers are
actually focused on their ranges of maximummembership and nonzero membership,
which correspond to their supports. It is therefore also useful to introduce this notion
for the OFN model. The following definition extends the classical case:

Definition 4.6 For OFN A = ( f A, gA), the support suppA is an interval calculated
as follows.

suppA = { f A(α) : α ∈ (0, 1]} ∪ CONSTA ∪ {gA(α) : α ∈ (0, 1]} (4.9)

Let us note that suppA is almost equal to the set-theoretic sum of intervals U PA,
CONSTA, and DOWNA. The only difference is that – depending on the shapes of
functions f A and gA – we sometimes need to subtract elements sA and/or eA.

Going further, if we consider OFNs with monotonic up and down parts, the sup-
port can be equivalently introduced by a simpler formula. Namely, we can use the
bounds of particular intervals U PA, CONSTA, DOWNA of an OFN A = ( f A, gA)

to determine its support suppA:

http://dx.doi.org/10.1007/978-3-319-59614-3_1
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suppA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1, x2) for x1 /∈ CONSTA and x2 /∈ CONSTA

[x1, x2) for x1 ∈ CONSTA and x2 /∈ CONSTA

(x1, x2] for x1 /∈ CONSTA and x2 ∈ CONSTA

[x1, x2] for x1 ∈ CONSTA and x2 ∈ CONSTA

(4.10)

where
x1 = min{sA, eA, 1−

A , 1+
A} x2 = max{sA, eA, 1−

A , 1+
A} (4.11)

Certainly this is just one of the possibilities to generalize the standard notion of a sup-
port onto the case of OFNs. Depending on interpretation, one might also think about
defining suppA as an ordered interval [8] or as an interval (ordered or nonordered)
taking into account only the quantities of sA and eA. Nevertheless, any reformula-
tion of support should be equivalent to standard support whenever an OFN can be
interpreted as a standard convex fuzzy number.

4.3.3 OFN Membership Function

Let us attempt to redefine the notion of a fuzzy membership function for OFNs in
general. The following way of doing it is, as in the case of support, one of many
possibilities. In principle, we propose that a fuzzy membership of a number x ∈ R in
an OFN A = ( f A, gA) should be the highest context α ∈ [0, 1], in which x occurs,
that is, such that f A(α) = x or gA(α) = x .

Definition 4.7 A membership function of OFN A = ( f A, gA), denoted by μA :
R → [0, 1], is defined for x ∈ R as

μA(x) =
⎧⎨
⎩
1 for x ∈ CONSTA

0 for x /∈ suppA

max{α ∈ [0, 1] : f A(α) = x ∨ gA(α) = x} otherwise
(4.12)

If the up and down parts correspond to monotonic functions, then we can redefine
the membership function of an OFN as below:

μA(x) =
⎧⎨
⎩
1 for x ∈ [min{1−

A, 1+
A},max{1−

A, 1+
A}]

0 for x /∈ suppA

max{ f −1
A (x), g−1

A (x)} otherwise
(4.13)

The above form remains consistent with Definition 4.7, however, it starts resem-
bling standard membership functions. If f A and gA have disjoint images, then
max{ f −1

A (x), g−1
A (x)} can be replaced by f −1

A (x) and g−1
A (x) within intervals

U PA \ [1−
A, 1+

A] and DOWNA \ [1−
A, 1+

A], respectively. Moreover, if the up part is
increasing, the down part is decreasing, and f A ≤ gA, then a formula in Definition
4.7 becomes the exact representation of a standard fuzzy number’s shape.
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The formula in Definition 4.7 possesses very interesting characteristics also for
improper OFNs A = ( f A, gA), regardless of whether their corresponding functions
f A and gA are monotonic. Namely, for an arbitrary OFN, its membership function
can be decomposed onto three fragments: strictly increasing, constant, and strictly
decreasing. Some of those fragments may not correspond to continuous functions
but the resulting membership function remains piecewise continuous as expected for
standard fuzzy numbers. The mechanism introduced in Definition 4.7 is sometimes
referred to as the so-called MAX-choice principle (see Sect. 4.4).

Thanks to the above observation, OFNmembership functions can be employed in
practice similarly to those of convex fuzzy numbers. As elaborated in Chap. 2, fuzzy
memberships play the role of important numeric counterparts of linguistic rules in
control systems. On the other hand, in further chapters we show that sometimes it is
worth mixing classical approaches to constructing fuzzy controllers with those based
on fuzzy arithmetics. From this perspective, generalizations of fuzzy membership
functions for the OFN model can be especially helpful.

4.3.4 Real Numbers as OFN Singletons

In the case of convex fuzzy numbers, a real number x ∈ R is represented by the
characteristic function χx , which equals 1 for x and 0 otherwise. In the OFN model,
representing real numbers is easy and intuitive as well.

Definition 4.8 A real number x ∈ R is represented in terms of OFNs by a pair
x = ( fx, gx), where fx and gx are defined as the function constantly equal to x :

fx = gx = x (4.14)

Thus, an OFN representing real number x forms a unit at the level x . After transform-
ing it to a standard view it is a vertical segment. It also coincides with the meaning
of singleton in the case of standard fuzzy numbers. Therefore, the name singleton is
used for real numbers represented in the OFN model as well.

The support of a singleton according to Definition 4.6 is the interval [x, x],
that is, a single point x . Such a singleton always has strict neutral direction
(see Definition 4.3). This is because the whole OFN is covered by both its parts,
up and down.

4.4 Improper OFNs

The OFN model suggests looking at imprecision from a new perspective. The key
aspect is related to the notion of direction. It can be interpreted in a practical way.
Some examples of interpretations of that new aspect can be found in Sect. 4.6. OFNs

http://dx.doi.org/10.1007/978-3-319-59614-3_2
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Fig. 4.4 Examples of improper OFNs

are considered there as results of observations in time. Indeed, the time can be a
natural (although not the only) interpretation of direction.

The consequence of the new approach to modeling imprecise numbers is a kind
of inconsistency with standard fuzzy numbers. Namely, there are OFNs, which do
not have a membership function in the sense of a convex fuzzy set. We have already
mentioned such improper OFNs several times. A subspace of improper OFNs can
be characterized in many ways. Let us formalize them as

Definition 4.9 We say that A = ( f A, gA) is an improper OFN, if:

1. f A or gA is not monotonic.1

2. U PA, DOWNA, and/or CONSTA overlap.2

In general, when one of the parts of an OFN is neither monotonic nor constant, then
such an OFN is improper. However, as already mentioned, there exist also improper
OFNs with monotonic parts. For some examples, let us refer to Fig. 4.4. Let us note
that, as earlier, we use arrows to express graphically OFNs’ direction.

Improper OFNs cannot be represented as convex fuzzy sets. Still, it does not mean
that they are of no use. When we interpret the direction as time of a measurement,
then even improper OFNs turn out to represent important information about the
observed processes (see Sect. 4.6.3). Moreover, it may turn out that during a chain
of arithmetic calculations some intermediate results are improper, even though both
inputs and outputs are interpretable as standard fuzzy numbers. In such cases, it
would be quite unreasonable to abandon the whole computational process because,
after all, the most important aspect is the interpretation of the final results.

If for a given scenario interpretation of an improper OFN is important, we can –
depending on practical needs – utilize one of the available defuzzification mecha-
nisms (e.g., the one outlined at the end of Sect. 4.2) or proceed with fuzzy member-
ship derivation described in Definition 4.7. As mentioned before, we can refer to that

1For simplicity, in this chapter we do not distinguish between the cases of increasing/decreasing
and nondecreasing/nonincreasing functions. In this definition, we refer to that second case.
2By overlapping of intervals, for example, U PA and DOWNA, we mean that there are elements
x, y, z ∈ R, x < y < z, such that x, z ∈ U PA and y ∈ DOWNA, or x, z ∈ DOWNA and y ∈
U PA.
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(a)

(b)

Fig. 4.5 (a) Improper OFNs. (b) The same OFNs interpreted using the MAX-choice principle

derivation as the MAX-choice principle. This is because, for each given argument,
it labels it with the maximal element out of all relevant values.

Figure4.5 presents an effect of applying the MAX-choice principle for three
examples of improper OFNs. Such a solution enables us to build a convex fuzzy
set interpretation of an arbitrary OFN. The obtained sets are normal. This fulfills
demands of standard scenarios of applying fuzzy numbers. Moreover, proper outputs
of the considered procedure can still be interpreted as OFNs, if necessary. However,
let us emphasize that the MAX-choice should be used only if transformation of an
improper OFN to the proper one is truly needed. In particular, if there are any further
calculations planned over a given improper OFN, then its transformationwouldmean
losing information that might be potentially important later.

4.5 Basic Operations on OFNs

This section presents examples of calculations on OFNs. Their main idea is to oper-
ate separately on the up and down parts. Such an approach allows us to conduct
computations on OFNs directly on the universe of real numbers. It follows from the
fact that we are now working with functions from [0, 1] to R.

4.5.1 Addition and Subtraction

Definition 4.10 LetOFNs A = ( f A, gA), B = ( fB, gB), andC = ( fC , gC)begiven.
We can say that:
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• C is the sum of A and B, denoted C = A + B, if for every α ∈ [0, 1] there is:

f A(α) + fB(α) = fC(α) gA(α) + gB(α) = gC(α) (4.15)

• C is the result of subtracting B from A, denoted C = A − B, if there is:

f A(α) − fB(α) = fC(α) gA(α) − gB(α) = gC(α) (4.16)

Adding numbers A and B of the same direction (see Definition 4.3), which are
described by linear up/down functions, allows us to obtain the same results as in the
case of operations on standard fuzzy numbers [4]. Figure4.6 illustrates adding two
OFNs and transforming the obtained result to the standard form.

More examples are presented in Figs. 4.7 and 4.8. Figure4.8 shows a result that
is an improper OFN. Let us also note that, as we show later, the results of adding
OFNs with opposite directions do not need to be improper.

Figures4.9 and 4.10 illustrate some examples of subtraction. In Fig. 4.10, again,
we get an improper OFN as a result.

Fig. 4.6 A general mechanism of adding two OFNs

Fig. 4.7 Adding two OFNs with negative direction
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Fig. 4.8 Improper OFN as a result of adding OFNs

Fig. 4.9 A proper result of subtraction of OFNs

Fig. 4.10 An improper result of subtraction of OFNs

As discussed before, subtracting A should be the same as adding a number −A
that is opposite to A. The ability of expressing −A for each A is, in our opinion,
one of the biggest advantages of the OFN model, from the perspectives of both finer
mathematical properties and managing imprecision during arithmetic calculations in
practice. Let us recall that such a number can be introduced as −A = ( f−A, g−A),
defined as follows.

f−A = − f A g−A = −gA (4.17)

In particular, if B = A, then the number −A is added to A. Then, for every α ∈
[0, 1], we obtain fC(α) = f A(α) − f A(α) = 0 and gC(α) = gA(α) − gA(α) = 0.
Therefore, the result of operation of the form A − A is the singleton representing 0,
that is, the pair 0 = ( f0, g0) defined using formula (4.14) for x = 0 (see Fig. 4.11).

Fig. 4.11 Singleton zero as a result of an OFN operation



4 Ordered Fuzzy Numbers: Definitions and Operations 69

In general, when considering different examples of operations on OFNs, we may
obtain results that have no clear interpretation in a standard framework. However,
whenever required, the previously discussed MAX-choice principle can be utilized
to derive such an interpretation. Moreover, improper OFNs – such as those visible in
Figs. 4.8 and 4.10 – still contain significant information and they can serve as inputs
to further operations that might ultimately result in proper OFNs.

Finally, we are now able to work with direction, an additional component of
specification that illustrates a position of the OFN’s up part in relation to its down
part. It is totally up to us whether that new component is used only as a purely
mathematical property or it corresponds to a nontrivial real-world context.

4.5.2 Multiplication and Division

Definition 4.11 Let three OFNs A = ( f A, gA), B = ( fB, gB), andC = ( fC , gC) be
given. We can say that:

• C is the result of multiplication of A and B, denoted C = A · B, if for every
α ∈ [0, 1] there is:

f A(α) · fB(α) = fC(α) gA(α) · gB(α) = gC(α) (4.18)

• C is the result of A divided by B, denoted C = A/B, if there is:

f A(α)/ fB(α) = fC(α) gA(α)/gB(α) = gC(α) (4.19)

Multiplication of two OFNs is shown in Fig. 4.12. Certainly, division A/B can be
formulated only under the constraint that B does not contain 0; that is, for every
α ∈ [0, 1] we have fB(α) �= 0 and gB(α) �= 0.

As in the case of addition and subtraction operations, division should be express-
ible as multiplication by an inverse number. For a given A = ( f A, gA), its inverse

Fig. 4.12 Examples of multiplication of OFNs
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Fig. 4.13 Inversion of fuzzy number B

Fig. 4.14 Multiplication of A by B−1

A−1 = ( f A−1 , gA−1) is defined as follows.

f A−1 = 1/ f A gA−1 = 1/gA (4.20)

The division procedure is shown in Figs. 4.13 and 4.14. First, we determine an inverse
number for B. As we can see, inverse numbers have opposite directions. Next, the
inversion of B is multiplied by A and we obtain a result of dividing A by B.

Although a real (precise) zero represented by the pair 0 = ( f0, g0) is a neutral ele-
ment for addition, the neutral element for multiplication is the pair 1 = ( f1, g1). An
important property of the model presented in this chapter is the fact that multiplying
any OFN by its inverse number allows us to obtain exactly the neutral element for
multiplication as a result.

This makes it possible to analyze OFNs from a more formal mathematical per-
spective, analogously to some previous works on fuzzy number extensions [6]. Let us
notice that the space of OFNs is isomorphic to a linear space of real two-dimensional
vector-valued functions defined on the closed interval [0, 1], with a norm specified as

||A|| = max( sup
α∈[0,1]

| f A(α)|, sup
α∈[0,1]

|gA(α)|) (4.21)

It is topologically a Banach space. The neutral element of addition is 0. We also have
a Banach algebra with the unity 1 [19]. Hence, although in this chapter we focus on
more basic operations, further studies on advanced mathematical characteristics of
OFNs are surely possible.
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4.5.3 General Model of Operations

The most natural and intuitive way to introduce a general pattern of calculations on
OFNs is to define them pairwise on their up and down parts. Let us formulate such
a pattern below. It represents all previous operations in a short form.

Definition 4.12 LetOFNs A = ( f A, gA), B = ( fB, gB), andC = ( fC , gC)begiven.
The sum C = A + B, subtraction C = A − B, product C = A · B, and division
C = A/B are defined by the following formula holding for every α ∈ [0, 1].

fC(α) = f A(α) � fB(α) gC(α) = gA(α) � gB(α) (4.22)

where � replaces operations +, −, ·, and /. Moreover, A/B is determined only if
B = ( fB, gB) does not contain zero values.

In fact, � can represent any transformation of two OFNs under specific constraints.
Such transformations have already been discussed and analyzed, including various
examples in [9, 14]. Let us consider two further examples:

Definition 4.13 Let A = ( f A, gA), B = ( fB, gB), andC = ( fC , gC)be threeOFNs.
We can say that:

• C is the result of exponentiation of A raised to the power of B, denoted C = AB ,
if for every α ∈ [0, 1] there is:

fC(α) = f A(α) fB (α) gC(α) = gA(α)gB (α) (4.23)

• C is the result of the logarithm of A with respect to base B, denotedC = logB(A),
if for every α ∈ [0, 1] there is:

fC(α) = log fB (α) ( f A(α)) gC(α) = loggB (α) (gA(α)) (4.24)

Of course, as in the case of adequate operations for real numbers, the same restrictions
should be applied with OFNs. During exponentiation, when the exponent is not an
integer, the main limitation is exclusion as a base of those OFNs that contain negative
values. In the case of logarithms, OFNs can contain only nonnegative values and, in
addition, the base of the logarithm cannot include 1.

In summary, the OFN model grants flexibility of a wide range of calculations on
imprecise data in a similar way as in the case of real numbers representing crisp
data. It retains fuzzy quantitative characteristics, but without the necessity to grow
imprecision. While using the OFN model, one should certainly remember that its
foundations are slightly different from the case of Zadeh’s fuzzy sets. In particu-
lar, improper OFNs can appear. However, despite their unusual shapes, improper
OFNs can still contain important information needed for calculations. In particular,
in examples related to data processing in Sect. 4.6.3, such objects are an important
part of the analysis of information available in practice.
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The above flexibility can be important for applications, where users expect a sup-
port for multiple types of operations. For example, in relational database systems,
SQL statements need to include a number of arithmetic expressions. In the litera-
ture, one can find interesting examples of fuzzy-like histograms summarizing data
contents that are employed to optimize database performance [20]. There are also
database implementations aimed at acceleration of arithmetic calculations by means
of interval ranges of values occurring for particular columns in particular data clus-
ters [24]. Such solutions could be reconsidered by extending the currently utilized
interval and trapezoidal summary structures with a concept of OFN-related direction.
Namely, direction could be used to express a trend of values observed on data rows
consecutively loaded into a database.

4.5.4 Solving Equations

This subsection shows how easy and flexible the calculations with OFNs can be. For
standard fuzzy numbers, solving simple equations is often quite inaccurate. Surely,
such solutions are expected if one follows the previously mentioned assumptions
about accumulation of uncertainty during fuzzy arithmetic operations. However, one
might also consider fuzzy equations for other purposes, for example, in order to set
up some indirect embedded constraints for fuzzy variables. In such a case, it should
also be possible to reverse a degree of uncertainty, that is, to obtain an equation’s
result that would be less fuzzy than the equation’s coefficients.

Examples in this subsection refer to solving an equation X = A + B, where A
and B are known fuzzy numbers. Attention should be paid to the following two
possibilities: B having a greater support than A (Fig. 4.15), as well as A having a
greater support than B (Fig. 4.16).

In the framework of standard fuzzy numbers, for the first of the above possibilities,
there is a solution although it cannot be obtained by a simple arithmetic operation.
However, as for the second possibility above, the solution does not exist because there
is no such standard fuzzy number that could be added to A to obtain an outcome
with a narrower support.

With use of the OFN model, both options are resolved in the same manner by
simple calculation of X = B − A, which is presented by Figs. 4.17 and 4.18. In
particular, in Fig. 4.18, we can observe that X has the opposite direction to A.

Thanks to the freedom of algebraic operations on OFNs, we can also relatively
easily dealwith equations involving fuzzy polynomials defined by analogy to polyno-
mials over real numbers. By a fuzzy polynomial P wemean a function that transforms
each given OFN X = ( fX , gX ) into OFN specified as follows.

P(X) = AnX
n + · · · + A1X + A0 (4.25)

where X is treated as a fuzzy variable and A0, A1, . . . , An are called coefficients.
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Fig. 4.15 Equation A + X = B with the right-hand side B being wider than its left-hand side
component A

Fig. 4.16 Equation A + X = B with the right-hand side B being narrower than its left-hand side
component A

Fig. 4.17 Solution of the equation illustrated by Fig. 4.15

Finally, it isworth emphasizing that this subsection is just a brief introduction to the
problem of solving equations within the OFNmodel. For more detailed investigation
we refer to Chap. 9, where OFN-based complex equations are considered for some
applications in economy. More advanced examples related to utilization of OFNs
in differential equations can be found in [11]. On the other hand, it is important to
compare further the expressive power of the OFN model with other approaches with
regard to fuzzy equation-solving methods [1].

http://dx.doi.org/10.1007/978-3-319-59614-3_9
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Fig. 4.18 Solution of the equation illustrated by Fig. 4.16

4.6 Interpretations of OFNs

The OFNmodel enables us to establish a quite efficient computational framework. It
provides a new look at imprecision, however, it also has other consequences that need
to be considered in applications. First of all, there is some inconsistency between
OFNs and standard fuzzy numbers. This is understandable because OFNs are a larger
class of objects. This aspect was commented on, for example, in [15, 21].

A potential for practical usage of OFNs also corresponds to their direction, an
additional kind of information that is not represented by standard fuzzy numbers.
This aspect turned out to be useful in many real-world scenarios, such as represent-
ing trends in control processes, expressing diversity of opinions in social networks,
modeling dynamics of financial data, and simulating brain functions [3, 7, 18, 23].

Interpretation of objects represented by the OFN model was discussed and ana-
lyzed, for example, in [12, 22]. Herewe present some revised aspects of that analysis.
A common use of fuzzy sets is to represent the imprecise data, wherein fuzzy num-
bers are dedicated to imprecise quantitative data. TheOFNmodel is primarily created
for representing and processing fuzzy quantities as well. Let us remember it when
drawing further intuitions related to applications.

4.6.1 Direction as a Trend

Interpretation of OFNs comprises adapting a general idea of standard fuzzy numbers,
with an addition of direction. By using OFNs, we can describe trends of imprecise
quantitative values observed in real-world processes. The up and down parts of OFNs
can be related, for example, to the experts’ opinions about dynamic changes of the
analyzed values. In the following subsections, we refer to a couple of possible cases
of direction interpretations.

When using OFNs, we have two options. We can utilize their direction just for
arithmetic purposes, or we can assign them with more complex information. In
Fig. 4.19, we can see OFN A = ( f A, gA), which represents a linguistic variable slow
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Fig. 4.19 Fuzzy number about 20 with a growing trend

corresponding to the speed of a vehicle. Formally, slow is a fuzzy set rather than a
fuzzy number. On the other hand, the domain of possible velocities is an interval
of real numbers, thus in practice slow will usually be represented by a triangular
(or trapezoidal) convex fuzzy number (or fuzzy interval). Now, let us use the lin-
guistic term about 20km/h instead of slow. By modeling it with the use of OFN
A = ( f A, gA), we can interpret A’s direction to say that it is about 20 in the speed-up
process. Thus, A’s direction extends application options, without diminishing the
importance of standard fuzzy number interpretation. After all, information of a form
about 20km/h in the speed-up process is an extension of about 20km/h.

4.6.2 Validity of Operations

The analysis of a fuzzy arithmeticmodel should also include verification as towhether
the results of calculations are consistent with real-world expectations.

According to the trend-based interpretation, let OFNs A and B visible in Fig. 4.20
represent opinions prepared by an expert about two units of a financial company: A’s
income is at a level of 3 million, with an upward trend, as well as B’s income is at a
level of 6 million, with a downward trend.

By using OFNs, the expert can actually describe not only a value and a trend but
also an escalation of that trend. We have two OFNs with different spreads between
their up and down components; indeed, object A is wider than B. By making the
up part of B range from 7 to 6 million, the expert considers a potential of changes
within 1 million. On the other hand, the up part of A ranges from 1 to 3, thus A could
be recognized as a process that is more dynamic than in the case of B.

Yet another aspect is the considered OFNs’ direction, which informs that B is a
decreasing process and A is an increasing one.

In reality, we would expect here the total income at a level of 9 million. If we
use the OFN model and add numbers A and B together, then we get the anticipated
results. However, as we can see in Fig. 4.21, we also have additional information that
seems to be consistent with our expectations as well. Namely, the obtained result
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Fig. 4.20 OFNs that describe an income for two units of a financial company

Fig. 4.21 A result of adding both incomes

shows that the trend is growing. Indeed, an increasing process related to A is more
dynamic than a decreasing process related to B. However, because of B, the overall
increasing trend is less dynamic than for A.

The above example shows how interpretation of the OFNs’ direction can corre-
spond to intuitions behind real-world observations. Such correspondence is important
not only from a viewpoint of mathematical properties but also becomes useful at an
operational level. In general, we believe that it can open new opportunities in front
of applications of fuzzy numbers. Part III of this book presents more ideas about
utilization of OFNs and their direction components.

4.6.3 The Meaning of Improper OFNs

Figure4.22 illustrates a situation that is somewhat alternative to the example of
income analysis considered in Sect. 4.6.2. As before, A and B are incomes of units
of a financial company. However, now their sum is an improper OFN.

In this particular example, objects A and B are not symmetrical. They model a
change in the income process. A represents an increase, which is slowing down. B
represents a decreasing income, which is going to drop down even more. Thus we
can expect the future dynamics of a sum of both incomes to be directed towards a
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Fig. 4.22 Interpretation of improper OFN

decreasing trend. Even for A – which is still growing – the future expectations (down
part) present less potential than the past (up part).

In summary, C represents a collapse of the upward trend of income for the whole
company. This way, C contains information about a reversing trend. It shows that
the idea of using OFNs to model changes of values is valid and intuitive.

Analogous analysis could also be conducted for other examples of potential usage
of OFNs. As mentioned in Sect. 4.5.3, one of them could be related to operating with
data summaries within amassive data-processing framework [20, 24]. In such a case,
an improper OFN could mean that at the beginning of a data load process the values
of a given column tend to increase to a certain most representative level, but later
they begin to decrease again. In such a scenario, the trend-based interpretation of
OFNs is related to a natural flow of data being loaded to a database system rather
than the time of actual observation or measurement.

4.7 Summary and Further Intuitions

The main technical differences between the OFN model and standard fuzzy num-
bers refer to inverting and ordering local components of a fuzzy membership func-
tion. Such ordering has deep consequences for forming mathematical properties and
implementing the model. It provides both (1) computational characteristics allowing
us to define opposite and inverse OFNs (with respect to addition and multiplication,
resp.), and (2) additional information, called direction, that is not present in previous
approaches and that can be useful in practice.

Usually, one is focused on a result of actions rather than their inputs. Thus, while
dealing with functions, one tends to concentrate on their output values. In the case of
fuzzy membership functions, outputs take a form of elements of the interval [0, 1],
interpreted as truth values or degrees of compatibility. As for fuzzy numbers, the
primary goal should be to model real numbers. In the case of OFNs A = ( f A, gA),
as well as an ordering representing their up parts and down parts, we indeed focus
on the target real numbers induced by functions f A, gA : [0, 1] → R.
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The emphasis on degrees of truth is proper while working with qualitative
approaches corresponding to fuzzy logic. However, for quantitative approaches, such
as those referring to fuzzy numbers, processing with the elements ofR seems to be a
good idea. Hence, OFNs should be considered primarily as an alternative to methods
based on standard fuzzy arithmetics, rather than fuzzy logic.

Surely, the outcomes of calculations obtained within the OFNmodel may in some
situations be harder to interpret than in the case of far more popular convex fuzzy
numbers. However, we hope that this chapter provided the readers with appropriate
tools to let such an interpretation be sufficiently straightforward.
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approach. In: Kłopotek, M.A., Wierzchoń, S.T., Michalewicz, M. (eds.) Proceedings of IIS
2002. Advances in Soft Computing, pp. 311–320. Physica-Verlag (2002)



4 Ordered Fuzzy Numbers: Definitions and Operations 79
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Chapter 5
Processing Direction with Ordered Fuzzy
Numbers

Piotr Prokopowicz

Abstract It was already mentioned in previous sections that the Ordered Fuzzy
Number (OFN) model can represent a kind of tendency or direction. However, for a
real practical use of this feature the tools for processing it are also needed. Of course
some kind of quantitative processing is provided by the definitions of calculations,
but there is much more potential for this feature apart from arithmetic operations.
This part presents the idea of a property of processing data called sensitivity to the
direction. The main focus here is placed on the proposition of a direction deter-
minant parameter that can be understood as a kind of measure of a direction. This
determinant is a basis for the definition of such elements as the compatibility between
two OFNs and also for an inference operator for a rule where the OFNs were used.
The propositions of such operations are the important part of these sections of the
book.

5.1 Introduction

The Ordered Fuzzy Number (OFN) model introduces a new feature, the direction.
It is the representation of order of the up-part and down-part of an OFN from
Definition 4.1 in Chap. 4. It is used for defining those arithmetical calculations that
do not have to produce more imprecise results. But there is another potential of this
feature. In fact if we can use OFN to describe the situation, “A vehicle speed is about
50km/h and it is growing,” it would be more efficient to have the potential to use it
not only for calculations but also for more complex processing as, for example, in the
rule, “IF speed is 50km/h and is growing, THEN safety of a city drive is 75% but it is
lowering.” In general, it is similar to the idea of the gradual fuzzy system (see [8]),
however, the source of the OFN concept is quite different. An interesting approach
to trend modeling using the classical fuzzy numbers idea is also presented in [11],
where the trend is understood as a gradual dependence between attributes. However,
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gradual fuzzy rules have a form, “The more X is F , the more Y is G,” but here for the
OFN model a more appropriate form is IF X is in F which is growing/decreasing,
THEN Y is in G which is growing/decreasing. Moreover, the OFNs in a natural way
represent a tendency unlike the classical fuzzy sets/numbers where modeling a trend
requires additional actions.

It was already presented in the previous chapter (see Sect. 4.7) of this book that the
reversing of the axes in the definition of OFNs compared to typical fuzzy conceptions
reverses focus in the analysis of the problems. Functions that form an OFN have a
target set that is a universe of real numbers. It seems proper if we want to model a
quantitative problem. This reversal does not prevent the OFN model from being a
tool for an imprecise data representation. Additionally, arithmetic operations are not
the only form of processing the quantitative values. One of great advances of fuzzy
set theory is easy and intuitive modeling of the linguistic formulas with the reference
rules. If we want to retain this advantage also for the OFNmodel we need a basic tool
for comparing two values that can be called a compatibility. For practical linguistic
use the compatibility is a result of the sentence or statement type A is B, where A
and B are imprecise values, the OFNs in this case.

Presenting the tools for the processing of OFNs other than direct calculations
is the main goal of these sections of the book. The basic idea here is to preserve
good intuitiveness of the general fuzzy approach and combine it with the tendency
modeling potential of the OFN model. The methods presented in the next sections
are sensitive to the direction (see [23, 25]).

Remark 1 As the sensitivity to the direction we understand the property of opera-
tion. This property means that the result can be different if we change the direction
of the OFNs used in the operation.

It should be noted that the above remark is a general postulate, not a formal
definition of the property. The problem is quite complex, thus more explanation is
needed.We especially postulate that the result changes if only one of the components
(OFN) of the operation will change the direction (see Definition 4.2 the reversal of
direction operation from Chap. 4). In many cases where two data items change a
direction our intuition suggests the result should not be changed. For example, let us
look at the linguistically described rules that consider tendency:

• IF speed is decreasing THEN sa f ety is increasing.
• IF speed is increasing THEN sa f ety is decreasing.

Both of them express the same intuition, yet with opposite tendency, thus the change
of direction for both values speed and sa f ety should not really change the result.
In addition, when analyzing sensitivity to the direction in the OFN methods, it is
necessary to consider their specificity such as the improper OFNs (see previous
chapter Sect. 4.4). Thus, a method that is generally sensitive to the direction may
give the same result despite change where the up-part and down-part of the given
OFN are equal. Apart from many improper OFNs such a situation will also arise in
the singleton case. Thus the lack of change in the result for some specific situations
does not negate the method as one that is sensitive to the direction. Therefore when
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we postulate for a given method to be sensitive, the words “change of direction can
(not must) change the result” are a clue.

It is worth noting that the basic arithmetic operations on the OFNmodel presented
in Sect. 4.5 are generally sensitive to the direction. If the up-part and down-part of
OFN A are not equal, then the reversal of direction operation (see Definition 4.2 from
previous chapter) generates A|− �= A. Therefore the result of an arithmetic operation
will be different after reversal of the single input value.

The purpose of this chapter is to propose a full set of methods and operations
to define fuzzy systems based on OFNs that are sensitive to the direction feature.
Therefore in the next sections, a general tool for processing a tendency of OFNs is
presented. It is called the direction determinant (see also [24, 25]) as it is a kind
of measure of direction for a given element of OFN support. Next the compatibility
of OFNs as a result of statement A is B is proposed see [25] that uses the direction
determinant. Finally a proposal of a technical inference method is presented that is
meant to be a practical realization of the rule IF X is A THEN Y is B.

5.2 Direction Measurement Tool

The key element of the OFN model is the order between the up-part and down-part,
which is independent of the real numbers. This can also be called the direction or
orientation. It is taken into account in the definitions of arithmetic operations and their
extensions, which make the calculations flexible and unified and more importantly,
their properties and relationships are consistent with calculations on real numbers
(see previous part of this book as well as [22]). Thus it seems natural that information
processing methods based on OFNs also take into account the direction. Here the
tool that allows meeting this assumption in defining methods is presented. However,
it is helpful to start with a supporting structure that simplifies further description.

In general, the propositions presented in this section refer to the concept of the
membership function for the OFN model presented in Sect. 4.3.3.

5.2.1 The PART Function

The PART function as the result presents information about the part of the OFN that
contains the given argument [24].

Definition 1 For the OFN A defined on X the PART function X → Y is determined
as follows.

PART A(x) = y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CONST A : x ∈ CONST A,

UPA : x ∈ UPA,

DOWNA : x ∈ DOWNA,

NONEA : x ∈ NONEA.

(5.1)

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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Fig. 5.1 Specific parts of the
support of an OFN 1

X1X3X4X 2X 5

UP DOWNCONSTNONE NONE

where:
x ∈ X ,
Y = {CONST A,UPA,DOWNA,NONEA},
CONST A – A subset of X for which the membership function of A number is equal
to 1.
UPA – A subset of X for which the inverse of the up-part has values.
DOWNA – A subset of X for which the inverse of the down-part has values.
NONEA – A subset of X for which the membership function of A number is 0.

Figure5.1 illustrates the effect of the PART function. Example results presented
there are as follows.

PART(x1) = DOWN

PART(x2) = UP

PART(x3) = CONST

PART(x4) = UP

PART(x5) = NONE

(5.2)

Fuzzy numbers are fuzzy sets defined over the space (or subspace) of real numbers.
Thus the sets U P , CONST , and DOWN can be treated as numerical intervals (see
also Sect. 4.2 from previous chapter). We use the following denotations of their
boundaries.

UP = (s, 1−)

CONST = [1−, 1+]
DOWN = (1+, e)

(5.3)

5.2.2 The Direction Determinant

The direction of the OFN is an additional property in comparisonwith classical fuzzy
numbers and its meaning is different from the degree of membership. Therefore, if
we want to process the full information contained in the OFN, we need an additional
parameter that will represent a new property.

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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Fig. 5.2 Proportional
direction determinant
calculations

1
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1+X1

D(X1)= 
X1 - -

1- - s D(X2)= 
X2 - 1+

e - +

1
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The proposition is direction determinant (see [23–25]). The purpose of this
parameter is to represent a kind of direction “intensity” of the argument. The direction
determinant is strictly connected with a particular OFN and is defined only for its
support (see Sect. 4.3.2). The general idea is to measure a distance of argument from
the core of the OFN. It is calculated from the ratio of the position in support of the
considered argument in relation to the whole fuzzy boundary of the OFN, to which
this argument belongs. It is well illustrated in Fig. 5.2.

Such an approach is connected with one of the useful interpretations of the OFN
direction [13, 14]. The intuition behind the direction determinant is that the partial
membership at the fuzzy boundaries can represent the imprecise concept of “now”. If
we treat this imprecision as symmetrical, then our fuzzy “now” in the context includes
as much time forwards as backwards. Hence, U P and DOWN in the scale of time
(independently of the arguments) are equal. Thus there is a reason for calculating
the determinant of the element situated on U P or DOWN to the proportion of the
respective intervals and not only to the value.

Definition 2 Let A denote the OFN, and x be an element of the support. The pro-
portional direction determinant of x in relation to A marked dir Ax is calculated
as a result of directional function D : suppA → (−1; 1) for the argument x in the
following way.

dir Ax = DA(x) =

⎧
⎪⎨

⎪⎩

0 : for PART(x) = CONST
(x−1−)

(1−−s) : for PART(x) = UP
(x−1+)

(e−1+)
: for PART(x) = DOWN

(5.4)

The above-mentioned determinant is called proportional because this is a certain
simplification/approximation of the general idea. This facilitates practical implemen-
tation and still serves its purpose.

It is worth noting that, if the degree of membership is equal to zero, the direction
determinant is undefined, because the argument is not part of function domain D (the
value is outside OFN support). It should also be noted that for the arguments in the
CONST interval, we have the direction determinant that is equal to zero, which is
justified, as these are the values about which we have no doubt: their membership is
full (equal to 1). According to this intuition we should also expect (and this is taken

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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into account) that, the closer the arguments are to the kernel of the fuzzy number,
their direction “intensity” (i.e., the direction determinant) is smaller. We should also
note that the sign of the determinant clearly shows its membership to a selected part.
If it is negative, it means that the argument belongs to U P , and if it is positive, then
the argument is part of DOWN . Let’s call this the sign dependency. Thus in certain
situations we can simplify the analysis. When processing the data represented by
the OFNs we wish to include only the information about which part we deal with
(up − part or down − part); the information about the sign of the determinant is
sufficient without considering the exact value.

Based on the above analysis, the trivial variant of direction determinant can be
proposed.

Definition 3 Let A denote the OFN, and x be an element of the support. The trivial
direction determinant in relation to number A for x marked as dirx is calculated
with the use of the value of the directional function DA : suppA → (−1; 1) for the
argument x in the following way.

dir Ax = DA(x) =
⎧
⎨

⎩

0 : for PART(x) = CONST
−1 : for PART(x) = UP
1 : for PART(x) = DOWN

(5.5)

As can be noted, the trivial direction determinant simply remaps a set (U P ,CONST ,
DOWN ) into the set (−1, 0, 1).

Having a basic tool, we can now propose the methods that are sensitive to the
direction.

5.3 Compatibility Between OFNs

The fuzzy expression (or statement) “A is B” where A and B are fuzzy sets is a
basis for the analysis where we want to apply the fuzzy sets and their imprecise
mechanisms. The calculation result of this statement can be called a similarity or
compatibility of A with B. The idea of compatibility and similarity between fuzzy
sets was discussed in many publications (e.g., [5, 6, 12, 27]).

In this section the idea for calculating compatibility between two OFNs is pre-
sented [25]. We search methods sensitive to the direction, therefore a solution is to
use the direction determinant in processing. Thus, as the result of fuzzy statement
A is B a pair of values is proposed. First is a truth value in classical fuzzy meaning:
the value from interval [0, 1], which indicates a degree of compatibility between
two pieces of imprecise data represented by the OFNs. The second is the direction
determinant, which retains information about direction.

Definition 4 For Ordered Fuzzy Numbers A and B the result of expression “A is B”
called directed fuzzy compatibility (DFC) and labeled COMPAB is composed of
two values: the truth value TAB and direction determinant DAB calculated as follows.



5 Processing Direction with Ordered Fuzzy Numbers 87

1

52 431

up-part

A B

truth value

DAB = D B(1,5) = -0,75TAB = μB(1,5) = 0,25

0,25

Fig. 5.3 The compatibility of a singleton with a general OFN

COMPAB = (TAB, DAB) (5.6)

TAB = max(min(μA(x), μB(x))) : x ∈ X (5.7)

If TAB is zero, then DAB is unspecified, else

DAB = DB(x0), x0 = x : μB(x) = TAB (5.8)

where X ⊂ R is a domain of given OFNs, μA(x), μB(x) are membership functions
of A and B, and DB is the direction determinant of B for given x .

Figure5.3 shows the result of compatibility of A with B, when A is a singleton.
For this example the truth value is TAB = 0, 25 and the direction determinant is
DAB = −0, 75. The DAB can be interpreted as an indication of shifts of A to B. The
negative values mean the shift in the direction of the up-part of B, and the positive
shift in the direction of the down-part of B. Such behavior can also be understood
as a kind of directed relative dependence between values.

An Ordered Fuzzy Number can be understood as an extension of classical fuzzy
numbers; the result of the fuzzy expression “A is B” should be an extension of the
classical solution. It is important that the boundary dependencies for truth values
are preserved in the new proposition. Especially when there is no shared part of the
support between the numbers A and B, the truth value of the result is zero. On the
other hand, when A is the same number as B, the truth value is equal to one regardless
of the directions of the numbers. In addition to these results, we also achieve intuitive
behavior of results with partial compatibility.

It is understandable that the expression “A is B” in a context of the truth value is
symmetrical. However, if we want use direction-sensitive methods we need a tool
that gives us different results in such contexts as presented above in Definition 4.

The examples in Figs. 5.4 and 5.5 present the results of DFC with different direc-
tions of the OFNs. For both cases we can observe that truth value results are the
same. But the difference is specified just by the direction determinant.

However, for the opposite direction of OFNs (see Fig. 5.5) the direction determi-
nants are the same. As we remember, the determinant part of the result indicates the
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1

52 431

down-part up-part

A B

truth value

DAB=DB(2,5)=-0,5
DBA=DA(2,5)=0,5

TAB=TBA=μB(2,5)=μA(2,5)=0,5

Fig. 5.4 The compatibility between two OFNs with the same direction

1

52 431

down-part down-part

A B

truth value

DAB=DB(2,5)=0,5
DBA=DA(2,5)=0,5

TAB=TBA=μB(2,5)=μA(2,5)=0,5

Fig. 5.5 The compatibility between the OFNs with the opposite directions

shift of A to B. For “A is B” A is shifted to B in the direction of the down-part of B,
and for the “B is A” B is shifted to A in the direction of the down-part of A. Thus
both shifts in the context of parts of OFNs have the same direction.

To preserve usefulness the above compatibilitywith classical fuzzy ideas is impor-
tant to retain some clue behavior. That is, if the truth value of compatibility is equal
to 1, this means we are not analyzing the direction determinants. Such a solution
preserves the boundary dependencies: when the truth value is zero we have no com-
patibility, and with the truth value equal to one we have full compatibility regardless
of the direction.

It must be emphasized that the direction determinant can be used as a tool for
measurement and comparison of the directions of OFNs in different ways. Methods
concerning direction should use that parameter as an element in their definition, but
if we want to use OFNs in data processing only for their good arithmetic then we can
ignore the direction determinant and use only the truth value for further processing.
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5.4 Inference Sensitive to Direction

One of themain applications of fuzzy sets is a fuzzy system. Its core is a base of rules.
Apart from the initial Chaps. 1 and 2 of this monograph, there are many publications
that consist of the overviews of basic conceptions of fuzzy sets and modeling fuzzy
systems [3, 16, 18, 19, 26]. The general advantage of fuzzy systems is the possibility
to model the rules easily using linguistic description.

The basis for the processing of fuzzy rules is the operators of inference. They
describe algorithms for transferring given fuzzy input into a fuzzy answer. Generally
these methods are based on implications. However, there are also popular solutions
including the MIN or PROD, which formally are not the implications, but their
practical usefulness is proved. If we deal with quantitative imprecise data, we can
use the OFNs instead of classical fuzzy numbers.We can ignore the direction and use
the same methods. However, if we want to process additional information contained
in the new model, we need methods sensitive to the direction.

When processing imprecise information using classical fuzzy methods, we often
have fuzzy numbers at the input. However, during the process, in principle we ignore
the quantitative nature of the data, focusing primarily on their qualitative aspect.
Thus, even if input data are the fuzzy number, we rarely also get the fuzzy number at
the output before defuzzification. In some cases it can be somehow inconsistent. For
example, in the rule, “IF temperature is about 10 ◦C THEN heating should be about
200W,” when processing data with classical fuzzy inference methods, in general, the
output will not be a fuzzy number, although part of the rule, “Heating should be about
200 W,” clearly suggests a quantitative output. It can be particularly difficult in the
cases where the result of inference is to be used as fuzzy data without defuzzification
later for the calculations in further processing of this information.

In the case of the OFN model and processing methods that can be called “arith-
metic” (see [20, 21, 23, 24]), at each stage of the process we deal with the quan-
titative aspect of the data. Thus consistently we obtain fuzzy numbers at each step:
the aggregation of premises, the inference, and the accumulation-aggregation of the
rules answers.

5.4.1 Directed Inference Operation

An inference mechanism presented here is based on the generalized modus ponens
(compare with the information in Chap. 2), where the main role is played by a rule
of the type:

IF X is A THEN Y is B (5.9)

where A, B are fuzzy values that model a rule and X ,Y , input and output variables.
In the generalized modus ponens, where the data are represented by fuzzy numbers
(or sets), the whole mechanism of inference is closed in the mathematical rule. This

http://dx.doi.org/10.1007/978-3-319-59614-3_1
http://dx.doi.org/10.1007/978-3-319-59614-3_2
http://dx.doi.org/10.1007/978-3-319-59614-3_2
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rule describes an algorithm for calculation of the answer, Y value. Sometimes it is
also called an inference operator (see [9, 17]).

The proposition presented here is dedicated for the OFN model, therefore in the
rule (formula (5.9)) values are presented as such objects. The statement, “X is A,” is
calculated as compatibility betweenOFNs. Themethodwas described in the previous
section.

Definition 5 For the rule as in formula (5.9) let A and B be the OFNs. Let X be
the input value also represented by an OFN. The result of “X is A” is calculated
as directed fuzzy compatibility; COMPXA = (TX A, DXA), where TX A is the truth
value and DXA is the direction determinant part of COMPXA.

The directed inference by the multiplication with a shift (DIMS) are the cal-
culations of answer Y of the following rule: if TX A = 0 there is no activation of the
rule, therefore the answer is not calculated. In other cases,

Y = B + |DXA| · c
where

c =
{
s − B : DXA < 0

e − B : DXA > 0

(5.10)

It is worth noting that this is not the classical logical inference. The truth value
of the premise part of the rule is used to check whether the rule can be implemented
at all. The specificity of the presented method is that the inference is made through
arithmetic operations. We do processing of the quantitative data with calculations.

5.4.2 Examples

For better understanding of the proposedmethod, an example is useful. Let us assume
that for the rule from formula (5.9) we haveOFNs A as in Fig. 5.6a and B in Fig. 5.6b.
In Fig. 5.6a we can also find the input value X .

According to the Definition 4 “X is A” is COMPXA = (TX A = 0.66; DXA =
−0.33). Using the new inference we get the result shown in Fig. 5.6c. In Fig. 5.7a we
have a situationwhere the X OFNvalue changes only a direction (but does not change
the shape). This time the result of “X is A” is COMPXA = (TX A = 0.66; DXA =
0.33). As we can see in Fig. 5.7b the result of inference was changed. This is related
to the change of direction determinant.

If we analyze the proposed method of inference in more detail, we can note that
if the DXA is closer to −1, the result of inference will be the narrow fuzzy number
situated at theU P part side of support of OFN B. On the other hand, when the DXA

approaches 1, the result of inference is aimed at extreme values of support but on the
DOWN side. Finally, when DXA = 0 and the TX A = 1 it means that the X is fully
compatible with A. Thus the result of inference is exactly the number B, the value
from the conclusion.
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Fig. 5.6 a Example OFNs X and A; b OFN B from rule conclusion, c Y the result of inference
operation
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Fig. 5.7 a OFN A with opposite direction and X is the same as before; b the new Y result of
inference operation

In practical applications (a fuzzy system, e.g.), a pair of values should be consid-
ered as a result of inference: the truth value of the premise part of a rule, and the
OFN calculated in accordance with the Definition 5.

Comparability with conventional fuzzy inference operators is important to pre-
serve in general similar usefulness in practical situations for the new conceptions.
Therefore, behavior of the output of the inference in boundary cases is compatible
with classical fuzzy solutions (see [3, 18, 19]). If there is no compatibility in the
premise part “X is A”, then the rule is not activated, and on other side if the activation
is full, then the result is the exact value from a conclusion.

5.5 Aggregation of OFNs

A purpose of this section is to propose an aggregation operator that is generating
intuitively good results as well as being consistent with the OFN model. The main
basics of the proposition come from the paper [24]. The method presented here
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maintains the expected properties of the aggregate functions [2, 4]. Additionally, it
also takes into account the key idea of OFNs of the direction of the components.

5.5.1 The Aggregation’s Basic Properties

Generally, an aggregation is an operation used in those situations when we need to
find a single value representing the set of various numbers/data. There can be different
application areas specified where an aggregation [2] is needed, for example, making
decisions based on multiple criteria, or choosing from a variety of peer evaluations,
one of which is treated as the result of them all. One important area of application is
also the aggregation of the rule premise in a rule-based fuzzy system, where we have
many input variables. The aggregation operation is a function that converts a number
of input data into a single value. Transformation depends on the chosen method,
but it is expected that in the process of determination of the result all of the input
data were considered (in some way). Typically, aggregations where the number of
input data is greater than one are used. Moreover, to call a function an aggregation,
it should have two elementary properties (see [4]):

1. Boundary conditions. If all input data are minimal (or maximal), the result will
also be the minimal (maximal) value. In the case of aggregation A for values
from interval [0, 1] (the range of values of a fuzzy set), when all the arguments
are equal to 1, the result of aggregation is also equal to 1 and similarly for zeros:

A(0, 0, ..., 0) = 0

A(1, 1, ..., 1) = 1
(5.11)

2. Nondecreasing. The function is nondecreasing against each input variable. This
means that the growth of any of the input data cannot cause a decrease of the
result of aggregation A.

∀i=2..nxi ≤ yi ∧ (x1, ..., xn) �= (y1..., yn) ⇒ A(x1, ..., xn) < A(y1, ..., yn)
(5.12)

Apart from these two elementary properties a number of other important properties
such as continuity, symmetry (anonymity), and idempotency are pointed out [2, 4,
10].

Continuity means that a small change in one input argument implies small change
of the result. In the context of engineering applications, continuity corresponds to
intuition, which is related to the fact that a small error in the entry cannot cause a
large error in the output.

Symmetry means the independence of the result from the sequence of input data.
This property is also called anonymity, because based on the output it is not possible
to determine the sequence of input values.
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Idempotency means that if each independent input has the same value, this par-
ticular value will be the result of aggregation. It may be noted that the boundary
conditions are, in fact, idempotent for the maximal and minimal values.

There are also many different properties that can characterize an aggregation
operator [2, 4, 10]. However, those mentioned above are the most essential and
desirable in practical applications.

5.5.2 Arithmetic Mean Directed Aggregation

The basic, simple, and intuitive idea is to use an arithmetic mean idea in aggregation.
As the arithmetic operations (thus the adding too) are sensitive to the direction, there-
fore the aggregation based on them also will be. The flexibility of the calculations
grants a possibility for freely mixing the OFN objects with crisp numbers in math-
ematical formulas. Thus we can define the aggregation exactly like the arithmetic
mean for the real numbers and it will preserve the sensitivity to the direction.

Definition 6 The result of arithmeticmeandirectedaggregation (AMDA) isOFN
A calculated for L any set of OFNs such as:

A = Σn
i=1

Li

n
, (5.13)

where Li ∈ L is the i th OFN object from L , and n is the amount of elements in L .

Figure5.8 presents the example of aggregation of two OFNs.

5.5.3 Aggregation for Premise Parts of Fuzzy Rules

Definition 6 from the previous section is simply the direct transfer of the idea of
arithmetic mean into the OFN space of all OFNs. However, the popular application

1

52 431

L1 L2

L1+L2
2A=

Fig. 5.8 Result of AMDA operation for two OFNs L1 and L2
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of the aggregations of fuzzy sets, and also fuzzy numbers, is a fuzzy rule with many
input variables (see Chap. 2). Such rules have a premise part with a number of
elementary fuzzy expressions of type “X is L”. For example,

IF X1 is L1 AND X2 is L2 AND ... AND Xn is Ln THEN... (5.14)

where Xi are the fuzzy input data, Li is the fuzzy set/number from a linguistic model,
and i = 1, ..., n is the number of input variables in the rule.

To use an OFN model in such a rule we need an aggregation consistent with
the fuzzy expression’s compatibility calculation presented in Sect. 5.3. Below is pre-
sented the proposition based directly onAMDA and designated specially for inference
rules, and thus called arithmetic mean directed inference aggregation (AMDIA).
It uses the direction determinant idea. Themain purpose of the proposal is to calculate
the level of activation or firing strength for a rule.

Definition 7 Let’s assume that the general pattern of the premise part of a rule R
is specified in formula (5.14). The result of arithmetic mean directed inference
aggregation AR of fuzzy expressions from the premise part of the rule R is calculated
as a DFC (directed fuzzy compatibility see Sect. 5.3), thus it is a pair: truth value TR

and direction determinant DR .

AR = (TR, DR) (5.15)

The algorithm specifying AR is presented as the following steps.

1. Calculation of set A = {A1, A2, ..., An} containing elements that are the results
of all fuzzy expressions from the premise part

Ai = COMPXi Li = (TXi Li , DXi Li ). (5.16)

2.
∃Ti=0 ⇒ TR = 0, DR is unspeci f ied (5.17)

If there is at least one fuzzy expression with the truth value equal to 0, then the
truth value of the aggregation result is also zero. Therefore this rule is inactivated,
and the direction determinant is undefined.

3. Otherwise,

TR = Σn
i=1

Ti
n

,

DR = Σn
i=1

Di

n
.

(5.18)

The proposed aggregation operator for the OFN generates a result with two com-
ponents. For the calculation of each of them the arithmetic mean is used. Because

http://dx.doi.org/10.1007/978-3-319-59614-3_2
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the arithmetic mean is a function fulfilling the basic criteria of aggregation operators
(see [2, 4, 10] and Sect. 5.5.1), the AMDIA also fulfills them.

It is worth noting that we are dealing with two different parameters: the truth
value (degree of membership) and the direction determinant. However, they are
not completely independent, therefore, it is worth having a look at some important
dependencies between them. The direction determinant of the result equal to zero
indicates that the activation is not moved from theCONST interval in any direction.
Note that this happens only in two cases:

1. When all truth values of the fuzzy expressions from the premise part are equal
to one, then activation of the rule (truth value of aggregation result) will also be
equal to one.

2. When the truth values of the fuzzy expressions on the U P side are precisely
balanced with the resultant on the DOWN side, then the truth value of the result
will be greater than zero, and less than one.

Let’s take a closer look at the first case. The level of activation may be only equal
to 1 when the determinant is equal to zero. This means that in the case of complete
compatibility of premises the given data do not represent any direction. This is
especially important if we want to combine the concept of OFNs with the ideas for
classical fuzzy sets. In such a way the fundamental meaning of full membership (also
the full nonmembership) coincides in both solutions.

Finally, an alternative conception should be analyzed. It may be tempting to use
the geometric mean instead of arithmetic in the aggregation. It seems good for truth
values, due to the fact that if we have zero for at least one input, it is automatically
zero for the truth of aggregation result and generally cancels the rule from further
computations. Unfortunately, for the same reason it may not be used for calculating
the directiondeterminant part of the result. The zero value of the directiondeterminant
of elementary fuzzy expression means in most cases full compatibility (truth value
equal to one). It is against intuition that only one full compatibility of one fuzzy
expression will automatically grant no direction for the aggregation result, no matter
how many other expressions have only partial compatibility.

5.6 Summary

All sections of this chapter can be treated as an introduction to tendency-sensitive
data processing with the use of Ordered Fuzzy Numbers. The basic tool for linguistic
modeling is the operation directed fuzzy compatibility used to calculate a result
of the expression, “X is A”. The inference operator DIMS is another important tool
for the practical use of sensitivity to direction. Both propositions use an idea of the
direction determinant, which can be treated as a general parameter for measuring
direction. Together these propositions can also be used for practical defining and
realization of the full fuzzy system based on rules type “IF-THEN”, which is sensi-
tive to the direction/tendency of information presented by OFNs. If a fuzzy system
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needs rules that use more input values there is the proposal of the arithmetic mean
directed inference aggregation method which is also based on the idea of direction
determinant.

To generate one fuzzy answer from all rule outputs a simple calculation can be
used. It is the idea of weighted mean where weights are the levels of activation of
the rules (see [21]):

Y =
∑k

i=1(ai · YRi )
∑k

i=1 ai
(5.19)

where k is the amount of rules, ai is the value of activation for the i rule, and YRi is
the OFN output for the i rule. For such calculations the result will always be an OFN.
A key observation for this solution is that rules that were not activated (activation
equals 0) have no participation in the final result. Calculation of the fuzzy answer of
all rules results is also a form of aggregation (see Sect. 5.5), sometimes also called
an “accumulation.”

When we have one OFN as the result of a system, we can defuzzify it. For this
purpose,we use one of the classic fuzzymethods as themean ofmaxima, or the center
of mean inclination method mentioned in Definition 4.4 from previous chapter. It
is based on the specific parameter of OFN, an inclination. As the aggregation of
premises and inference operator are sensitive to the direction, the OFN-based fuzzy
system will also be characterized by this property. Therefore, the accumulation and
defuzzificationmethods proposed abovedonot need to fulfill the sensitivity postulate.

It should be underlined that defuzzification is a very important operation in terms
of the practical usefulness of fuzzy concepts. There can be many applications where
fuzzy elements are helpful but without rule/inference processing. This applies par-
ticularly to quantitative problems, when we need to calculate the result where data
are fuzzy. Therefore developing the defuzzification methods independently of the
fuzzy system application is an important issue. The next chapters in this part of
the monograph (see also [1, 7, 15]) present other ideas and propositions to realize
defuzzifications that consider specificity of the OFN model.
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Chapter 6
Comparing Fuzzy Numbers Using
Defuzzificators on OFN Shapes

Jacek M. Czerniak, Wojciech T. Dobrosielski and Iwona Filipowicz

Abstract This chapter concerns an issue of comparing fuzzy numbers. The relation-
ship of similarity is probably themost widely used andmost difficult to determine the
measure of compliance precisely. Analysis of the similarity between two objects is
an essential tool in biology, taxonomy, and psychology, and is the basis for reasoning
by analogy. This chapter describes methods for determining the similarity used in
fuzzy logic. Many of them were dedicated only to triangular or trapezoidal fuzzy
numbers. This was a computing inconvenience and raised the question about the axi-
ological basis for such comparisons. The authors have proposed two new approaches
to comparing fuzzy numbers using one of the known fuzzy number extensions that
are Ordered Fuzzy Numbers (OFNs). This has allowed us to simplify operations and
eliminate said dualism. Two order-sensitive defuzzification methods are presented
in the chapter. For OFN numbers with positive order (compliant with the direction
of the OX axis increase) the results of defuzzifications are results for numbers of
different notations, for example, L-R, whereas for numbers with negative orders, the
defuzzification result changes. An important part of the chapter is a catalogue of
the shapes of numbers in OFN notation. This is probably the first summary of basic
shapes of those numbers with the results of defuzzifications using several methods.
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6.1 Introduction

In all fields of science for a long time it was necessary to compare certain objects.
Some branches of science sought to answer the question about the nature of the
similarities, whereas others needed precise formal definition. Comparison of two
objects or occurrences can be seen as an attempt to determine the relation between
them. The most important and most frequently used relations between objects are
similarity, difference, and inclusion. In the literature, most attention is dedicated to
the issue of the similarity of objects. In recent decades, the theory of fuzzy sets has
been used in many areas of science and everyday life. The need to compare fuzzy
sets emerged naturally from the very beginning of the theory. There are plenty of
methods, often based on those used for conventional sets. Intensive development
of fuzzy logic and its applications often need to identify new ways of comparing
objects. This issue is particularly important in computer-aided decision support,
classification, and processing of natural language. Although the issue of comparison
is crucial for many applications of fuzzy set theory, still we failed to formalize clearly
basic concepts such as similarity or inclusion. Some researchers concernedwith fuzzy
logic seek to define the concepts precisely, however, others questioned this approach,
saying that imposing a rigid framework limits practical applications. Through years
of development of fuzzy logic, many researchers have been developing methods of
comparing sets and fuzzy numbers. Among them, it is impossible not to recall that
several fuzzy number comparison methods and indices have been researched since
1977 by Zadeh [12], Yager [10, 11], Kaufman [14, 15], Chang [5], and Amado [1].
Bortolan andDegani [5] andDadgostar [1] reviewed some of themethods for ranking
fuzzy sets, including Yager’s first, second, and third indexes, Chang’s algorithm,
Adamo’s method, Baas and Kwakernaak’s method [2], Baldwin and Guild’s method
[3], Kerre’s method [9], Jain’s method [7, 8], and Dubois and Prade’s four grades [6]
of dominance (PD, PSD, ND, NSD). Dadgostar and Kerr [1] proposed a consistent
method, called the partial comparison method (PCM). Wang and Kerre [22, 23]
proposed several axioms as reasonable properties to determine the rationality of a
fuzzy ordering or rankingmethod and systematically compared a wide array of fuzzy
ranking methods.

It appears that although defuzzification in some way deprives a fuzzy number
of multidimensionality, this is a natural step preceding the comparison. Subsequent
sections present someknowndefuzzificationmethods and twonewmethods proposed
specifically for Ordered Fuzzy Numbers (OFNs). It has been proven that both new
methods meet properties required for defuzzification operators.
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(a)

(b)

(c)

Fig. 6.1 a OFN example, b OFN presented in relation to a classic fuzzy number, c arrow denotes
the orientation and the order of inverted functions: first UP and then DOWN

6.2 Formal Approach to the Problem

The essence of an OFN is discussed in the introduction to this chapter. Redefinition
of classic fuzzy sets, where, according to Zadeh, it is an organized pair, has widened
the definition by an organized pair of functions. The OFN is defined as follows.

Definition 1
A = (xup, xdown) (6.1)

where xup, xdown : [0, 1] → R are continuous functions.

These functions are called the up-part and down-part, respectively, where both
parts are connected by a constant function equal to 1. The order of a fuzzy number
is its arrangement so that the up-part is the beginning of the OFN and the down-part
is the end of this number.

Interpretation of the Ordered Fuzzy Number is shown in Fig. 6.1, where an exam-
ple of an OFN is referred to a classic fuzzy number. The defuzzification process,
as the last step in the three-step model of fuzzy control, converts a fuzzy set into a
single real (defuzzified) value, on which the membership function is defined. The
following expression describes defuzzification in a formal way.
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Definition 2
W = {f : X → [0, 1] } → X (6.2)

where W is the defuzzification operator, f is the membership function, and X the
universe on which membership functions are defined.

The process can be characterized on the basis of the properties, which are more
desirable for a particular system. Considering the type of system, one can distinguish
a fuzzy inference system, for which such property as processing power, is less impor-
tant than for a diffuse control system, for which the processing power is an important
parameter. The study [35, 37] introduced criteria of defuzzification operators for
classic fuzzy numbers, on the basis of which individual defuzzification methods
were assessed. The main conclusion is that there is no all-purpose defuzzification
method. Defuzzification methods should be oriented to their field of application. For
example, maximization methods, which include LOM (last of maxima) and FOM
(first of maxima), are more suitable for inference systems. Research, which has been
carried out by the authors of the above-mentioned study, proved that the distribution
and field methods are more suitable for applications where control systems are used.
Those methods include COG (center of gravity) and COA (center of area).

Upon development of Ordered Fuzzy Numbers, the authors of the paper [7, 20,
26] proposed criteria for defuzzification methods. That gave grounds for guidelines
enabling the creation of suitable models of defuzzification operators. The following
four conditions should be met for most of the methods.

Definition 3 Each functional φ is defined on R with the properties:

φ(c) = c (6.3)

φ(A + c) = φ(A) + c (6.4)

φ(cA) = cφ(A) (6.5)

φ(A) ≥ 0 if A ≥ 0 (6.6)

is called a defuzzification functional,
where φ is a representation defined on the set of real numbers, and φ(c) is under-

stood as the defuzzification of the c value on the set of real numbers. In other words,
the defuzzification using the singletonmethod should give a defuzzifiednumber (6.3).
Condition (6.4) is related to additiveness, and it requires the defuzzification value for
the sum of components to equal the sum of defuzzifications for individual compo-
nents. Condition (6.5) requires the representationφ to be homogeneous (first degree);
that is, if the argument is multiplied by a factor then the result will also be multiplied
by some power of this factor. In this case, that power amounts to one. Condition (6.6)
refers to the positive sense of a functional. Detailed interpretation of individual con-
ditions is provided in the study by [5, 30].



6 Comparing Fuzzy Numbers Using Defuzzificators on OFN Shapes 103

6.3 Defuzzification Methods

It is well known that the defuzzification process reduces the fuzzy set to an individual
defuzzified value. The mechanism of that operation consists mainly in the use of an
appropriate defuzzification method. Available methods include the following classic
solutions.

FOM, first of maxima: This method is FOM a method concerning the choice
of the smallest element of the set core A, where the defuzzification value represents
the relationship (6.7).

FOM(A) = min core(A) (6.7)

LOM, last of maxima: The appropriate choice of the maximum value of an
element from the set core A, is the LOM method, the formula of which is presented
below:

LOM(A) = max core(A) (6.8)

MOM,mean ofmaxima: The formula (6.9) illustrates the use of FOM andLOM
as methods, the defuzzification values of which take into account the minimum and
maximum elements of the fuzzy set core A. The resulting value is the mean value of
those two methods.

MOM(A) = min core(A) + max core(A)

2
(6.9)

RCOM, random choice of maxima: The method is also called defuzzification
from a core, because the defuzzification value is always included in the core of a
fuzzy set. The defuzzification value of this method is a random element x ∈ core(A)

calculated as a probability:

RCOM(A) = P(x) = λ(x)

λ(core(A))
(6.10)

where λ is the Lebesgue measure in universe X.
MOS,mean of support: Defuzzification methodMOS, the defuzzification value

of which is the mean value of the A number carrier.

MOM(A) = supp(A)

2
(6.11)

COG, center of gravity: The most widespread method, which is based on deter-
mination of the center of gravity of the analyzed system. In the fuzzy number A
defuzzification process, the COG method is expressed as the formula (6.12).
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COG(A) =
∫ b
a xμA(x)dx
∫ b
a μA(x)dx

(6.12)

BADD, basic defuzzification distribution: The defuzzification method pro-
posed [24] as an extension of COG and MOM methods. We obtain the following
defuzzification value from the fuzzy set A.

BADD(A) =
∫ b
a xμγ

A(x)dx
∫ b
a μ

γ

A(x)dx
(6.13)

Depending on parameter γ ∈ [0,∞], BADDmay assume the following instances:
when γ = 0, BADD(A) = MOS(A); when = 1, BADD(A) = COG(A); and when
γ → ∞, BADD(A) = MOM(A).

6.3.1 Defuzzification Methods for OFN

Classic defuzzification methods presented in the above parts of the chapter are
reflected in Ordered Fuzzy Numbers. In the analysis of methods shown below, one
of their explanations includes important characteristic elements of OFNs presented
in Fig. 6.2.

In the definition of an Ordered Fuzzy Number expressed by the formula (6.1), an
Ordered Fuzzy Number. A can also be defined, according to other approaches to that
subject, as an oriented pair of continuous functions:

A = (fA, gA) (6.14)

Fig. 6.2 An OFN number
and characteristic elements
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where fA, gA : [0, 1] → R. The function fA is called the up-part UPA (beginning) of
an Ordered Fuzzy Number A, and the function gA is called the-down part DOWNA

(end) of an Ordered Fuzzy Number A.
In the interpretation of OFN defuzzification methods, the value of the fA function

for 0 is fA, for 1 is fA(1), and of the gA function it is: for 0 gA(0) and for 1 is gA(1).

φFOM(f , g) = f (1) (6.15)

φLOM(f , g) = g(1) (6.16)

φMOM(f , g) = f (1) + g(1)

2
(6.17)

φROM(f , g) = ζ f (1) + (1 − ζ )g(1), ζ = [0, 1] (6.18)

φCOG(f , g) =
⎧
⎪⎨

⎪⎩

∫ 1
0

f (s)+g(s)
2 |f (s)−g(s)|ds

∫ 1
0 |f (s)−g(s)|ds , for

∫ 1
0 |f (s) − g(s)|ds �= 0

∫ 1
0 f (s)ds
∫ 1
0 ds

, for
∫ 1
0 |f (s) − g(s)|ds = 0

(6.19)

φBADD(A, λ) =
∫ 1
0

f (s)+g(s)
2 |f (s)−g(s)|·sλ−1ds

∫ 1
0 |f (s)−g(s)|·sλ−1ds

, for λ ∈ [0, 1] (6.20)

φGM(f , g) = f (1) · g(0) − f (0) · g(1)
f (1) + g(0) − f (0) − g(1)

(6.21)

The above formulas (6.15–6.21) are interpretations of classic defuzzification meth-
ods. In the discussed OFN theory [30] and in earlier studies, the geometrical mean
method is proposed, which was created by D. Wilczyńska-Sztyma [38].

6.4 Definition of Golden Ratio Defuzzification Operator

At this point we present a proposal for a new method of defuzzification of a fuzzy
controller, which is based on the concept of the golden ratio (GR), derived from
the Fibonacci series. The origin of the method was the observation of numerous
instances of the golden ratio in such diverse fields as biology, architecture, medicine,
and painting. A particular area of its occurrence is genetics, where we find the golden
ratio in the very structure of the DNA molecule (deoxyribonucleic acid molecules
are 21 angstroms wide and 34 angstroms long for each full length of one double helix
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cycle). This fact makes the ratio in the Fibonacci series in some sense a universal
design principle used by man and nature alike.

The Fibonacci series is based on the assumption that it starts with two ones, and
each consecutive number is the sum of the previous two. The proposal for the golden
ratio method of defuzzification is based on the proportion of the golden ratio. As a
result of dividing each of the numbers by its predecessor, we always obtain quotients
oscillating around the value of 1.618, the golden ratio number. The exact value of
the limit is the golden number itself:

lim
n→0

kn+1

kn
= 1, 618033998875 · · · = Φ (6.22)

The possibility of using this formula in the process of defuzzification is another
example of the universality of the method, as it is applied in the new domain of fuzzy
logic theory. Calculation of the classical formula of the golden mean assumes that
two values of line segments a and b are in golden ratio Φ to each other if:

a + b

a
= a

b
= Φ (6.23)

In this case, one method of finding the value of Φ is to transform the left-hand
fraction of Eq. (6.23) into:

a + b

a
= 1 + b

a
= 1 + 1

Φ
, where

b

a
= 1

Φ
(6.24)

Following subsequent transformations of Eq. (6.24) we obtain the quadratic
Eq. (6.25), for which we calculate the roots.

Φ2 − Φ − 1 = 0 (6.25)

As appropriate, using transformations of the formula in (6.25), we obtain two
square roots (6.26).

Φ1 = 1 + √
5

2
or Φ2 = 1 − √

5

2
(6.26)

In view of the fact that the value of Φ must be positive, in our example we select
the positive root, as in Eq. (6.27).

Φ = Φ1 = 1 + √
5

2
= 1, 618033998875 . . . (6.27)

In sum, the ratio between two objects a and b is called the golden ratio when the
value of Φ = 1.61803398875 . . . .



6 Comparing Fuzzy Numbers Using Defuzzificators on OFN Shapes 107

0 2 4 6 8 10

a

b

crisp value

Fig. 6.3 Golden ratio defuzzification value

The method of the golden ratio for a fuzzy number is Eq. (6.28):

Definition 4

GR = min(supp(A)) + |supp(A)|
Φ

where Φ = 1, 618033998875 . . .

(6.28)

where GR is the defuzzification operator and supp(A) is the support for fuzzy set A
in universe X.

6.4.1 Golden Ratio for OFN

Themathematical formula (6.28) of the equation as well as the graphic interpretation
presented in Fig. 6.3 applies to convex fuzzy numbers. In reference to theOFN,which
has orientation, we should use another equation. Therefore, the interpretation of the
proposed method is shown in Figs. 6.4 and 6.5.

We note that the individual parts of the two values of line segments a and b take
up positions in relation to direction of the OFN. In the first case we have a positive
OFNwhere a larger part of the golden ratio starts from base point f (0). In the second
case, which is negative OFN, we have a base point as g(0). The method of the golden
ratio for OFN is Eq. (6.29):
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0 2 4 6 8 10
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Fig. 6.4 OFN number A = [0, 2, 4, 10]

0 2 4 6 8 10

a

b

crisp value

Fig. 6.5 OFN number B = [10, 4, 2, 0]

Definition 5

GR(A) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(supp(A)) + |supp(A)|
Φ

, if order (A) is positive

max(supp(A)) − |supp(A)|
Φ

, if order (A) is negative

(6.29)
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The instrument of the golden ratio, as proposed in this chapter for fuzzy numbers,may
serve as another defuzzification method. As a mathematical apparatus that affords
wide-ranging possibilities in description and processing of information, it becomes a
new solution in constructingmodels of fuzzy controllers used as tools for inferencing
or control.

6.5 Golden Ratio

Let

supp(A) =
⎧
⎨

⎩

gA(0) − fA(0) if ordered A is positive

fA(0) − gA(0) if ordered A is negative
(6.30)

Let

min(supp(A)) =
⎧
⎨

⎩

fA(0) if ordered A is positive

gA(0) if ordered A is negative
(6.31)

Let

max(supp(A)) =
⎧
⎨

⎩

gA(0) if ordered A is positive

fA(0) if ordered A is negative
(6.32)

Symbol Φ is designated with a golden number, as Φ = 1, 680 . . . .

Definition 6 The functional ϕGR : R → R, called the golden ratio, is expressed with
the formula:

ϕGR =

⎧
⎪⎨

⎪⎩

min(supp(A)) + supp(A)

Φ
if ordered A is positive

max(supp(A)) − supp(A)

Φ
if ordered A is negative

(6.33)

Theorem 1 Mapping of ϕGR : R → R expressed with the formula (6.33) is a defuzzi-
fication functional.

6.6 Defuzzification Conditions for GR

Recall that, by the definition of adding fuzzy numbers and multiplication of a fuzzy
number by a real number, the following equalities apply.

fA+c+(s) = fA(s) + c oraz gA+c+(s) = gA(s) + c (6.34)
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dla s ∈ R oraz c+ -crisp number

fcA(s) = c · fA(s) oraz gcA(s) = c · gA(s) (6.35)

dla s ∈ R
It is easy to see that

supp(A + c+) = supp(A) (6.36)

supp(c · A) = c · supp(A) (6.37)

Namely, using (6.34) we obtain the following for A of positively ordered numbers.

supp(A + c+) = gA+c+(0) − fA+c+(0) = gA(0) + c − fA(0) − c = supp(A) (6.38)

By analogy, we obtain (6.36) for A of negatively ordered numbers.
In order to show (6.37) for A of negatively ordered numbers we use (6.35).

supp(c · A) = gc·A(0) − fc·A(0) = c · gA(0) − c · fA(0) = c · supp(A) (6.39)

By analogy, we prove (6.37) dla A of negatively ordered numbers. It follows directly
from (6.34) and (6.35) that

min(supp(A + c+)) = min(supp(A)) + c and (6.40)

max(supp(A + c+)) = max(supp(A)) + c

and

min(supp(c · A)) = c · min(supp(A)) and (6.41)

max(supp(c · A)) = c · max(supp(A))

6.6.1 Normalization

Proof normalized (6.3)

The normalization property results directly from the definition of 6, because

ϕGR(c
+) = min(supp(c+)) + supp(c+)

Φ
= c + c+(0) − c+(0)

Φ
= c (6.42)

Therefore, we have shown that ϕGR fulfills the homogeneity condition; that is:

ϕGR(c
+) = c (6.43)
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6.6.2 Restricted Additivity

Now let us show the restricted additivity property.

Proof restricted additivity (6.4):
From the Definition 6 of the golden ratio functional, we obtain

ϕGR(A + c+) = min(supp(A + c+)) + supp(A + c+)

Φ

for positively ordered A
(6.44)

and

ϕGR(A + c+) = max(supp(A + c+)) + supp(A + c+)

Φ

for negatively ordered A
(6.45)

It follows directly from (6.40) and (6.36) that

ϕGR(A + c+) = c +
(

min(supp(A)) + supp(A)

Φ

)

= ϕGR(A) + c

for positively ordered A

(6.46)

and

ϕGR(A + c+) = c +
(

max(supp(A)) + supp(A)

Φ

)

= ϕGR(A) + c

for negatively ordered A

(6.47)

Therefore, we have shown that ϕGR fulfills the restricted additivity condition; that is:

ϕGR(A + c+) = ϕGR(A) + c (6.48)

6.6.3 Homogeneity

Proof homogeneity (6.5):
Based on the Definition 6 we obtain the following.

ϕGR(c · A) = min(supp(c · A)) + supp(c · A)

Φ

for positively ordered A
(6.49)

and



112 J.M. Czerniak et al.

ϕGR(c · A) = max(supp(c · A)) + supp(c · A)

Φ

for negatively ordered A
(6.50)

It follows directly from (6.41) and (6.37) that

ϕGR(c · A) = c · min(supp(A)) + supp(A) · c
Φ

= c ·
(

min(supp(A)) + supp(A)

Φ

)

= c · ϕ

for positively ordered A

(6.51)

and

ϕGR(c · A) = c · max(supp(A)) + supp(A) · c
Φ

= c ·
(

max(supp(A)) + supp(A)

Φ

)

= c · ϕGR

for negatively ordered A

(6.52)

Therefore, we have shown that

ϕGR(c · A) = c · ϕGR(A) (6.53)

The equalities (6.43), (6.48), and (6.53) imply that ϕ
GR

is a defuzzification func-

tional, which was to be proven.

6.7 Definition of Mandala Factor Defuzzification Operator

Buddhistmonks can create amazing pictureswith colored sand grains. Those pictures
are called mandala. It is difficult to name them paintings because we expect paintings
to be rathermore lasting. Anyonewho has ever seenmeditatingmonks creating, grain
after grain, a previously designed picture, remembers such a conclusion for a long
time.You canobserve the beauty of their art and on the other hand the transitory nature
(in the literal sense) of the technique they use is evident. The same reverence is seen
in Christianity in the Eastern Orthodox rite when icons are painted, but fortunately
for culture and art, the effects of the work can be seen for a long time. The Buddhist
mandala is a harmonious combination of a wheel and a square, where the wheel is
a symbol of heaven, transcendence, externality, and infinity, and the square depicts
the inner sphere, that is, the matters associated with a human and the earth. Both
figures are linked by the central point, which is both the start and end of the entire
system. The mandala creation process itself, as well as its destruction, is a religious
act (Fig. 6.6).
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The mandala factor defuzzification operator is inspired by mandala. Let A be
a given fuzzy number shown in Fig. 6.2. Let it assume the shape of a trapezoid in
Fig. 6.7a. A trapezoid can in a particular case come down to atriangle, but we remain
at a trapezoid, which makes our analysis more universal. Then one must fill in the
outline marked by the sides of the number and the OX axis with virtual grains of
sand in Fig. 6.7a. A number of virtual sand grains are collected in this way. Then
one must construct a rectangle, the base of which is equal to the support value of the
fuzzy number. The rectangle built in such a manner should be filled with virtual sand
grains, starting from the outermost left side in Fig. 6.7b. The filling process should
be done vertically in columns until all grains are used. A real number obtained as a
result of defuzzification is the value above which the last filled column was finished.

Mathematical formalism (6.54) of the above-described mandala factor visualiza-
tion is shown below. Calculation of the R value uses the mandala factor �M for the
rising edge, falling edge, and core set function integral. Then the obtained value
should be scaled from the center of the coordinate system by adding it to the start
of the support value of the fuzzy number. When defuzzification is performed in the
OFN arithmetic, then in the case of a positive order, one should proceed as described
below, whereas in the case of a negative order, one should deduct the calculated value

Fig. 6.6 Mandala creation
http://wellness.gcublogs.org/
tag/sand-mandala/

crisp value

(a) (b)

Fig. 6.7 Mandala factor visualization

http://wellness.gcublogs.org/tag/sand-mandala/
http://wellness.gcublogs.org/tag/sand-mandala/
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from the first coordinate of the OFN corresponding to the outermost right side of the
OFN support.

Definition 7

MF(A) =
{
c + r, if order (A) is positive
c − r, if order (A) is negative

(6.54)

where

r = 1

d − c

∫ d

c
x dx − c

d − c

∫ d

c
dx + f

f − e

∫ e

f
dx

− 1

f − e

∫ f

e
x dx +

∫ e

d
dx (6.55)

6.8 Mandala Factor

Definition 8 The MF : R → R, called the mandala factor, is expressed by the for-
mula:

MF(A) =
{
fA(0) + r

A
if ordered A is positive

gA(0) − r
A
if ordered A is negative

(6.56)

where

r
A

= 1

fA(1) − fA(0)

fA(1)∫

fA(0)

xdx − fA(0)

fA(1) − fA(0)

fA(1)∫

fA(0)

dx

+ gA(0)

gA(0) − gA(1)

gA(0)∫

gA(1)

− 1

gA(0) − gA(1)

gA(0)∫

gA(1)

xdx

+
gA(1)∫

fA(1)

dx

(6.57)

and rA = 0 for A such that fA = const lub gA = const (in particular rc+ = 0).

6.9 Defuzzification Conditions for MF

Proposition
The mandala factor is a defuzzification functional.
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6.9.1 Normalization

Proof normalized (6.3)
It results directly from the definition that

MF(c+) = c + r
c+

= c (6.58)

fulfills the normalization condition.

6.9.2 Restricted Additivity

Proof restricted additivity (6.4):
Based on the definition of the mandala factor, we obtain the following.

MF(A + c+) =
⎧
⎨

⎩

f
A+c+

(0) + r
A+c+

if ordered A is positive

g
A+c+

(0) − r
A+c+

if ordered A is negative
(6.59)

whereas

r
A+c+

= 1

f
A+c+

(1) − f
A+c+

(0)

f
A+c+

(1)

∫

f
A+c+

(0)

xdx −
f

A+c+
(0)

f
A+c+

(1) − f
A+c+

(0)

f
A+c+

(1)

∫

f
A+c+

(0)

dx

+
g

A+c+
(0)

g
A+c+

(0) − g
A+c+

(1)

g
A+c+

(0)

∫

g
A+c+

(1)

dx − 1

g
A+c+

(0) − g
A+c+

(1)

g
A+c+

(0)

∫

g
A+c+

(1)

xdx

+

g
A+c+

(1)

∫

f
A+c+

(1)

dx

(6.60)

In view of the above Eqs. 6.60 and 6.56 to show the restricted additivity property it
is sufficient to demonstrate that

r
A

= r
A+c+

(6.61)

Operations on OFNs imply that ∀
s∈R
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⎧
⎨

⎩

f
A+c+

(s) = f
A
(s) + c

g
A+c+

(s) = g
A
(s) + c

(6.62)

First, we note that
f
A
(1)+c
∫

f
A
(0)+c

dx = f
A
(1) − f

A
(0) =

f
A
(1)

∫

f
A
(0)

dx (6.63)

and
f
A
(1)+c
∫

f
A
(0)+c

xdx =

1

2

((

f
A
(1)

)2

−
(

f
A
(0)

)2
)

+ c

(

f
A
(1) − f

A
(0)

)

=
f
A
(1)

∫

f
A
(0)

xdx + c

f
A
(1)

∫

f
A
(0)

dx

(6.64)

Of course, if the function gA is used in the formulas (6.63) and (6.64), instead of fA
we then get similar equivalences; that is:

g
A
(0)+c
∫

g
A
(1)+c

dx =
g
A
(0)

∫

g
A
(1)

dx (6.65)

g
A
(0)+c
∫

g
A
(1)+c

dx =
g
A
(0)

∫

g
A
(1)

xdx + c

g
A
(0)

∫

g
A
(1)

dx (6.66)

g
A
(1)+c
∫

f
A
(1)+c

dx =
g
A
(1)

∫

f
A
(1)

dx (6.67)

Using (6.60) and (6.62) we get
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r
A+c+

= 1

f
A
(1) − f

A
(0)

f
A
(1)+c
∫

f
A
(0)+c

xdx −
f
A
(0) + c

f
A
(1) − f

A
(0)

f
A
(1)+c
∫

f
A
(0)+c

dx

+
g
A
(0) + c

g
A
(0) − g

A
(1)

g
A
(0)+c
∫

g
A
(1)+c

dx − 1

g
A
(0) − g

A
(1)

g
A
(0)+c
∫

g
A
(1)+c

xdx

+
g
A
(1)+c
∫

f
A
(1)+c

dx

(6.68)

Now the equalities (6.63), (6.64), (6.65), (6.66), and (6.67) are applied to the above
formula (6.68) and we obtain

r
A+c+

= 1

f
A
(1) − f

A
(0)

⎛

⎜
⎜
⎜
⎝

f
A
(1)

∫

f
A
(0)

xdx + c

f
A
(1)

∫

f
A
(0)

dx

⎞

⎟
⎟
⎟
⎠

−
f
A
(0)

f
A
(1) − f

A
(0)

f
A
(1)

∫

f
A
(0)

dx

− c

f
A
(1) − f

A
(0)

f
A
(1)

∫

f
A
(0)

dx +
g
A
(0)

g
A
(0) − g

A
(1)

g
A
(0)

∫

g
A
(1)

xdx + c

g
A
(0) − g

A
(1)

g
A
(0)

∫

g
A
(1)

dx

− 1

g
A
(1) − g

A
(0)

⎛

⎜
⎜
⎝

g
A
(0)

∫

g
A
(1)

xdx + c

g
A
(0)

∫

g
A
(1)

dx

⎞

⎟
⎟
⎠ +

g
A
(1)

∫

f
A
(1)

dx

= 1

f
A
(1) − f

A
(0)

f
A
(1)

∫

f
A
(0)

xdx −
f
A
(0)

f
A
(1) − f

A
(0)

f
A
(1)

∫

f
A
(0)

dx +
g
A
(0)

g
A
(0) − g

A
(1)

g
A
(0)

∫

g
A
(1)

dx

− 1

g
A
(0) − g

A
(1)

g
A
(0)

∫

g
A
(1)

xdx +
g
A
(0)

∫

f
A
(1)

dx = r
A

(6.69)
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It follows directly from the equality (6.61) and the Definition 8 of the mandala factor
that

MF(A + c+) = f
A+c+

(0) + r
A+c+

= f
A
(0) + c + r

A
= MF(A) + c

if order A is positive
(6.70)

and

MF(A + c+) = g
A+c+

(0) + r
A+c+

= g
A
(0) + c + r

A
= MF(A) + c

if order A is negative
(6.71)

which proves the restricted additivity property.

6.9.3 Homogeneity

Proof of homogeneity (6.5)
It follows directly from the mandala factor Definition 8 that

MF(cA) =
⎧
⎨

⎩

f
cA

(0) + r
cA

if ordered A is positive

g
cA

(0) − r
cA

if ordered A is negative
(6.72)

whereas

r
cA

= 1

f
cA

(1) − f
cA

(0)

f
cA

(1)
∫

f
cA

(0)

xdx −
f
cA

(0)

f
cA

(1) − f
cA

(0)

f
cA

(1)
∫

f
cA

(0)

dx

+
g
cA

(0)

g
cA

(0) − g
cA

(1)

g
cA

(0)
∫

g
cA

(1)

dx − 1

g
cA

(0) − g
cA

(1)

g
cA

(0)
∫

g
cA

(1)

xdx +
g
cA

(1)
∫

g
cA

(1)

dx

(6.73)

for A such that f
A

�= const oraz g
A

�= const and c �= 0 and r
A

= 0 dla c = 0. It results

from operations on OFNs that for ∀
s∈R

⎧
⎨

⎩

f
cA

(s) = c ∗ f
A
(s)

g
cA

(s) = c ∗ g
A
(s)

(6.74)
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Formulas (6.72), (6.74), and (6.56) imply that for any homogeneity it is sufficient to
indicate the following equality

r
cA

= c r
A

(6.75)

First, we note that
cf
A

(1)
∫

cf
A

(0)

dx = c

(

f
A
(1) − f

A
(0)

)

= c

f
A
(1)

∫

f
A
(0)

dx (6.76)

and
cf
A

(1)
∫

cf
A

(0)

xdx = 1

2
c2

((

f
A
(1)

)2

−
(

f
A
(0)

)2
)

= c2

f
A
(1)

∫

f
A
(0)

xdx (6.77)

Obviously, use of the function g
A
instead of f

A
in the above formulas and results in

analogous equalities; that is:
g
cA

(0)
∫

g
cA

(1)

dx = c

g
A
(0)

∫

g
A
(1)

dx (6.78)

g
cA

(0)
∫

g
cA

(1)

dx = c2

g
A
(0)

∫

g
A
(1)

xdx (6.79)

g
cA

(1)
∫

f
cA

(1)

dx = c

g
A
(1)

∫

f
A
(1)

dx (6.80)

It follows directly from z (6.73) and (6.74) that for dla A such that f
A

�= const and

g
A

�= const and c �= 0
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r
cA

= 1

c

(

f
A
(1) − f

A
(0)

)

cf
A

(1)
∫

cf
A

(0)

xdx −
c f
A
(0)

c

(

f
A
(1) − f

A
(0)

)

cf
A

(1)
∫

cf
A

(0)

dx

+
c g
A
(0)

c

(

g
A
(0) − g

A
(1)

)

cg
A

(0)
∫

cg
A

(1)

dx − 1

c

(

g
A
(0) − g

A
(1)

)

cg
A

(0)
∫

cg
A

(1)

xdx +
cg
A

(1)
∫

cf
A

(1)

dx

(6.81)

As can be easily seen, using (6.76), (6.77), (6.78), (6.79), and (6.80) we get (6.75)
r
cA

= c r
A
.

namely,

r
cA

= 1

c

(

f
A
(1) − f

A
(0)

) · c2
f
A
(1)

∫

f
A
(0)

xdx −
f
A
(0)

f
A
(1) − f

A
(0)

· c

f
A
(1)

∫

f
A
(0)

dx +
g
A
(0)

g
A
(0) − g

A
(1)

· c

g
A
(0)

∫

g
A
(1)

dx

− 1

c

(

g
A
(0) − g

A
(1)

) · c2
g
A
(0)

∫

g
A
(1)

xdx + c

g
A
(1)

∫

f
A
(1)

dx

= c ·

⎡

⎢
⎢
⎢
⎢
⎣

1

f
A
(1) − f

A
(0)

f
A
(1)

∫

f
A
(0)

xdx −
f
A
(0)

f
A
(1) − f

A
(0)

f
A
(1)

∫

f
A
(0)

dx +
g
A
(0)

g
A
(0) − g

A
(1)

g
A
(0)

∫

g
A
(1)

dx − 1

g
A
(0) − g

A
(1)

g
A
(0)

∫

g
A
(1)

dx +

g
A
(1)

∫

f
A
(1)

dx

⎤

⎥
⎥
⎥
⎥
⎦

= c · r
A

(6.82)

Therefore

MF(cA) = f
cA

(0) + r
cA

= c · f
A
(0) + c · r

A
= c

(

f
A
(0) + r

A

)

= c · MF(A)

if order A is positive

(6.83)

and

MF(cA) = g
cA

(0) + r
cA

= c · g
A
(0) + c · r

A
= c

(

g
A
(0) + r

A

)

= c · MF(A)

if order A is negative

(6.84)

which ends the proof of the restricted homogeneity property.
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Fig. 6.8 Number
A[1, 2, 3, 4] positive
oriented

Fig. 6.9 Number
A’[4, 3, 2, 1] negative
oriented

6.10 Catalogue of the Shapes of Numbers in OFN Notation

Figures 6.8 to 6.31 constitute the catalogue of basic shapes of numbers in OFN
notation including the results of defuzzifications using several methods (Figs. 6.8,
6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23,
6.24, 6.25, 6.26, 6.27, 6.28, 6.29, 6.30 and 6.31).
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Fig. 6.10 Number
B[−4,−4,−2,−2] positive
oriented

Fig. 6.11 Number
B’[−2,−2,−4,−4]
negative oriented

Fig. 6.12 Number
C[1, 2, 2, 3] positive oriented
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Fig. 6.13 Number
C’[3, 2, 2, 1] negative
oriented

Fig. 6.14 Number
D[5, 5, 5, 6] positive
oriented

Fig. 6.15 Number
D’[6, 5, 5, 5] negative
oriented
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Fig. 6.16 Number
E[3, 3, 5, 6] positive oriented

Fig. 6.17 Number
E’[6, 5, 3, 3] negative
oriented

Fig. 6.18 Number
F[−4,−1,−3, 0] positive
oriented
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Fig. 6.19 Number
F’[0,−3,−1,−4] negative
oriented

Fig. 6.20 Number
G[1, 2, 4, 3] positive
oriented

Fig. 6.21 Number
G’[3, 4, 1, 2] negative
oriented
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Fig. 6.22 Number
H[5, 4, 7, 5] positive
oriented

Fig. 6.23 Number
H’[5, 7, 4, 5] negative
oriented

Fig. 6.24 Number
J[2, 3, 7, 4] positive oriented
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Fig. 6.25 Number
J’[4, 7, 3, 2] negative
oriented

Fig. 6.26 Number
K[5, 5, 5, 5] singleton

Fig. 6.27 Number
L[2, 4, 4, 2] mirror
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Fig. 6.28 Number
M[1, 4, 4, 3] positive
oriented

Fig. 6.29 Number
M’[3, 4, 4, 1] negative
oriented

Fig. 6.30 Number
N[1, 0, 3, 3] positive
oriented
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Fig. 6.31 Number
N’[3, 3, 0, 1] negative
oriented

6.11 Conclusion

The chapter presents two new original defuzzification methods: The golden ratio
and mandala factor. Each is characterized by unique properties worthy to be noted.
Real number values obtained through the operation of each operator are unique and
different from those obtained using known methods. The golden ratio and mandala
factor operation can therefore be applied in well-known and widely used arithmetics
of fuzzy numbers such as L-R Dubois and Prade notation [20]. As shown in the
calculations presented in the previous section the obtained results distinguish new
operators from the classic, commonly known solutions. New operators are also char-
acterized by the feature, which is absent in most of the classic operators. This feature
is the sensitivity to order (order sensitive). This feature manifests so that different
defuzzification values are obtained from one shape of a fuzzy number, depending
on the fuzzy number order type (positive or negative) (Ordered Fuzzy Numbers).
This is shown in the previous section. Basic shapes of the Ordered Fuzzy Numbers
are visualized as shown in this chapter. To sum up, it can be concluded that both
defuzzification methods, that is, the Golden ratio and mandala factor, meet all the
criteria of defuzzification operators, and are adapted to applications in all fuzzy num-
ber arithmetics, including Kosiński’s OFN arithmetic. After defuzzification of OFN
numbers, one can trivially use relationship operators in order to make comparisons.
This is an easy and intuitive method. It should be added that the defuzzification
methods should be selected as a result of empirical research on a given category of
data.
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Chapter 7
Two Approaches to Fuzzy Implication

Magdalena Kacprzak and Bartłomiej Starosta

Abstract Wediscuss construction of fuzzy implication and also correlation between
negation and implication operators defined on fuzzy values. Two structures for fuzzy
implications are studied: the lattice of Step-Ordered Fuzzy Numbers (SOFNs) and
the Boolean algebra B of membership degrees for metasets. Even though these
two approaches stem from completely different areas it turned out that they lead to
similar applications and results. Both of them emerged from research conducted by
W. Kosiński and can be applied not only in the most popular application field which
is approximate reasoning but also for designing decision-support systems, enriching
methods and techniques of opinion mining, or modeling fuzzy beliefs in multiagent
systems.

7.1 Introduction

In his recent research Kosiński focused on new fields for applications of Ordered
Fuzzy Numbers (OFNs) [24–26]. One of the promising domains was approximate
reasoning involving fuzzy implication.Among the results of this development one has
tomentionProkopowicz’s dissertationdealingwith definitionof engineering implica-
tions. Another branch of this development, fuzzy implication on Step-Ordered Fuzzy
Numbers (SOFNs), which emerged as the result of cooperation with Kacprzak, is
presented in the following. At that time Kosiński, as the Starosta’s PhD supervisor,
also took part in the development of metaset theory. The metaset concept is an alter-
native approach to fuzzy membership, which has many interesting properties. Some
of them are related to fuzzy implication and many-valued logics and are presented
in the following. In this chapter we confront two approaches to fuzzy implication:
OFN based and metaset based.
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Fuzzy implication is an operation computing the fulfillment degree of a rule
expressed by IF X THEN Y, where the antecedent and the consequent are fuzzy.
These functions must comply with certain basic properties and the most typical is
the Kleene-Dienes implication, based on the classical implication definition (x →
y ≡ ¬x ∨ y), using the Zadeh negation and the maximum S-norm, but other fuzzy
implication functions exist. On the other hand, fuzzy implication is an extension of
the classical implication operator in which the two values involved and the result
are not necessarily true or false (1 or 0), but can belong to the set [0,1]. Thus, it is a
function f : [0, 1] → [0, 1].

Kosiński’s effort was aimed at proposing an implication operation on OFNs anal-
ogous to classical implication, which preserves its main properties. One of them says
that for any two formulas α and β, formula if α then β, that is, α → β is equivalent
to formula ¬α ∨ β. We want to obtain a similar equality for OFNs. The problem is
with operation of negation. Because the set of all OFNs is not a complete lattice,
the way of defining the implication is not straightforward. In 2011 Kacprzak and
Kosiński proposed a new binary operator on the set N called 2K-fuzzy implication
that satisfies conditions of fuzzy implication, classically formulated in the theory of
fuzzy sets [6] for two-value operations on a complete lattice (in the particular case on
the interval [0, 1]) requiring it to be decreasing with respect to the first variable and
increasing with respect to the second variable. It is an open question how to define
negation and implication on the set of all OFNs R.

During fruitful discussions with Kosiński it turned out that metaset theory has all
the capabilities necessary for defining fuzzy implication as well as for its applica-
tions. Metasets admit partial membership of its members. Consequently, they allow
formalization of properties satisfied with degrees other than complete truth or fal-
sity. Metaset sentences express vague properties and they are evaluated in a Boolean
algebra. Therefore, defining implication on their certainty values is straightforward.
As opposed to the original Kosiński idea based on OFNs, the implication developed
for metasets operates on crisp values, not fuzzy ones. Collection of all these values,
however, forms a structure (the Boolean algebra) that enables expressing imprecision
with the help of sentences of the metaset language.

In this chapter we examine two approaches. Therefore, it is divided into two
main sections: Sect. 7.2 summarizes Step-Ordered Fuzzy Numbers and gives the
construction of fuzzy implications defined on these numbers; next, Sect. 7.3 discusses
the Boolean algebra of membership degrees for metasets and introduces metaset-
based implication. Finally, in Sect. 7.4 we provide a summary of both approaches
and outline directions for future research.

7.2 Lattice Structure and Implications on SOFNs

Orthodox Ordered Fuzzy Number A is defined as an ordered pair of continuous real
functions specified on the interval [0, 1]; that is,

A = (f , g)
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with
f , g : [0, 1] → R.

In this chapter, the set of all OFNs is denoted by R. The continuity of both func-
tions implies that their images are bounded intervals, say UP and DOWN , respec-
tively. The following symbols are used to mark boundaries for UP = [lA, 1−

A ] and
for DOWN = [1+

A , pA]. If we further assume that f and g are monotone (and con-
sequently invertible), and add the constant function on the interval [1−

A , 1+
A ] with its

value equal to 1, we might define the membership function

μ(x) =
⎧
⎨

⎩

μup(x) if x ∈ [lA, 1−
A ] = [f (0), f (1)],

μdown(x) if x ∈ [1+
A , pA] = [g(1), g(0)],

1 if x ∈ [1−
A , 1+

A ].
(7.1)

where

1. μup(x) =: f −1(x) and μdown(x) =: g−1(x).
2. f is increasing; g is decreasing.
3. f ≤ g (pointwise).

Obtained in this way themembership functionμ(x), x ∈ R represents amathematical
object that refers to a convex fuzzy number in the classical sense [10, 34]. However,
we can observe here some limitations. This is because some membership functions
already known in the classical theory of fuzzy numbers (cf. [10, 18, 46]) cannot be
obtained by taking inverses of continuous functions f and g in the process described
above. These are the functions that are piecewise constant; that is, μup and μdown are
not strictly monotone. The lack of strict monotonicity implies that functions inverse
toμup andμdown do not exist in the classical sense. To copewith this problemKosiński
offered to accept some limitations assuming that for both functions μup and μdown

there exist a finite (or at most countable) number of such constancy subintervals, and
then the inverse functions are piecewise continuous and monotone with a finite (or
at most countable) number of discontinuity points [36]. In this way we can employ
a class of functions larger than continuous ones. This is the class of real-valued
functions of bounded (finite) variation, BV [41].

7.2.1 Step-Ordered Fuzzy Numbers

In 2006 Kosiński introduced a generalization of the original definition of OFNs to
make the algebra a more efficient tool in dealing with imprecise, fuzzy quantitative
terms [36].

Definition 1 By an OFN A (in the generalized form) we mean an ordered pair (f , g)
of functions such that f , g : [0, 1] → R are of bounded variation, that is, f , g ∈ BV .
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Let RBV denote the set of all generalized OFNs, that is, those that meet
Definition 1. Notice that all convex fuzzy numbers are contained in this new space,
R ⊂ RBV . Operations for generalized OFNs are defined in a similar way to oper-
ations for orthodox OFNs, the norm, however, will change into the norm of the
Cartesian product of the space of functions of bounded variations.

An important consequence of this generalization is the possibility of introducing a
subspace of an OFN composed of pairs of step functions [37]. First, a natural number
K is fixed and [0, 1) is split into K − 1 subintervals [ai, ai+1); that is,

K−1⋃

i=1

[ai, ai+1) = [0, 1),

where
0 = a1 < a2 < · · · < aK = 1.

Now, define a step function f of resolution K by putting value ui ∈ R on each
subinterval [ai, ai+1). Each such function f is identified with aK-dimensional vector;
that is,

f ∼ u = (u1, u2, . . . , uK) ∈ RK ,

where the K th value uK corresponds to y = 1; that is, f (1) = uK . Taking a pair of
such functions we have an OFN from RBV .

Definition 2 By a Step-Ordered Fuzzy Number A of resolution K we mean an
ordered pair (f , g) of functions such that f , g : [0, 1]→R are step functions of reso-
lution K .

We use RK for denotation of the set of elements satisfying the above definition.
The example of an SOFN (also called Step Kosiński’s fuzzy number, SKFN) and its
membership relation (represented by a curve) are shown in Figs. 7.1 and 7.2. The set
RK ⊂ RBV has been extensively elaborated in [22, 35].

We can identifyRK with the Cartesian product of RK × RK because each K-step
function is represented by its K values. It is obvious that each element of the space
RK may be regarded as an approximation of elements from RBV ; by increasing
the number K of steps we are getting a better approximation. The norm of RK is
assumed to be the Euclidean one of R2K , thus we have an inner-product structure at
our disposal.

Now letB be the set of two binary values: 0, 1 and let us introduce the particular
subset N of RK

N = {A = (u, v) ∈ RK : u ∈ BK , v ∈ BK}. (7.2)

It means that each such component of the vector u as well as of v has value 1 or 0.
Because each element of N is represented by a 2K-dimensional binary vector the
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Fig. 7.1 Example of a Step-Ordered Fuzzy Number A = (f , g) ∈ RK , a function f , b function g

Fig. 7.2 Membership
relation of the Step-Ordered
Fuzzy Number
A = (f , g) ∈ RK depicted in
Fig. 7.1
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cardinality of the setN is 22K . The setN consists of all binary SOFN, also called
Binary Step Kosiński’s Fuzzy Numbers (BSKFN).

Definition 3 By a BSKFN A of resolution K we mean an ordered pair (f , g) of
functions such that f , g : [0, 1]→B are step functions of resolution K .

7.2.2 Lattice on RK

Let us consider the set RK of SOFNs with operations

A ∧ B =: F and A ∨ B =: G

defined for each two fuzzy numbers A = (fA, gA),B = (fB, gB) by the relations:
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F = (fF, gF), if fF = sup{fA, fB} , gF = sup{gA, gB} , (7.3)

F = (fF, gF), if fF = inf{fA, fB} , gF = inf{gA, gB} . (7.4)

Notice that ∨ and ∧ are actually operations inRK ; that is, they are defined for all A,
B ∈ RK and the result of the operations is inRK . Next, let us observe that operation
∨ is

• Idempotent: Whenever it is applied to two equal values, it gives that value as the
result:

A ∨ A = (sup{fA, fA}, sup{gA, gA}) = (fA, gA) = A,

• Commutative:

A ∨ B = (sup{fA, fB}, sup{gA, gB}) = (sup{fB, fA}, sup{gB, gA}) = B ∨ A,

• Associative:

(A ∨ B) ∨ C = (sup{fA, fB}, sup{gA, gB}) ∨ C =
(sup{fA, fB, fC}, sup{gA, gB, gC}) = A ∨ (sup{fB, fC}, sup{gB, gC}) =

A ∨ (B ∨ C).

The same properties characterize the operation ∧. Moreover, these two operations
are connected by the absorption law:

A ∧ (A ∨ B) = A ∧ (sup{fA, fB}, sup{gA, gB}) =
(inf {fA, sup{fA, fB}}, inf {gA, sup{gA, gB}}) = (fA, gA) = A

and similarly for
A ∨ (A ∧ B) = A.

The absorption laws ensure that the set RK with an order ≤ defined as

A ≤ B iff B = A ∨ B (7.5)

is a partial order within whichmeets and joins are given through the operations∨ and
∧. It is easy to show that for every A,B ∈ RK it holds that A ∨ B = B iff B − A ≥ 0.
Moreover, joints andmeets exist for every two elements ofR. The following theorem
is the consequence of the above reasoning.

Theorem 1 The algebra (RK ,∨,∧) is a lattice.
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7.2.3 Complements and Negation onN

Now let us consider the subsetN ofRK defined in Sect. 7.2.1. As we have already
noted above, every element ofN can be represented by a binary vector and thereby
N is isomorphic to the space of Boolean vectors. Below, we use the notation
A(a1,a2,...,a2K ) for a number A represented by vector (a1, a2, . . . , a2K) and we show
that N is a Boolean algebra.

It is easy to observe that all subsets of N have both a join and a meet in N . In
fact, for every pair of numbers from the set {0, 1}we can determinemax andmin and
it is always 0 or 1. Therefore N creates a complete lattice. In such a lattice we can
distinguish the greatest element 1 = A(1,1,...,1) and the least element 0 = A(0,0,...,0).

Theorem 2 The algebra (N ,∨,∧) is a complete lattice.

In a lattice in which the greatest and the least elements exist it is possible to define
complements. We say that two elements A and B are complements of each other if
and only if

A ∨ B = 1 and A ∧ B = 0.

The complement of a number A is marked with ¬A and is defined as follows.

Definition 4 Let A(a1,a2,...,a2K ) ∈ N be a SOFN. Then the complement of
A(a1,a2,...,a2K ) equals

¬A(a1,a2,...,a2K ) = A(1−a1,1−a2,...,1−a2K ).

A bounded lattice for which every element has a complement is called a com-
plemented lattice. The structure of Step-Ordered Fuzzy Numbers (N ,∨,∧) forms
complete and complemented lattices in which complements are unique. In fact it is
a Boolean algebra. An example of such an algebra is depicted in Fig. 7.3. A set of
universe is created by numbers

N = {A(a1,a2,a3,a4) : ai ∈ {0, 1} for i = 1, 2, 3, 4}.

The complements of elements are:

¬A(0,0,0,0) = A(1,1,1,1),¬A(0,1,0,0) = A(1,0,1,1),¬A(1,1,0,0) = A(0,0,1,1)etc..

Now we can rewrite the definition of the complement in terms of a new mapping.

Definition 5 For any A ∈ N we define its negation as

N(A) := (1 − a1, 1 − a2, . . . , 1 − a2K) for A = (a1, a2, . . . , a2K).

It is obvious, from Definitions 4 and 5, that the negation of a given number A is its
complement. Moreover, the operator N is a strong negation, because it is involutive:
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(1,1,0,0) (1,0,1,0) (0,0,1,1)(0,1,0,1)(0,1,1,0)(1,0,0,1)

(1,1,1,0) (1,0,1,1)(1,1,0,1)

(1,0,0,0) (0,0,1,0)(0,1,0,0)

(1,1,1,1)

(0,0,0,0)

(0,0,0,1)

(0,1,1,1)

Fig. 7.3 A complete and complemented lattice defined on the set N ⊂ R4

N(N(A)) = A for any A ∈ N .

One can refer here to known facts from the theory of fuzzy implications (cf.
[6, 7, 21]) and write the strong negation N in terms of the standard strong nega-
tion NI on the unit interval I = [0, 1] defined by NI(x) = 1 − x , x ∈ I , namely
N((a1, a2, . . . , a2K)) = ((NI(a1),NI(a2), . . . ,NI(a2K)).

7.2.4 Fuzzy Implication on BSOFN

The implication operator holds center stage in the inferencemechanisms of any logic.
Thus, the obvious question is whether and how one can define an implication on an
OFN. Studies on this issue were initiated in the works by Kacprzak and Kosiński in
2011 [28, 38]. The aim was to propose an implication operation on Ordered Fuzzy
Numbers analogous to classical implication that preserves its main properties. In
the literature we can find several different definitions of fuzzy implications. Some
of them are built from basic fuzzy logic connectives. In Sect. 7.2.2 conjunction and
disjunction operations for any two-order fuzzy numbers are defined. However, the
main problem is the negation operation. In Sect. 7.2.3 complements for SOFNs from
the setN are constructed. Thus given disjunction and complement, implication can
be defined in the standard way. Such a new operator on the setN was introduced by
Kacprzak and Kosiński and is called 2K-fuzzy implication [28, 29, 38]. The set of
all OFNs is not a complete lattice, therefore the way of defining implication is still
an open question.

In the classical Zadeh fuzzy logic the definition of a fuzzy implication on an
abstract latticeL = (L,≤L) is basedon the notation from fuzzy set theory introduced
in [21].
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Table 7.1 Examples of implications for SOFN

A B A → B

A(0,0,1,0) A(1,1,0,1) A(1,1,0,1)

A(0,0,1,0) A(1,0,0,0) A(1,1,0,1)

A(0,0,1,1) A(0,0,1,0) A(1,1,1,0)

A(1,0,0,1) A(0,1,0,0) A(0,1,1,0)

A(1,1,0,0) A(1,1,0,0) A(1,1,1,1)

A(1,1,1,1) A(1,0,0,0) A(1,0,0,0)

Definition 6 LetL = (L,≤L, 0L, 1L) be a complete lattice. A mappingI : L2 →
L is called a fuzzy implication onL if it is decreasingwith respect to the first variable,
increasing with respect to the second variable, and fulfills the border conditions

I (0L, 0L) = I (1L, 1L) = 1L ,I (1L, 0L) = 0L . (7.6)

Now, possessing the lattice structure of RK and the Boolean structure of our
latticeN , we can repeat most of the definitions known in Zadeh’s fuzzy set theory.
The first one is the Kleene-Dienes operation, called 2K-fuzzy implication [28]

Ib(A,B) = N(A) ∨ B , for any A,B ∈ N . (7.7)

In other words, the result of the binary implicationIb(A,B), denoted in [28] by A →
B, is equal to the result of operation sup for the number B and the complement of A:

A → B = sup{¬A,B}.

For illustration, let us assume two numbers A(0,1,1,0) and A(0,1,0,1). The implication

A(0,1,1,0) → A(0,1,0,1)

equals
N(A(0,1,1,0)) ∨ A(0,1,0,1) = A(1,0,0,1) ∨ A(0,1,0,1) = A(1,1,0,1).

Examples of other implications are given in Table7.1.
2K-fuzzy implication satisfies the basic property of logical implication: it returns

false if and only if the first term is true, and the second term is false.

Proposition 1 Let us consider the Boolean algebra (N ,∨,∧,¬, 1, 0). The values
of the 2K-fuzzy implication on the greatest and the least elements of this algebra are
given in Table7.2.

In fact, because ¬ 0 = 1 and ¬ 1 = 0 it holds that:

• 0 → 0 = N(0) ∨ 0 = 1 ∨ 0 = 1.
• 0 → 1 = N(0) ∨ 1 = 1 ∨ 1 = 1.
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Table 7.2 Table of values of implications for the least element and the greatest elements of N

A B A → B

0 0 1

0 1 1

1 0 0

1 1 1

• 1 → 0 = N(1) ∨ 0 = 0 ∨ 0 = 0.
• 1 → 1 = N(1) ∨ 1 = 0 ∨ 1 = 1.

Next we may introduce the Zadeh implication by

IZ(A,B) = (A ∧ B) ∨ N(A) , for any A,B ∈ N . (7.8)

In our latticeRK the arithmetic operations are well defined, therefore we may intro-
duce the counterpart of the Łukasiewicz implication by

IL(A,B) = C ,where C = 1 ∧ (1 − A + B) . (7.9)

When calculating the right-hand side of (7.9) we have to regard all numbers as
elements of RK , because by adding step fuzzy number A from N to the crisp
number 1wemay leave the subsetN ⊂ RK . However, the operation∧ takes us back
to the lattice N . It is obvious that in our notation 1N = 1. The explicit calculation
is: ifC = (c1, c2, . . . , c2K)),A = (a1, a2, . . . , a2K),B = (b1, b2, . . . , b2K), then ci =
min{1, 1 − ai + bi}, where 1 ≤ i ≤ 2K .

It is obvious that all implications Ib,IZ , and IL satisfy the border conditions
(7.6) as well as the fourth condition of the classical binary implication, namely
I (0N , 1N ) = 1N .

7.2.5 Applications

Initially, OFNs were designed to deal with optimization problems when data are
fuzzy [14, 15, 17, 20]. When Kacprzak and Kosiński observed that a subspace of
OFNs, called SOFN,may be equippedwith a lattice structure, it turned out that OFNs
have a much wider field of application. The ability to define Boolean operations such
as conjunction, disjunction, and, more important, diverse types of implications, has
become the basis for creating a new logical system. In consequence, it turned out
that SOFNs can be used not only for evaluation of linguistic statements such as,
“A patient is fat” or “A car is fast,” but also for approximate reasoning on such
imprecise notions.

One of the important applications is employing SOFNs in multiagent systems
for modeling agents’ beliefs about fuzzy expressions [27]. This can be helpful in
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evaluating features of multiagent systems concerning agents’ fuzzy beliefs. If some
sentence is expressed by an agent in amultiagent system thenwe could try to evaluate
the level of truth for an agent’s belief about another agent’s belief. This is the first
step in the application of the fuzzy logic that stands behind the SOFN.

Just before his death,Kosińskiwith his coworkersKacprzak andWȩgrzyn-Wolska
showed another application of SOFNs in specification and automatic verification of
diversity of opinion [30]. As a consequence, SOFN can also be used in reasoning
about communicating software agents or boots that are decision-support systems. For
example, we can analyze activity of agents that assists clients with their decisions
in e-shops, that is, agents which support users of a system in making decisions and
choosing the right product.

7.3 Metasets

The metaset is the new concept of a set with a partial membership relation. It was
inspired by themethodof forcing [11, 47] in the classical Zermelo-Fraenkel set theory
(ZFC) [23, 39]. Nonetheless it is directed towards artificial intelligence applications
and efficient computer implementations. Its scope of practical usage is similar to
fuzzy sets [57], intuitionistic fuzzy sets [5], or rough sets [45]. There are close
relationships between fuzzy set and metaset approaches, described in [50, 55].

Metasets admit standard set-theoretic relations that are valued in a nontrivial
Boolean algebra, and therefore enable expressing fractional degrees of membership,
equality, subset, and their negations. Algebraic operations for metasets are defined
and they satisfy Boolean algebra axioms [54].

Metasets enable the representation and processing of vague imprecise notions
and data. Recent development in applications of metasets is focused on decision
systems [31–33]. There have been successful attempts to utilize metasets in character
recognition problems [49, 51].

Before we discuss the definition of a metaset we review some necessary basic
notions and establish a notation.

7.3.1 The Binary Tree T and the Boolean AlgebraB

The binary tree T is the set of all finite binary sequences, that is, functions whose
domains are finite ordinals, valued in 2 (ω is the set of all finite ordinals)1:

T =
⋃

n∈ω

2n . (7.10)

1For n ∈ ω, let 2n = { f : n �→ 2 } denote the set of all functions with the domain n and the range
2 = { 0, 1 }; they are binary sequences of the length n.
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Fig. 7.4 The levels T0–T2
of the binary tree T and the
ordering of nodes. Arrows
point at the larger element
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The ordering ≤ in the tree T (see Fig. 7.4) is the reverse inclusion of functions: for
p, q ∈ T such that p : n �→ 2 and q : m �→ 2, we have p ≤ q whenever p ⊇ q; that is,
n ≥ m and p�m = q. The root 1, being the empty function, is the largest element of
T in this ordering.

Nodes of T are sometimes called conditions. We denote binary sequences that are
elements of T using square brackets, for example: [00], [101]. A level in T is the
set of all finite binary sequences with the same length. The set 2n consisting of all
sequences of the same length n is the level n, denoted by Tn. The level 0 consists of
the empty sequence 1 only. A branch C in T is an infinite binary sequence, that is, a
function ω �→ 2. We write p ∈ C to mark that the binary sequence p ∈ T is a prefix
of the branch C.

For thegivenp ∈ T the set of all infinite branches containingpdetermines a closed-
open set p̄ = {C ∈ 2ω : p ∈ C } in the Cantor space 2ω . The family of all such sets is
the closed-open topological basis of this space. Because every clopen set is regular
open2 and the family of regular open sets of any topological space forms a complete
Boolean algebra, we get the complete algebraB of clopen sets in 2ω . The operations
of join, meet, and complement correspond to standard set-theoretic operations in this
case: union, intersection, and complement. Top and bottom elements are 2ω and ∅,
respectively.

We use the algebraB to evaluate metaset sentences, particularly to evaluate mem-
bership degrees.

7.3.2 General Definition of Metaset

A metaset is a classical set with a specific structure coding membership degrees of
metaset members. The degrees, by construction, are expressed as nodes of the tree
T but they represent elements of the algebra B.

Definition 7 A set that is either the empty set ∅ or has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ T }

is called a metaset.

2A subset of a space X is regular open if it equals the interior of its closure.
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Thus the structurewe use to encode the degrees ofmembership is based on ordered
pairs. The first element of each pair is the member and the second element is a node
of the binary tree that contributes to the membership degree of the first element.

Formally, this is a definition by induction on the well-founded relation ∈. By the
axiom of foundation in Zermelo-Fraenkel set theory there are no infinite branches
in the recursion as well as there are no cycles. Therefore, no metaset is a member of
itself. From the point of view of ZFC a metaset is a particular case of a P-name (see
also [39, Chap. VII, Sect. 2] for justification of such type of definition).

For the given metaset τ , the sets:

dom(τ ) = {
σ : ∃p∈T 〈σ, p〉 ∈ τ

}
, (7.11)

ran(τ ) = {
p : ∃σ∈dom(τ ) 〈σ, p〉 ∈ τ

}
(7.12)

are called the domain and the range of the metaset τ , respectively.

7.3.3 Interpretations of Metasets

An interpretation of a metaset is a classical crisp set. It is produced from the given
metaset with a branch of the binary tree. Different branches determine different
interpretations of the given metaset. All of them taken together make up a collection
of sets with specific internal dependencies, which represents the source metaset by
means of its crisp views.

Properties of sets that are interpretations of the given metaset determine the prop-
erties of the metaset itself. In particular we use interpretations to define set-theoretic
relations for metasets.

Definition 8 Let τ be a metaset and let C ⊂ T be a branch. The set

τC = { σC : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the metaset τ given by the branch C.

The process of producing an interpretation of a metaset consists of two stages,
repeated recursively. In the first stage we remove all the ordered pairs whose second
elements are nodes that do not belong to the branch C. The second stage replaces the
remaining pairs – whose second elements lie on the branch C – with interpretations
of first elements. As the result we obtain a classical set.

Example 1 Let p ∈ T and let τ = { 〈∅, p〉 }. If C is a branch, then

p ∈ C → τC = { ∅ } ,

p /∈ C → τC = ∅ .



146 M. Kacprzak and B. Starosta

Depending on the branch the metaset τ acquires one of two different interpretations:
{ ∅ } or ∅. Note that dom(τ ) = { ∅ }.

As we see, a metaset may have multiple different interpretations: each branch in
the tree determines one of them. Usually, most of them are pairwise equal, thus the
number of different interpretations is much less than the number of branches.

7.3.4 Forcing

We define and investigate a relation between a condition and a sentence. This rela-
tion, called the forcing relation, is designed to describe the level of confidence or
certainty assigned to the sentence. The level is evaluated by means of conditions in
T that determine elements of the Boolean algebraB. The root condition 1 specifies
the absolute certainty, whereas its descendants represent less certain degrees. The
sentences are classical set theory formulas, where free variables are substituted by
metasets and bound variables range over the class of metasets.

Given a branch C, we may substitute particular metasets in the sample sentence
σ ∈ τ with their interpretations that are ordinary sets:σC ∈ τC . The resulting sentence
is a ZFC sentence expressing some property of the sets τC and σC , the membership
relation in this case. Such a sentence may be either true or false, depending on τC
and σC .

For the given metaset τ each condition p ∈ T specifies a family of interpretations
of τ : they are determined by all the branchesC containing this particular condition p.
If for each such branch the resulting sentence (after substituting metasets with their
interpretations) has constant logical value, then we may think of a conditional truth
or falsity of the given sentence, which is qualified by the condition p. Therefore, we
may consider p as the certainty degree for the sentence.

Let Φ be a formula built using the following symbols: variables (x1, x2, . . .), the
constant symbol (∅), the relational symbols (∈,=,⊂), logical connectives (∧,∨,
¬,→), quantifiers (∀, ∃), and parentheses. If we substitute each free variable xi

(i = 1 . . . n) with some metaset ν i, and restrict the range of each quantifier to the
class of metasets M, then we get as the result the sentence Φ(ν1, . . . , νn) of the
metaset language that states some property of the metasets ν1, . . . , νn. It is called a
metaset sentence. By the interpretation of this sentence, determined by the branchC,
we understand the sentenceΦ(ν1

C, . . . , νn
C) denoted in brief byΦC . The sentenceΦC

is the result of substituting free variables of the formula Φ with the interpretations
ν i
C of the metasets ν i, and restricting the range of bound variables to the universe
of all sets V. In other words, we replace the metasets in the sentence Φ with their
interpretations. The only admissible constant ∅ in Φ as well as in ΦC denotes the
empty set which is the same set in both cases.

Definition 9 Let x1, x2, . . . xn all be free variables of the formulaΦ and let ν1, . . . νn

be metasets. We say that the condition p ∈ T forces the sentence Φ(ν1, ν2, . . . νn),
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whenever for each branch C ⊂ T containing p, the sentence Φ(ν1
C, . . . νn

C) is true.
We denote the forcing relation with �. Thus,

p � Φ(ν1, . . . νn) iff ∀C⊂T
(
C is a branch ∧ p ∈ C → Φ(ν1

C, . . . νn
C)

)
.

The key idea behind the forcing relation lies in transferring classical properties
from sets onto metasets. Let a property described by a formula Φ(x) be satisfied by
all sets of form νC , where ν is a metaset andC is a branch inT. In other words,Φ(νC)

holds for all the sets that are interpretations of the metaset ν given by all branches
C in T. Then we might suppose that this property also “holds” for the metaset ν,
and we formulate this fact by saying that 1 forces Φ(ν). If Φ(νC) holds only for
branches C containing some condition p, then we might suppose that it “holds to
the degree p” for the metaset ν; we say that p forces Φ(ν) in such a case. Because
we try to transfer, or force, satisfiability of some property from classical sets onto
metasets, we call this mechanism forcing.3 The next example shows how to transfer
the property of being equal onto two specific metasets.

Example 2 Let τ = { 〈∅, p〉 } and σ = { 〈∅, p · 0〉 , 〈∅, p · 1〉 }, where p ∈ T and p · 0,
p · 1 denote its children. Let C be a branch.

p · 0 ∈ C → τC = { ∅ } ∧ σC = { ∅ } → τC = σC ,

p · 1 ∈ C → τC = { ∅ } ∧ σC = { ∅ } → τC = σC ,

p /∈ C → τC = ∅ ∧ σC = ∅ → τC = σC .

Of course, the last case is possible onlywhen p �= 1, because the root ofT is contained
in each branch. As we can see, the interpretations of τ and σ are always pairwise
equal, although they are different sets depending on the chosen branch C. Analyzing
only the structure of τ and σ we may easily conclude that p � τ = σ. However,
because for any branch C that does not contain p the interpretations of τ and σ are
both empty, then also 1 � τ = σ.

Thus, for the given metaset sentence Φ, the set of all conditions that force it,
{ p ∈ T : p � Φ }, determines an element of the Boolean algebra B. We interpret it
as the certainty degree for Φ (cf. [55, 56])

Definition 10 Let Φ be a metaset sentence. The following element of algebra B is
called the certainty degree for Φ.

|Φ| =
⋃ {

bp ∈ B : p � Φ
}

, (7.13)

where bp is the set of all branches containing p.

In other words bp is the set of infinite binary sequences sharing the common prefix p.

3This mechanism is similar to, and in fact was inspired by, the method of forcing in classical set
theory [11, 12]. It has not much in common with the original, though.
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7.3.5 Set-Theoretic Relations for Metasets

We briefly sketch the methodology behind the definitions of standard set-theoretic
relations for metasets. For a detailed discussion of the relations or their evaluation
the reader is referred to [54, 55].

Definition 11 We say that themetasetσ belongs to themetaset τ under the condition
p ∈ T, whenever p � σ ∈ τ . We use the notation σ εp τ .

In other words, σ εp τ whenever for each branchC containing p, it holds σC ∈ τC .
Formally, we define an infinite number ofmembership relations: each p ∈ T specifies
another relation εp. Any twometasetsmay simultaneously be inmultiplemembership
relations qualified by different conditions: σ εp τ ∧ σ εq τ . Membership under the
root condition 1 resembles the full unconditional membership of crisp sets, inasmuch
as it is independent of interpretations. By the Definition 10, the membership degree
of σ in τ is |σ ∈ τ |. This degree encompasses all the p that force the membership; it
is the union of elements ofB corresponding to these p.

The metaset membership admits a hesitancy degree known from the intuitionistic
fuzzy sets’ field. It is possible that degrees of membership and nonmembership do
not sum up to unity. The remaining part is called the hesitancy degree of membership
(see [55, 56]). This property has important consequences mentioned in Sect. 7.3.7.

Conditional equality and subset relations for metasets are defined similarly as for
a membership.

7.3.6 Applications of Metasets

The conditional membership reflects the idea that a metaset μ belongs to a metaset
τ whenever some conditions are fulfilled. The conditions are represented by nodes
of T but they relate to elements of algebraB. In applications they refer to a modeled
reality and denote some real conditions that justify the statement. Let μ be some
individual and let τ be the family of those individuals who are nice: they satisfy the
property of being nice. The sentence μ εp τ says that μ is nice under the condition p,
or, in other words, to the degree p. The condition p itself might be expressed using
human language terms, for example: pretty face (thusσ is nice because of pretty face).
Labeling conditions with human language terms requires imposing partial ordering
on these terms, which is generally rather subjective and not straightforward. We
investigated such orderings in a series of papers discussing a new decision-support
system based on this idea (see [31–33]).

7.3.7 Classical and Fuzzy Implication

We may easily define classical implication on the algebra B as follows.
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b ⇒ c ≡ ¬b ∪ c, b, c ∈ B . (7.14)

Clearly, it is a fuzzy implication. We may define other fuzzy implications onB too,
however, from the point of view of metaset theory we are interested in those that
satisfy the following.

|Φ| ⇒ |Ψ | = |Φ → Ψ | . (7.15)

Here, Φ and Ψ are metaset sentences and |Φ|, |Ψ | are their corresponding certainty
degrees, which are members of B. We would like the implication to commute with
the forcing relation that determines certainty degrees for sentences. In other words,
wewant to have certainty degree of implicationΦ → Ψ to be equal to the implication
of certainty degrees for sentences Φ and Ψ .

Unfortunately, in the general case (7.15) does not hold. In other words, gener-
ally ¬|Φ| ∪ |Ψ | does not have to be equal |¬Φ ∨ Ψ | and also the border condi-
tion I (0L, 0L) = 1L of definition (6) might not be satisfied. The reason for this is
metasets’ capability of expressing uncertainty. The value of |Φ| is the measure of
certainty, that is, our knowledge about Φ. However, in general, ¬|Φ| is not equal to
the certainty degree of ¬Φ, but it is not less and it might also include the hesitancy
degree of Φ, just as in intuitionistic fuzzy sets.4 To exclude the uncertainty issues
one has to limit the scope to the class of hereditarily finite metasets. A metaset σ
is hereditarily finite when it is a hereditarily finite set: ran(σ) is finite and dom(σ)

consists of hereditarily finite metasets only. For such metasets uncertainty vanishes,
¬|Φ| = |¬Φ|, and (7.15) holds (see [55]).5 The class of hereditarily finite metasets
includes metasets representable in machines and it is sufficient for applications.
Investigating implication (7.14), which satisfies (7.15), is one of the next goals in the
development of metaset theory and related logic of metaset sentences.

7.4 Conclusions and Further Research

The purpose of this chapter was to present new operators that satisfy the conditions
for fuzzy implication in the classical sense [6]. These results emerged from the
research conducted by Kosiński, undertaken in his last years of life. They were
initiated by investigation of applications of Ordered Fuzzy Numbers, alternatively
called Kosiński’s fuzzy numbers. Even though the described approaches stem from
completely different areas, it turned out that they lead to similar applications and
results. Furthermore, they launched a new stream of research that has continued by
his coworkers Kacprzak, Starosta, and Wȩgrzyn-Wolska after Kosiński’s death. The

4To prove this fact and consequently, that the equation (7.15) fails in general one has to use examples
similar to the ones presented in [50].
5The assumption of finiteness of dom(σ) may be dropped to obtain a broader class of finite deep-
range metasets (see [55]) for which there is no uncertainty and (7.15) still holds.
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applications of the research on OFNs and metasets concern not only approximate
reasoning but also decision-support systems and opinion mining [31–33].

In this chapter we discussed two structures for fuzzy implication: the lattice of
Step-Ordered Fuzzy Numbers and the Boolean algebra B of membership degrees
for metasets. In both of them a fuzzy implication operator (FI) is defined. The impli-
cation operator holds center stage in the inference mechanisms of any logic. We can
find several different definitions of fuzzy implications in the literature. They play a
similar role to Boolean implications that are employed in inference schemes such as
modus ponens and modus tollens. However, now reasoning is done with fuzzy state-
ments whose truth values lie in [0, 1] instead of {0, 1}. The most exploited area of
applications of fuzzy implications is approximate reasoning, wherein from imprecise
inputs and fuzzy premises or rules we can obtain imprecise conclusions.

In the the first part of the chapter the binary Step-Ordered Fuzzy Numbers are
explored. Asmentioned earlier, Kosiński was looking for new inference schemas and
thereby implications based on the orthodox Ordered Fuzzy Numbers (f , g), where
functions f and g are assumed to be continuous. This question still remains unan-
swered and studies are in progress. The biggest challenge was to define a negation
operator. During the research Kacprzak and Kosiński observed that BSOFN (f , g),
in which functions f and g are step functions that can return binary values 1 or 0,
form a lattice. This property allows us to define the fuzzy implications similar to
those proposed by Kleene-Dienes, Zadeh, or Łukasiewicz.

The second part of the chapter focuses on the results obtained by Starosta and
Kosiński in the field of metasets. In the algebra B we can also define some fuzzy
implication operators analogous to those from classical fuzzy set theory. However,
the most important property that we are interested in is the equality of the certainty
degree of the sentence Φ → Ψ and the result of applying the operator ⇒ to the
certainty degrees of sentences Φ and Ψ . Unfortunately, in the general case, this
equality does not hold. Only when we make certain restrictions and limit the scope
to the class of hereditarily finite metasets, we get the desired behavior of the operator.

We dedicate future research on fuzzy implications aimed at developing theories
and searching for the answers to the questions that are still open to the memory of
Professor Kosiński.
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6. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing

Series, vol. 231. Springer, Berlin (2008)
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Chapter 8
OFN Capital Budgeting Under Uncertainty
and Risk

Anna Chwastyk and Iwona Pisz

Abstract The aim of this chapter is to propose a new approach to incorporating
uncertainty into capital budgeting. The chapter presents methods that can be used by
an investor when the decision maker wants to be able to make an investment decision
where there are alternative investment projects. This kind of problem is undertaken
under the conditions of uncertainty and risk using Ordered Fuzzy Numbers (OFN).
The starting point is the concept of Ordered Fuzzy Numbers. The chapter illustrates
the implementation of the proposed approach with an example where two alternative
investment projects are analyzed. The authors present the capital budgeting problem
using a numerical example. The described methods dedicated to investment project
selection lay the foundations for a fuzzy decision-making system. We utilize com-
puter software such as MATLAB to demonstrate how the proposed methods can be
applied to assessing the profitability of alternative investment projects.

8.1 Introduction

The capital budgeting problem is concerned with allocation of an organization’s
capital to a suitable combination of projects (alternative projects) that can bring
maximal profit to the organization [12]. In the literature we can find a variety of
methods used in capital budgeting (see, e.g., [1, 2, 6, 22]). The main methods are:
the net present value method (NPV), profitability index (PI), and internal rate of
return (IRR). Based on the literature review we can state that the classical forms of
thesemethods do not take into account the uncertainty and riskwhichmay be inherent
in the information used in them. This information includes future cash inflows, cash
outflows and available investment capital, the required rate of return of the investment
or cost of capital, and the duration of the project [21].
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Traditionally, these investment parameters are assumed as a crisp value. As we
know, the capital budgeting problem is accompanied by uncertainty and risk, which,
in general, stem from the lack of access to certain data (imprecise data) [11, 21]. In
practice, this involves, above all, the inability to predict the behavior of the market
during the timeframe of the project’s execution, including weather conditions, the
level of prices and costs, availability of resources, exchange rates, interest rates,
behavior of competition, changes in the demand/supply level for a given product or
service, and so on. Therefore several authors began to use fuzzy set theory to help
solve the capital budgeting problem in a fuzzy environment. In the literature we can
find another approach to capital budgeting, that is, fuzzy capital budgeting. Several
authors studied fuzzy set theory and its application in capital budgeting [3, 5, 7, 11,
13, 14, 21]. Some authors indicated certain problems to solve the capital budgeting
problem with fuzzy numbers [3, 5, 6, 21].

The notion of Ordered Fuzzy Numbers (OFN) was proposed by Kosiński,
Prokopowicz and Ślȩżak, [20] to eliminate several drawbacks of classical convex
fuzzy numbers (CFN) such as the loss of precision increasing with the number of
performed operations and the fact that even linear equations cannot be solved in the
set of fuzzy numbers. A new fuzzy number does not require any existence of a mem-
bership function and can be regarded as an extension of a parametric representation
of a fuzzy number.

Ordered Fuzzy Numbers were first used as a tool for a decision- support system
concerning financial project evaluation in the paper [18] and the research was con-
tinued in [8]. Their idea was based on the determination of the internal rate of return
of an investment project in which all expenditures and income were imprecise and
vague.

In this chapter we present a capital budgeting problem using OFNs. We continue
the research started in the article by [9], which concerned the use of the net present
value method to estimate the attractiveness of an investment opportunity. We now
modify themethod presented in the previous paper by transferring the defuzzification
process to another stage of calculations and present the next discount methods-
profitability index and internal rate of return-to make an evaluation of alternative
investment projects more precise. We can see that the described methods dedicated
to the investment project selection problem lay the foundations for a fuzzy decision-
making system.

The chapter is organized as follows. In Sect. 8.2 we discuss the concept of fuzzy
numbers and Ordered Fuzzy Numbers, which allow modeling using uncertain infor-
mation. Section8.3 is dedicated to the investment project’s estimation problem. It
contains the main definitions of discounted values of cash flows, net present value
method, profitability index, and internal rate of return. Section8.4 presents the au-
thors’ approach based onOFNs. In Sect. 8.5we illustrate the issue on a computational
example, demonstrating how the methods can be used for the capital budgeting prob-
lem. We utilize a MATLAB environment to demonstrate how the proposed methods
can be applied to assess the profitability of an alternative investment project. Final
remarks and conclusions are contained in Sect. 8.6.
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8.2 Ordered Fuzzy Numbers

The introduction of the concepts of fuzzy sets and fuzzy numbers was propelled
by the need to describe mathematically imprecise and ambiguous phenomena. The
above concepts were described in the paper of Lotfi A. Zadeh [26] as a generalization
of classical set theory. A fuzzy set A in a nonempty space X is a set of pairs A =
{(x, μA(x)); x ∈ X}, where μA(x) : X → [0, 1] is the membership function of a
fuzzy set. This function assigns to each element x ∈ X its membership degree to a
fuzzy set.

A fuzzy set, and hence its membership function, has two basic interpretations.
It can be understood as a degree to which x possesses a certain feature, or as a
probability with which a certain, and at this point not entirely known, value will
assume a value x .

A triangular fuzzy number is denoted with three real numbers [a, b, c], where
a < b < c. Its membership function assumes the form:

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ a;
x−a
b−a if a < x ≤ b;
c−x
c−b if b < x ≤ c;
0 if x > c.

(8.1)

If an expert generates a triangular fuzzy number as a result of assessing the
distribution of possible values of a certain unknown quantity, it means that the expert
deems the values below a, and above c, not possible; whereas the value b is possible
with a degree of 1, and the remaining values are possible to a varying degree that
decreases with their distance from b.

The notion of OFN, defined by Kosiński, Prokopowicz, and Ślȩzak, was intro-
duced in order to eliminate postulated deficiencies of fuzzy numbers: the loss of
precision increasing with the number of performed operations and the fact that even
linear equations cannot be solved in the set of fuzzy numbers. The theorem formu-
lated by Kosiński [17] concerning the universal approximation of any nonlinear and
continuous defuzzification operator offers tools for the application of OFNs to fuzzy
inference and modeling, including assessing the profitability of investment projects.
Ordered Fuzzy Numbers give a precise and elegant framework for dealing with fuzzy
objects (numbers) and many different methods of defuzzification.

Definition 1 An Ordered Fuzzy Number A is an ordered pair ( f, g) of continuous
functions f, g : [0, 1] → R.

Graphically the curves of ( f, g) and (g, f ) do not differ. However, this pair of
functions determines different OFNs; they vary in so-called orientation, which is
denoted on diagrams by an arrow.

Let A = ( f A, gA), B = ( fB, gB), and C = ( fC , gC) be OFNs. Sum C = A +
B, product C = A · B, and division C = A ÷ B are defined in the set of OFNs as
follows.
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fC(x) = f A(x) � fB(x) and gC(x) = gA(x) � gB(x), (8.2)

where “�” denotes “+”, “·”, and “÷”, respectively.Moreover, A ÷ B is only defined
when fB(x), gB(x) �= 0 for each x ∈ [0, 1]. In the set of OFN, subtraction, expo-
nentiation, and taking a root can also be defined in the usual fashion, for example:

( f, g)n = ( f n, gn). (8.3)

When considering the set of OFNs and the associated operations of addition
and multiplication, we obtain a commutative ring with unity. By augmenting this
with scalar multiplication, we obtain a linear space, that is, an algebra over real
numbers. Moreover, this set constitutes a commutative Banach algebra with unity
in the supremum norm in each of the factors C[0, 1] × C[0, 1] that are the Banach
space. By introducing an appropriate relation of partial order, we also obtain a lattice
[8]. We say that an OFN A = ( f, g) is

nonnegative if f (x) ≥ 0 and g(x) ≥ 0 for all x ∈ [0, 1]; (8.4)

positive if f (x) > 0 and g(x) > 0 for all x ∈ [0, 1]. (8.5)

Negative OFNs are defined in a similar way.
It is worthwhile to point out that the set of pairs of continuous functions, where one

function is increasing and the other is decreasing, and, simultaneously, the increasing
function always assumes values lower than the second function, is a subset of the set
of OFNs, which represents the class of all convex fuzzy numbers with continuous
membership functions [4, 10, 16, 23, 25].

Defuzzification is a process that converts a fuzzy set or a fuzzy number into a
crisp value. Functionals, which map a fuzzy number to a real number, play a vital
role in OFN applications.

Definition 2 Let A be an OFN and c ∈ R. A mapping φ from the space of all OFNs
to the set of real numbers is called a defuzzification functional if it satisfies the
following properties,

1. φ(c, c) = c ,

2. φ(A + (c, c)) = φ(A) + c ,

3. φ(cA) = cφ(A) ,

4. φ(A) ≥ 0, if A is nonnegative (8.4)

where (c, c) is a pair of constant functions on the interval [0, 1] representing the
constant c.

Therefore, a defuzzification functional must be homogeneous of order 1, as well
as being restrictive, additive, and normalized. The model of constructing defuzzifi-
cation functionals presented in [19] allows us to obtain a number of defuzzification
functionals, whether linear or nonlinear. In this chapter we applied the nonlinear
center of gravity defuzzification functional, defined by the following equations.
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φCOG( f, g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1∫

0
( f (s)+g(s))( f (s)−g(s))ds

2
1∫

0
( f (s)−g(s))ds

, when
1∫

0
( f (s) − g(s))ds �= 0

1∫

0
f (s)ds

1∫

0
ds

, when
1∫

0
( f (s) − g(s))ds = 0.

(8.6)

8.3 Classic Capital Budgeting Methods

In economic practice, net present value is the most commonly used discount method.
In essence, this method consists in assessing the present value of an investment
project based on the forecasted streams of net cash flows, which are the measure
of an investor’s future benefits. NPV is defined as a sum of net cash flows (NCFs)
discounted separately for each year and executed over the entire calculation period,
with a constant level of interest (discount) rate. This value expresses the updated (on
the day of the assessment) value of benefits, which the undertaking in question can
yield in the future. The general form of NPV can be expressed as:

N PV =
n∑

i=0

CFi
(1 + r)i

, (8.7)

where n is the number of years,
r is the market capitalization rate,
and CFi is the cash flow in the i th year of investment.

NPV allows making an investment decision having analyzed cash flows, reduced
by a specific outlay, and discounted by a weighted average cost of capital. There-
fore, NPV allows the assessment of the economic value of an undertaking. The em-
ployment of a given method requires forecasting future cash flows, which involves
forecasting several uncertain variables such as interest rate, prices of resources and
services, and exchange rate. It affects the reliability and quality of forecasting future
effects and outlay. NPV allows taking the time factor into account. If the net present
value of an investment project is positive, the project will contribute to an increase
in the value of the company and as a result the wealth of its owners. It is assumed
that a given investment is profitable if the value of discounted cash flows during the
completion of the investment is positive.

The profitability index (PI), also known as the profit investment ratio (PIR) or
value investment ratio (VIR), is the ratio of payoff to investment of a proposed
project. It is a useful tool for ranking projects because it allows us to quantify the
amount of value created per unit of investment. The profitability index is a ratio of
discounted cash inflows to the discounted cash outflows:
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P I =

n∑

i=0

CF+
i

(1+r)i

n∑

i=0

CF−
i

(1+r)i

, (8.8)

where n is the number of years, r is the market capitalization rate, CF+
i is the cash

inflow in the i th year of investment, and CF−
i is the cash outflow in the i th year of

investment.
The PI helps in ranking investments and deciding the best investment that should

be made. A PI greater than one indicates that the present value of future cash inflows
from the investment is higher than the initial investment, thereby indicating that it will
earn profits. A PI of less than one indicates loss from the investment, and a PI equal
to one means that there are no profits. NPV and PI techniques in capital investment
decisions are closely related to each other. The PI will be greater than 1 only when
the NPV is positive. However, in the case of mutually exclusive proposals having
different scales of investment, that is, where the initial investment in the alternative
projects is not the same, a conflict in NPV and PI may occur.

Another capital budgeting method is the IRR. This method is described as the
discount rate r that equates the present value of the expected future net cash inflows
with its initial outlay sowe have N PV = 0. The IRR shows directly the rate of return
on the examined projects. The project is cost-effective if its IRR is higher than the
limit rate, which is the lowest rate of return acceptable to the investor. Generally, the
higher the internal rate of return the investment project has the more profitable the
project is [15]. Because of the general problem of finding the roots of the equation
N PV = 0, there are many numerical methods that can be used to estimate the IRR.

We use the method [24] consisting of several stages. First, we determine the
value of the cash flows in subsequent years of an investment. Then, by successive
approximations, we select two rates of return r1 and r2 satisfying the conditions:

1. N PV1 calculated for the rate r1 is close to zero and positive.
2. N PV2 calculated on the basis of the rate r2 is close to zero but negative.

On the basis of these values we calculate the IRR of the considered project. We apply
the following formula for this purpose.

I RR = r1 + N PV1(r2 − r1)

N PV1 − N PV2
. (8.9)

In the presented method of calculating the IRR, the difference between r1 and r2 is
particularly important. With the increase in difference between r1 and r2, calculation
results become less and less accurate as compared to the actual IRR. In practice
this difference should be less than one percentage point. In this case, the mistake in
calculations of the IRR can be considered to be irrelevant.
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8.4 Fuzzy Approach to the Discount Methods

The classic forms of NPV, PI, and IRR do not take uncertain data into account. When
considering the fuzzy environment of an investment project, modifying discount
methods to take into account uncertain data becomes necessary. This allows us to
take into consideration information uncertainty and decreases the risk of making a
mistake in assessing the profitability of an investment project.

For the problem of defining a generalization of the above-mentioned discount
methods to OFNs, we assume that the capitalization rate R, cash flows CF , cash
inflows CF+

i , and cash outflows CF−
i are Ordered Fuzzy Numbers. The discounted

cash flows in the ith year of investment are calculated as follows,

CFi
((1, 1) + R)i

, (8.10)

where (1, 1) stands for a pair of constant functions that assume a value of one, and
+ and ÷ signify addition and division in a set of OFNs defined through the Eq.8.2.
Exponentiation is performed according to the formula 8.3. Therefore, we have the
formula for ordered fuzzy net present value:

OFN PV =
n∑

i=0

CFi
((1, 1) + R)i

. (8.11)

And for modified profitability index:

OFP I =

n∑

i=0

CF+
i

((1,1)+R)i

n∑

i=0

CF−
i

((1,1)+R)i

. (8.12)

Our modified method of calculating the internal rate of return requires selection
of two ordered fuzzy rates of return R1 and R2 satisfying the following conditions.

1. OFN PV1 calculated for the rate R1 is close to ordered fuzzy zero (which means
the pair of constant functions (0, 0)) and positive (see (8.5)).

2. OFN PV2 calculated for the rate R2 is close to ordered fuzzy zero and negative.

On the basis of these values we calculate the ordered fuzzy internal rate of return of
the considered project. We use the following formula for this aim,

OF I RR = R1 + OFN PV1(R2 − R1)

OFN PV1 − OFN PV2
. (8.13)

Before presenting the results of the project evaluation to the investor, the selected
defuzzification method should be applied in order to obtain real values:
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N PV = φCOG(OFN PV ), P I = φCOG(OFP I )

and I RR = φCOG(OF I RR).

8.5 Computational Example of the Investment Project

In this section we present an example of a capital budgeting problem using three
methods based on OFNs. These methods are: ordered fuzzy net present value method
(OFN PV ), ordered fuzzy profitability index (OFP I ), and ordered fuzzy internal
rate of return (OF I RR). We consider an example of potential alternatives of in-
vestment project execution: project one P1 and project two P2. Investment decisions
are made under the conditions of uncertainty and risk, inasmuch as it is impossi-
ble to prepare an accurate description of economic and financial conditions for the
functioning of the considered projects in the future. The use of OFNs allows us to
limit the effects of uncertainty and risk. In order to define the fuzzy conditions of the
execution of the investment project, the decision-making process involves an expert
who has appropriate knowledge and experience in planning and executing similar
projects.

A major problem related to the use of OFNs was the requirement for the experts
to give an opinion on individual elements of these alternatives of investment projects
in the form of OFNs, that is, pairs of functions. We propose that the expert describe
project parameters bymeans of triangular fuzzy numbers, whichwill be subsequently
converted into OFNs.

We assume that the considered projects are planned for the periods of 7 and 5
years, respectively. The remaining project parameters remain uncertain, therefore
they are determined by the expert in the form of triangular fuzzy numbers. The
triangular fuzzy capitalization rate assumes the form of R = [0.04; 0.06; 0.07]. This
means that according to the expert the capitalization rate of below 4% and above 7%
is not possible, whereas the value of 6% is the most probable one, and other values
are probable to a different degree: the higher they are, the closer they are to 6%. In a
similar way, the expert determines the fuzzy values of cash inflows and outflows in
subsequent years for project P1 and project P2, respectively, in Tables8.1 and 8.4.
In order to simplify the analysis, the data are expressed in thousands of arbitrary
monetary units (a.m.u.).

To a triangular fuzzy number A = [a, b, c] has a corresponding OFN:

AOFN = ((b − a)x + a, (b − c)x + c), (8.14)

which is the ordered pair of linear functions (Fig. 8.1).
By applying the formula 8.14 we define OFNs corresponding to the values deter-

mined by the expert. For instance, the capitalization rate expressed by OFNs assumes
the form: ROFN = (0.02x + 0.04;−0.01x + 0.07). Then we discount cash inflows
and outflows using the formula 8.10. Obviously, discounted cash flows in the i th
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Table 8.1 Input data for the investment P1 using triangular fuzzy numbers

Year Cash outflows Cash inflows

0 [450, 450, 450] [0, 0, 0]
1 [19, 20, 22] [68, 70, 72]
2 [5, 5, 6] [70, 75, 80]
3 [4.5, 5, 6] [70, 75, 85]
4 [4, 5, 6] [90, 100, 125]
5 [4, 5, 6] [110, 120, 135]
6 [4, 5, 6] [110, 125, 140]
7 [4, 5, 6] [100, 110, 130]

Table 8.2 Cash inflows and discounted cash inflows for P1 with the use of OFNs

Year Cash inflows Discounted cash inflows

0 (0, 0) (0, 0)

1 (2x + 68,−2x + 72)
( 2x+68
0.02x+1.04 , −2x+72

−0.01x+1.07

)

2 (5x + 70,−5x + 80)
( 5x+70

(0.02x+1.04)2
, −5x+80

(−0.01x+1.07)2
)

3 (5x + 70,−10x + 85)
( 5x+70

(0.02x+1.04)3
, −10x+85

(−0.01x+1.07)3
)

4 (10x + 90,−25x + 125)
( 10x+90

(0.02x+1.04)4
, −25x+125

(−0.01x+1.07)4
)

5 (10x + 110,−15x + 135)
( 10x+110

(0.02x+1.04)5
, −15x+135

(−0.01x+1.07)5
)

6 (15x + 110,−15x + 140)
( 15x+110

(0.02x+1.04)6
, −15x+140

(−0.01x+1.07)6
)

7 (10x + 100,−20x + 130)
( 10x+100

(0.02x+1.04)7
, −20x+130

(−0.01x+1.07)7
)

Table 8.3 Selected rates of return for the project P1
Rates of return Triangular fuzzy numbers Ordered Fuzzy Numbers

R1 (OFN PV1 positive) [0.04; 0.07; 0.1] (0.03x + 0.04,−0.03x + 0.1)

R2 (OFN PV2 negative) [0.06; 0.9; 0.12] (0.03x + 0.06,−0.03x +
0.12)

year of investment are obtained by adding discounted cash inflows and outflows in
the i th year of an investment.

Subsequently, based on the formulas presented in the previous point we calculate
the indexes OFNPV, OFPI, andOFIRR. Finally, these values undergo defuzzification
using the functional 8.6. Thus we obtain crisp values, which can be presented to the
investor. Calculations for the considered investment projects were performed using
the MATLAB computer program.

Let us consider the alternative investment project P1. Table8.1 presents the cash
inflows and outflows of the project using triangular fuzzy numbers defined by the
expert engaged in the decision process.
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Table 8.4 Input data for the investment project 2 using triangular fuzzy numbers

Year Cash outflows Cash inflows

0 [450, 450, 450] [0, 0, 0]
1 [0, 0, 0] [145, 150, 155]
2 [0, 0, 0] [140, 150, 155]
3 [0, 0, 0] [110, 125, 140]
4 [0, 0, 0] [60, 75, 80]
5 [0, 0, 0] [60, 75, 90]

Fig. 8.1 The pair of linear
functions corresponding to
the triangular fuzzy number
A = [a, b, c]. The arrow
denotes the order of
functions, the so-called OFN
orientation

�

�

x1

(b−a)x+a

y

(b− c)x+ c

�����
���������

�������

Table8.2 presents the cash inflows for the first project expressed in OFNs. The
cash outflows for this project and the cash inflows and outflows for the second project
were calculated in an analogous way.

First we calculated the value of OFN PV and OFP I of the project. After de-
fuzzification, the net present value for project P1 is equal to 47536 a.m.u., which
means that the projected earnings generated by the proposed investment exceed the
anticipated costs. The profitability index is equal to 1.0962, which further confirms
the positive evaluation of the project.

In order to calculate OFIRR for the first project we selected by successive ap-
proximations of two rates of return R1 and R2 for which ordered fuzzy net present
values are close to ordered fuzzy zero and positive (R1) or negative (R2), respectively
(Table8.3). The internal rate of return for this project is equal to 8.21%.

Let us consider the alternative investment project P2. Table8.4 presents the cash
inflows and outflows of the project using triangular fuzzy numbers.

The NPV for the project P2 is equal to 44397 a.m.u. so the project would be
estimated to be a valuable venture. The PI is equal to 1.0987, which further validates
the positive evaluation of the project. The internal rate of return for the second project
calculated on the data presented in Table8.5 is equal to 9.78%.

In Table8.6 we present the results of calculation of the modified discount methods
for considered projects P1 and P2. We compared the obtained values of the proposed
new methods to aid the decision maker in choosing the best investment project. First
we determined the NPV for each project; then we established the profitability index
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Table 8.5 Selected rates of return for the project P2
Rates of return Triangular fuzzy numbers Ordered Fuzzy Numbers

R1(OFN PV1 positive) [0.03; 0.08; 0.13] (0.05x + 0.03,−0.05x +
0.13)

R2(OFN PV2 negative) [0.06; 0.11; 0.16] (0.05x + 0.06,−0.05x +
0.16)

Table 8.6 Summarized results of proposed discount methods for the projects

Methods Project P1 Project P2

N PV 47536 44397

P I 1.0962 1.0987

I RR 8.21% 9.78%

for each investment project, and finally the internal rates of return. According to
the NPV analysis alone, project P1 is the most appropriate choice for the decision
maker. The profitability indexes for project P1 and project P2 vary slightly and they
are greater than 1, which confirms the profitability of both projects. According to the
IRR analysis alone, project P2 is the most appropriate choice for the decision maker.
The NPV and IRR analysis for these two projects give us conflicting results. This
is due to the timing of the cash flows for each project as well as the size difference
between the two projects. By the NPV rule the decision maker should choose project
P1, so it can be executed. The convention is to use the NPV rule when the two
methods are inconsistent. It better reflects the primary goal: to improve the financial
wealth of the company.

8.6 Summary

The capital budgeting problem with Ordered Fuzzy Numbers corresponds to the
project selection problem. We modified the method presented in our previous paper
by transferring the defuzzification process to another stage of calculations and we
presented the next discountmethods, the profitability index and internal rate of return,
to make an evaluation of alternative investment projects more precise. Tools of that
kind can be perceived as a decision-support system based onOFNs.We presented the
example of alternative investment project selection using new discount methods. The
presented methods may be used to represent imprecise information, among others
about cash flows and capitalization rate. They offer a clear simultaneous representa-
tion of several pieces of information. In addition, well-defined arithmetic operations
on OFNsmake it easy to perform even complex calculations connected, for example,
with a long period of investment. Moreover, owing to the elimination of issues re-
lated to using classical fuzzy numbers such as increasing fuzziness over subsequent
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operations, impossibility to solve equations, or high computational complexity, the
OFNmodel may prove to be good tool for economic analysis. It allows modeling the
uncertainty associated with financial data and constructing a full decision-support
system in the future.
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Chapter 9
Input-Output Model Based on Ordered
Fuzzy Numbers

Dariusz Kacprzak

Abstract The chapter presents the application of Ordered Fuzzy Numbers (OFNs)
to the economic model. These numbers are used for input-output analysis (the Leon-
tief model), which is a basic method of quantitative economics that presents macro-
economic activity as a system of interrelated goods and services. OFNs allow us
not only to apply mathematical modeling of imprecise or ambiguous data but also
simultaneously portray more information than could be presented by real numbers.
It is shown based on the Leontief model, where at the same time the current level,
the forecast level, and the level of change of the final demand or the production level
can be determined. The example shows that use of OFNs in economic modeling can
simplify and deepen the economic analyses.

9.1 Introduction

Economics is a social science that studies and analyzes the production, distribution,
and consumption of goods and services. One of the main tools used in economics is
model. A model is a theoretical construction representing economic processes by a
set of variables and a set of logical and quantitative relationships between them. Such
model often take the form of systems of linear equations, due to their simplicity and
ease of interpretation of their parameters and solution. One of the most famous and
popular models of this type is the Leontief model, often called input-output analysis.

Input-output analysis is a quantitative economic technique that represents interde-
pendencies between different sectors (industries, branches) and a way of describing
the allocation of resources of a national economy or different regional economies.
It is a particularly effective tool for the optimization of production processes, the
improvement of economic conditions, and cost allocation analysis. The input-output
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analysis also shows the combination of resources (raw materials, labor, capital),
called inputs, that are required to achieve desired production goals, called outputs.
It makes the Leontief model play a central role in planning and forecasting in eco-
nomics.

The model proposed by Leontief does not take into account the natural uncer-
tainty of variables of such complicated mathematical descriptions as the real-world
economy models. The application of these variables in models involves knowing
their numerical values. However, in reality many economic variables are difficult
to be precisely measured. The elements of the Leontief model, such as a technical
coefficients matrix, an output matrix, or a final demand matrix, are usually known
as some intervals or fuzzy numbers. The use of only mean values in these matrices
can lead to the loss of valuable information. In other words, in practical applications
parameters are described using not only single values but intervals and fuzzy sets
and numbers, in particular Ordered Fuzzy Numbers (OFNs). Properties of operations
and the possibility of different interpretations of OFNs make these numbers widely
used in economics.

There are papers in the literature in which the OFNs model is used in economic
models. This model was applied, among others, to support decision making [9, 10,
14], for presentation of revenues and costs of a company [2, 3, 7], in the Leontief
model [1, 2], for the presentation of stock prices [4, 8, 13], for the presentation of
prices and the dynamics of their changes [5], and to determine the economic size of
the delivery [6, 11]. These applications are based on the orientation of the OFNs as
additional information and the arithmetics of the OFNs similar to the arithmetics of
real numbers.

The chapter is organized as follows. Section9.2 describes the fundamental con-
cepts of input-output analysis. Next, in Sect. 9.3 a numerical example of input-output
analysis based on OFNs is presented. Finally, concluding remarks are provided in
Sect. 9.4.

9.2 Input-Output Analysis

The American economist Wassily W. Leontief developed the economic input-output
model (the term “intersectoral” analysis is also used), which was first published in
1936. The beginnings of input-output analysis in economics are most often cred-
ited to Leontief and others who wrote the paper, “Studies in the Structure of the
American Economy” [12]. In 1973 Leontief was awarded a Nobel prize for his great
achievements in economics. The prize motivation was: “For the development of the
input-output method and for its application to important economic problems.” His
model is a basis for more models currently being used in many parts of the world.
It can be applied to an economy of any size, from a small business or a region, to
a whole country or the whole world. The Leontief input-output model leads to a
better understanding of modeling economic systems, because it describes how the
input and output of different sectors affect each other. The main goal of the Leontief
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input-output model is to balance (equilibrium) the total amount of goods produced
(total output) to the total demand (total input and final demand) for that production,
in other words, consumption equals production.

Because the input-output model normally encompasses a large number of sectors,
its framework is quite complicated. To simplify the analysis (model), the following
assumptions are adopted:

• each sector produces only one homogeneous product,
• each sector uses a fixed input ratio (or factor combination) for the production of
its output,

• production in every sector is subject to constant returns to scale, so that a k-fold
change in every input will result in an exactly k-fold change in output.

In general, let us suppose an economy has n sectors. The output of any sector, say
the i th sector, is needed as an input in many other sectors, or even for that sector
itself. It means that the level of the output of the i th sector will depend on the input
requirements of all the n sectors. On the other hand, the output of many other sectors
will enter an input into the i th sector, and consequently the levels of other sectors
products will depend partly on the input requirements of the i th sector. In view of
these intersectoral dependences, it is clear that the input-output analysis should be
of great use in production planning. This leads to the fact that the Leontief model
allows answering the question: “What output level should reach each of the n sectors
in an economy in order to satisfy the total demand for that product?” To present the
input-output model the following designations are introduced (they are expressed in
financial terms, for example, in millions of dollars):

• X = (X1 X2 ... Xn)
T : A production vector, where Xi (i = 1, ..., n) denotes the

total value of the output of the i th sector for a year
• d = (d1 d2 ... dn)T : A final demand vector, where di (i = 1, ..., n) denotes the
total value of goods and services demanded from the i th sector by a nonproductive
part of the economy (an open sector)

• xi j (i, j = 1, ..., n): Flow of production from i th sector to the j th sector; part of
the output of the i th sector used in the j th sector for the production of its output

A starting point for an input-output analysis is an input-output table. An input-
output table is a description of the flows (relationships) of goods and services among
different sectors of a particular economic system. In the table, each horizontal row
describes how one sector’s total product is divided among various sectors and final
consumption. In turn, each vertical column denotes the combination of productive
resources used within one sector. These flows concern a particular period, usually a
one-year period. Table9.1 shows a representation of an input-output table.

The structure of the table is a matrix that lists economic sectors, in the same
sequence, both vertically and horizontally. If the rows of Table9.1 are considered, for
each i th sector (i = 1, ..., n), a linear equation describing how the sector distributes
an output to other sectors can be written as
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Table 9.1 An input-output table

Sector 1 2 . . . n Total output Final demand

1 x11 x12 . . . x1n X1 d1
2 x21 x22 . . . x2n X2 d2
. . . . . . . . . . . . . . . . . . . . .

n xn1 xn2 . . . xnn Xn dn

⎧
⎪⎪⎨

⎪⎪⎩

X1 = x11 + x12 + ... + x1n + d1
X2 = x21 + x22 + ... + x2n + d2
...........................................

Xn = xn1 + xn2 + ... + xnn + dn

. (9.1)

From the assumptions of the model: in order to produce each unit of the product
of the j th sector, the input needed for the product of the i th sector must be a fixed
amount, which should be denoted by ai j belonging to [0, 1). Each element ai j is
named the input coefficient or the technological coefficient and is calculated as

ai j = xi j
X j

(i, j = 1, ...n). (9.2)

The coefficients ai j are fixed by the current technology (when technology changes,
coefficients change as well). From the formula (9.2)

xi j = ai j X j (i, j = 1, ...n) (9.3)

where elements ai j X j for j = 1, ..., n are the inputs demand of the j th sector. If Eq.
(9.3) are put into (9.1), a linear system of Eq. (9.1) takes the form

⎧
⎪⎪⎨

⎪⎪⎩

X1 = a11X1 + a12X2 + ... + a1n Xn + d1
X2 = a21X1 + a22X2 + ... + a2n Xn + d2
.....................................................

Xn = an1X1 + an2X2 + ... + ann Xn + dn

(9.4)

or, following application of a matrix algebra, it can be written as

⎛

⎜
⎜
⎝

X1

X2

...

Xn

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...

an1 an2 ... ann

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

X1

X2

...

Xn

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

d1
d2
...

dn

⎞

⎟
⎟
⎠ (9.5)

or in short
X = AX + d (9.6)
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where X denotes the output matrix, A is the matrix of technological coefficients, and
d is the final demand matrix.

Very interesting from an economic point of view is matrix A, in which each col-
umn determines the input requirements for the production of one unit of a particular
sector. This means that the production of each unit of the product of the j th sector
requires a1 j unit of the product of the first sector, a2 j unit of the product of the second
sector,..., and anj unit of the product of the nth sector. Because of the presence of the
open sector, the sum of the elements in each column of the input coefficient matrix
A must be less than 1. If this sum is greater than or equal to 1, production is not
economically justifiable.

Equation (9.6) can be written in the form of the Leontief model (I denotes a unit
matrix of size n)

X − AX = d ⇐⇒ (I − A)X = d. (9.7)

The matrix (I − A) is called the Leontief matrix and converts a total production
vector X into a final product vector d. The question appears immediately: “If the final
product vector d is given, can the situation be reversed and can the total production
vector X be determined?” To answer the question the concept of a productive matrix
should be introduced. A matrix of input coefficients A is productive if there is a
nonnegative vector of total production X (i.e., all its entries are nonnegative, for
each i element xi ≥ 0), such that X > AX . The condition X > AX has a simple
economic interpretation. If A is a productive matrix, the i th element of the vector
AX is the total production value of all sectors used by the i th sector in a year. Hence,
the condition X > AX means that, for each i , the value of the product produced by
the i th sector exceeds the value of the products used by the i th sector. In other words,
each sector runs at a profit.

Theorem 1 Let A be a square and a nonnegative matrix. Then (I − A) is invertible
and (I − A)−1 nonnegative, if and only if the matrix A is productive.

One can notice from the above theorem that in the real economy the final product
d determines the total production X , according to the rule

X = (I − A)−1d. (9.8)

If the symbol Δ is used, for example, ΔX , to indicate a change in the value of a
variable X , the change in the size of one variable due to changes in a second one
using the Leontief model can be determined. The effect in the value of the final
product, determined by changes in the total production value can be calculated using
the equation in the following form

(I − A)ΔX = Δd (9.9)

or the change in total production due to the changes in the final product, using the
equation in the form
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ΔX = (I − A)−1Δd. (9.10)

The Leontief model is used for forecasting. Three types of forecasts can be distin-
guished:

• first type forecast: When X or ΔX are given, using formula (9.7) or (9.9) vector
d or Δd can be determined.

• second type forecast:When d orΔd are given, using formula (9.8) or (9.10) vector
X or ΔX can be determined.

• mixed forecast: When complementary elements of X and d or ΔX and Δd are
given, using the Leontief model in the form (9.7) or (9.9) the remaining elements
of X and d or ΔX and Δd can be determined.

9.3 Example of Application of OFNs in the Leontief Model

The nature of the input-output analysis makes it possible to analyze an economy as
an interconnected system of sectors that directly and indirectly affect one another.
The Leontief model can be used, among others, to analyze how changes in the pro-
duction level of different sectors affect changes in the final demand. More precisely,
this model can be used to determine the final demand when production levels of
different sectors are known, using the formula (9.7) or to analyze how changes in
the production level of different sectors affect changes in the final demand, using the
formula (9.9).

The use of OFNs allows us simultaneously to take into account the formulas (9.7)
and (9.9). For this purpose, the triangular OFNs of the form X = ( fX (0), fX (1),
gX (1), gX (0)), where fX (1) = gX (1), is used with the following interpretation. The
real number fX (0) denotes the current production level, whereas the real number
gX (0) denotes the forecasted production level. Then the orientation of the OFN
informs us about the direction of a change, that is, it describes the economic situation
of the sector. More precisely, if fX (0) < gX (0) then the expected economic situation
of the sector is good and the production level of the sector increases. Otherwise, that
is, when fX (0) > gX (0) then the economic situation of the sector deteriorates and
the production level is reduced. When fX (0) = gX (0) then there are no economic
reasons to change the production level.

Let us consider a hypothetical economy consisting of only three sectors. The
input-output table of this economy is presented in Table9.2.

Using formula (9.2), the matrix A of the technological coefficients can be calcu-
lated and takes the form

A =
⎛

⎝
0.1 0.2 0.1
0.2 0.4 0.2
0.3 0.1 0.4

⎞

⎠ .
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Table 9.2 The input-output table of a hypothetical economy

sector 1 2 3 Xi di

1 140 320 180 1400 760

2 280 640 360 1600 320

3 420 160 720 1800 500

The Leontief matrix (I − A) that allows calculating the final demand of the economy
takes the form

I − A =
⎛

⎝
0.9 −0.2 −0.1

−0.2 0.6 −0.2
−0.3 −0.1 0.6

⎞

⎠ .

We consider how changes in the production level of different sectors affect changes
in the final demand of each sector. For the particular sector, depending on the eco-
nomic situation, three cases are analyzed: no change, and increase or decrease of the
production level. Obtained results are presented in Tables9.3 and 9.4, where X is
the production vector, d is the final demand vector, ΔX is the change of production
level vector (i.e., fX (0) − gX (0) where the sign determines the direction of change
((+) increase and (−) decrease), and Δd is the change of the final demand vector
(i.e., fd(0) − gd(0) where the sign determines the direction of change ((+) increase
and (−) decrease).

Let us consider line 1 of Table9.3. It shows the economy is stable and there
are no causes influencing changes in the production level. The production level of
each sector in the current Xc and forecasted X f periods are the same and equal to
Xc = X f = (1400 1600 1800)T . It means that there are no causes to change the
final demand level and in the current dc and forecasted d f periods it is equal to
dc = d f = (760 320 500)T .

Line 2 of Table9.3 shows the situation in which the first sector has a good eco-
nomic situation and intends to increase the production level from 1400 to 1500,
whereas the other sectors have a stable situation and their production levels do not
change. The use of OFNs in the Leontief model allows us to compute, for the cur-
rent production level equal to Xc = (1400 1600 1800)T , the final demand equal to
dc = (760 320 500)T . These numbers also allow us to compute the final demand
equal to d f = (850 300 470)T after increasing the production level of the first
sector equal to X f = (1500 1600 1800)T . This means the increase of the produc-
tion level of the first sector of 100 units and the unchanged production level of
other sectors (described by the vector ΔX = (100 0 0)T ) cause changes in the
final demand from dc = (760 320 500)T to d f = (850 300 470)T (described by
the vector Δd = (90 − 20 − 30)T ). Changes in the final demands of the sectors
result from the following facts.

• Increasing the production level of the first sector and the unchanged production
level of other sectors causes the increase of the final demand of the first sector.
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Table 9.3 Production vector X described by OFNs and the calculated final demand vector d and
the change vectors ΔX and Δd

No. X d ΔX Δd

1.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1600, 1600, 1600)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 760, 760, 760)

(320, 320, 320, 320)

(500, 500, 500, 500)

⎞

⎟
⎠

⎛

⎜
⎝

0

0

0

⎞

⎟
⎠

⎛

⎜
⎝

0

0

0

⎞

⎟
⎠

2.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1600, 1600, 1600)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 805, 805, 850)

(320, 310, 310, 300)

(500, 485, 485, 470)

⎞

⎟
⎠

⎛

⎜
⎝

100

0

0

⎞

⎟
⎠

⎛

⎜
⎝

90

−20

−30

⎞

⎟
⎠

3.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1600, 1600, 1600)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 715, 715, 670)

(320, 330, 330, 340)

(500, 515, 515, 530)

⎞

⎟
⎠

⎛

⎜
⎝

−100

0

0

⎞

⎟
⎠

⎛

⎜
⎝

−90

20

30

⎞

⎟
⎠

4.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1650, 1650, 1700)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 750, 750, 740)

(320, 350, 350, 380)

(500, 495, 495, 490)

⎞

⎟
⎠

⎛

⎜
⎝

0

100

0

⎞

⎟
⎠

⎛

⎜
⎝

−20

60

−10

⎞

⎟
⎠

5.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1550, 1550, 1500)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 770, 770, 780)

(320, 290, 290, 260)

(500, 505, 505, 510)

⎞

⎟
⎠

⎛

⎜
⎝

0

−100

0

⎞

⎟
⎠

⎛

⎜
⎝

20

−60

10

⎞

⎟
⎠

6.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1600, 1600, 1600)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 755, 755, 750)

(320, 310, 310, 300)

(500, 530, 530, 560)

⎞

⎟
⎠

⎛

⎜
⎝

0

0

100

⎞

⎟
⎠

⎛

⎜
⎝

−10

−20

60

⎞

⎟
⎠

7.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1600, 1600, 1600)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 765, 765, 770)

(320, 330, 330, 340)

(500, 470, 470, 440)

⎞

⎟
⎠

⎛

⎜
⎝

0

0

−100

⎞

⎟
⎠

⎛

⎜
⎝

10

20

−60

⎞

⎟
⎠

8.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1650, 1650, 1700)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 795, 795, 830)

(320, 340, 340, 360)

(500, 480, 480, 460)

⎞

⎟
⎠

⎛

⎜
⎝

100

100

0

⎞

⎟
⎠

⎛

⎜
⎝

70

40

−40

⎞

⎟
⎠

9.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1550, 1550, 1500)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 815, 815, 870)

(320, 280, 280, 240)

(500, 490, 490, 480)

⎞

⎟
⎠

⎛

⎜
⎝

100

−100

0

⎞

⎟
⎠

⎛

⎜
⎝

110

−80

−20

⎞

⎟
⎠

10.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1650, 1650, 1700)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 705, 705, 650)

(320, 360, 360, 400)

(500, 510, 510, 520)

⎞

⎟
⎠

⎛

⎜
⎝

−100

100

0

⎞

⎟
⎠

⎛

⎜
⎝

−110

80

20

⎞

⎟
⎠

11.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1550, 1550, 1500)

(1800, 1800, 1800, 1800)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 725, 725, 690)

(320, 300, 300, 280)

(500, 520, 520, 540)

⎞

⎟
⎠

⎛

⎜
⎝

−100

−100

0

⎞

⎟
⎠

⎛

⎜
⎝

−70

−40

40

⎞

⎟
⎠

12.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1600, 1600, 1600)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 800, 800, 840)

(320, 300, 300, 280)

(500, 515, 515, 530)

⎞

⎟
⎠

⎛

⎜
⎝

100

0

100

⎞

⎟
⎠

⎛

⎜
⎝

80

−40

30

⎞

⎟
⎠

13.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1600, 1600, 1600)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 810, 810, 860)

(320, 320, 320, 320)

(500, 455, 455, 410)

⎞

⎟
⎠

⎛

⎜
⎝

100

0

−100

⎞

⎟
⎠

⎛

⎜
⎝

100

0

−90

⎞

⎟
⎠

14.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1600, 1600, 1600)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 720, 720, 680)

(320, 340, 340, 360)

(500, 485, 485, 470)

⎞

⎟
⎠

⎛

⎜
⎝

−100

0

−100

⎞

⎟
⎠

⎛

⎜
⎝

−80

40

−30

⎞

⎟
⎠



9 Input-Output Model Based on Ordered Fuzzy Numbers 179

Table 9.4 Production vector X described by OFNs and the calculated final demand vector d and
the change vectors ΔX and Δd

No. X d ΔX Δd

1.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1600, 1600, 1600)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 710, 710, 660)

(320, 320, 320, 320)

(500, 545, 545, 590)

⎞

⎟
⎠

⎛

⎜
⎝

−100

0

100

⎞

⎟
⎠

⎛

⎜
⎝

−100

0

90

⎞

⎟
⎠

2.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1650, 1650, 1700)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 745, 745, 730)

(320, 340, 340, 360)

(500, 525, 525, 550)

⎞

⎟
⎠

⎛

⎜
⎝

0

100

100

⎞

⎟
⎠

⎛

⎜
⎝

−30

40

50

⎞

⎟
⎠

3.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1650, 1650, 1700)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 755, 755, 750)

(320, 360, 360, 400)

(500, 465, 465, 430)

⎞

⎟
⎠

⎛

⎜
⎝

0

100

−100

⎞

⎟
⎠

⎛

⎜
⎝

−10

80

−70

⎞

⎟
⎠

4.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1550, 1550, 1500)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 765, 765, 770)

(320, 280, 280, 240)

(500, 535, 535, 570)

⎞

⎟
⎠

⎛

⎜
⎝

0

−100

100

⎞

⎟
⎠

⎛

⎜
⎝

10

−80

70

⎞

⎟
⎠

5.

⎛

⎜
⎝

(1400, 1400, 1400, 1400)

(1600, 1550, 1550, 1500)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 775, 775, 790)

(320, 300, 300, 280)

(500, 475, 475, 450)

⎞

⎟
⎠

⎛

⎜
⎝

0

−100

−100

⎞

⎟
⎠

⎛

⎜
⎝

30

−40

−50

⎞

⎟
⎠

6.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1650, 1650, 1700)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 790, 790, 820)

(320, 330, 330, 340)

(500, 510, 510, 520)

⎞

⎟
⎠

⎛

⎜
⎝

100

100

100

⎞

⎟
⎠

⎛

⎜
⎝

60

20

20

⎞

⎟
⎠

7.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1650, 1650, 1700)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 800, 800, 840)

(320, 350, 350, 380)

(500, 450, 450, 400)

⎞

⎟
⎠

⎛

⎜
⎝

100

100

−100

⎞

⎟
⎠

⎛

⎜
⎝

80

60

−100

⎞

⎟
⎠

8.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1550, 1550, 1500)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 810, 810, 860)

(320, 270, 270, 220)

(500, 520, 520, 540)

⎞

⎟
⎠

⎛

⎜
⎝

100

−100

100

⎞

⎟
⎠

⎛

⎜
⎝

100

−100

40

⎞

⎟
⎠

9.

⎛

⎜
⎝

(1400, 1450, 1450, 1500)

(1600, 1550, 1550, 1500)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 820, 820, 880)

(320, 290, 290, 260)

(500, 460, 460, 420)

⎞

⎟
⎠

⎛

⎜
⎝

100

−100

−100

⎞

⎟
⎠

⎛

⎜
⎝

120

−60

−80

⎞

⎟
⎠

10.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1650, 1650, 1700)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 700, 700, 640)

(320, 350, 350, 380)

(500, 540, 540, 580)

⎞

⎟
⎠

⎛

⎜
⎝

−100

100

100

⎞

⎟
⎠

⎛

⎜
⎝

−120

60

80

⎞

⎟
⎠

11.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1650, 1650, 1700)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 710, 710, 660)

(320, 370, 370, 420)

(500, 480, 480, 460)

⎞

⎟
⎠

⎛

⎜
⎝

−100

100

−100

⎞

⎟
⎠

⎛

⎜
⎝

−100

100

−40

⎞

⎟
⎠

12.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1550, 1550, 1500)

(1800, 1850, 1850, 1900)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 720, 720, 680)

(320, 290, 290, 260)

(500, 550, 550, 600)

⎞

⎟
⎠

⎛

⎜
⎝

−100

−100

100

⎞

⎟
⎠

⎛

⎜
⎝

−80

−60

100

⎞

⎟
⎠

13.

⎛

⎜
⎝

(1400, 1350, 1350, 1300)

(1600, 1550, 1550, 1500)

(1800, 1750, 1750, 1700)

⎞

⎟
⎠

⎛

⎜
⎝

(760, 730, 730, 700)

(320, 310, 310, 300)

(500, 490, 490, 480)

⎞

⎟
⎠

⎛

⎜
⎝

−100

−100

−100

⎞

⎟
⎠

⎛

⎜
⎝

−60

−20

−20

⎞

⎟
⎠
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• On the other hand, other sectors, in response to the increasing demand of the first
sector, transfer to the first sector a greater amount of their production, which causes
a decrease in their final demand.

Line 3 of Table9.3 shows the situation in which the first sector has a bad economic
situation and intends to decrease the production level from 1400 to 1300, whereas
other sectors have a stable situation and their production levels do not change. In this
situation, the results are symmetrical (opposite) to those shown in line 2 of Table9.3.

Lines 4–7 of Table9.3 show the situation inwhich any sector (second or third one),
under the influence of the economic situation, changes the production level, whereas
the production levels of other sectors are not changed. Economic interpretation of
the situation of the hypothetical economy is analogous to that presented above.

Now, let us compare the state of the economy presented in lines 2 and 8 of
Table9.3. In line 8, in comparison to line 2, the second sector also has a good
economic situation and intends to increase the production level from 1600 to 1700.
In this situation, for the current production level equal to Xc = (1400 1600 1800)T

the final demand, equal to dc = (760 320 500)T can be computed. Moreover the
final demand, equal to d f = (830 360 460)T after increasing the production level
of the first and second sectors of 100 units is determined. These results mean that
the increase of the production level of the first and second sectors of 100 units
and the unchanged production of the third sector (described by the vector ΔX =
(100 100 0)T ) cause changes in the final demand from dc = (760 320 500)T to
d f = (830 360 460)T (described by the vector Δd = (70 40 − 40)T ). Changes
in the final demands of the sectors result from the following facts (in comparison to
line 2).

• Increasing the production level in the first and second sectors and the unchanged
production level of the third sector causes the increase of the final demand in the
first and second sectors.

• The final demand in the first sector is smaller (in comparison to line 2) because part
of the production level of the first sector, instead of the final demand, is transferred
for the increase of the production level of the second sector.

• The final demand of the second sector, which decreased in line 2, increases because
of the increase of the production level of the second sector.

• The final demand in the third sector is smaller (in comparison to line 2) because a
greater part of the production level of the third sector, instead of the final demand,
is transferred to the increasing production level of the first and second sectors.

Lines 9–14 of Table9.3 and lines 1–13 of Table9.4 present situations in which the
production level of sectors of the economy increases, decreases, or remains unchanged,
and how it affects the final demand of these sectors. These lines show and allow us to
observe the current and future final demands of the sectors and how the final demands
change as a result of changes in the production levels of the sectors.

A similar analysis can be carried out knowing the final demand vector d (or Δd)
and calculating the production levels of the sectors X (or ΔX ) of the economy using
matrix
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(I − A)−1 =
⎛

⎝
1.36 0.52 0.40
0.72 2.04 0.80
0.80 0.60 2.00

⎞

⎠

and formulas (9.8) and (9.10).

9.4 Conclusions

The chapter presented the concept of an application of Ordered Fuzzy Numbers in an
economicalmodel, called the Leontiefmodel. These numbers also allow us to present
more information than real numbers. It is shown, based on the Leontief model, where
OFNs simultaneously described the current levels, forecast levels, and the levels of
change, both with regard to the final demand and the production level. It makes the
OFNs model a very useful tool for mathematical modeling in economics.
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Chapter 10
Ordered Fuzzy Candlesticks

Adam Marszałek and Tadeusz Burczyński

Abstract The purpose of this chapter is to present how Ordered Fuzzy Numbers
(OFNs) can be used with financial high-frequency time series. Considering this
approach the financial data are modeled using OFNs called further ordered fuzzy
candlesticks. Their use allows modeling uncertainty associated with financial data
and maintaining more information about price movement at an assumed time inter-
val than compared to commonly used price charts (e.g., Japanese Candlestick chart).
Furthermore, in a simple way, it is possible to include the information about volume
and the bid-ask spread. Thanks to the well-defined arithmetic of OFNs, one can be
used in technical analysis or to construct models of fuzzy time series in the form
of classical equations. Examples of an ordered fuzzy moving average indicator and
ordered fuzzy autoregressive process are presented.

10.1 Introduction

High-frequency financial data are observations on financial variables such as quota-
tions of shares, futures, or currency pairs, quoted daily or at a finer timescale. Data
containing themost complete knowledge about quotations of the financial instrument
are prices corresponding to each single transaction made on this instrument. They
are at the same time the data of the highest possible frequency called ultra-high-
frequency data or simply tick-by-tick data.

High-frequency financial data possess unique features absent in data measured
at lower frequencies, and analysis of these data poses interesting and unique
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challenges to econometric modeling and statistical analysis [16]. Analysis of tick-
by-tick data is very difficult, among others, due to the very large number of observa-
tions, irregular spacing between observations, occurrence price patterns, and long-
lived dependencies. For various reasons, high-frequency data may contain erroneous
observations, data gaps, and even disordered sequences. Moreover, Lo and Mackin-
lay consider that the financial market is a complex, nonstationary, noisy, chaotic, and
dynamic system but it does not follow a random walk [7]. The main reason is that
a huge amount of information is reflected in the financial market. The main factors
include an economic condition, political situation, traders’ expectations, catastro-
phes, and other unexpected events. Thus one can conclude that stock market data
should be considered in the framework of uncertainties.

Making investment decisions based on observation of each single quotation is
very difficult or even impossible. Therefore a large part of investors very often use
price chart analysis tomakedecisions.Theprice charts (e.g., the JapaneseCandlestick
chart) are used to illustratemovements in the price of a financial instrument over time.
Note that in using the price chart, a large part of the information about the process is
lost; for example, using the Japanese Candlestick chart with daily frequency, for one
day, we know only four prices (i.e., open, low, high, and close), while in this time the
price has changed hundreds of times. In spite of this, Japanese Candlestick charting
techniques are very popular among traders and allow for achievingmore than average
profits. More details about the Japanese Candlesticks and trading techniques based
on them can be found in [12].

In our previous papers [8–10] we showed how we can use fuzzy logic, that is,
Ordered Fuzzy Numbers (OFNs) defined in Chap. 4 (see also [1–3, 5, 13, 14]), to
model uncertainty associated with financial data and to keep more information about
price movement. The idea, construction methods, and an example of an application
of ordered Fuzzy Candlesticks are specifically recalled in this work. In addition some
new concepts are also presented.

10.2 Ordered Fuzzy Candlesticks

Generally, in our approach, a fixed time interval of financial high frequency data is
identified with Ordered Fuzzy Numbers and it is called ordered Fuzzy Candlestick
(OFC). The general idea is presented in Fig. 10.1. Note that the orientation of the
OFN shows whether the ordered Fuzzy Candlestick is long or short. Information
about movements in the price are contained in the shape of the f and g functions. In
this sense, functions f and g do not depend directly on the variable tick but depend
on the relationship between the parameters A and B. In the following sections the
details of constructing the ordered Fuzzy Candlestick are presented.

Previous works listed two cases of construction of ordered Fuzzy Candlesticks.
The first assumes that the functions f and g are functions of predetermined type;
moreover, the shapes of these functions should depend on two parameters (e.g.,

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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Fig. 10.1 Draft of general concept of ordered Fuzzy Candlestick

linear). Then the ordered Fuzzy Candlestick for a given time series can be defined
as follows.

Definition 1 Let {Xt : t ∈ T } be a given time series and T = {1, 2, . . . , n}. The
ordered Fuzzy Candlestick is defined as an OFN C = ( f, g) that satisfies the follow-
ing conditions 1–4 (for a long candlestick) or 1′–4′ (for a short candlestick).

1. X1 ≤ Xn .
2. f : [0, 1] → R is continuous and increasing on [0, 1].
3. g : [0, 1] → R is continuous and decreasing on [0, 1].
4. S1 < S2, f (1) = S1, f (0) = min

t∈T Xt − C1, g(1) = S2 and g(0) is such that the

ratios
Fg

A
and

Ff

B
are equal.

1′. X1 > Xn .
2′. f : [0, 1] → R is continuous and decreasing on [0, 1].
3′. g : [0, 1] → R is continuous and increasing on [0, 1].
4′. S1 < S2, f (1) = S2, f (0) = max

t∈T Xt + C2, g(1) = S1 and g(0) is such that

the ratios
Ff

A
and

Fg

B
are equal.

In the above conditions the ordered Fuzzy Candlestick center (i.e., added interval)
is designated by parameters S1, S2 ∈ [mint∈T Xt ,maxt∈T Xt ] and can be computed
as different kinds of averages (e.g., arithmetic, weighted, or exponential). C1 and
C2 are arbitrary nonnegative real numbers that further extend the support of fuzzy
numbers and can be computed, for example, as the standard deviation or volatility of
Xt . The parameters A and B are positive real numbers that determine the relationship
between the functions f and g. They can be calculated as the mass of the desired area
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with the assumed density (see Fig. 10.1). Numbers Ff and Fg are the fields under
the graph of functions f −1 and g−1, respectively.

Example 1 Trapezoid OFC
Suppose that f and g are linear functions in the form:

f (x) = (
b f − a f

)
x + a f and g(x) = (

bg − ag
)
x + ag (10.1)

then the ordered Fuzzy CandlestickC = ( f, g) is called a trapezoid OFC, especially
if S1 = S2 where it can also be called a triangular OFC.

Example 2 Gaussian OFC
The ordered Fuzzy Candlestick C = ( f, g) where the membership relation has
a shape similar to the Gaussian function is called a Gaussian OFC. It means that f
and g are given by functions:

f (x) = f (z) = σ f

√−2 ln(z) + m f and g(x) = g(z) = σg

√−2 ln(z) + mg

(10.2)

where, for example, z = 0.99x + 0.01.

The procedure of determining the parameters of the function f and g is shown
in Algorithm 1 and the examples of realizations of trapezoid and Gaussian ordered
Fuzzy Candlesticks are presented in Fig. 10.2.

Algorithm 1: Calculations of Trapezoid and Gaussian OFC

1: read time series Xt for t = 0, 1, . . . , T
2: for Xt compute values of min Xt , max Xt , S1, S2, C1, C2, A, and B
3: if X0 ≤ XT then
4: a f = min Xt − C1 m f = S1
5: b f = S1 σ f = min Xt−C1−S1√−2 ln(0.01)
6: f (x) = (b f − a f )x + a f f (z) = σ f

√−2 ln(z) + m f

7: ag = A
B (S1 − min Xt + C1) + S2 mg = S2

8: bg = S2 σg = − A
B σ f

9: g(x) = (bg − ag)x + ag g(z) = σg
√−2 ln(z) + mg

10: else
11: a f = max Xt + C2 m f = S2
12: b f = S2 σ f = max Xt+C1−S2√−2 ln(0.01)
13: f (x) = (b f − a f )x + a f f (z) = σ f

√−2 ln(z) + m f

14: ag = B
A (S2 − max Xt − C2) + S1 mg = S1

15: bg = S1 σg = − B
A σ f

16: g(x) = (bg − ag)x + ag g(z) = σg
√−2 ln(z) + mg

17: end if-else
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Fig. 10.2 Examples of trapezoid and Gaussian OFC

The second case of construction of ordered Fuzzy Candlesticks assumes that the
functions f and g are defined in a similar way to the empirical distribution in the
statistical sciences and called an empirical OFC. The calculation procedure of an
empirical OFC is shown in Algorithm 2, whereas the example of realizations is
presented in Fig. 10.3.

Algorithm 2: Calculations of Empirical OFC

1: read time series Xt for t = 0, 1, . . . , T
2: for Xt compute values of S1, S2, C1 and C2
3: sorting in ascending data Xt
4: Yt := sort (Xt )

5: divide data Yt into two subsets
6: Y (1)

t := {Yi : Y0 ≤ Yi ≤ S1} ∪ {Y0 − C1}
7: Y (2)

t := {Yi : S2 ≤ Yi ≤ YT } ∪ {YT + C2}
8: compute empirical cumulative distribution functions

CDF1 and CDF2 associated with Y
(1)
t and Y (2)

t , respectively
9: if X0 ≤ XT then
10: f is approximation of function

{
CDF1

∣
∣[Y0−C1,S1]

}−1

11: g is approximation of function
{
(1 − CDF2)

∣∣[S2,YT +C2]
}−1

12: else
13: f is approximation of function

{
CDF1

∣∣[Y0−C1,S1]
}−1

14: g is approximation of function
{
(1 − CDF2)

∣
∣[S2,YT +C2]

}−1

15: end if-else



188 A. Marszałek and T. Burczyński

Fig. 10.3 Example of empirical OFC

10.3 Volume and Spread

10.3.1 Volume

In technical analysis the prices are by far the most important. However, another piece
of important information about price movement is volume. Volume is the number of
entities traded during the time period under study. It is used to confirm trends and
chart patterns. Any price movement up or down with relatively high volume is seen
as a stronger, more relevant move than a similar move with weak volume [11].

In the case of ordered Fuzzy Candlesticks, adding extra information about volume
is very easy, enough to calculate the parameters A and B using the density associated
with volume or for empirical OFC, and enough to calculate the empirical distribution
using prices repeated by volume times. The example of ordered Fuzzy Candlesticks
without and with volume information are presented in Fig. 10.4.

10.3.2 Spread

A spread (bid-ask spread) is simply defined as the price difference between the
highest price that a buyer is willing to pay (bid price) for an asset and the lowest
price that a seller is willing to accept to sell it (ask price). It is important to remember
that spreads are variable, meaning they will not always remain the same and will
change sporadically. These changes are based on liquidity, which may differ based
on market conditions and upcoming economic data. In an over-the-counter market,
dealers act as market makers by quoting prices at which they will buy and sell a
security or currency. In this case, the spread represents the potential profit that the
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Fig. 10.4 Example of Gaussian OFC without and with volume information

Fig. 10.5 Example of Gaussian OFC without and with spread information

market maker can make from this activity, and it’s meant to compensate it for the
risk of market making. On the other hand, it is a cost for traders.

In the case of ordered Fuzzy Candlesticks, it is possible to add extra information
about the bid-ask spread by calculating the parameters S1, C1 and S2, C2, using the
bid price and ask price, respectively. The examples of ordered Fuzzy Candlesticks
without and with spread information are presented in Fig. 10.5.
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Fig. 10.6 The daily Japanese Candlestick chart of the dataset with realization of a classical and
ordered fuzzy simple moving average

10.4 Ordered Fuzzy Candlesticks in Technical Analysis

10.4.1 Ordered Fuzzy Technical Analysis Indicators

Ordered FuzzyCandlesticks areOrdered FuzzyNumbers, hence, thanks to theirwell-
defined arithmetic [1, 4, 13] can be used to construct a fuzzy version of technical
analysis indicators such as the simple moving average.

The classical simple moving average (SMA) with order s at a time period t is
given by formula

SMAt (s) = 1

s
(Xt + Xt−1 + · · · + Xt−s+1) (10.3)

where Xt is the observation (real) at a time period t (e.g., closing prices).
Now, the ordered fuzzy simple moving average (OFSMA) with order s at a time

period t is also given by formula (10.3) but the observations Xt are OFC at a time
period t . Figure10.6 shows the results of realization of classical (line with xcross
symbol) and ordered fuzzy (triangle symbols) simple moving average with order
equal to 14 for the dataset covering the period of 80days from 02-03-2016 till 02-06-
2016 of quotations of EUR/PLN. Figure10.6 also shows the ordered fuzzy simple
moving average defuzzification by the center of gravity operator (line with circle
symbol). In technical analysis the moving average indicator usually is used to define
the current trend.Notice that the ordered fuzzymoving averagedetermines the current
trend by orientation of the ordered Fuzzy Candlesticks: if orientation is positive then
then the trend is long, else the trend is short. The process of fuzzification of the other
technical indicators can be done by analogy.
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Fig. 10.7 Empirical ordered Fuzzy Candlesticks as technical indicator

10.4.2 Ordered Fuzzy Candlestick as Technical Analysis
Indicator

The method of construction of ordered Fuzzy Candlesticks can be used directly as a
technical analysis indicator by doing the calculation of OFC over a moving window
of observations (ticks). The size of the window can be defined as the number of
observations (e.g., last 100 ticks) or the time (e.g., last 10min). Figure10.7 shows
the results of realization of empirical ordered Fuzzy Candlesticks as a technical
indicator with window size equal to 15min for the dataset covering the period of 1
hour from 3 PM till 4 PM of 02-06-2016 of quotations of EUR/PLN.

Indicators are used as a secondary measure to the actual price movements and add
additional information to the analysis of securities. Indicators are used in two main
ways: to confirm price movement and the quality of chart patterns, and to form buy
and sell signals. The most common type of indicators is called oscillators and they
fall in a bounded range. Oscillator indicators have a range, for example, between zero
and 100, and signal periods where the security is overbought (near 100) or oversold
(near zero). In a simple way the indicator based on ordered Fuzzy Candlesticks can
be presented in the form of an oscillator by applying normalization. An example
of empirical ordered Fuzzy Candlesticks as an oscillator indicator is presented in
Fig. 10.8.

10.5 Ordered Fuzzy Time Series Models

Thanks to the well-defined arithmetic of OFNs, it is possible to construct models
of fuzzy time series, such as an autoregressive process (AR), where all input values
are OFC, and the coefficients and output values are arbitrary OFNs, in the form of
classical equations, without using rule-based systems.
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Fig. 10.8 Empirical ordered Fuzzy Candlesticks as oscillator indicator

The classical autoregressive model (AR(p)) is one where the current value of
a variable, depends only upon the values that the variable took in previous periods
plus an error term [15]. In the presented approach, an ordered fuzzy autoregressive
model of order p, denoted OFAR(p), in a natural way is fully fuzzy AR(p) and can
be expressed as

Xt = α0 +
p∑

i=1

αi X t−i + εt (10.4)

where Xt−i are the ordered Fuzzy Candlesticks at a time period t , αi are fuzzy
coefficients given by arbitrary OFNs, and εt is an error term.

Estimation of OFAR(p) Model

The least squares method is proposed for the estimation of fuzzy parameters
αi = ( fαi , gαi ) in the OFAR(p) model and one is defined using a distance measure.
The measure of the distance between two OFNs is expressed by the formula:

d(A, B) = d (( f A, gA), ( fB, gB)) = ‖ f A − fB‖L2 + ‖gA − gB‖L2 (10.5)

where ‖ · ‖ is a metric induced by the L2-norm. Hence, the least squares method for
OFAR(p) is to minimize the following objective function,

E =
∑

t

d

(

Xt , α0 +
p∑

i=1

αi X t−i

)

(10.6)

Forecasting Using the OFAR(p) Model

Forecasts of the OFAR(p) model are obtained recursively in a similar way as for
the classical AR(p) model. Let t be the starting point for forecasting. Then, the
one-step-ahead forecast for Xt+1 is
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X̂ t+1 = α0 +
p∑

i=1

αi X t+1−i . (10.7)

The result of the forecast is an Ordered FuzzyNumber, which includes three kinds
of predictions:

• Point forecast: Given by the value of a defuzzification operator (for defuzzification
operators see [2, 6])

• Interval forecast: Given by the subset of support of the OFN in its classical
meaning

• Direction forecast: Given by orientation of the OFN.

10.6 Conclusion and Future Works

In this chapter, the representation of financial data using the concept of the ordered
Fuzzy Candlestick is described. The ordered Fuzzy Candlestick holds more infor-
mation about the prices than the classical Japanese Candlestick. Moreover, it is also
possible to include information about the volume and spread. Based on well-defined
arithmetic of Ordered Fuzzy Numbers, the proposed approach enables us to build the
technical analysis indicators and the fuzzy financial time series models in the simple
form of classical equations. It allows reducing the size ofmodels compared tomodels
based on fuzzy-rule-based systems. For future work, our approach can be extended
by adding the concept of fuzzy random variables, which can allow for the simulation
of models and their application in many other areas of financial engineering.
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1. Kosiński, W.: On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 16(1), 51–57 (2006)
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Chapter 11
Detecting Nasdaq Composite Index Trends
with OFNs

Hubert Zarzycki, Jacek M. Czerniak and Wojciech T. Dobrosielski

Abstract The chapter presents a novel way of describing changes in the stock index
and the identification of potential trends. The authors already used a similar approach
to describe the stock exchange index [16]; this chapter is a continuation and another
application of work on this issue. The method for detecting patterns in a trend by
means of linguistic variables is described. The use of computational operations on
numbers in the Ordered Fuzzy Number (OFN) notation [40–42] enables us to set
the values of linguistic variables and thus conduct fuzzification of the input. By
using one OFN number it is possible to store five parameters of index quotations
(open, high, low, and close values as well as a change direction). The OFN numbers
are conveyed into a linguistic form. In order to find trend sequence similarity the
following applies: sequence identity with the input frame expressed as a percentage,
frame size, the level of threshold conformity with the frame (threshold), and how
often the pattern is present (frequency). A dedicated computer program to detect
patterns is implemented. The program used data from the index Nasdaq Composite
from the years 2006-2016. The results represent a further step to develop effective
methods of rule-based forecasting.
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11.1 Introduction

In comparison to existing methods, more accurate forecasting methods can be
obtained using a rule-based forecasting (RBF), a technique combining data extrapo-
lation [7, 13, 14, 25, 26, 43–45], time series [28, 29, 44, 45], and elements of expert
systems [5–7, 22, 23, 34, 37, 46]. The four most important methods of extrapolation
were used: linear regression, random walk, and Brown’s exponential smoothing, as
well as Holt’s exponential smoothing. In order to create rules some information from
the literature, surveys, and knowledge of several experts was adapted [17, 19–21,
36, 38, 39]. The rules were calibrated using 80 time series. In contrast, the validation
needed another 40 series. In the opinion of the authors, RBF has been successfully
applied by combining domain expertise with statistical methods. This has been con-
firmed by many studies in the recent literature, where rule-based forecasting is a
fast-growing technology. It is worth mentioning a few examples from a very com-
prehensive literature such as M. Adya, J.S. Armstrong, and F. Collopy [1–3, 8, 9],
who publish in the International Journal of Forecasting, a magazine that inspires
other authors associated with the RBF methods. In this chapter time series of index
data were preliminarily fuzzified [30, 33] to check the proposed methods of detect-
ing trends [18]. Trends identified in the sequence of literals are then used to develop
trend prediction rules. Therefore fuzzy logic [12, 13, 16, 35] was used to develop
linguistic data input. Data for the study were quotations of the Nasdaq Composite
index from the years 2006–2016. Figure11.1 shows the data in an illustrative man-
ner. Table11.1 contains Nasdaq index data for a single trading day. Daily data are:
opening, maximum, minimum, and closing values as well as the percentage change

Fig. 11.1 NASDAQ Composite index quotations from 2006 to 2016
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Table 11.1 Selected historical NASDAQ Composite index. The dataset covers the time period
from November 1, 2016 to November 30, 2016

as compared to the day before. These five values are replaced by the linguistic values.
Table11.1 shows both the linguistic values and index quotations.

11.2 Application of OFN Notation for the Fuzzy
Observation of NASDAQ Composite

Data from November this year for the NASDAQ Composite are presented in
Table 11.1. Quotations are given in a widely used format for this type of time series.
Subsequent letters of the alphabet represent values for consecutive trading days.
Figure 11.2 shows an OHLC (open, high, low, close) chart of the Nasdaq Composite
index for one month. The graph shows the following attributes for each of the daily
quotations: opening, closing, highest, and lowest value. These attributes, along with
the change parameter are shown in Table 11.1. In addition, decrease in quotation is
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Fig. 11.2 Nasdaq Composite OHLC chart for the period of November 1, 2016 to November 30,
2016 (based on www.stockcharts.com).

Table 11.2 Characteristic points

Ordered OFN number f0 f1 g1 g0 OFN number
orientation

Nasdaq Composite Index Open High Low Close Change

marked in red and increase is marked in black. Positions A, B, and C in Fig. 11.2
show a decrease in quotations on specified days. Another four quotations-D, E, F,
G-show an increase in the value of the Nasdaq Composite. A very large spread
between the minimum and maximum value, and between the opening and closing
are on H; these are decreasing quotations. This is followed by increases to date S
with only two days of drops (J andN) in the range. Point P is interesting, because the
opening value is virtually level with the closing value, despite some fluctuations of
the Nasdaq Composite value during the trading day. It is essential that P be located
near the top of the local peak. Then visualizations T and W demonstrate declines
from the local peak. As the chart above may not be unambiguous in terms of the
trend interpretation the authors introduce the logic of Ordered Fuzzy Numbers [14,
24, 30] in order to interpret the quotations. Table11.2 shows the OFN characteristic
points with the Nasdaq Composite quotation parameters as listed in Table 11.2.

Figure11.4 is an OHLC chart with Nasdaq index parameters. In the considered
single day there has been an increase in quotations. The translation of data from
Fig. 11.4 on the OFN is presented in Table11.3. The resulting fuzzy number is inter-
preted graphically in Fig. 11.3. The arrow of fuzzy numbers is directed towards

www.stockcharts.com
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Table 11.3 Example of positively directed OFN number for the Nasdaq index

OFN number f(0) f(1) g(1) g(0) OFN number
positive
orientation

Nasdaq Composite Index Open High Low Close Change (positive
value)

Fig. 11.3 Graphically displayed positively directed OFN number and its characteristic points as
used for the Nasdaq Composite

Fig. 11.4 Graphically displayed change parameter positive value as used in the Nasdaq Composite
OHLC chart

increasing values symbolizing the positive direction of the OFN and reflecting an
increase in the quotations.

Figure11.5 shows the fuzzy number stretched on the same values as in Fig. 11.3.
However, the direction of the OFN here is the opposite. Chart 2.6 depicts the decrease
in quotations for a single day of trading. It should be noted that the equivalent of the
index’s downward movement is a negative direction of the OFN (Fig. 11.6).
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Fig. 11.5 Graphically displayed negatively directed OFN and its characteristic points as used for
the Nasdaq Composite

Fig. 11.6 Graphically displayed change parameter negative value as used in the Nasdaq Composite
OHLC chart

11.3 Ordered Fuzzy Number Formulas

Nasdaq Composite index values R1 ÷ Rm relate to a single trading day. Fuzzy obser-
vation in OFN notation is performed on a set of R. The observation is for one depen-
dent and four independent attributes. For each day the number Ri ∈ {R1 ÷ Rm} is
created of the four required values. Symbols of time are, respectively, ti , the day of
the measurement, whereas tOPEN , tM I N , ttM AX i tCLOSE are, respectively, quotations
of opening, minimum, maximum, and close value (Table11.4).

Definition 1 On a given day ti , the set forming fuzzy observation of the Nasdaq
Composite index, is provided as

R/ti ∈ {R(0)/tOPEN , R
(1)/tM I N , R

(1)/tM AX , R
(0)/tCLOSE } (11.1)

where
tCLOSE > {tM I N , tM AX } > tOPEN

fR(0) < fR(1) < gR(1) < gR(0)
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Table 11.4 Example of a negatively ordered OFN as an interpretation of the Nasdaq index

OFN f(0) f(1) g(1) g(0) OFN positive
orientation

Nasdaq Composite Index Open High Low Close Change (negative
value)

The OFN arrangement (order) is synonymous with the measurement time of t
movement intensity, where t ∈ {tOPEN , tM I N , ttM AX , tCLOSE }. The measurements
must be performed in a specific order. The OFN order in Fig. 11.3 is the direction
of index changes for one trading day. The default direction of OFN R is positive
(Fig. 11.2).

Lemma 1

Rposi tive =
⎧
⎨

⎩

RCLOSE ≤ ROPEN

ROPEN ,RMI N ,RMAX ,RCLOSE

fR(0), fR(1), gR(1), gR(0)
(11.2)

and the opposite case is

Rnegative =
⎧
⎨

⎩

RCLOSE > ROPEN

RCLOSE ,RMAX ,RMI N ,ROPEN

fR(0), fR(1), gR(1), gR(0)
(11.3)

The NASDAQ was launched in the 1970s and was the first fully electronic secu-
rities trading system in the world. The stock market traded shares of companies
mainly related to modern technology (IT). The Nasdaq Composite is one of the three
major US indices, next to the Dow Jones Average and the S&P500 [47–50]. As for
2016, listed on the NASDAQ are approximately 3,000 companies, including Apple,
Google, Microsoft, and Intel. The Nasdaq composite index is an aggregate of the
common stocks listed on the NASDAQ stock market. The formula for aggregating
fuzzy observation of subaggregate Sm for n component companies of the index is as
follows.

Definition 2 Fuzzy observation of index Nasdaq Composite at the time ti is a set of

sm =
n∑

i=1

(
Rposi tive Rnegative

R · wi | −R · wi

)

(11.4)

where n ≤ 3000 and wi ∈ {w1, . . . wn} is a vector of the individual companies’
impact, default wi = 1.

The weight of each company in the index is

Pj = R j ∗ w j
∑m

i=1 Ri ∗ wi
∗ 100% (11.5)

where j ∈ [1,m]
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Definition 3 If a subaggregate Sm of theNasdaqComposite aggregatewith a certain
number n of (e.g., sector-related) companies has a different direction of theOFN from
the direction of the main index, then it can be assumed that it is a predictor of trend
change. This includes the rule:

IF NasdaqComposite is posi tive AND Sm is negative
THEN Possible change is true

(11.6)

11.4 Conclusions

Investing in the stock market is associated with high risk. This is due to the lack of
ideal solutions for the analysis of market data and predictions in short- and long-term
changes in indices, major stock market indicators. Processes occurring on the stock
markets have nonlinear chaotic characteristics, making it difficult to study them. The
technical analysis often uses expert knowledge and expert rules to detect and use
recognizable trends [43]. One can base investment strategy on trends that will bring
profits during the boom and limit losses when a market is in decline. Expert knowl-
edge and rules can be transferred to digital form. Currently, there are many methods
for identifying trends on the stock exchange [16, 50]. Many of them are unattractive
due to their complicated structure. An interesting alternative to describing the phe-
nomenon of the trend is the application of fuzzy numbers and fuzzy logic [4, 10, 11,
31, 32]. The chapter presents Ordered Fuzzy Numbers, which use five specific index
parameters as well as index analysis methods to identify the occurrence of a trend.
Ordered Fuzzy Number notation made it possible to replace up to five attributes
(open, close, high, low, change) describing the index quotes with a single OFN. In
addition, the use of OFNs lets one quickly detect changes in the trend, which is very
important in short-term investments. The authors previously proposed similar solu-
tions based on research WIG20 [16]; there are also other works on similar solutions
and financial investment [27, 28]. The authors intend to carry out further research in
this area in order to find more versatile and accurate prediction models to identify
market trends.
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24. Kacprzak, M., Kosiński, W.: On lattice structure and implications on ordered fuzzy numbers.
In: Proceedings of the EUSFLAT. Artificial Intelligence and Soft Computing, vol. 7267 of
LNCS, pp. 247–255 (2011)
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Chapter 12
OFNAnt Method Based on TSP Ant Colony
Optimization

Jacek M. Czerniak

Abstract This chapter presents a hybrid method of swarm intelligence current.
Intelligence represented by ant colonies has been enriched with fuzzy logic arith-
metics. In this case Kosiński’s Ordered Fuzzy Numbers were specifically used. Apart
from a fuzzy decision model of a single ant used earlier by other researchers, the
author used the order as a trend support. By associating the direction of a number
in Ordered Fuzzy Numbers (OFNs) with the trend observed in the ant colony it is
possible to provide a unique description of a fuzzy observation of a colony behavior.
The experiments were carried out in the area of searching for the optimal connect-
ing route in the field. The experiment covered 10 complex issues of searching for
the optimal route. All are benchmarks from the TSPlib repository which are well
known among researchers. They represent the actual problems of route selection
such as transport connections depending on geographic conditions and optimizing
the machining process or the layout of the power networks. The complexity level
of optimal solutions for problems to be solved amounted from several hundred to
several thousand connections. Each of them was solved using six swarm intelligence
methods and five well-known classical methods dedicated to the traveling salesman
problem (TSP). The results were presented in the form of tables and graphs, and
some of the routes were shown in graphical form. Final conclusions of the experi-
ment indicate the superiority of methods based on ant colony optimization as regards
closeness to optimal solutions. The results achieved by the OFNAnt method are gen-
erally better (in 92% of cases) than those achieved by classic methods and are in the
forefront of solutions from the swarm intelligence group.

12.1 Introduction

The observation of living organisms is an interesting research field not only for biol-
ogists. A new current within artificial intelligence called swarm intelligence acquired
significance in the 1990s [15]. Those studies were inspired by observation of animals
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and insects living in colonies [44]. We have finally got successful experiments and
methods based on ant or termite colony observation [13, 20, 43, 45]. Observations
of birds in V-formation inspired many researchers to create and to develop the con-
cept of particle swarm optimization. [24]. Those studies in the field of AI were also
inspired by information obtained from marine biologists on the collective intelli-
gence of a shoal of fish or plankton. Other sources of inspiration stemmed from the
development of industry, in particular the automotive industry in that case. Particle
swarm optimization was created thanks to studies on, among others, sandblasting
of a car body or other corroded metal parts. Hence, generally, this branch of AI has
been called swarm intelligence [11, 14, 25, 38]. Conversion of those intelligence
mechanisms prevailing among simple individuals into the field of computer systems
resulted in creation of the current sometimes called computational swarm intelli-
gence. It exists parallel to the branch of science called multiagent systems and those
two fields often overlap one another. Although they are often not directly based on
associations with colonies of living organisms, they are often similar in their rules
of operation. They enable creation of interesting implementations in the domain of
parallel computing. The development of swarm intelligence was preceded by the
development of multiple-valued logic, in particular, fuzzy logic. The author of fuzzy
logic is an American professor at Columbia University in New York City and Berke-
ley University in California, Lotfi A. Zadeh, who published the paper entitled “Fuzzy
Sets” in the journal, Information and Control, in 1965 [5]. He defined the term of
fuzzy set there, thanks to which imprecise data could be described using values from
the interval (0,1). The number assigned to them represents their degree of member-
ship in this set. It is worth mentioning that in his theory Zadeh used the article on
three-valued logic published 45 years before by a Pole, A. Janukasiewicz [6]. That
is why many scientists in the world regard this Pole as the "father" of fuzzy logic.
The next decades saw the rapid development of fuzzy logic. As the next milestones
in the history of that discipline one should necessarily mention L-R representation
of fuzzy numbers proposed by D. Dubois and H. Prade [7, 8], which enjoys great
success today. Coming back to the original analogy, an observer can see a trend,
that is, a general increase during a rising tide or decrease during low tide, regard-
less of momentary fluctuations of the water surface level. This resembles a number
of macro- and micro-economic mechanisms where trends and time series can be
observed. The most obvious example of that seems to be the bull and bear markets
on stock exchanges, which indicate the general trend, while shares of individual
companies may temporarily fall or rise. The aim is to capture the environmental
context of changes in the economy or another limited part of reality. Changes in an
object described using fuzzy logic [30, 32] seem to be thoroughly studied in many
papers. But it is not necessarily the case as regards linking those changes with a trend
[39, 41, 42]. This might be the opportunity to apply generalizations of fuzzy logic
which are, in the opinion of authors of that concept, W. Kosiński [9–11] and his team
[12, 13], Ordered Fuzzy Number (OFN) [28, 33, 40]. There are already interesting
studies available published by well-known scientists [1, 18] that present successful
implementation of fuzzy logic to swarm intelligence methods, including methods
inspired by ant and termite colonies. However, according to the best knowledge of



12 OFNAnt Method Based on TSP Ant Colony Optimization 209

the authors of this chapter, nobody thus far has published studies on implementation
of ordered fuzzy logic into ant colony optimization. This fact was one of the rea-
sons for execution of the research described in this chapter. The main emphasis here
is on application of a new hybrid method of ant colony optimization (ACO) with
implemented decision logic of an ant calculated in the OFN domain in order to solve
the optimum route selection problem. To make a comparison, the authors selected
several well-known ant methods and several heuristic methods dedicated to solving
the same problem, the methodology of which does not use either swarm intelligence
or, in particular, ACO.

12.2 Application of Ant Colony Algorithms in Searching
for the Optimal Route

Ant colony optimization is currently one of the best known ant colony algorithms. It
was first defined by Dorigo, Di Caro, and Gambardell in 1999 [16] as a method for
discrete optimization problems. ACO was presented as the algorithm that can find a
good route using a graph. It was inspired by foraging theory [14] both for ant colonies
and for discrete optimization problems. This algorithm is designed for solving two
kinds of static and dynamic optimization problems. In the general case, ant colony
optimization is performed according to the diagramshown inFig. 12.1). Studies of ant
colony algorithms commenced based on observation of ant colony environments. The
scientists noticed the interesting fact that ants communicate mainly using chemical
substances which they produce. As has already beenmentioned, the keymatter in this

Fig. 12.1 ACO block diagram
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algorithm is indirect foraging communication represented by pheromone trace. The
advantage of the evaporation of that pheromone is that it can prevent convergence
for local optimum solutions. Assuming there is no evaporation issue, each time each
path selected by the first artificial agents would be treated in the same way and would
be equally attractive, which would make it inapplicable to optimization problems.
Thus, when one ant finds a good path from the colony to the food source, this path
becomes preferable for other ants. The idea behind the ACO [13] algorithm is to
follow that behavior using artificial agents moving within the frame of a graph in
order to solve a given problem. The ACO algorithm has been used for solving the
traveling salesman problem. This algorithmhas an advantage over genetic algorithms
or the simulated annealing algorithm. Its important feature is that for a dynamically
changing graph, the ACO algorithm can work continuously and it can adapt to the
changes in real-time. Thanks to such properties, it has been applied to the method of
solving the problem of network routing and urban transportation systems.

Route selection: An ant shall travel the distance from point i to point j with the
probability of:

pi j = (τα
i j )(η

β

i j )
∑

(τα
i j )(η

β

i j )
(12.1)

where τi j is the quantity of pheromone on the route i,j, ηi j defines attraction of the
route i,j, α is the parameter used for effect control τi j , and β is the parameter used
for effect control ηi j .

Pheromone update: This issue is represented by the following formula.

τi j = pτi j + Δτi j (12.2)

where τi j is the quantity of pheromone on the route i,j, Δτi j represents the quantity
of remaining pheromone, and P is the pheromone evaporation scale.

Below, we present a more detailed pseudocode of one of the numerous ant colony
algorithms, called the ACS (ant colony system), that is, ant colony optimization.
Tables 12.1 and 12.2 present the most important ant colony optimization algorithms
dedicated to TSP in the chronological order of their publishing. In themethodological
sense, all the algorithms listed below and described in the following section are direct
successors of the ant system. This is due to an obvious reason, the ant systemmethod,
which has become the foundation for the entire new branch of knowledge, was the
first worldwide success of then young scientist, Marco Dorigo. Now Professor M.
Dorigo [14] is a world-class expert in the field of swarm intelligence. The set of
methods presented below is in chronological order.



12 OFNAnt Method Based on TSP Ant Colony Optimization 211

Algorithm 1 Pseudocode of the ACS Ant Colony Algorithm [10]
1: Initialize
2: Repeat {
3: Place each ant in a randomly chosen city;
4: For each ant
5: Repeat {
6: Choose NextCity (each ant);
7: Update pheromone levels using a local rule;
8: } Until (No more cities to visit);
9: Return to the initial cities;
10: Compute the length of the tour found by each ant;
11: End For;
12: Update pheromone level using a global rule;
13: }
14: Print Best Path;

Table 12.1 ACO algorithms that have already been applied to the TSP

ACO method Authors

Ant System (AS) Dorigo 1992; Dorigo, Manizzo, Colorni 1996;

Elitist AS (EAS) Dorigo 1992; Dorigo, Manizzo, Colorni 1996;

Ant-Q (AQ) Gambardella, Dorigo 1995–96;

Ant Colony System (ACS) Dorigo, Gambardella 1997;

Max-Min AS (MMAS) Sttzle 1999; Sttzle, Hoos 2000;

Rank-base AS (ASrank) Bullnheimer, Hartl, Strauss 1997–99;

12.3 OFNAnt, a New Ant Colony Algorithm

Implementation of OFN to the ant colony system consists mainly in determination
of the trend and in establishing relationship to the order of the OFN. This order is
used in OFNAnt in two ways. It is related to pheromone evaporation on the route
and its mathematical description, and it also concerns the decision-making process
of a single ant.

The pheromone quantity on the route is updated in accordance with OFN arith-
metic. If the pheromone trace (quantity) on the route increases, then this trend is
marked as a positive order trend, whereas if this quantity decreases it is marked as
a negative order trend. Each pass of the kth ant, which is associated with placing
pheromone trace results in the update of the pheromone trace on the route by the
amount left by the ant resulting in positive order on the route with increasing trend
and with negative order for decreasing trend of the route. The above relationship is
pursuant to the formula:

τi j [lA, 1−
A , 1+

A , pA] ← τi j [lA, 1−
A , 1+

A , pA] +
m∑

k=1

Δτ k
i j [lk, 1−

k , 1+
k , pk] (12.3)
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Table 12.2 List of analyzed problems including their optimum values

No Problem
designation

Optimum Description Author

1 Eil51 426 Problem for 51 towns Christofides / Eilon

2 D198 15780 Represents the Dribling
Problem. Size of the problem:
198 holes

Reinelt

3 Gil262 2378 Problem for 262 towns Gillet/Johnson

4 Lin318 42029 Problem for 318 towns Lin/Kernighan

5 Pcb442 50778 Represents the Dribling
Problem. Size of the problem:
442 holes

Groetschel/Juenger/Reinelt

6 Rat783 8806 Problem of 783 points
connected to the power
network

Pulleyblank

7 Pcb1173 56892 Represents the Dribling
Problem. Size of the problem:
1173 holes

Juenger/Reinelt

8 D1291 50801 Represents the Dribling
Problem. Size of the problem:
1291 holes

Reinelt

9 Nrw1379 56638 The problem for 1379
towns/villages in North
Rhine-Westphalia

Bachem/Wottawa

10 Pr2392 378032 Problem for 2392 towns Padberg/Rinaldi

Every ant constructs a complete route, and the antsmake a decision at each stage of the
route construction. This creates a multistage process of fuzzy control. When talking
about route construction, we usually refer to the situationwhen an ant located in town
i wants to go to town j and makes a decision based on the following information.

1. Parameters defining the effect of the pheromone trace τα
i j .

2. (b) Parameters defining the effect of heuristic information η
β

i j , used to estimate
attraction of the route.

3. Nk
i Parameter representing the list of k available neighbors of an ant. The "avail-

able" neighbors mean the towns that have not been visited yet.

The decision-making process taken by an ant at each node of the route is asso-
ciated with calculation of fuzzy probability in the OFN sense. The probability is
calculated pursuant to the following redefined formula of the route selection proba-
bility (Fig. 12.2).

Pk
i j [lA, 1−

A , 1+
A , pA] = |τi j [lA, 1−

A , 1+
A , pA]|α|ηi j [lA, 1−

A , 1+
A , pA]|β

∑
l∈Nk

i
|τi j [lk, 1−

k , 1+
k , pk]|α|ηi j [lk, 1−

k , 1+
k , pk]|β (12.4)
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Fig. 12.2 An ant located in
the town i selects next town j

12.4 Experiment

12.4.1 Experiment Execution Method

In this section, the author compares the effectiveness of heuristic methods, meta-
heuristic methods, and the new hybrid method OFNAnt. All those methods are tested
using 10 benchmarks for their performance in solving an NP-hard problem such as
TSP. Thus, it is a comparison of well-known algorithms with a completely new
approach represented by OFN arithmetics implemented to control an ant colony in
order to solve optimizing problems [21, 22, 27]. They are tested according to the
following principles.

1. As regards ant colony algorithms, a program with implemented method is run
three times at t=10 for each problem, and for implementation of heuristic algo-
rithms a program is also run three times, but without additional parameters.

2. Effectiveness of a given algorithm is assessed as follows:

• By specification of the obtained result (route length)
• As a percentage, that is, optimum achieved in x%, as presented in the table
including the set of benchmarks

3. A graph showing the effectiveness of individual algorithms is presented for each
of the 10 problems.

4. Each such graph is provided with a short summary where the obtained results are
discussed.

5. An overall graph showing the effectiveness of all algorithms is presented at the
end. The value optimum achieved in x% is totaled for each algorithm, and thus
the overall score per 1,000 available points is calculated. Such a data presentation
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allows easy assessment of the hierarchy of all the algorithms on the basis of the
10 benchmarks used for tests.

12.4.2 Software Used for Experiment

The author’s own implementation of ant colony methods developed in JAVA lan-
guage was used in the experiments and the results obtained by the implementation
were verified on the basis of ACOTSP [14]. The author’s OFNAnt method was added
to the implementation. The CONCORDE application was developed to solve sym-
metric TSP-type problems and other problems of network optimization [3, 17]. The
application is supported by the Office of Naval Research, National Science Founda-
tion, and by the School of Industrial and System Engineering at the Georgia Institute
of Technology, United States. This program uses the cutting planes algorithm. The
interface of the program shows the optimum solution searching process displayed
at the end of each main iteration. The edges are colored according to currently cal-
culated LP value (linear programing relaxation). At the moment when a new, better
solution is found, the color of edges is changed to red. The program includes several
algorithms designed to create edges used by the program to search for the optimum
solution. Those algorithms include:

1. Delaunay triangulation
2. Minimum spanning tree
3. Different variations of nearest neighbors

The program also includes several heuristic [2] algorithms for the TSP problem.
Those algorithms include:

1. Greedy algorithm (GR)
2. Boruvka algorithm (BOR)
3. Quck Boruvka algorithm (QBOR)
4. Nearest neighbor algorithm (NN)
5. Lin-Keringhana algorithm (LK)

12.4.3 Experimental Data

Table12.3 shows 10 benchmarks selected from the TSPlib library of TSP problems,
including the expected optimumvalue for each. Theywere applied in away described
in the previous paragraph as a set of benchmarks for testing well-known algorithms
and a new OFNAnt method.
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Table 12.3 List of analyzed problems including their optimum values

Data sets ACOTSP Concorde TSP
∗.tsp file optimum AS ASRK OFNAnt ACS GR QBOR LK

eil51 426 426 426 426 426 521 480 426

% 100,00 100,00 100,00 100,00 81,77 88,75 100,00

d198 15780 15781 15780 15780 15780 18399 18140 15828

% 99,99 100,00 100,00 100,00 85,77 86,99 99,70

gil262 2378 2380 2378 2378 2378 2846 2818 2380

% 99,92 100,00 100,00 100,00 83,56 84,39 99,92

lin318 42029 42091 42029 42029 42029 49744 54090 42272

% 99,85 100,00 100,00 100,00 84,49 77,70 99,43

pcb442 50778 50964 50883 50778 50778 61891 58695 51071

% 99,64 99,79 100,00 100,00 82,04 86,51 99,43

rat783 8806 8833 8812 8808 8806 10294 10402 8831

% 99,69 99,93 99,98 100,00 85,54 84,66 99,72

pcb1173 56892 57612 56950 57040 56897 65829 66493 57063

% 98,75 99,90 99,74 99,99 86,42 85,56 99,70

d1291 50801 51020 50824 50870 50820 59293 57228 52729

% 99,57 99,95 99,86 99,96 85,68 88,77 96,34

nrw1379 56638 57281 56859 56917 56770 66371 66110 56756

% 98,88 99,61 99,51 99,77 85,34 85,67 99,79

pr2392 378032 386541 382089 381077 379602 444853 448641 383277

% 97,80 98,94 99,20 99,59 84,98 84,26 98,63

12.5 Results of Experiment

A number of tests were performed according to the above-specified rules, using 10
selected problems. Results of individual tests are presented below assisted by the
diagram and a brief note for each.

Eil51 The authors presented an experiment for 51 towns, the optimum value
for which amounts to 426. As a result of the calculations 7 out of 10 algorithms
generated an optimum result. It is worth noting that only one classical algorithm
(ALK) generated the best result. Other ALK algorithms showed low effectiveness for
a relatively small problem. All ant colony algorithms showed excellent performance
when solving the above problem (Fig. 12.3).

D198Another testwas performed for 198 towns and it showed the advantage of ant
colony algorithms (ALM) over ALK algorithms again. This time 5 out of 10 available
ALMalgorithms have found the optimum, butAS achieved a result only 0.01%worse
than the optimum. The best ALK, namely Lin-Kernighan achieved 99.70% of the
optimum, which is quite a good result. Other ALK algorithms achieved only 88% of
the optimum value (Fig. 12.4).
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Fig. 12.3 Graphical representation of the results for the problem Eil51

Fig. 12.4 Graphical representation of the results for the problem D198

Pcb442 represents the problem covering 442 towns. It is the hardest problem thus
far, because only 3 out of 10 tested algorithms, BWAS, EAS, and ACS have found
the optimum.MMASmissed the best solution by only 0.01%. Leading algorithms as
regards this problem also include, respectively: ASRKwith the result of 99.79%, AS
99.64%, and LK 99.43%. As can be noted, 3 ALM algorithms achieved optimum,
one missed the optimum by the skin of its teeth, then, two further ALM algorithms
achieved very good results and, again, the best of theALK algorithms, that is, LKwas
the last on the list. The remaining ALK algorithms performed even worse than for the
problem with 318 towns and achieved from 80 to 87% of the optimum (Fig. 12.5).

Rat783 represents the problem covering 783 towns. In this case 3 algorithms
achieved optimum solution, namely EAS, MMAS, and ACS; BWAS missed the
optimum solution by 0.02%, and ASRK missed it by 0.07%. For the first time we
have the situation where the ALK algorithm, that is, LK with the score of 99.72%
outdistanced a representative of ALM algorithms, the AS algorithm with the score
of 99.69%. Other ALK algorithms were unrivaled (Fig. 12.6).

Pr2392 The last of the 10 presented problems was also the biggest one as it
included asmany as 2,392 towns. There is no doubt that the bigger the problem is, the
worse the solutions. The first four places on the list were taken by ALM algorithms,
where ACS was the best with the score of 99.59%. One of the ALK algorithms,
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Fig. 12.5 Graphical representation of the results for the problem Pcb442

Fig. 12.6 Graphical representation of the results for the problem Rat783

namely LK, was fifth on the list with the score of 98.63%. Two subsequent places
on the list were taken by ALM algorithms, that is, by EAS with the score of 98.39%
and by AS with the score of 97.80%. The remaining ALK algorithms followed the
trend of worse solutions and with the increased problem complexity they achieved
from 79 to 85% of the optimum.

12.6 Summary and Conclusions

Having performed a number of experiments according to the rules specified above,
one can be certain about the superiority of ant colony algorithms over classical algo-
rithms (Fig. 12.7). There was only one case out of 10 studied samples, where the
Lin-Kernighan (LK) algorithm achieved better results than all other known meth-
ods, including ant colony methods. This could have resulted from the nature of the
problem, that is, nrw1379. In that case the results obtained by the LK algorithm were
only slightly worse than the results of the OFNAnt algorithm. For the remaining files,
the LK algorithm outpaced, at best, only older ant colony methods, AS and EAS.
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Fig. 12.7 Graphical representation of the results for the problem Pr2392

The remaining algorithms from the group of heuristic methods performed definitely
much worse than the leading algorithms. They fulfilled the optimum solution within
the range from 79 to 89%, which is far from the results of the leading algorithms.
The noticeable feature of the studied group of algorithms is their tendency for worse
results with the increase of problem magnitude. A clear example of that tendency is
the seventh tested problem, pcb1173. This statement is confirmed by problem d1291
and further large datasets. The diagram presented above, which summarizes all per-
formed tests, shows the hierarchy of all algorithms and their respective scores. The
maximum available score is 1,000 points. The scores closest to the maximum were
achieved by representatives of ant colony algorithms, including OFNAnt with the
score of 999.31points. It isworth noting that thefirst four places on the list of optimum
solution searching efficiency are taken by ant colony algorithms. Subsequent places
on the list are taken by representatives of heuristic methods with their definite leader,
the LK algorithm, which is widely regarded as one of the best methods for solving
the traveling salesman problem. Ant colony algorithms represent a new generation
of optimizing algorithms using a metaheuristic approach to NP-hard problems, the
approach that gave excellent results. Ant colony algorithms find many more appli-
cations other than TSP. Those applications include many real-life fields. Based on
the results of experiments with the new method using trend and fuzzy logic, one can
also expect obtaining interesting solutions for problems other than those where ant
colonies have already been successfully applied. The new method, OFNAnt, which
is a hybrid combination of ACO and OFN, and introduces fuzzy decision of an ant,
is the first known attempt to implement the arithmetic of Ordered Fuzzy Numbers to
ant colony optimization. Performed experiments confirmed efficiency of that method
in solving TSP problems. Currently, there are ongoing works on application of the
modification of that method for solving problems of other classes.
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43. Sobol, I., Kacprzak, D., Kosiński, W.: Optimizing of a company’s cost under fuzzy data and
optimal orders under dynamic conditions. Optimum. Studia Ekonomiczne 5, 172–187 (2014)

44. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Bio-inspired construction
with mobile robots and compliant pockets. Robot. Autonom. Syst. 74, 340–350 (2015)

45. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental
features in a robot swarm. In: Swarm Intelligence – Proceedings of ANTS 2016 – Tenth
International Conference. Lecture Notes in Computer Science, vol. 9882, pp. 65–76. Springer,
Berlin (2016)

46. Wei, L., Keogh, E.: Semi-supervised time series classification. In: Proceedings of the 12thACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 748–753.
ACM, New York (2006)

47. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification
using numerosity reduction. In: Proceedings of the 23rd International Conference on Machine
Learning. pp. 1033–1040. ACM, New York (2006)

48. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). http://www.sciencedirect.com/
science/article/pii/S001999586590241X

49. Zadrozny, S., Kacprzyk, J.: On the use of linguistic summaries for text categorization. In:
Proceedings of IPMU. pp. 1373–1380 (2004)

50. Zarzycki, H.: Computer system for the evaluation of options contracts with monte carlo
approach [in polish]. Stud. Proc. Pol. Assoc. Knowl. Manag. 22, 226–233 (2009)

http://dx.doi.org/10.1109/ROMOCO.2005.201448
http://dx.doi.org/10.1007/978-3-540-69731-2_30
http://dx.doi.org/10.1007/978-3-540-69731-2_30
http://dx.doi.org/10.1007/978-3-642-38658-9_33
http://dx.doi.org/10.1007/978-3-642-38658-9_33
http://dx.doi.org/10.15439/2016F140
http://dx.doi.org/10.1007/978-3-319-29504-6_46
http://dx.doi.org/10.1007/978-3-319-29504-6_46
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://www.sciencedirect.com/science/article/pii/S001999586590241X


222 J.M. Czerniak

51. Zarzycki, H.: Application of the finite difference cn method to value derivatives. Stud. Proc.
Pol. Assoc. Knowl. Manag. 42, 267–277 (2011)

52. Zarzycki, H.: Modern technologies as a chance for options markets development (in polish).
In: National Scientific Conference Financial Markets in Electronic Space (Kulice 2003)

53. Zarzycki, H.: Index arbitrage on the Warsaw stock exchange [in polish]. VII Technical Uni-
versity of Szcszecin Computer Science Department Symposium (Szczecin 2003)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 13
A New OFNBee Method as an Example of
Fuzzy Observance Applied for ABC
Optimization

Dawid Ewald, Jacek M. Czerniak and Marcin Paprzycki

Abstract The chapter includes a hybrid concept combining bee colony optimization
with the application of Ordered Fuzzy Numbers. This is another research, after the
OFNAnt method, prepared in AIRlab - Artificial Intelligence and Robotics Lab-
oratory at Kazimierz Wielki University in Bydgoszcz, in which authors enriched
metaheuristics by implementing the arithmetics of Ordered Fuzzy Numbers (OFNs).
Applied fuzzy observation enabled very faithful modeling of the navigation mecha-
nism used by bees when orienting with reference to the position of the sun. Experi-
ments aimed at verification of the developed concept have been carried out on a set
of several commonly known benchmarks. The preliminary results of experiments
allow us to nurture grounded hope that further modifications of the metaheuristics
using OFN arithmetics shall enable smooth control of the optimization criteria of the
tested phenomena.

13.1 Introduction

Swarm intelligence is a relatively young branch of artificial intelligence. Its begin-
nings are usually pinpointed in the early 1990s of the past century. At that time
Marco Dorigo published his doctoral thesis concerning ant colony systems. After
studies on ants, articles related, among others, to termite hills have appeared [11,
43]. Not only insects became the inspiration for researchers interested in “social
algorithms.” Indeed, common interest is aroused by V-formations of birds, shoals of
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fish, or plankton and locust swarms. Studies on bivalves and their use in water intake
purity assessment systems are also very interesting. As regards those inspirations, the
beginning of the twenty-first century undoubtedly belongs to bees. The bee swarm
optimization algorithms make up a collection of algorithms inspired by the behav-
ior of honeybees [34, 35]. Observations performed as early as the mid-twentieth
century by the German zoologist Martin Lindauer, who published his study in 1950
are usually regarded as the first ones [30]. Lindauer noted that bees returning to the
swarmwith food perform a sort of “dance.” Thanks to further observations, Lindauer
concluded that only a small percentage of bees participate in making a decision on
changing to the new food source. Most bees do not participate in the foraging but
wait for the decision to be made by the “dancing” bees, who gradually reduce the
number of proposed sources. When a single location is finally selected, most of the
bees rise to fly towards the selected food source. Further entomologists proved the
theory on the meaning of the dance performed by the bees. They gave incontrovert-
ible proof that a scout bee returning to the hive uses its dance and pheromone to
provide information allowing the swarm to figure out the type of food it met. Bees
navigate by the sun, therefore the first theory that has been proven was the fact that
the angle of the bee body is indicative of the direction of flight relative to the sun.
Next, the information is carried by the amplitude of the individual’s vibrations as it
is directly proportional to the abundance of the food source, and the length of the
movement in a given direction informs the observer about the necessary length of
the flight. There are three types of dance used by bees to depict the distance to the
food:

• Round dance: When a food source is near the hive
• Flourish dance: When that distance exceeds 100m
• Crescent dance: When the distance is something between near and 100m

Figure13.1 presents the dancing bee and the method of reading the submitted infor-
mation (Fig. 13.2).

Fig. 13.1 The dance used by bees to depict the distance to the food
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Fig. 13.2 Navigation by the
sun

Fig. 13.3 Two different
directions of flight are
submitted in the dance

On the basis of entomologists’ studies, one can also conclude that the dance
process is a way of reconciling the opinion of bees on the new location of food, a kind
of voting. However, that hypothesis included some inconsistencies, as sometimes
bees rose to fly despite the absence of unanimous decision of dancing bees and as
the way of voting for dancing bees by other bees could not be observed. This caused
formulating and attempting to prove two new hypotheses: a quorum hypothesis,
whereby the voting in which the majority of the bees voting for a given nest is
sufficient and a consensus hypothesis, denoting agreement of some group of dancing
bees. On the basis of experimental studies scientists have managed to exclude the
consensus hypothesis, whereas the quorum hypothesis has been confirmed. It turned
out that, after reaching the quorum, the scout bees returned to their group at the
same time creating the characteristic sound received by the remaining bees which
stimulated them to warm up their muscles. This warm-up usually took about an hour
and immediately after it bees flew to a new source of food (Fig. 13.3).

The behavior of bees when selecting a new nest can well be used for a decision
made by any group. Thanks to three factors defined by scientists studying behavior
of bees, such a decision shall always be correct (Fig. 13.4).

1. Organization allowing knowledge sharing by the entire group. It is much easier to
make proper and unanimous decisions thanks to a large number of objects taking
part in the decision-making process and correct distribution of knowledge among
the objects.
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Fig. 13.4 The dance angle indicates the angle of navigation with regard to the sun

2. The competition, thanks to which every object tries to improve at any time. The
more good objects, the easier and quicker the decision-making process can be.

3. Balance, which is defined asmaking a decision on the basis of the opinion ofmany
objects, keeping to the democracy rules at the same time.As a consequence,wrong
decisions do not influence the final decision.

13.2 ABC (Artificial Bee Colony) Model

The artificial bee colony (ABC) is a model proposed in 2005 by the Turkish scientist
Dervis Karaboga. As with other algorithms described herein [12, 13, 26, 28, 29, 32,
33], ABC is also based on the swarm behavior of honey bees. It differs from other
algorithms in the application of a higher number of bee types in a swarm [10]. After
the initialization phase, the algorithm consists of the following four stages repeated
iteratively until the number of repetitions specified by the user is executed [4, 18–20]
(Fig. 13.5):

• Employed bees stage
• Onlooker bees stage
• Scout bees stage
• Storage of the best solution thus far

The algorithm starts with initialization of the food source vectors −→x m where m =
1, . . . , SN and SN , …, is the population size. Each of those vectors stores n values
xm, i = 1, . . . , n, that shall be optimizedduring executionof thatmethod.Thevectors
are initialized using the formula:

xmi = li + rand(0, 1) · (ui − li ) (13.1)

where li is the lower limit of the searched range, and ui is the upper limit of the
searched range.
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Fig. 13.5 The dance
duration is proportional to
the length of the flight

Bees adapted to different tasks participate in each stage of the algorithm operation.
In the case of ABC, there are three types of objects involved in searching [3, 19, 21]:

• Employed Bees: Bees that search points near points already stored in memory
• Onlooker Bees: Objects responsible for searching the neighborhood of points
deemed the most attractive

• Scout Bees (also referred to as scouts): Bees that explore random points unrelated
in any way to those discovered earlier

Once the initialization phase is completed, Employed Bees start their work. They are
sent to places in the neighborhood of already known food sources to determine the
amount of nectar available there. The results of the Employed Bees’ work are used
by Onlooker Bees. Employed Bees randomly select a potential food source using the
following relationship. −→v i = xmi + ϕmi (xmi + xki ) (13.2)

where
←−
V i is a vector of potential food sources, xk is a randomly selected food source,

and ϕmi is a random number from the range [−a, a].
Once the vector is determined, its fitting is calculated based on the formula depen-

dent on the problem being solved and the fitting ←−v m is compared with ←−x m . If the
new vector fits better than the former one, then the new one replaces the old one.

Another phase of the algorithm operation is the Onlooker Bees stage. They are
sent to food sources classified as the best ones and in those very points the amount of
available nectar is determined. The probability of the source selection is expressed
with the formula:

pm = f i tm(
−→x m)

∑SN
m=1 f i tm(

−→x m)
(13.3)

where f i tm(
−→x m) is the value of fitting functions for a given source.
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Obviously, when Onlooker bees gather information on the amount of nectar, such
data are comparedwith results obtained thus far and if the new food sources are better,
they replace the old ones in memory. The last phase of this algorithm operation is
exploration by Scouts. Bees of that type select random points from the search space
and then check nectar volumes available there. If newly found volumes are higher
than the volumes stored thus far, they replace the old volumes. The activity of those
bees makes it possible to explore the space unavailable for the remaining types of
bees thus allowing omitting any extremes.

13.3 Selected OFN Issues

There are researchers who focus on certain aspects of fuzzy logic application in
artificial bee colony optimization. Their articles are literally related to Zadeh’s fuzzy
sets and the fuzzy number arithmetics arose from them chronologically. Combining
the Ordered Fuzzy Numbers (OFNs) with artificial bee colony optimization has not
been proposed thus far. Articles describing such a hybrid approach to optimization
tasks using ant colony algorithms are named OFNAnt [5, 6, 8, 31].

Basic research on many aspects of OFNs has been published in many papers of
the creator of this concept, W. Kosinski [14, 23–25, 39, 40], and of a broad group
of researchers who cooperated with him in this field of science [1, 7, 10, 15–17, 22,
27, 42]

[2, 9]. However, it is not the purpose here to cite the well-developed and well-
known deliberations on the OFN, which, in some of the new articles, are also known
as Kosinski’s fuzzy numbers (KFNs) [36–38, 41].

13.4 New Hybrid OFNBee Method

Application of OFN notation in artificial bee colony optimization seems to be a
completely natural way to describe the behavioral mechanisms observed in a hive
and mentioned above. The input data are pieces of information carried by a single
bee:

• The direction to the food location
• The angle of navigation by the sun
• The flight length
• Abundance of the food source

Figure13.6 shows the OFN describing information delivered by a Scout bee:

• aF: Angle between the sun and the food source
• sF: Food quantity
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Fig. 13.6 OFN describes the
information from a scout bee

• dF: Distance to the food. Figure13.6a shows the food that has to be reached
by flying at the aF angle in relation to the sun’s position. Figure13.6b includes
selected information containing this angle. The arm with the symbolically marked
bee represents the distance to food dF , and the amplitude of vibrations marked
with a sine wave reflects the amount of food sF . An Ordered Fuzzy Number
is determined as follows. First support (A) is determined, which is the base of
the trapezoid. Then the rising edge f (x) is drawn at the angle of 90◦ − aF . The
second base of a trapezoid is laid off from the point in which the function f (x)
intersects with y = 1. At the end one has just to connect two ends of the trapezoid
bases using the falling edge function g(x). Consecutive steps are presented using
a pseudocode: Pseudokod ABC:

1. Initialize the population of solutions xi, j .
2. Evaluate the population.
3. Cycle = 1.
4. Repeat.
5. Produce new solutions (food source positions) vi, j in the neighborhood of xi, j

for the employed bees using the formula vi, j = xi, j + φi j (xi, j − xk, j ) (k is a
solution in the neighborhood of i , and φ is a random number in the range
[-1,1]) and evaluate them.

6. Apply the greedy selection process between xi and vi .
7. Calculate the probability values Pi for the solutions xi by means of their fitness

values using the Eq.13.4

Pi = f i ti
∑SN

i=1 f i ti
. (13.4)



230 D. Ewald et al.

In order to calculate the fitness values of solutions we employed the Eq.13.5:

f i ti =
{ 1

1+ fi
i f fi ≥ 0

1 + abs( fi ) i f fi ≤ 0

}

. (13.5)

Normalize Pi values into [0,1].
8. Produce the new solutions ?i for the onlookers from the solutions xi , selected

depending on Pi , and evaluate them.
9. Apply the greedy selection process for the onlookers between xi and vi .

10. Determine the abandoned solution (source), if it exists, and replace it with a
new randomly produced solution xi for the Scout using the Eq.13.6

xi j = min j + rand(0, 1) ∗ (max j − min j ). (13.6)

11. Memorize the best food source position (solution) achieved thus far.
12. Cycle = cycle + 1.
13. Until cycle = maximum cycle number (MCN).

13.5 Experimental Results

This section includes results of our own tests solved using theOFNBee algorithm.Ten
calculations were performed for each of the three optimization problems described
below. Average values were calculated from the obtained results and then compared
with results available in the literature for the classicABC algorithm. Program settings
for individual problems are presented in Table13.1. where individual abbreviations
mean, respectively:

• Number of populations: NS
• Number of iterations: MC
• Change rate: MR
• Scout generation time: SPP

For the first tested problem, the welded beam, the best results for program settings
were obtained by the classic ABC algorithm and are shown in Table13.2. The fillet
weld width is defined by the variable x1, and x2 is the parameter defining the weld
length, x3, the beam height, and x4, the beam width. After listing and comparing
the results obtained using OFNBee and the classic ABC algorithm, one can notice
that the solutions are similar. The result of the experiment for the objective function
differs from the second decimal place which confirms repeatability of good results
(Fig. 13.7). Another problem tested in the experiment is the pressure vessel problem.
The wanted variables are shown in Fig. 13.8. The aim of this experiment is to mini-
mize the total material costs of the cylinder and its welding. Solutions found by the
ABC algorithm for this problem for given program settings are shown in Table13.3.
Comparing the experimental outcomes with the results available in the literature one
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Table 13.1 Program settings for the tested design problems

Problem NS MC MR SPP

Welded beam problem 30 1000 0.9 400

Pressure vessel problem 30 1000 0.9 400

Speed reducer problem 30 1000 0.9 400

Spring compression and
tension problem

30 1000 0.9 400

Table 13.2 Parameters and
value limits of the best
solutions obtained for the
welded beam problem

Experimental
results

Results available
in the literature

x1 0.1822 0.0057

x2 4.061 3.4705

x3 9.0319 9.0366

x4 0.206 0.2057

g1(x) −0.404 0

g2(x) −17.7028 0

g3(x) −0.0238 0

g4(x) −3.3793 −3.4329

g5(x) −0.0572 −0.0807

g6(x) 0.2355 −0.2355

g7(x) −27.1433 0

f(x) 1.766 1.724

can notice that there are no significant differences for variables from x1 to x3whereas
for variable x4 a bigger difference occurs which may significantly impact the final
objective of the problem. However, for relatively large limits of the variables, the
experiment result is satisfactory. In the speed reducer optimization problem, its mass
is minimized. The test results for that problem are given in Table13.4. In this case
seven variables are subject to limitations, as shown in Fig. 13.9. The variables define,
respectively: x1, surface width; x2, teeth pitchmodule; x3, number of teeth of a gear;
x4, length of the first shaft between bearings; x5, length of the second shaft between
bearings; x6, diameter of the first shaft; and x7, diameter of the second shaft.

After listing and comparing the results one can notice that there are only very
minor deviations for individual variables. In this problem, the objective function
differs very little from the results available in the literature. That may be caused by
narrow intervals of the variables and numerous limits for the function.
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Fig. 13.7 Welded beam
optimization problem

Fig. 13.8 Pressure vessel
optimization problem

Table 13.3 Parameters and
value limits of the best
solutions obtained for the
pressure vessel optimization
problem

Experimental
results

Results available
in the literature

x1
0.875 0.8125

x2
0.4375 0.4375

x3
44.4316 42.0985

x4
149.7213 176.6366

g1(x)
−0.0174 0.0000

g2(x)
−0.0136 −0.03588

g3(x)
−0.3373 −0.00003

g4(x)
−90.2786 −63.3634

f (x)
6196.47 6059.714
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Table 13.4 Parameters and
value limits of the best
solutions obtained for the
speed reducer problem

Experimental
results

Results available
in the literature

x1
3.4999 3.4999

x2
0.7000 0.6999

x3
17.0000 17.0000

x4
7.3000 7.3000

x5
7.8000 7.8000

x6
3.3502 3.3502

x7
5.2877 5.2872

g1(x)
−0.0739 −0.0739

g2(x)
−0.1979 −0.1979

g3(x)
−0.4992 −0.4991

g4(x)
−0.9015 −0.9015

g5(x)
0.0000 0.0000

g6(x)
0.0000 0.0000

g7(x)
−0.7025 −0.7025

g8(x)
9.9E−13 −0.0001

g9(x)
−0.5833 −0.5833

g10(x)
−0.0513 −0.0513

g11(x)
−0.0106 −0.0106

f (x)
2997.058 2996.783
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Fig. 13.9 Speed reducer
optimization problem

13.6 Conclusion

The structure of the ABC solutions allows adjusting the algorithm very freely to the
newly raised problem. This makes it very useful in solving multiobjective optimiza-
tion problems. Its second important feature is the algorithm’s fast operation. Thanks
to the modification that consists in application of the Ordered Fuzzy Numbers to
determination of the objective function, the obtained result is of better quality. The
algorithm operation time has improved as well. It should be noted that in each of the
three analyzed benchmarks (tested problems), the results obtained using the OFN-
Bee algorithm are at least as good and often better than without the modification.
The authors analyzed the welded beam optimization problem, pressure vessel opti-
mization problem, and the speed reducer optimization problem. The results of the
conducted experiments are presented in Tables13.1, 13.2, and 13.3. In the future, we
plan to extend the field of OFN application to the calculations in several artificial
bee colony algorithms. We expect that it could give some interesting results.

References

1. Angryk, R.A., Czerniak, J.: Heuristic algorithm for interpretation of multi-valued attributes in
similarity-based fuzzy relational databases. Int. J. Approx. Reason. 51(8), 895–911 (2010)

2. Apiecionek, L., Czerniak, J.M., Dobrosielski, W.T.: Quality of services method as a ddos pro-
tection tool. In: Intelligent Systems’2014, Vol 2: Tools, Architectures, Systems, Applications
vol. 323, pp. 225–234 (2015)

3. Bahriye, A., Karaboga, D.: A survey on the applications of artificial bee colony in signal, image,
and video processing. Signal Image Video Process. 9(4), 967–990 (2015)

4. Basturk, B., Karaboga, D.: An artificial bee colony (abc) algorithm for numeric function opti-
mization. In: IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA, 12–14 May
2006

5. Czerniak, J.M., Apiecionek, L., Zarzycki, H.: Application of ordered fuzzy numbers in a
new ofnant algorithm based on ant colony optimization. Beyond Databases, Architectures and
Structures, BDAS 2014, vol. 424, pp. 259–270. Springer (2014)



13 A New OFNBee Method as an Example of Fuzzy ... 235

6. Czerniak, J.M., Dobrosielski, W., Zarzycki, H., Apiecionek, L.: A proposal of the new owlant
method for determining the distance between terms in ontology. In: Intelligent Systems’2014,
Vol 2: Tools, Architectures, Systems, Applications vol. 323, pp. 235–246 (2015)

7. Czerniak, J., Apiecionek, Ł., Zarzycki, H., Ewald, D.: Proposed caeva simulation method for
evacuation of people from a buildings on fire. Adv. Intell. Syst. Comput. 401, 315–326 (2016)

8. Czerniak, J., Dobrosielski, W., Apiecionek, L.: Representation of a trend in ofn during fuzzy
observance of the water level from the crisis control center. In: Proceedings of the Federated
Conference on Computer Science and Information Systems, IEEEDigital Library, ACSIS, vol.
5, pp. 443–447 (2015)

9. Czerniak, J., Macko,M., Ewald, D.: The cutmag as a new hybrid method for multi-edge grinder
design optimization. Adv. Intell. Syst. Comput. 401, 327–337 (2016)

10. Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of abc
method to optimization of water capsule flight. In: Proceedings of the Federated Conference on
Computer Science and Information Systems, IEEEDigital Library, ACSIS, vol. 5, pp. 489–493
(2015)

11. Dorigo, M., Birattari, M., Garnier, S., Hamann, H., de Oca, M.A.M., Solnon, C., Stützle, T.:
ANTS 2014 special issue: editorial. Swarm Intell. 9(2–3), 71–73 (2015). doi:10.1007/s11721-
015-0111-0

12. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm intelligence. In: Proceedings of the Morgan Kauf-
mann Series on Evolutionary Computation 1st edn. USA (2001)

13. Ghanbarzadeh, T.: Multi-objective optimization using the bees algorithm. In: Proceedings of
International Virtual Conference on Intelligent Production Machines and Systems (IPROMS),
Cardiff, UK (2007)

14. Kacprzak, D.: Analiza modelu leontiewa z użyciem skierowanych liczb rozmytych. referat
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Chapter 14
Fuzzy Observation of DDoS Attack

Łukasz Apiecionek

Abstract DDoS attacks are able to blockWeb servers. Such attacks could be started
from anywhere in the network. This chapter presents the possibility of using Ordered
Fuzzy Numbers (OFNs) for observation of a DDoS attack. The proposed algorithm
could be implemented on routers and predict the moment of the attack. Such predic-
tion gives a possibility for the network administrators to protect server resources. In
the chapter the author presents the real test results made on a prepared IP network.
The presented results prove that OFNs have a huge potential for usage in observation
of DDoS attacks.

Keywords DDoS · Security · Fuzzy logic · Fuzzy observation

14.1 Introduction

Today the main network used is the Internet which could be described as a wide
area network (WAN). Many huge companies have many offices in different locations
connected to the Internet. In this situation often some virtual private networks (VPN)
are created to connect the locations in a secure way. This gives a possibility to block
the company using a distributed denial of services (DDoS) attack on such systems.
Such an attack could block the server frommanaging connections and thus resources
and could generate financial loss for this company. That is why this problem is very
common and should be solved.
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14.2 DDoS Attack Description and Recognition

These attacks arewell described in the literature [1–3]. There aremany possible types
of such attacks. One of them could use TCP/IP sockets vulnerabilities [2, 4], whereas
others could use domain name system (DNS) server vulnerabilities. As mentioned,
the main principle of such attacks is to try to utilize all server resources by generating
a lot of ordinary user connections. The number of such connections can exceed the
servers’ capability to handle them. Many papers [1–3, 5, 6] provide methods for
dealing with DDoS attacks. These methods could be described as detection and the
necessary cooperation between network providers. This is because the attackers send
their packets through the network which belongs to a network provider. Therefore
only network providers can block the attacker traffic. If they do not block such traffic,
that traffic will saturate data links. This saturation causes blockage of the connection
to the server [7] which could block some valuable portals such as e-learning plat-
forms [8, 9]. Some of the methods for detecting DDoS attacks use general- purpose
computing on graphics processing units [10], whereas others recommend protect-
ing networks with a firewall [11, 12]. Intrusion prevention systems and intrusion
detection systems use huge databases that consist of data collected during simple
attacks from one place on the network [11]. But detecting attacks in a real worldwide
network, such as a WAN, is a very complicated process. Some authors claim that it
could be ensured by cooperation of routers, firewalls, and Internet providers [13–15].
Other possibilities include the use of fuzzy logic for this purpose [16, 17]. Such a
solution requires a great deal of effort from experts who have to provide the rules
describing the possible attack. Then, these rules are used for attack observation.

14.3 The Idea of Attack Recognition and Prevention

The proposed idea of attack observation, for recognition and prevention, is to limit
performance of a network device during the attack that will limit the number of
connectionsmade to the target of the attack. Nowadays there aremethods for limiting
incoming traffic on a firewall and they allow the servers to deal with the already
established connection. This should let the users finish their work and enable new
users to connect to the server. Such known methods are quality of service (QoS)
methods. QoS methods let the network administrators limit data traffic that could be
described by many parameters such as source address, destination address, protocol,
port, and so on. This solution also makes it possible for the router to count incoming
traffic and decide which packet will be transferred as first and which will be the last.

There are some papers describing theQoSmethod idea that canwork on one router
and try to protect network resources locally [18]. But this solution does not recognize
the source of the attack and does not solve the problem. When the packets are not
blocked the hacker is still able to send packets to the server and block its resources.
Nowadays routers are, of course, exchanging a lot of information between them.
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The main information describes the reachability of the IP networks. This is done by
routing protocols such asOSPF, EIGRP, BGP, ormulticast routing protocols [19, 20].
This mechanism can be used for recognizing the DDoS attacks with some Ordered
FuzzyNumbers (OFNs) implemented. As has already beenmentioned, QoSmethods
are able to count the number of packets, but they are not able to decide if the packet
is part of a DDoS attack on a server. There is a need for new services for network
providers. Those services should provide mechanisms for detecting the attackers’
packets to enable the router to block them on all the network routers, not only on
the firewall that operates in front of the target of the attack. Such services should be
implemented in an easy way, and it should use some well-known mechanism such
as exchanging information between routers via routing protocols. Such a solution
is the simple network management protocol (SNMP) which is used for acquiring
knowledge on traffic statistics. The solution proposed by the authors for recognizing
DDoS attacks using OFNs could be implemented on routers and require collecting
traffic statistics. This method should not utilize too many resources of the routers,
therefore it should also cooperate with the possible target of the attack. The author
defines this method in the following steps.

• Server collects information about its traffic statistics (1) via SNMP from network
routers.

• Using OFNs, its traffic statistics, and operating status, the server detects that it is
under attack (2).

• Server establishes IPSec channel to network provider’s router (3).
• Server passes information about the type of traffic that has to be blocked by the
network using SNMP over the IPSec channel (4).

• Router starts to block specific traffic (5).
• Router spreads the information about specific traffic that has to be blocked via a
SNMP trap message to other routers (6).

• The specific traffic of the attacker is blocked via the network resources (7).

These steps are presented in Fig. 14.1. This idea is very simple and can be imple-
mented very easily. The proposed algorithm uses SNMP and IPSec encryption. Some
known aspects of the attack are used. The first is that the target of the attack is a server.
The consequence of that fact is that the server should recognize it is under attack.
The network alone is not able to decide if the server is under attack. Second, if the
routers get the information that they have to block some specific traffic, they could
do it. Routers could block specific traffic to the server using an already implemented
mechanism such as random early detection. The process of passing the information
from the server to the router that there is an attack has to be protected and both sides of
the communication have to be authenticated. This could be achieved using a second
already existing mechanism such as IPSec encryption and public-key infrastructure.
Nowadays many organizations possess X.509 certificates signed by authorized certi-
fication authorities. The aforementioned secure communication channel, established
by IPSec, could be used for passing the information from the server to the router that
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Fig. 14.1 The algorithm concept

the server is under attack. This message can also include information about the kind
of traffic to be blocked in the network. There could also be SNMP used in a secured
IPSec channel to pass the information. As mentioned, SNMP is also widely imple-
mented on routers. Thus the network providers can implement this solution on their
routers. The only thing that has to be done is to decide if the server is under attack.
This process could be achieved using the aforementioned Ordered Fuzzy Numbers.

14.4 Attack Observation Using OFNs

As has already been mentioned, the system administrator has the possibility to check
how many and which users are already connected to the server. He or she is also a
person who possesses the knowledge about the prime time of the day in which users
usually work with the system. Another issue that could be checked is howmany TCP
SYN connections actually come to the server by attempts to establish a TCP session.
The last area that could be checked by the proposed algorithm, as mentioned before,
is router statistics of packet transmission. That complete set of information should
be enough to decide whether the server is under attack. In the proposed algorithm,
the administrator will not use the fact that the number of connections is growing.
The method will measure the packet count during network operation based on router
statistics provided by SNMP. In the proposed algorithm, the administrator should
measure The specific packet count four times:
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Fig. 14.2 Fuzzy number in
OFN notation

ti , t(i−1), t(i−2), t(i−3) (14.1)

where ti is a current timeslot.
All four measures together give a fuzzy number in OFN notation where

• f A(0) corresponds to t(i−3)

• f A(1) corresponds to t(i−2)

• gA(1) corresponds to t(i−1)

• gA(0) corresponds to ti

This fuzzy number in OFN notation is presented in Fig. 14.2. This is a definition of
fuzzy observance of a router.

Definition 1 Fuzzy observance of an R router in time ti is a set

R/ti = { fR(0)/ti−3, fR(1)/ti−2, gR(1)/ti−1, gR(0))/ti } (14.2)

where

ti > ti−1 > ti−2 > t3−1

|ti − ti−1| = |ti−1 − ti−2| = |ti−2 − ti−3| = tn, timeslot of the measurement
fR(0) ≤ fR(1) ≤ gR(1) ≤ gR(0)

This provides Lemma1.

Lemma 1

Rpositive =
⎧
⎨

⎩

fR(0) < fR(1) < gR(1)
or
fR(1) < gR(1) < gR(0)

(14.3)

in other situations, Rnegative.
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Fig. 14.3 The algorithm concept

According to this definition during router observance the counters should give:

• Positive order of OFNs when the packet count increases
• Negative order of OFNs when the packet count decreases

The interpretation of these orders is presented in Fig. 14.3. Then the statistics col-
lected on the routers are prepared and the appropriate counters give the results for
preparing fuzzy numbers, and a fuzzy observance of the group of routers can be
defined. Fuzzy observance of the group of routers is defined as

Definition 2 Fuzzy observance of the group of routers is described by the formula:

Sm =
n∑

i=1

{
Rpositive|Rnegative

Ri ∗ wi | − Ri ∗ wi

}

. (14.4)

where wi ∈ {wi , . . . ,wn} describes an impact on all routers.

This provides a possibility to define the situation when DDoS should be detected on
the router:

Definition 3 An attack on the router is detected in the following conditions:
If Ri is positive AND Ri is negative THEN Attack = true
where Ri is an order from the history of statistical results according to that router on
the time of day of the observance.

According to this, the situation when DDoS could be detected on a group of routers
could be defined as follows.

Definition 4 An attack on a group of routers is detected in the following conditions.
If Sm is positive AND Sm’ negative THEN Attack = true
where Sm is an order from the history of statistical results according to that group
of routers on the time of day of the observance.
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14.5 Experiment Test Results

In the following two subsections we provide descriptions of the test together with
the results of attack detection by the proposed method.

14.5.1 Test Description

To test and prove the idea a special IP network was prepared. This test was inspired
by the situation in Poland, when the Polish government attempted to sign the ACTA
regulations. This situation caused a huge attack on Polish government websites. In
consequence, those websites were blocked. The method of attack was very simple,
because itwas sufficient thatmany people tried to visit suchwebsiteswhich generated
massive traffic to the servers. These servers were not prepared to manage so many
connections exceeding their capacity. Finally the servers stopped responding to users’
queries. Such a method of attack could be simulated in an easy way. Some simple
tools could be found on the Internet [21]. One of them is DDOSIM, Layer 7 DDoS
simulator [22]. This solution is provided with the source code, thus it is possible to
analyze it and check how it works. In a real situation, the attacker has to collect an
appropriate number of hosts that could be used as sources of the attack. Once she has
them, the attack can be started. In the prepared simulation, it is enough to just run the
DDOSIM programwith the appropriate parameters. After that, this tool will generate
the defined amount of connections to the defined IP address. To perform this test a
special network with mesh topology (shown in Fig. 14.1) was prepared. The user
hosts labeled from 1 to 5 were running DDOSIM software in the appropriate cycle.
This station was equipped with an Intel i3 processor running under Windows 7 64-
bit system control. But the DDOSM software was running on a virtual machine in a
VMWare environment. That virtual machine was equipped with 512MB of memory
and 1 processor and was running under Debian operating system control and theWeb
server was equipped with two Intel Xeon processors with a Windows 2008 server
operating system. An Internet information service was started on the Web server.
It was used to provide an HTTP server functionality. The routers R1 to R6 were
Cisco 2600 series routes. To simulate the attack the DDOSIM software requested
information from the Web server using a TCP connection in the following steps.

• User sends TCP SYN packet to port 80.
• Web server answers with TCP SYN ACK and reserved resources.
• User sends TCP ACK packet.
• User sends HTTP/GET as a request for information packet.
• Server attempts to answer this request for information packet.
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The cycle of simulation was prepared in the following steps and according to the
following conditions.

• The IP address of the Web server was 192.168.10.12.
• The user hosts from 1 to 5 have got IP addresses 192.168.x.4, where x belongs to
the set 1, 2, 3, 4, 5.

• During the attack the packets were sniffed using Wireshark; there were six places
where packets were sniffed: user 1 to 5 machines and the Web server.

• The network was running normally.
• After 1min of normal operation the host of user 1 started the attack.
• The target of the attack, of course, was the Web server.
• The user machines were sending request packets using DDSOIM software with
these parameters: there were 1,000 HTTPGETmessages passed to theWeb server
every 30s.

• Another user host joined the attack every minute.
• Once all the user’s hosts started the attack, all of them attacked together for five
minutes.

• When the attack stopped, the packets were sniffed for another five minutes.

This test provides a lot of data from the network node using files with whole IP
packets from six places of the network. The database from this simulation including
the traffic from all the connections can be downloaded from data resource page [23].
Additional packets that could be recognized in the collected database include the
open shortest path first routing protocol which was running between routers as in
ordinary networks [18, 23, 24]. In the network prepared for the simulation, to ensure
better test conditions, no quality of service method was implemented. Also there was
no firewall or IDS/IPS implemented in the network whereas it should normally be
implemented [25–27]. This was because the authors claim that in a real network the
packets which come from ordinary users are not treated as special packets. Moreover
theWeb servers should not be under any protection in order to check that the method
of the attack is strong enough and the database collected could be treated as a valuable
amount of data (Fig. 14.4).

14.5.2 Attack Detection Using Proposed Method

Statistics of packets have to be provided to use a proposed method for detecting
attacks using OFNs. According to the collected database, the results could be cal-
culated from sniffed packets, and this was done. There is a requirement for defining
timeslots for which the statistics will be calculated. Those timeslots were defined to
be one minute. Then the amount of packets directed to the Web server and that pass
through the routers R1 to R6 was normalized by dividing by 1,000. The achieved
results of this simulation are presented in Table14.1.
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Fig. 14.4 Used network

Table 14.1 Normalized packets count on routers during test

Timeslots:

Router t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

R1 0 1 1 1 1 1 1 1 1 1 0 0 0 0

R2 0 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0 0 0 0

R3 0 0.5 1 2 2.5 2.5 2.5 2.5 2.5 2.5 0 0 0 0

R4 0 0.5 1 1 2 2 2 2 2 2 0 0 0 0

R5 0 0.5 1 1 1.5 2.5 2.5 2.5 2.5 2.5 0 0 0 0

R6 0 1 2 3 4 5 5 5 5 5 0 0 0 0

To calculate a sum described by Definition2, the OFNs have to be defined by the
statistics collected from the routers. In the timeslots t0 the normalized value is 0. It
means that all numbers are [0, 0, 0, 0]. Thus, accordingly:

Sm = 0. (14.5)

This has not got any order, but the results provide the information that there is no
packet directed to the Web server, therefore there is no attack on it.

In the timeslot t1 it is possible to provide the OFN with an approximation. This
approximation could be made by providing the OFN with only two measurements
and is utilized as a four-part number by using the values as follows.

• f A(0) corresponds to t0.
• f A(1) corresponds to t0.
• gA(1) corresponds to t1.
• gA(0) corresponds to t1.
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In this situation the OFN for the routers 1 to 6 could be described as

• For router R1 it is [0, 0, 1, 1].
• For router R2 it is [0, 0, 0.5, 0.5].
• For router R3 it is [0, 0, 0.5, 0.5].
• For router R4 it is [0, 0, 0.5, 0.5].
• For router R5 it is [0, 0, 0.5, 0.5].
• For router R6 it is [0, 0, 1, 1].
Therefore the Sm = [0, 0, 2.5, 2.5] with positive order. Those results according to
Definition4 have to be compared with the historical results in the part corresponding
to an appropriate day. In the performed simulation the results indicate that the Web
server is under attack, but the probability of the attack is 50% because the OFN was
prepared with the aforementioned approximation. In the timeslot t2 it is still possible
to provide the OFN only with an approximation. This approximation could be done
by providing the OFN from only three measurements and used as a four-part number
by making use of the following values.

• f A(0) corresponds to t0.
• f A(1) corresponds to t1.
• gA(1) corresponds to t2.
• gA(0) corresponds to t2.

In this situation the OFN for the routers 1 to 6 could be described as

• For router R1 it is [0, 1, 1, 1].
• For router R2 it is [0, 0.5, 1, 1].
• For router R3 it is [0, 0.5, 1, 1].
• For router R4 it is [0, 0.5, 1, 1].
• For router R5 it is [0, 0.5, 1, 1].
• For router R6 it is [0, 1, 2, 2].
Therefore Sm = [0, 2.5, 6, 6] with positive order. Those results according to Defini-
tion4 have to be compared with the historical results in the part corresponding to an
appropriate day. In the performed simulation the results indicate that the Web server
is under attack, but the situation of the attack could be described with the probability
of 75% because the OFN was also provided with an approximation. In the timeslot
t3 it is possible for the first time to provide the OFN without any approximation. It
means that for the OFN four measurement results will be used as follows.

• f A(0) corresponds to t0.
• f A(1) corresponds to t1.
• gA(1) corresponds to t2.
• gA(0) corresponds to t3.

In this situation the OFN for the routers 1 to 6 could be described as

• For router R1 it is [0, 1, 1, 1].
• For router R2 it is [0, 0.5, 1.5, 1.5].
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Table 14.2 The sum calculation results

Time Sum Trend Situation

t0 [0, 0, 0, 0] – No attack

t1 [0, 0, 2.5, 2.5] Positive Attack in 50%

t2 [0, 2.5, 6, 6] Positive Attack in 75%

t3 [0, 4, 7.5, 9.5] Positive Attack

t4 [4, 7.5, 9.5, 12.5] Positive Attack

t5 [7.5, 9.5, 12.5, 14.5] Positive Attack

t6 [9.5, 12.5, 14.5, 14.5] Positive Attack

t7 [12.5, 14.5, 14.5, 14.5] Positive Attack

t8 [14.5, 14.5, 14.5, 14.5] Positive Attack

t9 [14.5, 14.5, 14.5, 14.5] Positive Attack

t10 [14.5, 14.5, 14.5, 0] Negative No attack

t11 [14.5, 14.5, 0, 0] Negative No attack

t12 [14.5, 0, 0, 0] Negative No attack

t13 [0, 0, 0, 0] Negative No attack

• For router R3 it is [0, 0.5, 1, 2].
• For router R4 it is [0, 0.5, 1, 1].
• For router R5 it is [0, 0.5, 1, 1].
• For router R6 it is [0, 1, 2, 3].
Therefore Sm = [0, 4, 7.5, 9.5] with positive order. Those results, as in previous
timeslots, have to be compared with the historical results in the part corresponding
to an appropriate day. In the performed simulation the results indicate that the Web
server is under attack. Using Table14.1 the OFN for each router in subsequent times-
lots was defined and Sm was calculated. Those results are presented in Table14.1.
Obviously, the order was described and the decision about a possible attack was
made. The timeslot of interest is t10. In this situation the OFN for the routers 1 to 6
could be described as

• For router R1 it is [1, 1, 1, 0].
• For router R2 it is [1.5, 1.5, 1.5, 0].
• For router R3 it is [2.5, 2.5, 2.5, 0].
• For router R4 it is [2, 2, 2, 0].
• For router R5 it is [2.5, 2.5, 2.5, 0].
• For router R6 it is [5, 5, 5, 0].
• All of them with negative order.

Therefore Sm = [14.5, 14.5, 14.5, 0] with negative order. Those results, as in previ-
ous timeslots, have to be comparedwith the historical results in the part corresponding
to an appropriate day. In the performed simulation the results indicate that the Web
server is no longer under attack. The same situation could be recognized in timeslot
t11. In this situation the OFN for the routers 1 to 6 could be described as follows.
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• For router R1 it is [1, 1, 0, 0].
• For router R2 it is [1.5, 1.5, 0, 0].
• For router R3 it is [2.5, 2.5, 0, 0].
• For router R4 it is [2, 2, 0, 0].
• For router R5 it is [2.5, 2.5, 0, 0].
• For router R6 it is [5, 5, 0, 0].
• All of them with negative order.

Therefore Sm = [14.5, 14.5, 0, 0] with negative order, which means that there is no
attack recognized (Table14.2).

14.6 Conclusions-Method Comparision

The presented method could be compared with the method proposed in the literature
as provided in Table14.3.

As shown in Table14.3, the proposed method does not require an expert to define
the rules of possible attack as in a system with fuzzy logic proposed in some papers
[16, 17]. Such an expert would have to possess extended knowledge about secu-
rity and IP networks. This is something that allows us to use the proposed method
in a very quick way. The second thing is the manner of gathering results of the
observance of a DDoS attack. In the proposed method, the decision about the attack
is made using simple calculations provided by the OFN description. This allows
achieving the results very quickly and easily. The methods found in the literature
make decisions by comparing a list of rules [16, 17]. Of course there are some solu-
tions that use mathematical models [28], but they are much more complicated than
the method using OFNs. The last thing that could be compared is the possibility
of being implemented in a real environment, which means in real networks. The
method proposed in the literature requires a lot of processing power. The method
proposed in this chapter requires only solving a simple mathematical equation. This
is very important, because it lets us use the proposed method in a real network, on
real routers.

Table 14.3 Proposed and existing fuzzy method comparison

Functionality Existing method with fuzzy
logic

Proposed method

Expert work Method requires an expert,
who has to define the rules of
the attack

Method does not require an
expert to define the rules of the
attack

Result of DDoS attack
observance

Decision made by comparing a
list of rules

Decision made by simple
calculations

Possibility to implement a in
real environment

Requires lot of processing
power

Requires only solving a simple
mathematical equation
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The presented new concept of detecting DDoS attacks was introduced using fuzzy
numbers. As has already beenmentioned, it consists in determining the server activity
trend changes by specification of the direction of changes using OFNs. The test was
performed on the real dataset collected in the prepared network. This dataset is about
2GB in size, but the information about the possible attack could be achieved without
utilizing a lot of CPU performance.
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Chapter 15
Fuzzy Control for Secure TCP Transfer

Łukasz Apiecionek

Abstract This chapter presents the potential use of fuzzyobservance implementation
for detecting transmission problems that could appear in the near future. Using quick
detection, appropriate action could be taken and the security and reliability of data
transfer could be maintained at a high level. As a result the authors present a pro-
posed solution for dividing a data stream between different data links and predicting
transmission problems.

Keywords TCP · Multipath TCP · Security · Fuzzy logic · Fuzzy observation

15.1 Introduction

Nowadaysmany networks require security such as data encryption and reliable trans-
fer to the destination. Health care, rail, and power plant systems are some examples
of such systems. When they are used an operator cannot lose a connection between
his or her control and management applications and system sensors and actuating
equipment. In such a system a lost connection could have tragic consequences. In the
case of power plants this could also mean some huge disaster. That is why security
regarding reliable transfer is very important. In the case of health systems it could be
required for monitoring people but also for execution of medical operations through
remote control of medical equipment such as a scalpel. Some problems with rail
equipment could cause a train accident. There are also many other systems in which
a lost connectionwould cause real damage. Such systems are called critical infrastruc-
ture. For this critical infrastructure more than one connection is usually prepared.
For example, those systems can operate using cable and a 3G/4G/LTE connection
concurrently. Unfortunately, in most cases, different kinds of used connections are
not operated simultaneously. Systems switch between them when the operating con-
nection collapses. When the systems switch connections they can lose some data.
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The loss of data can be very costly. In such systems there is much effort concerning
appropriate data encryption. The systems are usually well protected against unau-
thorized access to the network [3, 10, 25, 40]. In most cases the data are encrypted
before being forwarded to the communication transmission layer. Theworst situation
is when they lose their connection, as mentioned above. In order to ensure that the
data reach their destination, transmission control protocols are used, but it could not
be enough. When the connection collapses and the system switches to another one,
the transmission of the lost packet has to be repeated [12, 13, 15]. In many cases, the
system administrator does not know that use of more than one network connection
can increase the transfer rate and security level of the data transfer process mentioned
as reliability of the data transfer. How can it be achieved? In the situation when only
one connection is used, a hacker can sniff all the packets of data in only one place on
the network. Thus he or she could collect all the data and then try to decode them.
After some time the real information can be recovered. When there is more than
one network connection used, a hacker is forced to work on more spots to sniff the
packets. More connection used in a parallel way could improve security because in
this scenario, a hacker must be familiar with more than one transfer technology [11,
16, 22]. This chapter presents multipath transmission control protocols (MPTCP),
which is currently ready-to-use technology. This technology can be used to achieve
the aforementioned functionality. One of the huge advantages of MPTCP is the fact
that it works at the operating system level. This makes it possible to use the existing
application in a simple manner. MPTCP are presented with the three schedulers:
the existing one, some secure proposition, and finally the one using Ordered Fuzzy
Numbers (OFNs) for fast prediction problems in the transmission [20, 38, 60]. Such
a presentation lets us introduce OFNs as a ready-to-use solution that could also be
used in connection with other technology and solve some real problems in IP net-
works. The chapter is focused on OFN usage in already implemented technology
such as MPTCP [26, 57, 62].

15.2 Multipath TCP

MPTCP uses the concept of transmission control protocols (TCP) [9, 24, 39, 50].
TCP transmission is used for delivering data between applications running on differ-
entmachines on the network. TCP can be used to send data in both directions between
two hosts using an established connection. A unique identifier is used to describe
that connection. That identifier consists of two pairs of values (one for each side of
the connection), IP and port number [5, 27, 28]. To achieve complete data and their
appropriate order, checksums and sequence numbers are used. The mentioned data
are shown in the TCP header presented in Fig. 15.1. When the application intends to
establish a TCP connection, it has to exchange appropriate signals. This process is
called a three-way handshake and is presented in Fig. 15.2. Host A sends a segment
with a set SYN flag, then host B confirms the receipt of the packet and sends back
SYN and ACK flags as a response. Finally, host A sends an empty segment, with
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Fig. 15.1 TCP header

Fig. 15.2 Three-way
handshake

only the ACK flag as a response to the previous message [34–36, 50]. One possible
problem with TCP is the process of changing network connections which is associ-
ated with changing an IP address into another one. When a host switches from an
Ethernet cable connection toWi-Fi, it is assigned a different IP address. This triggers
a process of closing the existing TCP connections and resuming them. MPTCP is
characterized by a set of extensions to the specification of the existing TCP. These
extensions enable the client to establish more than one connection while they each
use different network cards, yet they are all used to reach the same destination host.
The fact that fault-tolerant and efficient data connections are maintained this way
between hosts that are compatible with the already used network infrastructures can
be regarded as a big advantage ofMPTCP. A possible way of establishing connection
using network A and B is presented in Fig. 15.3. Another MPTCP advantage is that it
increases the throughput of data transfer. This approach should significantly improve
congestion balance between network paths. Simultaneous enabling of MPTCP must
not prevent connectivity on a path where regular TCP operates [33, 37, 53, 54]. As
already mentioned, MPTCP is located at the transport layer and it is intended to be
transparent to other layers: higher and lower ones, as presented in Fig. 15.4. MPTCP
can be treated as an additional function of higher layers of the TCP standard.

When a new connection of MPTCP should be established, a three-way hand-
shake algorithm of TCP is used. This is presented in Fig. 15.5. The protocol is
enhanced by a new feature that makes the difference as compared to standard TCP.
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Fig. 15.3 N different TCP
connections are represented
as a single logical datum

Fig. 15.4 MPTCP in the
stack

Fig. 15.5 Establishing
connection

The MP_CAPABLE option informs both hosts if the MPTCP connection can be
established and if the data can be transmitted. The IP networks encompass many
routers and switches working as intermediate boxes. Those boxes could complicate
the process of establishing connections. For this reason it is insufficient to identify
the connection pair (IP address and port number) of the source and destination hosts.
MPTCP has extended TCP functionality by adding another option called MP_JOIN.
This option is used for generating a new subflow of data. The process of adding a
new subflow is presented in Fig. 15.6.

The process of adding a new subflow is done in the following steps.

• In the first step the MP_JOIN option provides a token generated with the key
(truncated hash of the key) created during the initial connection.
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Fig. 15.6 Adding a new
subflow into MPTCP

Fig. 15.7 Error control in
MPTCP

• In the second step the exchange of HMAC (hash-based message authentication
code) takes place.

• In the third step the subflows are established, andMPTCPcan use them to exchange
data.

Once the connection is established each host can send data over any of the subflows.
Furthermore, Fig. 15.7 presents the data transmitted over one subflow. If, for example,
a packet numbered 4 and 7 is lost it can be retransmitted to another subflow to
recover the loss. Finally all the data packets reach the destination. There is a ‘subflow
sequence number’ in standard TCP that supports the reception of a single subflow
and ensures detection of any data loss. MPTCP uses “data sequence number” to
sort the received data before passing them to the application [23, 51, 52, 55]. The
MPTCP header is presented in Fig. 15.8. To inform the destination that the source has
no more data to send, the source sends “Data FIN” signals. Its operation is exactly
the same as a TCP FIN in standard TCP implementation.
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Fig. 15.8 MPTCP header
(simplified diagram)

Fig. 15.9 MPTCP on
smartphones

15.3 Multipath TCP Schedulers

Three schedulers are presented in the next three subsections: standard, secure, and
with OFN usage.

15.3.1 Multipath TCP Standard Scheduler

In general, ordinary users who are connected to the Internet by their smartphones
via Wi-Fi or a 3G network do not use these connections concurrently. They use them
in series. The MPTCP is able to use both at the same time as shown in Fig. 15.9. If
the standard TCP connection fails for some reason, it must be re-established. With
MPTCP such a situation can be avoided by dynamic switching to the link. Therefore
the user can avoid wasting time re-establishing connections. It enables the optimum
data transfer rate selection.

The first mobile system that supports MPTCP [3, 31, 32, 56] is iOS 7. It ensures
an uninterrupted transfer in case of failure of one connection or when the connection
is aborted. At the moment, MPTCP is used in iOS 7 only for transfer of Siri data. Siri
is an intelligent personal assistant for smartphone users. Such a system of scheduling
connections was originally proposed by MTCP authors.

15.3.2 Multipath TCP Secure Scheduler

Another possible MPTCP scheduler is a secure scheduler. As follows from the lit-
erature, MPTCP is able to increase the security level of the transmitted data by
application of many different links to reach the destination. This solution is contrary
to the present methodology, which is based only on network protection and [1, 2,
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Fig. 15.10 Mixing data
process

14, 17, 18, 61] on network access control [7, 8, 29, 30, 58]. This scheduler treats
the transmitted IP packets as raw binary data, which can be divided into blocks and
then passed to the transmission layer. As regards data protection from being sniffed
by a hacker, the scheduling algorithm consists of the steps:

• Step 1. Data are divided into blocks.
• Step 2.Data are assigned a special sequence number, data sequence number (DSN).
• Step 3. Blocks are collected in a random sequence.
• Step 4. Data are encoded.
• Step 5. Blocks of data are passed to the MPTCP socket, which will transmit them
to their destination.

• Step 6. Receiver side collects the blocks of data.
• Step 7. Data are decrypted.
• Step 8. Receiver side connects the blocks of data in an appropriate order.

The process of dividing the data into blocks, assigning a special DSN (data sequence
number) to it, and putting it in a random sequence (Steps 2 and 3), is shown in
Fig. 15.10. Step 5 of the proposed algorithm is presented in Fig. 15.11. The data
passed to the MPTCP socket is transmitted using different data connections in a
parallel way. In the vulnerable spots, where the data can be sniffed, a hacker is able
to get only a portion of transmitted data. These data do not carry any clue as to what
part of the original data they are [4, 6, 41].

The process of mixing the original data blocks uses random sequence and is per-
formed on the sender’s side, whereas the information about the appropriate sequence
is passed to the receiver’s side using the DSN.
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Fig. 15.11 Transmission
process

15.3.3 Multipath TCP Scheduler with OFN Usage

As already mentioned above, MPTCP can increase network security regarding such
parameters as a destination reachability and network reliability [42, 43, 48]. For any
mentioned scheduler, a transmission error can occur at the used channel. The error
can cause a need for data retransmission over the same channel, or if the number of
errors grows, the channel can be closed and another connection used. Use of OFNs
can increase the time of the data transmission link change or can decrease the number
of retransmissions. OFNs can be used for predicting data loss in the used channel
and may accelerate the decision on some changes such as quicker retransmission of
packets or use of a different channel [45–47].

15.3.4 OFN for Problem Detection

An algorithm has been proposed for OFN use for detecting future problems in the
used connection [19, 21, 44, 49, 59]. For this purpose the algorithm should measure
a TCP retransmission in all used channels during the transmission as a percentage
value of transmitted packets (during the given timeslot). This measurement should
be continuous and statistics should be taken for specific timeslots. Four timeslots of
a continuous measurement can be defined as follows.

ti , t(i−1), t(i−2), t(i−3) (15.1)

where ti is a current timeslot.
All four measurements together make up a fuzzy number in OFN notation where

• f A(0) corresponds to t(i−3).
• f A(1) corresponds to t(i−2).
• gA(1) corresponds to t(i−1).
• gA(0) corresponds to ti .
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Fig. 15.12 Fuzzy number in
OFN notation

That fuzzy number in OFN notation is presented in Fig. 15.12. This is a definition of
a fuzzy observance of a connection.

Definition 1 Fuzzy observance of C router in time ti is a set

C/ti = { fC(0)/ti−3, fC (1)/ti−2, gC(1)/ti−1, gC(0))/ti } (15.2)

where

ti > ti−1 > ti−2 > t3−1

|ti − ti−1| = |ti−1 − ti−2| = |ti−2 − ti−3| = tn, timeslot of themeasurement
fC(0) ≤ fC(1) ≤ gC(1) ≤ gC(0)

This provides Lemma 1.

Lemma 1

Cpositive =
⎧
⎨

⎩

fC(0) < fC(1) < gC(1)
or
fC(1) < gC(1) < gC(0)

(15.3)

In other situations Cnegative.

According to this definition, during observance of connections the counters should
give:

• Positive order of OFN when the packet retransmission count increases
• Negative order of OFN when the packet retransmission count decreases

The interpretations of those orders are presented in Fig. 15.13. Then the statistics
collected at each connection provide results for fuzzy number preparation. Fuzzy
observance of the MPTCP connections can also be defined. Fuzzy observance of the
MPTCP connections is defined as follows.
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Fig. 15.13 Order interpretation in OFN notation

Definition 2 Fuzzyobservanceof theMPTCPconnections is definedby the formula:

Sm =
n∑

i=1

{
Rpositive|Rnegative

Ri ∗ wi | − Ri ∗ wi

}

. (15.4)

where wi ∈ {wi , ...,wn} describes an impact on all connections.

This makes it possible to define the MPTCP scheduler with OFNs.

15.4 OFN Scheduler Algorithm

An algorithm proposed as OFNs used for transmission error anticipation consists of
the following steps.
Step 1. Administrator declareswi and Li for all used connections, wherewi describes
an impact on all connections, and Li describes the load of all data that should be
sent by those connections when the transmission starts. Li should be provided as a
percentage value.
Step 2. The amount of packets Pi that will be transferred over each connection for
each timeslot is calculated using the formula:

Pi = Li
∑n

i=1

∗ Data (15.5)

Step 3. During the transmission Ci is calculated for each connection according to
data retransmissions and Si is calculated according to the given definition.
Step 4. When the calculated Si is positive and exceeds the acceptance level AL ,
there is an error increase detected on this connection. In this situation Li for a given
connection will be changed according to the formula:
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Li = Li

ErrorCorector
(15.6)

When the calculated Si is negative, there is an error decrease detected on this
connection. In this situation Li for a given connection will be changed according
to the formula:

Li = Li ∗ ErrorCorector (15.7)

The ErrorCorector is a value that describes how quickly the system should stop
using a given connection in which the amount of errors has increased. This value
should also be provided by the network administrator.

15.5 Simulation Test Results

To check a MPTCP scheduler with OFNs, some simulations were made. The system
has got two connection links. Connection 1, labeled C1, was a Wi-Fi connection
with maximum rate of 11Mbit/s. The second connection used, labeled C2, was an
LTE connection with the maximum rate of 5Mbit/s. The parameters of the algorithm
were:

• Corrector for the links ErrorCorector = 2.
• Acceptance level AL = 3.
• Load balance at the start for the connection C1 was L1 = 66.
• Load balance at the start for the connection C2 was L2 = 34.
• 60-second timeslots were used.

The results obtained by the applied algorithm according to load balancing between
connections during data transfer are presented in Table15.1. There were errors on
measured data links and the OFN was calculated according to the presented algo-
rithm. The number of packets transferred over each link was modified according
to the level of errors and OFN order. When the percentage of errors increased, the
number of packets passed to the link with problems (C2) was decreased. Obviously,
the OFN was calculated after four timeslots.

Table15.2 shows the number of packets passed to the connections and the number
of packets that had to be retransmitted due to an error on the link when the MPTCP
with and without the OFN algorithm was used. Note that the percentage of errors on
the C2 link decreased. That is why there were fewer packets transferred during the
network problems. The number of errors on the C1 connection increased because
there were more packets transferred through this link. The most important column is
a sum of errors in both links. When the algorithm decreased the number of packets
passed through the C2 link, the sum of errors decreased even if the number of errors
on the C2 link increased. The final results prove that the number of errors in the
transmission can be decreased using OFNs in the MPTCP scheduler.
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Table 15.1 Normalized packets count on routers during test

Time
slots

L - load balance % Error on connection S

L1 L2 C1 C2 S1 Order S2 Order

1 66 34 2 3 Order

2 66 34 2 3

3 66 34 2 5

4 66 34 1 8 [2,1,2,1] Positive [3,4,5,8] Positive

5 66 17 1 12 [1,2,1,1] Negative [4,5,8,12] Positive

6 66 8.5 2 11 [2,1,1,2] Positive [5,8,12,11] Positive

7 66 4.25 2 10 [1,1,2,2] Positive [8,12,11,10] Positive

8 66 2.125 1 11 [1,2,2,1] Positive [12,11,10,11] Negative

9 66 4.25 2 9 [2,2,1,2] Negative [11,10,11,9] Negative

10 66 8.5 1 8 [2,1,2,1] Positive [10,11,9,8] Negative

11 66 17 1 7 [1,2,1,1] Positive [11,9,8,7] Negative

12 66 34 1 7 [2,1,1,1] Positive [9,8,7,3] Negative

13 66 34 3 2 [1,1,1,2] Positive [8,7,3,2] Negative

14 66 34 3 3 [1,1,2,2] Positive [7,3,2,3] Negative

15 66 34 3 2 [1,2,2,2] Positive [3,2,3,2] Negative

Table 15.2 Number of packets and errors during the transmission

Time
slots

Packet count Error count

MPTCP with KFC MPTCP without KFC

C1 C2 C1 C2 C1+C2 C1 C2 C1+C2

1 52800 27200 1056 816 1872 1056 816 1872

2 52800 27200 528 1088 1616 528 1088 1616

3 52800 27200 1056 1360 2416 1056 1360 2416

4 52800 27200 528 2176 2704 528 2176 2704

5 63614 16386 636 1966 2602 528 3264 3792

6 70870 9128 1417 1004 2421 1056 2992 4048

7 75160 4840 1503 484 1987 1056 2720 3776

8 77505 2495 755 275 1050 528 2992 3520

9 75160 4840 1503 436 1939 1056 2448 3504

10 70872 9128 709 730 1439 528 2176 2704

11 63614 16386 636 1147 1783 528 1904 2432

12 52800 27200 528 816 1344 528 816 1344

13 52800 27200 1056 544 1600 1056 544 1600

14 52800 27200 1056 816 1872 1056 816 1872

15 52800 27200 1056 544 1600 1056 544 1600
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15.6 Conclusions

The new concept of an MPTCP scheduler using OFNs presented herein was tested
during a data transfer simulation. As shown in the previous section, with the proposed
algorithm it is possible to decrease the retransmission count. This could be achieved
because there were fewer packets transferred over the connection link where some
problems were detected. This is a potential use of OFNs in a simple way intended
to improve existing solutions such as MPTCP without complicated algorithms that
require a great deal of processor capacity. The other advantages of using an OFN
scheduler are that it could be connected with the presented secure scheduler and
coexist on the transmissions. Such solutions present the huge potential of OFNs.
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27. Kacprzak, D., Kosiński, W., Kosiński, W.K.: Financial stock data and ordered fuzzy numbers.
In: Artificial Intelligence and Soft Computing: 12th International Conference, ICAISC’2013,
pp. 259–270. IEEE (2013)
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41. Marszalek, A., Burczyński, T.: Modeling and forecasting financial time series with ordered
fuzzy candlesticks. Inf. Sci. 273, 144–155 (2014). http://www.sciencedirect.com/science/
article/pii/S0020025514003107
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Chapter 16
Fuzzy Numbers Applied to a Heat
Furnace Control

Wojciech T. Dobrosielski, Jacek M. Czerniak, Hubert Zarzycki
and Janusz Szczepański

Abstract This chapter presents a trend phenomenon and application of the fuzzy
controller for Ordered Fuzzy Numbers (OFNs). The authors propose to use a trend in
a combustion process for a simplified model of a solid fuel fired furnace. Better con-
trol over the process translates into reduced CO2 emission as well as optimal use of
the furnace.When carrying out the fuzzy observation of the efficiency of the furnace,
the authors apply the OFN notation by connecting the trend of furnace temperature
changes with the order appropriate for this notation. Thanks to this approach it is
possible to enhance information without the additional need to multiply the trans-
mitted data. It is particularly effective in the multidimensional fuzzy observation
when monitoring not only the condition of the temperature in the furnace but also
the ambient temperature and the temperatures in several rooms of the heated build-
ing. The chapter is a continuation of a series of papers published by the authors on
multidimensional fuzzy observation using OFN notation. A controller in the conven-
tional fuzzy logic approach is also presented in the chapter. The controller was built
using jFuzzyLogic software. The fact that there are more andmore OFN applications
seems to be a good predictor of the development of this generalization, an example
of which is the problem analyzed in this chapter.
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16.1 Introduction

The development of civilization is associated with an increase in energy demand.
In modern times a variety of technologies is used for generating electricity. Nuclear
power is one of these technologies supposed to solve the problem of energy shortage.
Assumptions proved to be wrong, as for the atom and other fuels [59]. People should
look for alternatives. An important factor in obtaining energy is the amount of car-
bon dioxide produced, which contributes to climate change. It is assumed that it is
impossible fully to eliminate fuel combustion resulting in carbon dioxide. Reducing
emissions of CO2 in industrial processes is the optimal solution with regard to the
interests of individual countries. The main activities that can reduce CO2 emissions
include reduction of energy consumption, but significant reduction seems unlikely.
There is also the possibility of increasing the use of carbon-free renewable energy
sources such as solar, wind, hydropower, and geothermal resources [59]. Increasing
the efficiency of energy conversion to useful energy, as the last element affecting
the reduction of CO2 is a proposal the authors intend to develop based on the capa-
bilities of artificial intelligence, in particular based on fuzzy logic. According to
the authors the possibility of such process control, which improves combustion effi-
ciency, whether in domestic or industrial stoves, andwill reduce emissions of harmful
compounds, is remarkable. The combustion process is a chemical reaction of oxi-
dation that takes place between fuel and oxygen. The result is an exotherm and the
formation of flue gases. The general process of burning coal is shown in a simplified
chemical formula below.

C + O2 → CO2 + released heat (16.1)

The highest combustion temperature is obtained using the least amount of oxygen
at which there is no free oxygen in the exhaust gas. In other words, the idea is that
all the ingredients are oxidized to CO2, H2O , SO2. Oxygen-enriched combustion
lowers the temperature giving a cooling effect. Combustion with oxygen depletion
also reduces the temperature, thereby contributing to a partial combustion of the
fuel. In contrast, a process that is desirable according to the literature [37] is called
a stoichiometric process. The mixture in this embodiment is burned completely and
exhaust gases contain neither fuel nor oxygen. Ensuring proper combustion, which
depends on many factors (e.g., the calorific value of the fuel, the construction and
function of the stove), may be a difficult control problem. Redefining Eq.16.1 as the
basic equation describing the relationship between the combustion components is
represented by Eq.16.2.
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Equally Eq.16.2 can be represented as anOstwald graph [63], where this relationship
for lignite is shown in Fig. 16.1. Using this graph allows regulation of the combustion
process. When the measuring point is on the line between the axes of the carbon
dioxide and oxygen, the carbon monoxide content is 0%. If a point is above the
line it means that an error has occurred. The situation when the point is below
the line in the combustion means that there is incomplete combustion and in the
exhaust gas there is carbon monoxide in addition to carbon dioxide. Accordingly,
Fig. 16.1 shows a coefficient λ, which is expressed as φ. The general model of the
stove on solid fuel for the purpose of this work is shown below Fig. 16.2. The diagram
shows the essential elements, which are discussed later. Imprecision of factor borders
accompanying the combustion process has contributed to the use of fuzzy logic.
This is confirmed by numerous publications, where examples of the work are [30,
56]; especially important in the context of this article there is the study by [56].
Depicting a fuzzy system of monitoring carbon dioxide in the combustion process
is a Takagi-Sugeno inference model [62]. Combining fuzzy logic with any process
or phenomenon, in which we use a linguistic description of reality is a broad field of
research. Lotfi A. Zadeh can be considered the creator of fuzzy logic. In 1965 this
American professor published an article “Fuzzy Sets” [65] in the journal, Information
and Control, defining the notion of a fuzzy set, where inaccurate information is
described by values from the interval (0, 1).

Fig. 16.1 Ostwald diagram
for lignite based on [63]
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Fig. 16.2 Indicative graph
of a solid fuel stove

It can also be said that the precursor of Zadeh’s achievements is the Polish math-
ematician Jan Łukasiewicz, who in the 1950s published an article on three-valued
logic [39]. The formulation of the foundations of fuzzy logic and the involvement of
the scientific community have contributed to the creation of many theories expand-
ing this subject. One of them is the representation of the L-R fuzzy set. The authors
Dubois and Prade in [16] introduced the limited membership functions of the two
functions of the shapeofL andR.The linear shape functionoperations on the numbers
L-R gave the partial opportunity to reproduce results for the triangular membership
function. In the case of multiplication, the resulting number of L-R led to enlarging
the range introducing imprecise intervals.

We now depart from the genealogy of fuzzy logic development to address again
the original problem, the process of controlling the stove on solid fuel. The authors’
inspiration to write this chapter was that the combustion process can benefit from
the trend. The trend is visible when the stove water temperature rises to a specified
level; the upward trend may be shaken by the excess of supplied oxidant. Oxygen
contained in the exhaust gases and the quantitative composition result in the com-
bustion process. For example, reaching the required water temperature during firing
of the stove is associated with the fan modulation to 80–100% of power and leads
to too lean a mixture. The effect of an excessive amount of oxidant is the cooling
of the heat transfer medium. The water temperature decreases instead of increasing.
Temporary and long-term ups and downs translate into the trend of the process [7–9,
11–15]. Another example might be the work of [6, 21, 38, 41–43, 57, 58], in which
the authors use the trend as a direction in the problems of management accounting
and in determining the internal rate of return (IRR) for investment or other issues
of recognition attack computer networks described in [1–4], and also when talking
about engineering solutions [7–14, 44–49, 60, 61, 68]. The opportunity to study
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the behavior of phenomena expressed as a trend in fuzzy logic is possible thanks
to directing as proposed by the team of Professor W. Kosiński. The authors’ pro-
posal [34] concerns the redefinition of fuzzy numbers as directed fuzzy numbers
OFNs (Ordered Fuzzy Numbers), where the main advantage is the ability to solve a
linear equation16.3.

A + B = C (16.3)

whereA, B are any Ordered Fuzzy Numbers for which the following equality should
occur.

A = C − B (16.4)

In the case of using numbers proposed by Dubois and Prade, Eq.16.4 will be false.
This is because of fuzzy number imprecision expansion. Using OFNs enables easy-
to-perform arithmetic operations on them and on the real numbers. In addition, one
can use direction as the trend of the process.

16.2 Selected Definitions

16.2.1 The Essence of Ordered Fuzzy Numbers

The basic concept of Ordered Fuzzy Numbers has been described in the introduc-
tion. In this chapter a deeper concept of OFNs is presented. This is essential for
understanding the solutions used in the chapter. The authors of OFN are the team of
Professor W. Kosiński, P. Prokopowicz, and D. Ślęzak [31–36, 51–55]. The prob-
lem of increasing imprecision with the increasing number of performed operations
and the lack of solutions to Eqs. 16.3 and16.4 in fuzzy logic has been noted by the
authors. Redefining classic fuzzy sets, which is according to Zadeh to postulate an
ordered pair, expanded the definition of an ordered pair of functions. The number is
defined there as follows.

Definition 1 Ordered Fuzzy Number A is an ordered pair of functions

A = (xup, xdown) (16.5)

where xup, xdown : [0, 1] → R are continuous functions.

These functions are called, respectively, the up- and down-parts. These two parts
are connected via a constant function equal to 1 on the interval. The direction of a
fuzzy number is called the orientation: the up-part of the OFN is the beginning and
the down- part is the end of this number. A graphic interpretation of Ordered Fuzzy
Numbers is presented on the left side of Fig. 16.3, and the right side is the directed
number with a reference to classical fuzzy numbers.
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Fig. 16.3 a OFN example, b OFN presented with a reference to classical fuzzy number, and c
simplified mark denoting the order of inverted functions

Fig. 16.4 Schematic diagram of the fuzzy controller

16.2.2 Fuzzy Controller

The formulation of fuzzy controller mathematical foundations can be found in the
literature [28, 29, 40, 64, 66, 67]. These subject-related concepts using linguistic
variables assume the role of describing input and output states, which we intend to
express and assess a linguistic description. Linguistic value directly affects the verbal
assessment of the linguistic object. For example, the linguistic variable ”voltage”
takes the linguistic values of “small, medium, and high.” The process of fuzzy control
is shown in Fig. 16.4, which includes operations such as fuzzification, inference, and
defuzzification. The fuzzification operation is carried out in the first stage. It is
associated with the calculation of the degree of membership to particular fuzzy sets.
In the inference stage, based on the input degree of membership we calculate the
resultingmembership function.An important conclusion is that the expected outcome
is to define the system resulting in the membership function. Both fuzzification and
inference operations contain a number of specific elements.

The closing operation of the system is the defuzzification block. It is characterized
in that the output is a specific (not fuzzy) value. This value is the product of the
method operating on the resulting membership function and enables the activation
of the actuator in the desired manner.
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Defuzzification is therefore a function that assigns a crisp value to a fuzzy number.
There are several well-described fuzzification functionals, which are utilized inmany
arithmetics used in fuzzy logic, including the following.

FOM: First of Maxima

The FOM method is a method of selecting the smallest element of the set A kernel,
where the fuzzification value is described in Eq.16.6.

FOM(A) = min core(A) (16.6)

LOM: Last of Maxima

Accordingly selecting the highest value of the set A kernel, we use the LOMmethod;
the formula is as below:

LOM(A) = max core(A) (16.7)

MOM: Mean of Maxima

Equation16.8 shows the use ofLOMandFOMas amethod forwhich the fuzzification
value includes the minimum and maximum elements of the A fuzzy set kernel. This
value is the average of these two methods.

MOM(A) = min core(A) + max core(A)

2
(16.8)

RCOM: Random Choice of Maxima

The method is also called kernel fuzzification because the fuzzification value is
always contained in the kernel of a fuzzy set. The fuzzification value of this method
is a random element x ∈ core(A) calculated as the probability of:

RCOM(A) = P(x) = λ(x)

λ(core(A))
(16.9)

where λ is the Lebesgue measure in universe X .

MOS: Mean of Support

This method shows the fuzzification value is the average of the A number medium.

MOM(A) = supp(A)

2
(16.10)

COG: Center of Gravity

This is the most common method in cases where it is important to determine the
center of gravity of the considered system. In the fuzzification process of an A fuzzy
number, the COG method is expressed as Eq.16.11.
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COG(A) =
∫ b
a xμA(x)dx∫ b
a μA(x)dx

(16.11)

BADD: Basic Defuzzification Distribution

The method of fuzzification was proposed in [20] as an extension of the COG and
MOM methods. The fuzzification value of the fuzzy set A is obtained as

BADD(A) =
∫ b
a xμγ

A(x)dx∫ b
a μ

γ

A(x)dx
(16.12)

It is alsoworth paying attention to themethods dedicated toOFNarithmetic,which
are inherently sensitive to directing. These include: Fuzzification method called the
Golden Ratio (GR): It was established as a result of implementation of an ancient
division used in Greek architecture. The GR value for the fuzzy number A is given
by the equation:

GR(A) =
{
min(supp(A)) + |supp(A)|

Φ
, i f order (A) is posi tive

max(supp(A)) − |supp(A)|
Φ

, i f order (A) is negative
(16.13)

where GR is the defuzzification operator, supp(A) is support for fuzzy set A in
universe X , and Φ = 1,618033998875. . . .

Mandala factor (MF) method: This is the calculation of the � value using the
Mandala factor ΨA sum of function integrals of a rising edge, falling edge, and a
core set. The resulting value is scaled from the center of the coordinate system by
adding it to the beginning value of a fuzzy number support set. When fuzzification is
carried out in OFN arithmetic, in the case of a positive directing procedure described
as above, and in the case of negative directing a calculated negative value should
be subtracted from the first coordinate of an OFN number being the OFN number
support right edge.

MF(A) =
{
c + r , i f order (A) is posi tive
c − r , i f order (A) is negative

(16.14)

where

r = 1

d − c

∫ d

c
x dx − c

d − c

∫ d

c
dx + f

f − e

∫ e

f
dx

− 1

f − e

∫ f

e
x dx +

∫ e

d
dx (16.15)

Modified center of gravity: This is the result of modifications introduced by Kosiński
and Bednarek [5] in the classical COG method in order to adapt it to work in OFN
arithmetic.
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Fig. 16.5 Graphical representation of selected fuzzification functionals for the same OFN number
directed a positively and b negatively

ΨCOG(ζ, f, g) =
∫ 1
0 (ζg(s) + (1 − ζ ) f (s))|g(s) − f (s)|ds∫ 1

0 |g(s) − f (s)|ds ,

i f f (s) �= g(s) (16.16)

ΨCOG(ζ, f, g) =
∫ 1
0 f (s)ds∫ 1

0 ds
, i f f (s) = g(s) (16.17)

Figure16.5a, b are drawings showing different fuzzification results for the sameOFN
directed positively in Fig. 16.5a, and directed negatively in Fig. 16.5b. Calculations
were performed using selected fuzzification functionals.

16.2.3 Control of the Stove on Solid Fuel

Referring to the example of the stove fuzzy controller, a diagram of such a system
is shown in Fig. 16.6, where S1 is a heater temperature sensor, S2 a temperature or
exhaust lambda sensor, and S3 an optional gas analyzer. The stove uses an air blower.
In this example it is called a blower regulator R1. The basic concept of the work of
the control system is as follows. Input variables that were selected are:

• Water coil temperature: Tw
• Stove flue gas temperature: T s
• Lambda probe: λ
• Increase of temperature: ΔT t
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Output variables are:

• Speed of the blower

There are additionally provided auxiliary variables for the solution, T z, set tem-
perature, which says what temperature the user prefers, or what temperature is
optimal for a particular stove. For example, the OFN describing set temperature
T Z1 = [56, 56, 56, 56] informs the controller to “hold temperature of 56” For the
number T Z2 = [56, 58, 60, 72] the directing means, “I prefer temperature 72, but
may be no less than 56.” For the reverse OFN number there is the statement, “I prefer
56, but nothing will happen if it is 72.”

Linguistic variables selected for this problem depend on the concept of the con-
trol operation. For example, the observed coil temperature is lower than the preset
temperature. The stove driver starts the blower and observes the flue gas tempera-
ture or λ probe. In both cases, the sensors provide information about the progress of
the operation of the stove. Based on this information, the controller determines the
amount of air sent by the blower.

16.3 Classic Fuzzy Controller

The controller in the classic use of fuzzy logic was done using jFuzzyLogic. The
technical details are available at http://jfuzzylogic.sourceforge.net. The input lin-
guistic variables as described in the previous chapter are provided as fuzzy sets.
Accordingly, we have Figs. 16.7 and16.8.

Fig. 16.6 Fuzzy logic
controller dedicated to solid
fuel stove

http://jfuzzylogic.sourceforge.net
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Fig. 16.7 Input variable ‘coil temperature’ and its fuzzy set

Fig. 16.8 Input variable ‘lambda’ and its fuzzy set

Fig. 16.9 Output variable ‘power’ and its fuzzy set
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The output variable in the example is the power of the blower regulator. Figure16.9
shows a membership function of this variable.

On the basis of expert knowledge concerning the combustion process a set of rules
used by the controller was created. Different rules express the state of the process as
a set of conditions and the effects that are recommendations for change. RULE 1:
IF Tw IS low AND lambda IS rich THEN power IS power_100; RULE 2: IF Tw IS
low AND lambda IS optimal THEN power IS power_60; RULE 3: IF Tw IS low
AND lambda IS poor THEN power IS power_20;

16.4 The Controller for the OFNs

The controller operation of the directed OFNs requires the use of up and down
borders, which are formulated as

μA(lA) = 0, μA(l
−
A ) = 1, μA(l

+
A ) = 1, μA(pA) = 0 (16.18)

A graphical interpretation is shown in Fig. 16.10, in which the Ordered Fuzzy Num-
bers are marked with characteristic border points. Generally it can be assumed that
each of the Ordered Fuzzy Numbers can be described by four real numbers:

A = (lA, l
−
A , l+A , pA) (16.19)

In a classic fuzzy controller the resulting membership function is generally a not
convex fuzzy set. The use of existing t-norm operators in the inference process
will not help to create an OFN according to border points [65]. In [50] there is a
proposal which says that instead of t-norm, algebraic operation of multiplication can
be used. This is illustrated in Fig. 16.11. A sample controller for OFNs, in particular
the inference block and a way to calculate the degree of activation amounts to the

Fig. 16.10 Ordered Fuzzy
Number limit values a
positively ordered, b
negatively ordered
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Fig. 16.11 Multiplication of two OFNs

Fig. 16.12 Addition of two OFNs

operation presented above. Having calculated degrees of compliance with each of
the rules, an OFN controller can start to cumulate into a single set which is the result.
In a classic controller there are s-norm operators. In the controller for OFNs there
will be the arithmetic operation of addition. For example, for an ordered number A,
B, which is a product of aggregation, addition is shown in Fig. 16.12.

16.4.1 Directed OFN as a Combustion Trend

Linking the trend with the directing is associated with reaching the objective of a
certain state. In the case when the water temperature of the stove is low, the OFN
describing this variable should be positive: Fig. 16.10a, which seeks directing to
the boundary point μA(pA) = 0. Selecting “down” of the OFN emphasizes what
value the OFN is going to achieve. For example, the stove water temperature can be
a linguistic variable, as shown in Fig. 16.13. A fuzzy number A indicates that the
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Fig. 16.13 Fuzzy set of input variable ‘coil temperature’ according to the OFN

Fig. 16.14 Fuzzy set of input variable λ according to the OFN

water is cool but tends to a higher temperature, whereas the number B informs us
of the optimum state with a downward trend. The number C is specified for high
temperatures, which should not be achieved.

The second variable is the information on the air excess in the exhaust, Fig. 16.14,
which is the λ ratio. A number says that the mixture is rich and has a small amount
of oxidant. In this case the trend as the directing is trying to strive for the B number.
Number B describes a mixture where the composition is stoichiometric, that is,
everything is burned, causing high efficiency, and the numberC contains information
about a large amount of oxygen in the exhaust gas and lean fuel mixture. Directing
of number C tends to the desired state, which is determined by the B number.

16.5 Modeling Trend in the Inference Process

The basis for the construction of a fuzzy controller for OFN, according to the assump-
tion that the number is located within the limits of OFN arms (see Fig. 16.7), is the
reconstruction of an inference apparatus in such a way that the resulting product that
is the function was the OFN. The proposal of such a construction is shown in this
section, where the expert has a method of modeling the direction of the OFN. In the
first stage we can say that the output fuzzy set is the CFN convex number. As an
example, it is Fig. 16.15 showing the output variable of a blower regulator power. The
D number covers the entire range of the blower controller operation. Directing this
number at this stage is not established, because this is a convex fuzzy number. In con-
trast, expert judgment is expressed in the set of rules as a degree of compliance with
the rule, that is, a percentage of the convex CFN. For example, evaluation of +20%
is shown in Fig. 16.16. The number of D was reduced by 20% on the figure’s left
side. In contrast, expert judgment −20% reduces the vehicle from the right side; this
case is shown in Fig. 16.17. For example, having two linguistic variables Tw and λ,
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Table 16.1 Rules for inference process

Tw Coefficient λ

Rich (%) Optimal (%) Poor (%)

Low +60 +30 −20

Average +50 +20 −10

High +30 +50 −5

Fig. 16.15 Fuzzy set of output variable ‘power’ according to CFN

Fig. 16.16 CFN number for
the expert proposal +20%

Fig. 16.17 CFN number for
the expert proposal −20%

taking into account expert judgment expressed as the degree of compliance with the
percentage share of the output number, a set of rules will form as in Table16.1. Signs
in front of the percentages can be interpreted as the imposed direction to CFN from
Fig. 16.15. In other words, modeling the trend in the inference process is reduced to
the use of OFNs in the form of CFNs as shown in Fig. 16.15. The result of running
the rules is imposed orientation: positive when we have a plus, and negative when
we have a minus. Accordingly, for Fig. 16.15 it will be Fig. 16.18, For Fig. 16.17,
we have directing presented as in Fig. 16.19. The added value of this solution is the
ability to regulate the OFN direction at the inference stage. The percentages given
by an expert can be regarded as a temporary modification. Directing of OFNs will
be established when we accumulate all the rules. The established resulting OFN will
allow us to go into the process of defuzzification. Another feature of this solution
is the ability to reduce the surface area of the OFN. This feature can be particularly
important from the perspective of defuzzification. Using the method of defuzzifi-
cation associated with the surface area narrows the result already at the inference
stage.
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Fig. 16.18 Example OFN,
the result of the +20% rule

Fig. 16.19 Example OFN,
the result of the −20% rule

16.6 Conclusions

Handling of the Ordered Fuzzy Number in engineering applications is an alternative
to convex fuzzy numbers. Meeting this task entails building an ordered fuzzy con-
troller, which uses directing. In the context of this chapter ‘ordered’ expresses the
trend of the studied phenomenon. And trend describes the tendency of a given vari-
able. With the construction of a classic controller the authors introduced a variable
associated with the increase in temperature per unit of time. The observed increase
would allow determination of the short-term changes in water temperature. The use
of OFN enabled following the trend in every other variable describing the combus-
tion process. Returning to the main thread of the work, the aim of which was to use
the trend in the combustion process, the authors focused on the inference process.
The ability to model the directing of the OFN, which can be seen in the penultimate
section, expands the possibilities of using the trend. Applying this approach will
emphasize the trend in the inference process. By manipulating the percentage value
of the medium of the output OFN, we received a modification of the resulting func-
tion. The use of this manipulation can be helpful when we want to change directing
or reduce the OFNmedium. Reducing the medium of a number, that is, fuzzification
process input information, and applying methods such as MCOG, MF, or GR [15]
sensitive to directing contribute to a better reflection of the process trend.
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36. Kosiński,W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers.
IEEE Trans. Fuzzy Syst. 21(6), 1163–1169 (Dec 2013). doi:10.1109/TFUZZ.2013.2243456

37. Kowalewicz, A.: Podstawy procesów spalania. Wydawnictwa Naukowo-Techniczne (2000)
38. Lebiediewa, S., Zarzycki, H., Dobrosielski,W.: A new approach to the equivalence of relational

and object-oriented databases. In: Novel Developments in Uncertainty Representation and
Processing, pp. 85–93. Springer International Publishing, Berlin (2016)

39. Łukasiewicz, J.: Elements of Mathematical Logic, vol. 31. Macmillan, New York (1963)
40. Mahdiani, H., Banaiyan, A., Javadi, M.H.S., Fakhraie, S., Lucas, C.: Defuzzification

block: new algorithms, and efficient hardware and software implementation issues. Eng.
Appl. Artif. Intell. 26(1), 162–172 (2013). http://www.sciencedirect.com/science/article/pii/
S0952197612001601
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Chapter 17
Analysis of Temporospatial Gait Parameters

Piotr Prokopowicz, Emilia Mikołajewska, Dariusz Mikołajewski
and Piotr Kotlarz

Abstract Locomotion inpost-strokepatientsmaybe severely compromised.Assess-
ment and treatment of gait disorders after stroke are crucial. Scientists and clinicians
still look for more effective diagnostic and therapeutic tools. The aim of the study
was to assess a new fuzzy-based tool for measurement of observed gait parameters
(velocity, cadence, and stride length, and their normalized values), both in healthy
people and post-stroke patients.

17.1 Introduction

Stroke is the second leading cause of preventable death and the fourth leading cause
of lost productivity. At least of stroke survivors have limited independence. Thus
efficient diagnosis, therapy, rehabilitation, and care in patients after stroke constitute
important scientific, clinical, social, and economic challenges.

Assessment and treatment of gait disorders after stroke constitute a major compo-
nent of post-stroke rehabilitation. Locomotion in post-stroke patientsmay be severely
compromised. Disturbed (as a result of a stroke) motor control influences gait move-
ments and the expected rate of recovery ofwalking function.Gait impairments can be,
for example, a significant factor in falls and mobility limitations. The main element
of the gait-related rehabilitation program of stroke survivors is task-related training
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with the strong dose of practice [22]. Diverse technologically complex interventions
(from repetitive task-specific practice to complex games involving robotic systems,
virtual reality, and augmented reality) may be applied to improve gait post-stroke.
Availability, mode of application, and costs of the particular methods may vary, but
the key issue focuses on their efficiency. Pure compensatory effects avoiding is also
important.

Despite efforts of scientists and clinicians, the validity of many interventions
within rehabilitation of gait post-stroke appears to be limited. Outcomes of gait
recovery due to rehabilitation depend on many factors, including location and size of
the lesion, kind and severity of impairment, available activity, cortical activation, and
associated rehabilitation-induced activity-dependent neuroplasticity. To establish an
adequate, flexible, and efficient rehabilitation program, the key element is a selection
of the appropriate measurement tool according to the individual’s level of function.
Such a tool, used in everyday clinical conditions, should be simple, quick, cheap,
exact, sensitive, valid, and relevant. What is more, possible impairments in gait coor-
dination may be a cause of falls and diverse mobility limitations, thus therapy should
be introduced as early as possible [7]. There should be a possibility to use the clinical
tool for gait assessment at every stage, even early post-stroke, to assess both quanti-
tative and qualitative parameters and compare results to the norm or other patients.
Such an approach may help to restore the patient’s best possible functioning [13,
14]. Improved assessment tools allow more detailed, valid, and reliable gait assess-
ment independently of the phase of the rehabilitation program, and construction of
efficient gait rehabilitation models in post-stroke patients. Current evidence does not
demonstrate such a tool which is clinically, statistically, and economically important
[5]. Gait velocity, although important, does not reflect changes in gait quality.

Gait quality is important for harmonic long-term efficiency of gait recovery. Even
slower, but high-quality gait patterns at an early stage of rehabilitation may provide
better long-term rehabilitation results reflected in various gait parameters.

The aim of the study was to assess a new fuzzy-based tool for measurement-
observed gait parameters (velocity, cadence, and stride length and their normalized
values), both in healthy people and post-stroke patients. The hypothesis is that this
fuzzy-based tool formeasurement-observed gait parameters is effective in the assess-
ment of gait re-education in patients after ischemic stroke.

17.2 Methods

17.2.1 Subjects

The investigated group consisted of 50 patients: 25 healthy ones and 25 after ischemic
stroke. Ischemic stroke is the most common stroke type; it constitutes approxi-
mately 80–85cases [3, 4]. A study group was established on the basis of the cri-
teria described. Inclusion criteria for patients were as follows: age above 18years,
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Table 17.1 Patients’ overall profiles

Healthy people (n = 25) Post-stroke patients (n = 25)

Sex:

Females (K) 12 (48%) 12 (48%)

Males (M) 13 (52%) 13 (52%)

Age [years]:

Min 51 49

Max 72 82

Mean 58.6 65.28

SD 6.29 9.56

Median 56 68

Side of paresis:

left (L) n.a. 13 (52%)

right (R) n.a. 12 (48%)

Time after cerebrovascular accident (CVA):

Min n.a. 1

Max n.a. 4

Mean n.a. 2.56

SD n.a. 1.17

Median n.a. 3

time after cerebrovascular accident (CVA) from 6weeks to 3years, and diagnosis
of ischemic stroke. The inclusion of patients was confirmed each time by medical
records. Inclusion criteria for healthy people were: age above 18years and lack of
CVA and other diseases influencing gait function in the medical record. The patients’
profiles are presented in Table17.1.

17.2.2 Methods

Healthy people were assessed once. Post-stroke patients participated in the reha-
bilitation program. Patients were treated by the same experienced physiotherapist
(>15years of experience in neurorehabilitation). Ten sessions of the therapy were
provided in 2 weeks (10days of the therapy). We used our own method of gait analy-
sis, described in [12–14]. It is based on gait recording using a video camera with
visual gait evaluation, measurement of temporospatial gait parameters (gait velocity,
cadence, stride length) and their assessment, and calculating normalized values using
the Clinical Gait Analyzer (free software developed by Ch. Kirtley). Measurements
were performed in every post-stroke patient twice: on admission (before the therapy)
and after the last session of the therapy to assess rehabilitation effects.
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17.2.3 Statistical Analysis

Wherever possible, the results are given as mean, SD, median, minimal value, and
maximal value. The Shapiro–Wilk test of normality was applied. The calculation of
correlations (Spearman’s rho) was made based on changes of parameters: gait veloc-
ity, cadence, and stride length, their normalized values, and results of the fuzzy-based
assessment. The data were analyzed with the Statistica 9 software. The results were
statistically analyzed using the Wilcoxon’s test. The level of statistical significance
(p value) was set at 0.05.

17.2.4 Fuzzy-Based Tool for Gait Assessment

The subject of the research-the quality of gait-is a difficult term for formal precise
definition. It depends on the general public and varies depending on the group we
consider to be the norm in terms of gait. If the precise model is out of reach, we
can use the tools for imprecise information processing: fuzzy systems. Their main
advantage is the flexibility, intuitiveness, and clarity of rules that are easy to describe
linguistically.

The concrete proposition here is themulticriteria fuzzy evaluator of gait (MuFEG)
defined for the purposes of the study presented in this chapter. This tool evolved
from the multicriteria fuzzy evaluator proposed in [21], the purpose of which was
evaluation of multicast routing algorithms. The measure of proper gait is presented
as a percentage, where is an ideal quality. Defining MuFEG’s basic model for a
good quality of gait, assumptions have been made that the quality of gait in people
with no stroke, that is, a reference group of respondents, cannot be lower than. The
presented results were achieved by combining three different descriptors of a gait. In
the version of MuFEG used in the present studies, these descriptors are represented
by three fuzzy Mamdani-type systems. A general idea of such fuzzy systems and
precise presentation can be found in many books, for example, [1, 15, 16]. Finally,
their results are aggregated to one normalized outcome. Two concurrent MuFEG
approaches are used. Their working names are 1b-25 and KFNc-25. Both are based
on the same assumptions and the same rules. The first, 1b-25, is the classical fuzzy
system with:

• Singleton fuzzification.
• Implication operator, MIN.
• Defuzzification is realized as implications and the middle of maxima (MOM)
method defuzzification.

The fuzzy set representing the ideal value for each gait parameter is constructed
from the data given for the reference group, people without stroke. Each of them is a
triangular fuzzy set (see L-R fuzzy sets notation in [6]) and is determined on all the
available data. For example, let’s look at set good gait velocity (good-GV):
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good − GV = Λ(x; xmean − 2 · ΔL , xmean, xmean + 2 · ΔR) (17.1)

where ΔL = xmean − xmin , ΔR = xmax − xmean ,
xmin/xmax /xmean , the minimum/maximum/mean value of the gait velocity parameters
for the available data about healthy (non-post-stroke) people.

As there are three systems with one input each there is no need for the aggregation
of premise parts of the rules. The second fuzzy system, KFNc-25, is based on the new
model of processing imprecise data, theOrdered FuzzyNumbers (OFN; seeChap. 4).
In the papers [18, 19] the name “Kosinski’s Fuzzy Numbers” (KFNs) model is also
used alternatively. For the calculations of MuFEG results the tool implemented by
the first author (P. Prokopowicz) was used. Its basic functionality is the modeling of
fuzzy systems with the OFNmodel as well as with classical fuzzy sets. The variant of
MuFEG for classical fuzzy sets was also implemented using the fuzzy logic toolbox
for MATLAB for the reference purposes. The results were the same, thus it proved
the author tool in this scope is correct. As OFN is a relatively new conception, the
tool in this aspect is completely a pioneer.

17.2.5 Main Ideas of the OFN Model

The OFN mathematical model [10, 11] takes into account the order of the charac-
teristic parts of a membership function of a fuzzy number. As a result, it extends the
general idea of fuzzy numbers with an additional feature, a direction. As the result
of using the direction in calculations, we have the opportunity to reduce the impre-
cision of the following operations. The OFN computational model has a number of
properties. Some of them were presented in [17]. Apart from good calculations, the
direction also gives additional potential in the interpretation of fuzzy data. It can be
treated as a direction of the process, for example, “Velocity is high and is growing,”
is a different situation from, “Velocity is high, but is decreasing.” The direction of the
OFN can be used to represent the difference between these sentences. Because we
deal with additional information, there is a need for the new methods which benefit
the full potential of OFNs in modeling of linguistic data. The papers [10, 17–20]
describe the research of the OFN processing methods that consider the direction.

Thanks to the new property, a new potential for the practical use of OFNs also
appears with a new quality associated with the direction. The work [8] presents the
practical use of this property in modeling financial data, and [9] diversity of opinions
in social networks. In [2] the application of OFNs for an ant colony optimization
algorithm is presented. Here we use the new model for defining an assessment tool
for gait.

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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17.2.6 OFN Model in Gait Assessment

At the present stage of the research presented in this chapter, considering the direction
is not a key element. However, for the future extent of this research OFN gives
additional potential. It presents the possibility of trend processing (see Chap.4). In a
gait assessment, measuring the trend of changes can be more valuable than the only
present quality. It is especially appropriatewhenwewant to evaluate the effectiveness
of different therapeutic approaches. TheMuFEG system in theOFNvariant used here
is designed as generally preferring higher values of inputs. For example, for the stride
length, the value near the lower limit of healthy people’s interval gives a worse result
than the value near the upper limit.

17.3 Results

The results are presented in Tables17.2, 17.3, and 17.4.
Changes in the six main temporospatial parameters were reflected in the changes

of MuFEG-generated percentages both in healthy people and post-stroke patients.
The main statistically relevant correlations observed in the study were similar in both
groups.

17.4 Discussion

Post-stroke patients often suffer from multiple limitations of the ability to perform
everyday activities. Thus they need rehabilitation in more than one area. But an
assumption may be true that it is hard to achieve simultaneous recovery in all areas
(including gait function, hand function, activities of daily life) in a relatively short
period of rehabilitation (10 sessions) [13, 14]. In the described research we focused
on gait rehabilitation. The study has focused on determination of changes in gait
parameters (gait velocity, cadence, and stride length) observed as a result of the
therapy in a group of patients after ischemic stroke. No doubt, there were observed
statistically relevant changes in gait parameters as the result of the therapy. A good
quality of the gait depends on many different factors. We must remember that we
compare the gait of people after stroke with a reference gait of people without stroke.
However, in the context of the evaluation, these model people are considered as
healthy; in fact, their gait may be affected by many different factors, ranging from
diseases other than stroke, through bad habits of posture or finally physical fatigue
on examination day. Thus it is obvious that the good quality of gait evaluation is not
a crisp value.

The proposed solution is an element of the broader concept, using fuzzy numbers,
fractal dimension, and artificial neural networks to analyze the human gait in a more

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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Table 17.2 Results of the study-traditional approach

Healthy people
(n = 25)

Post-stroke patients (n = 25)

Before the therapy After the therapy Change

Gait velocity [m/s]

Min 1.6 0.1 0.1 −0.5

Max 2.2 0.8 1.6 0.8

Mean 1.81 0.48 0.57 0.06

SD 0.17 0.11 0.16 0.02

Median 1.8 0.5 0.5 0.05

Normalized gait velocity [-]

Min 0.52 0.05 0.04 −0.07

Max 0.72 0.28 0.53 0.25

Mean 0.61 0.16 0.19 0.07

SD 0.06 0.05 0.04 0.02

Median 0.58 0.16 0.17 0.02

Cadence [steps/min]

Min 102 36 24 −34

Max 142 100 151 67

Mean 123.72 78.24 82.56 4.4

SD 11.54 16.92 21.29 17

Median 126 81 88 4

Normalized cadence [-]

Min 0.54 0.17 0.12 −0.18

Max 0.73 0.51 0.76 0.34

Mean 0.62 0.39 0.41 0.12

SD 0.05 0.09 0.12 0.02

Median 0.61 0.41 0.43 0.13

Stride length [m]

Min 1.54 0.57 0.61 −0.55

Max 2 2.22 2.5 0.5

Mean 1.76 1.44 1.61 0.21

SD 0.18 0.46 0.53 0.05

Median 1.67 1.54 1.54 0.14

Normalized stride length [-]

Min 1.7 0.38 0.72 −0.6

Max 2.23 2.5 2.94 1.19

Mean 1.93 1.62 1.86 0.24

SD 0.21 0.36 0.6 0.06

Median 1.84 1.73 1.85 0.18

(continued)
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Table 17.2 (continued)

Healthy people
(n = 25)

Post-stroke patients (n = 25)

Before the therapy After the therapy Change

MuFEG assessment [%] (1b-25)

Min 64.17 0 0 −26.67

Max 92.34 33. 83 57 53.67

Mean 82.46 12.49 20.19 6.33

SD 0.08 0.14 0.17 0.19

Median 83.5 5 26 1.17

MuFEG assessment [%] (KFNc-25)

Min 59.93 0 0 −21.39

Max 95.93 36.71 54.31 41.41

Mean 78.25 14.44 20.95 6.51

SD 0.09 0.13 0.16 0.16

Median 79.79 11.45 19.53 0

comprehensive way, without any wearable devices. Finally, the described system
could be used both for gait analysis of runners and for developmental issues of
children. Three possible results of the therapy (recovery, no change, and relapse)
may confuse analysts. But the main result of short-term therapy may be varied.
Sometimes gait re-education aims at increasing gait quality, and the changes in
gait velocity or cadence will be observed during the next rehabilitation periods.
Fuzzy-based software should provide full support for the data analysis in such cases.

The most important advantage of the MuFEg is that it does not require any addi-
tional procedure: temporospatial gait analysis is a part of normal clinical practice in
neurorehabilitation. Moreover, the result of our analysis reflected in one number has
enough informative and predictive power and allows the assessment of the general
tendency. Thus the EBM-based clinical decision-making process may be quicker and
easier. Of course, if necessary, detailed temporospatial gait parameters also may be
used. The main limitation of the research is a small sample, but we regard this study
as a preliminary one. The discrepancy between results shown in Tables17.3 and
17.4 proves the necessity of further calibration of the MuFEG algorithms, including
various samples of healthy people and patients, even on much bigger retrospective
datasets.

The next step will also be establishing an online version of our gait analyzer, to
gather opinions of other MuFEG users and medical data analysts. Bigger samples
should provide further comparative studies on validity and reliability of the pro-
posed fuzzy-based measurements. Results of the pure study show that physiotherapy
interventions significantly influence gait function and coordination. However, even
the most promising approaches aiming at restoring gait coordination require reliable



17 Analysis of Temporospatial Gait Parameters 297

Ta
bl

e
17

.3
C
or
re
la
tio

ns
(S
pe
ar
m
an
’s
rh
o
va
lu
es
)
fo
r
he
al
th
y
pe
op
le

A
ge

G
ai
tv

el
oc
ity

C
ad
en
ce

St
ri
de

le
ng

th
N
or
m
al
iz
ed

ga
it
ve
lo
ci
ty

N
or
m
al
iz
ed

ca
de
nc
e

N
or
m
al
iz
ed

st
ri
de

le
ng

th
Fu

zz
y
ev
al
ua
to
r

M
uF

E
G

(I
b-
25
)

M
uF

E
G

(K
FN

c-
25
)

A
ge

–
−0

.9
52

ns
−0

.3
97

−0
.9
48

−0
.4
52

−0
.4
49

−0
.4
2

−0
.3
99

p
=

0.
00
0

p
=

0.
03
2

p
=

0.
00
0

p
=

0.
04
5

p
=

0.
04
7

p
=

0.
00
7

p
=

0.
00
4

G
ai
tv

el
oc
ity

–
ns

0.
45
8

0.
95
6

ns
0.
51
8

0.
65
0

0.
51
9

p
=

0.
04
2

p
=

0.
00
0

p
=

0.
01
9

p
=

0.
03
2

p
=

0.
01
7

C
ad
en
ce

–
−0

.6
20

ns
0.
90
5

−0
.5
16

0.
41
4

0.
45
7

p
=

0.
00
4

p
=

0.
00
0

p
=

0.
02
0

p
=

0.
01
2

p
=

0.
04
0

St
ri
de

le
ng

th
–

ns
−0

.4
67

0.
92
2

0.
52
0

0.
47
8

p
=

0.
03
8

p
=

0.
00
0

p
=

0.
00
5

p
=

0.
00
0

N
or
m
al
iz
ed

ga
it
ve
lo
ci
ty

–
ns

0.
48
2

0.
41
3

0.
45

p
=

0.
03
1

p
=

0.
00
4

p
=

0.
00
7

N
or
m
al
iz
ed

ca
de
nc
e

–
ns

0.
41
2

0.
54
2

p
=

0.
01
7

p
=

0.
01
9

N
or
m
al
iz
ed

st
ri
de

le
ng

th
–

0.
53
1

0.
49
0

p
=

0.
02
1

p
=

0.
04
2

M
uF

E
G

–
0.
93
6

(I
b-
25
)

p
=

0.
00
0

M
uF

E
G

–

(K
FN

c-
25
)

ns
=

no
ts
ig
ni
fic
an
t



298 P. Prokopowicz et al.

Ta
bl

e
17

.4
C
or
re
la
tio

ns
(S
pe
ar
m
an
’s
rh
o
va
lu
es
)
fo
r
po
st
-s
tr
ok
e
pa
tie
nt
s

A
ge

G
ai
tv

el
oc
ity

C
ad
en
ce

St
ri
de

le
ng

th
N
or
m
al
iz
ed

ga
it
ve
lo
ci
ty

N
or
m
al
iz
ed

ca
de
nc
e

N
or
m
al
iz
ed

st
ri
de

le
ng

th
Fu

zz
y
ev
al
ua
to
r

M
uF

E
G

(I
b-
25
)

M
uF

E
G

(K
FN

c-
25
)

A
ge

–
−0

.9
31

ns
−0

.3
25

−0
.9
02

−0
.4
07

−0
.3
99

−0
.4
47

−0
.3
15

p
=

0.
00
7

p
=

0.
00
0

p
=

0.
00
3

p
=

0.
00
7

p
=

0.
04
3

p
=

0.
02
0

p
=

0.
00
2

C
ha
ng
e
of

ga
it

ve
lo
ci
ty

–
ns

0.
42
5

0.
92
3

ns
0.
49
9

0.
57
1

0.
47
8

p
=

0.
04
5

p
=

0.
00
0

p
=

0.
03
1

p
=

0.
02
0

p
=

0.
00
0

C
ha
ng
e
of

ca
de
nc
e

–
−0

.5
13

ns
0.
92
5

−0
.5
22

0.
39
7

n.
s.

p
=

0.
00
0

p
=

0.
00
7

p
=

0.
00
6

p
=

0.
02
1

C
ha
ng
e
of

st
ri
de

le
ng

th
–

ns
−0

.4
13

0.
91
0

0.
45
7

0.
42
8

p
=

0.
00
2

p
=

0.
00
0

p
=

0.
01
0

p
=

0.
00
9

C
ha
ng
e
of

no
rm

al
iz
ed

ga
it
ve
lo
ci
ty

–
ns

0.
43
7

0.
40
4

0.
43
2

p
=

0.
01
0

p
=

0.
00
2

p
=

0.
01
9

C
ha
ng
e
of

no
rm

al
iz
ed

ca
de
nc
e

–
ns

0.
37
7

0.
44
6

p
=

0.
01
2

p
=

0.
03
4

(c
on
tin

ue
d)



17 Analysis of Temporospatial Gait Parameters 299

Ta
bl

e
17

.4
(c
on
tin

ue
d)

A
ge

G
ai
tv

el
oc
ity

C
ad
en
ce

St
ri
de

le
ng

th
N
or
m
al
iz
ed

ga
it
ve
lo
ci
ty

N
or
m
al
iz
ed

ca
de
nc
e

N
or
m
al
iz
ed

st
ri
de

le
ng

th
Fu

zz
y
ev
al
ua
to
r

M
uF

E
G

(I
b-
25
)

M
uF

E
G

(K
FN

c-
25
)

C
ha
ng
e
of

no
rm

al
iz
ed

st
ri
de

le
ng

th

–
0.
45
7

0.
42
2

p
=

0.
00
2

p
=

0.
01
5

M
uF

E
G

–
0.
91
2

(I
b-
25
)

p
=

0.
00
2

M
uF

E
G

–

(K
FN

c-
25
)

ns
=

no
ts
ig
ni
fic
an
t



300 P. Prokopowicz et al.

clinical diagnostic tools. Such tools allow for more objective diagnosis and reassess-
ment (performed at every stage of the rehabilitation to check progress in the therapy),
and may help to achieve a better understanding of the nature of both neuroplasticity
and coordination deficits in functional tasks after stroke and their optimal role in the
neurorehabilitation.

Future research also requires work with the MuFEG system. In particular, the
OFN variant provides an interesting potential of flexibility. Considering trends in
the information will allow for searching the solutions that estimate therapy methods
in the various contexts. For example, we can prefer the improvement of the quality
of gait which is small but regular over a large but occasional one. For the future,
it is also worthwhile considering distinguishing the differences in bad estimations,
particularly in the cases when results are too low and too high. Moreover, based on
the good arithmetical properties of the OFN model it is possible to provide fluent
use of such imprecise data in further processing without additional transformations.

17.5 Conclusions

In the previous sections tools for measurement of the quality of gait were presented.
They are based on the fuzzy system conception that allows for creation of the formal
model from linguistic opinions. It is, in general, themain advance of the fuzzy system
approach. The model formulation is intuitive and easy to understand not only for a
computer science researcher but also for medical personnel. Analysis of the results
presented in Tables17.3 and 17.4 confirm that the proposed new fuzzy-based tool for
measurement-observed gait parameters (MuFEG) may be efficient both in healthy
people and post-stroke patients.

One of the tools was based on the specific OFN model. The research presented
here shows that is possible to use that kind of fuzzy system in similar situations as
the classical fuzzy systems. In addition, the use of an OFN model-based tool seems
more appropriate as it has more flexibility for future expansion of the research. It
seems to be a good direction to search for a tool to obtain a measure of tendency in
the changes of results after long-term rehabilitations.
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Chapter 18
OFN-Based Brain Function Modeling

Piotr Prokopowicz and Dariusz Mikołajewski

Abstract A modeling approach may significantly help to explore the problem of
weak understanding of the physiological and pathological central nervous system
function in the most noninvasive and comprehensive way. The aim of this chapter is
to assess and discuss the extent to which possible opportunities concerning compu-
tational brain models based on fuzzy logic techniques may be exploited.

18.1 Introduction

Structured networks and functional connections of interacting neural populations
underlying both physiological and pathological central nervous system (CNS) func-
tion are still poorly understood. Interdisciplinarity and independence of research
provide a variety of scientific approaches, used tools, and wide coverage and even
overlapping of the research fields, especially as regards human research, including
neuroscience [1]. Themodeling approachmay significantly help to explore the afore-
mentioned problem in the most noninvasive way. The aim of this chapter is to assess
and discuss the extent to which possible opportunities concerning computational
brain models based on fuzzy logic techniques may be exploited.
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18.2 State of the Art

18.2.1 Theory

Researchers within the basic sciences follow their intuition, knowledge, and creative
thinking, finally formulating principles of nature [1]. It is easier to derive general
mechanisms because they are often repetitively used in many versions. Thus gath-
ered information may be more complete. An additional problem within knowledge
gathering is ensuring the highest possible quality of research. An important way
to assess relevance of research seems to be critical peer reviews, including novel
approaches including the role of preprint servers (such as ArXiv) and open reviews.
Due to emerging interdisciplinary approaches, a variety of used methods and tools,
and overlapping methodologies, it is hard to ensure the quality control of scien-
tific papers. Weaknesses of traditional preprint reviews (such as inability to detect
errors/fraud, lack of transparency and reliability, potential for bias and unethical
practices, inconsistencies among reviewers) may be eliminated by quicker postprint
reviews, supporting the relevance of evidence and building knowledge. Thismay con-
stitute a novel gold standard in the assessment of scientific papers [12, 22, 24, 30, 60].
The functional organization of the central nervous system (CNS) in humans is not
fixed. No doubt functional representations are dynamic and continuously modified
by the human’s experience due to experience-dependent plasticity as far as neuro-
logical diseases or injuries and natural age-dependent neurode-generative changes
are concerned.

18.2.2 Modeling Complex Ideas with Fuzzy Systems

Fuzzy set theory [66, 67] offers powerful potential in modeling imprecision under-
stood differently from possibility. There aremany publications that gather basic ideas
[38, 39, 56]. As mentioned in previous sections, researchers who work on the prob-
lem of brain modeling often try to connect practical observation results with intuitive
knowledge. Some parts of this knowledge are precisely formulated but other parts
are vague. This gives us an opportunity to use an experience of the brain modeling
scientists and merge it with the concrete results of available research. The theory
of fuzzy sets offers help for defining formal models in situations where only lin-
guistic description is possible [67]. The idea of hierarchical fuzzy systems [19, 20,
48] offers special modeling potential which is a good tool for representing complex
dependencies. It preserves the intuitive linguistic description of a model and also
allows description of highly complicated relationships. When the modeled object
needs quantitative parameter representation, use of the classical theory of fuzzy sets
can pose some calculation problems. The specific model of Ordered Fuzzy Numbers
(OFNs) overcomes typical computation problems with classic fuzzy numbers (see
[27, 28, 42] and also Sect. 4.2 of Chap.4). An additional advantage of OFNs is the

http://dx.doi.org/10.1007/978-3-319-59614-3_4
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potential for modeling a trend, which provides a process with more information than
only value. As it is intuitive information provided by the experienced brain modeling
scientists it makes it easier to represent the dependences as growing and decreasing.
In the following parts of this text the idea of a fuzzy inference block is presented
(see also [45]). It is a basic conception for modeling complex dependencies using
the general fuzzy concept. The OFN have special application potential there.

As another interesting application of OFNs, in Sect. 18.6.3 of this chapter the
proposition for modeling the learning rate coefficient (an important element of the
neural network adaptation procedure) is presented and discussed.

18.2.3 Clinical Practice

Knowledge exploitation is not easy, the evidence-based medicine (EBM) para-
digm. The so-called EBM triad combines three main factors influencing the clinical
decision-making process:

• Individual clinical knowledge and experience
• Actual, reliable, valid, and statistically significant in the particular case of external
evidence

• Values and expectations of an individual patient (and sometimes his or her
family) [33]

Incorporation of EBM provides conscientious, explicit, judicious, and reasonable
use of novel reliable evidence in clinical decision making about the care of individ-
ual patients [33]. An ideal research method for clinical purposes should be direct,
noninvasive, and sufficient spatial and temporal resolution of the purposeful represen-
tation imaging in an awake patient. The common strategy aims at a more complete
brain atlas incorporating and integrating anatomy in macroscale, microscale, and
nanoscale, and data from medical imaging, including functional ones (fMRI, MRI,
DTI, MEG, etc.).

The aforementioned solution would be useful for better understanding of brain
structure and function, both from a physiological and pathological point of view
[58]. The ultimate aim is the identification of disease-related alterations affecting
neural structures and their functional connectivity [23]. Moreover, interdisciplinary
studies may fill the gaps between all of the involved disciplines that are still unex-
plored. It requires bigger teams consisting of neuroscience theorists, physicians,
neuroanatomists, and specialists in image analysis, data analysis, computational neu-
roscience, molecular biology, physiology, cognitive science, and even philosophy.
Invalid or incomplete integration of neural information within the human brain is
perceived as the main cause of mild and severe neurological disorders, affecting not
only cognitive processing, but also emotional processing and motor control. Invalid
synchronized or simply unsynchronized structures may be deployed far from each
other, and their weaker than usual co-occurrence of excitation/inhibitionmay be hard
to detect. Thus structural connectivity (SC) is only one part of functional connectivity
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(FC). Their exact and complete description is far beyond our current possibilities, but
despite that, such results for particular diseases have been reported [23]. Analysis of
the interaction between social and biological determinants of behavior emphasizes
better understanding of the complexity of the human brain in action thanks to:

• Coequal contributions of emotions and affects towards normal brain functioning
regarding the “higher” and “lower” cognitive functions built into human neuro-
physiology

• Brain relation to body in biological psychiatry thanks to embodiment, embedded-
ness, enactivism, extended cognition, and situatedness

• Importance of “being in relation” for reasonable neural functioning, especially in
terms of social relationships for the human brain from birth until death

• Computational neurosciences taking into account information integration theory
[37]

Large prospective datasets of patients with Alzheimer’s disease (AD) allow us to
construct advanced brain models of (physiologically) healthy subjects and patients
with AD (with pathophysiological changes occurring over time). Despite the huge
amount of information taken into account and efforts of scientists, the aforementioned
models are still regarded as inadequate. Their limitations are: lack of scaling (i.e.,
they are single-scale) and lack of reflecting the complexity and interdependence of
brain changes at different levels (molecular, cellular, tissue) [49]. We should take
into consideration that changes in a patient’s brain may take place much earlier
than visible symptoms and diagnostic outcomes. Thus early diagnosis providing
datasets for early changeswithin the central nervous systemmaybe difficult to obtain.
MR elastography (MRE) varies for a healthy brain, but is regarded as a reliable
marker of neurodegenerative disease (e.g., dementia) [35]. Rapid development of
artificial stimulation techniques (e.g., transcranial direct current stimulation, tDCS)
both in clinical practice and cognitive neuroscience research requires development
of a completely novel family of computational models of such phenomena [47].

18.2.4 Models for Linking Hypotheses and Experimental
Studies

The simplest relationships among theory, computational models, and experimental
research are:

• Predictive understanding of brain processes needs for experimental data placed
into a quantitative framework.

• Aforementioned framework is provided by biologically plausible computational
models.

• Computational models provide a tool for exploring cognitive and brain processes
too complex for direct exploration (e.g., due to diverse timescale or simultaneous
multilevel processing).
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• Aforementioned environment allows us to interpret results from empirical studies
and generate novel hypotheses, testable using further models and experimental
studies.

• Computational models may inspire novel theories that are difficult to formulate
based only on analysis of the experimental results [47].

Detailed strengths and limitations of computational brainmodels have been analyzed
in [45]. The most advanced projects within neuroscience such as the EC Human
Brain Project are hard to plan and develop; there is a lack of simple principles within
understanding the brain (neural codes, transformation laws) and no particular sci-
entific method has proven to be the right one. Even selecting any single direction
regarded as the most probable is not always possible; despite the best current knowl-
edge, previous achievements, and further efforts there is very limited chance to hit
the target. Thus application of traditional scientific paradigms that proved to be suc-
cessful during the last several centuries may be insufficient [1]. There is a need for a
novel approach, derived from accumulated knowledge and experience of many sci-
entists, creatively engaging interdisciplinary approaches and tools. Henry Markram
has defined seven challenges for neuroscience [32]:

• Big research teams with the resources sufficient to deal with the big scientific
problems

• Data ladders, interlinked sets of data providing a complete image of single areas
of the brain at their different levels of organization

• Efficient predictive tools
• Novel hardware and software sufficiently powerful to simulate the brain
• Newways of classifying and simulating brain diseases, leading to better diagnosis
and more effective drug discovery

• New brain-inspired technologies, with benefits for industry and for society
• Social understanding of neuroscience and its benefits for society [32]

Although the assumption that realistic computational models are easier and quicker
solutions than reconstruction of the whole brain region or even the whole central
nervous system [14] may be true. To build a model of the whole brain we have to
take into consideration 1,000 different gray matter regions, 5,000 neuron classes,
and up to 100,000 macroconnections between the aforementioned neuron classes,
which are not always fully identified [4]. The volume of the human cerebral cortex
similar to a pinhead (1 cubic millimeter) can even contain up to 27,000 neurons and
1,000,000,000 synapses. Moreover, the data derived from research on nonhuman
brains cannot fully substitute information on humans. Although some brain organi-
zation aspects are common to all mammalian species, certain fundamental structural
and behavioral aspects are unique to humans, including evolutionary adaptations and
neurotransmittermodulatory effects involved inmany neuropathologies (Parkinson’s
disease, Alzheimer’s disease, depression, etc.) [13]. Computational models may
be regarded as simplified abstractions but they link more complete data concern-
ing anatomical structure with incomplete information concerning somata and the
processes within cellular components gathered thanks to light microscopy and elec-
tron microscopy [10].
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18.3 Concepts

Requirements for relevant computational models of CNS are:

• Reproducibility: Available built-in, run and assess outcomes of simulation features
(structures, signals, features) within processes reported earlier in a scientific paper

• Transparency: Highly visible internal properties
• Accessibility: Available to other scientists in an understandable format

Some researchers also require portability (i.e., cross-simulator validation and
exchange of models thanks to formats open to interconnection), but it may be hard
to achieve.

18.3.1 Data Ladder

Reconstruction of the connectivity map of the brain (connectomics, i.e., tracing the
aforementioned map accompanied by better understanding of related interactions)
need diverse approaches and scales [54]. A data ladder shows coincidence and cor-
relation among processes and mechanisms taking place at subsequent levels of the
human body (from the bottom): genes→, proteins→, neurons→, neuronal dynam-
ics →, and whole brain process → behavior [32]. Genetic factors may influence
prognosis in many diseases and injuries, including pathophysiology of traumatic
brain injuries. The aforementioned assumption may potentially lead to new treat-
ments and improved outcomes of therapy and rehabilitation [16]. A more detailed
view of CNS covers nine levels (from the bottom):

• Ion channels
• Signaling pathways
• Synapses
• Dendritic subunits
• Neurons
• Microcircuits
• Neural networks
• Subsystems
• Nervous system

18.3.2 Models of a Single Neuron

There are many shapes and sizes of neurons. Thus modeling of a single neuron
constitutes a true challenge and requires an individual approach. The key question
is: howdoes a particular neuron transform synaptic inputs into potential action output.
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Although a single neuron can be divided into distinct morphological and functional
regions:

• Receptor apparatus: Formed by the dendrites and cell body or soma
• Emission apparatus: Axon
• Distribution apparatus: Terminal axonal arborization

there are many exceptions: bidirectional connections, electrical synapses, various
axosomatic and axodendritic synapses, and the role of neuron-glial interactionwithin
information processing [14]. Realistic modeling of brain functions is based on a
more detailed biophysical description of neurons and synapses (at the molecular and
cellular levels) integrated into microcircuits, and then further integrated in large-
scale brain networks and even brain systems [11]. Seven models of a single neuron
may be multilayer: from the electric field distribution, through modeling of the sin-
gle compartment effects, to the multicompartment neuron model [47]. Accurate 3D
reconstructions of neurons are typically created using:

• Neurolucida after biocytin histology
• Neuromantic to reconstruct from fluorescence imaging (FI) stacks acquired using
2-photon laser-scanning microscopy during physiological recording [3]

18.3.3 Models of Biologically Relevant Neural Networks

According to the concept by DeFelipe [14] there is a need to identify the general
connection matrix of the brain based on three main levels of operation and modeling:

• Macroscopic: Providing a map of major tract connectivity (connectome), acquired
using medical imaging (e.g., fMRI)

• Intermediate: Providing a map of connections, acquired using light microscopy
• Ultrastructural: Providing amapof the synaptic connections (synaptome), acquired
using electon microscopy [14].

Imprecise connectomes and incomplete synaptomes require an integrative approach
to fill the gaps. Statistical models allow us to determine the range of variability of the
particular parameters by sampling relatively small regions of the brain, especially
within the cortex. There is a need for careful limitation of such an approach to avoid
imprecision of estimation (e.g., ranges and types of synapses). The main initiatives
concerning modeling of biologically relevant neural networks are:

• Human Brain Project (HBP) based in the European Union
• Brain Activity Map based in the United States [25, 32, 68]
• Allen Institute for Brain Research [Allen Institute]
• NeuroMorpho.Org [2]
• BAMS2 Workspace [5]
• The Canadian Brain Imaging Research Platform (CBRAIN) [52]
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Analysis and interpretation of the functional brain networks during different cog-
nitive activities require advanced approaches to the spatiotemporal and spectrotem-
poral brain data such as Functional Pattern Graph, NeuCube, and Intrinsic Signal
Optical Imaging [26, 36, 57]. Simplified computational models of convective drug
distribution in the primate brainstem were consistent with the outcomes of in vivo
experiments [55].

18.3.4 Models of Human Behavior

The key issue constitutes models of learning within CNS. The learning process
is often identified with modification of interneuron connection strength. Different
learning rules may be applied. Moreover, synapses may change the strength of their
response to neural activity in two basic ways:

• Short-term changes, lasting from milliseconds to seconds, which are important,
but regarding them as learning is still discussed.

• Long-term potentiation (LTP) and long-term depression (LTD), lasting from hours
to years.Wealso should take into consideration a noise effect, overlappingof neural
fields, and choice of information relevant in the current task (e.g., decisionmaking).
Another problem constitutes neural plasticity, for example, spike-time-dependent
plasticity (STDP).

18.4 Traditional versus Fuzzy Approach

There are three basic areas of OFN application within computational brainmodeling:

• Reflecting physiological brain procedures normally performed by fuzzy-like
neural networks, such as natural language processing, but one should take into
consideration that the assumption of the right hemisphere being better at process-
ing fuzzy signals than precise information may be true

• Simplification of complex computational procedures, hard to familiarize in another
way, for example, kWTA-like mechanisms

• Reflection of various pathological processes, for example, fuzziness (absence of
precision) of information in some diseases

18.5 OFN as an Alternative Approach to Fuzziness

The OFN model is introduced in detail in Chaps. 3 and 4. Generally, it is a tool for
processing imprecise quantitative values represented by fuzzy numbers. OFNs have
an additional feature used in processing: direction/orientation. It allows us to define

http://dx.doi.org/10.1007/978-3-319-59614-3_3
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arithmetical operations in a new way. The proposed methods maintain the basic
computational properties of the operations known for real numbers. Apart from a
good calculation capacity, OFNs also offer new possibilities for processing imprecise
information. The new property, an order, has a major impact on the calculations, but
also provides a new potential for processing data in fuzzy systems. We can include
into the fuzzy value additional interpretations apart from the membership value. The
new feature of processing is called ‘sensitivity for the direction’ (see [43, 44, 46]
and Chap. 5) and makes it possible to involve in a model such expressions as, ‘The
temperature is about 20 ◦C and it is increasing’.

In the case of the OFN model and processing methods that can be called ‘arith-
metic’ (see [40, 41, 43, 44]), at each stage of the fuzzy system process we deal with
the quantitative aspect of the data. Thus we consistently obtain fuzzy numbers at each
step: the aggregation of premises, the inference and the accumulation-aggregation
of the rules answers. Such property of a fuzzy system is even more important when
modeling the complex relationships of the brain functions. It can be used as a para-
meter for other calculations without the direct output of individual rules. It can be
hard to achieve this in a traditional fuzzy approach when during processing in the
fuzzy system the quantitative character of processed data is generally lost.

18.6 Patterns and Examples

18.6.1 Intuitive Modeling of the Complex Functions

This concept was already presented in [45], and its key elements are provided here.
A significant part of our knowledge about the functions of the brain is vague and
imprecise. Thus, fuzzy logic seems to be a good solution when we look for tools used
in modeling such an object. Although fuzzy techniques are used in object recogni-
tion and linguistic property modeling [29], there is only poor evidence concerning
their use in brain simulations. There is a need for a novel, more effective approach,
providing a better, clear, and easy understanding of the processes underlying brain
function.

It is difficult to describe a simplified brain function in the form of mathematical
equations. As mentioned before, brain function arises from complex behavior of
units on the lower level (neurons, synapses, etc.). It makes this situation similar
rather to multiagent architecture. However, a cascade and hierarchical fuzzy logic
systems [19, 20, 48] may provide another insight into the behavior of the particular
subsystems or mechanisms, allowing easy configuration and use of complicated sets
of semirealistic features. Processing of information using a fuzzy system usually
begins with a fuzzification operation and ends with defuzzification. Fuzzification, in
general, is the conversion of a crisp value into a fuzzy one and defuzzification is a
reverse operation. This operation can be done in many different ways. A choice of a
proper method (especially the defuzzification method) often has a significant impact

http://dx.doi.org/10.1007/978-3-319-59614-3_5
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Fig. 18.1 A scheme of the
fuzzy inference block (FIB)

Fig. 18.2 The example of
complicated dependencies
modeled by FIBs

on the correctness and effectiveness of thewholemodel. Furthermore, the change of a
fuzzy value into a crisp one is the replacement of a complex value with a simpler one.
Such action usually involves some approximation or rounding, therefore it introduces
an additional error into the results, as it is generally associated with losing some part
of the information. The repetition of such operations is not recommended, due to the
cumulation of the amount of lost information. It is especially inappropriate to use
the output value of one stage as the input value for another.

If we want to use fuzzy values for modeling more complex structures such as the
brain, the exclusion of the fuzzification and defuzzification operations outside the
base system is recommended. Therefore as the basic tool for processing complex
functionality expressed linguistically we propose to define a fuzzy system without
fuzzification and defuzzification stages as the fuzzy inference block (FIB). The idea
is presented in Fig. 18.1.

Such an element is a conceptual base for cascade modeling of complex relations
described linguistically. The potential of such an idea in modeling complex relations
is presented in Fig. 18.2.

It is worth noting that every FIB can represent one agent from the multiagent
architecture. With this approach, we can describe even more complex structures. It
is easy to imagine that, in place of individual FIBs, we can insert another complex
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system so it seems to be a kind of recursion, where only the lowest level relates
directly to the FIBs. Still, despite the high complexity of the model, relations are
described linguistically at various stages.

However, although the idea of FIBs seems to be quite suitable for the linguistic
modeling of complex relations, some problems may arise. The classical methods
for fuzzy models often produce fuzzy answer sets, which are quite fragmented, not
normal, and not convex. Such results are formally still fuzzy sets, but their forward
processing without defuzzification could be questionable.

Such problems do not occur if we use the OFN model. Its important advantage
here is that we get a kind of fuzzy number at each stage of data processing. Thus the
further use of such a result is easy and smooth without the need for defuzzification
and then fuzzification again.

18.6.2 Improving Policy Gradient Method

Apart frommodeling complex functionality described linguistically, the OFN can be
used in other areas connected with brain modeling. A neural networks idea comes
from knowledge about basic brain structure: see articles of the neurophysiologist
Warren McCulloch and a mathematician Walter Pitts (1943) [34], “The Organiza-
tion of Behavior” of Donald Hebb (1949) [21], and articles of Bernard Widrow and
Marcian Hoff on ADALINE and MADALINE in the early 1960s [61]. The afore-
mentioned ideas periodically failed or became more popular, but in the twenty-first
century, called the century of neuroscience, a reasonable use of the old ideas may
cause another breakthrough with deeper understanding of the central nervous system
function. Issues of the average reward optimization, especially in the domain with
partial observability (e.g. noised), are not easy to replicatewithinmodels of predictive
state representations. Computation of the average reward depends on many parame-
ters, and varies significantly, especially in a nonstationary environment. Permanent
states and actions make this task particularly difficult. Obviously, the complexity of
a well-known task and the associated reduced number of dimensions may increase
efficiency of the computational system, but we should be aware that the brain cal-
culates such tasks almost in real-time, taking into consideration many hidden states
(e.g., environment, past behavior, own preferences, or even emotions). Such compu-
tational processes may reflect natural error-driven learning and adaptation, thanks to
built-in short-term neuroplasticity, and their influence on long-term brain plasticity
(e.g., memories, motivations, feelings, etc.). Thus enhanced discrimination of the
single neuron, use of synapses as estimators of presynaptic membrane potentials,
and temporal and spatial processing may be reflected in neuronal computation of
the brain area function/response. Even connectomics cannot avoid current technical
limitations. Although fuzziness of this process and nonrandom features of cortical
connectivity allow some attempts with OFNs, these attempts, although simple, may
play a significant role within the richness of its high-level cognitive processes as
well as provide quicker and more predictable calculations. Earlier studies on policy
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Fig. 18.3 A problem of
choosing the best connection

gradient methods within reinforcement learning [18, 59, 62, 65] showed the positive
role of the optimizing parameterized policies with respect to the expected return by a
gradient descent, without their many disadvantages. As a result, we can more deeply
understand reward-related learning problems in animals, humans, or machines. Thus
we propose our own solution of the element of the long-term cumulative reward, tak-
ing into consideration its fuzziness.

One important issue on this subject is also the problem of objective function opti-
mization. Finding the maximum value of the reward function R is often a guarantee
to find the best change in a given step. However, the cost of calculating such an
optimum can be too high to ensure its practical usefulness. This applies especially to
situations where this reward function changes dynamically during time steps. A bet-
ter choice may be to improve other parameters such as the learning rate coefficient,
for example.

The change of weight between ni and n j is calculated as follows.

dwi j

dt
= aR(t)ei j (t) (18.1)

where a is the learning rate, the number from the [0; 1] interval, R is the reward
function, and ei j is the eligibility trace between ni and n j neurons from two adjacent
layers (see Fig. 18.3).

Both the reward function and eligibility trace are complex problems. Expanding
them with further calculations requires a lot of caution, because it is easy to overload
the process with time-consuming computations. Therefore to improve a solution of
the problem with determining weights of neurons the learning rate coefficient seems
the right choice, for a start. It is worth noting that the learning rate at the 0 level is in
fact no change of weight, thus no adaptation will proceed in such a step. Therefore
the interval (0; 1] could be used instead. However, the zero level can represent the
perfect optimum where the adaptation of this weight definitely ends, thus formally
we keep zero as the low-bound in the interval of values for the learning rate.
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Fig. 18.4 Input and output values for the classic fuzzy system

18.6.3 Modeling Learning Rate with the OFNs

The learning rate is a real number from the [0; 1] interval. The less value there is,
the smaller are the changes applied to the weight (see formula 18.1). Many scientists
focus their work on the adaptation and other changes of this coefficient [15, 31,
53]. In general, when an idea of switching the learning rate is used in the neural
network it is recommended that values of this parameter should be greater at the
start of the process adaptation, when weight changes also are higher. In the course
of the adaptation development the changes of weights are smaller, and the learning
rate also should decrease. The above assumptions enable formulation of linguistic
rules in a classic fuzzy system context as follows.

• IF ‘previous change’ is ‘low’ THEN ‘learning rate’ is ‘low’
• IF ‘previous change’ is ‘high’ THEN ‘learning rate’ is ‘high’

If we define ‘low’ and ‘high’ as fuzzy numbers (see Fig. 18.4), we can generate the
learning rate value directly from such rules. The general conception of the proposed
fuzzy system is to appoint the learning rate on the basis of previous change of the
weight expressed as a percentage.

As an alternative, a simple fuzzy system based on the OFN model and its special
methods and properties is proposed.

With the use of the OFN model context, we can formulate just one rule that
expresses a trend of changes in the learning rate parameter.

• IF ‘previous change’ is ‘about 50% and decreasing’ THEN ‘learning rate’ is ‘about
0.5 and decreasing’

Figure18.5 presents the OFN for the rule above.
If we use ‘the directed inference by multiplication with a shift’ presented in Sect.

5.4.1 of Chap. 5 a single rule will be sufficient to express the expected dependency.
Figure18.6 shows the examples that present the general idea of the proposed process-
ing. One can see that the activation in the down-part area of input, ‘the previous
change’ will shift the result in the direction of the down- part of the OFN from the
conclusion. An analogous situation will be with the up-part. Thus it is possible to
reach the whole space of output values.

http://dx.doi.org/10.1007/978-3-319-59614-3_5


316 P. Prokopowicz and D. Mikołajewski

Fig. 18.5 OFN for fuzzy system

Fig. 18.6 OFN for fuzzy system

18.7 Discussion

The system proposed in the previous section is very simple, and generally gives
exactly the same results as simple mapping from the [0; 100] interval into [0; 1]. But
this proposition shows the potential of applying OFNs in linguistic modeling of the
learning rate. We may intuitively change the algorithm by changing the linguistic
expression. If we want to obtain a smaller learning rate in the case where the previous
change of weight is below 30% we may formulate the rule linguistically:

• IF ‘previous change’ is ‘about 30% and decreasing’ THEN ‘learning rate’ is ‘about
0.5 and decreasing’.

Figure18.7 presents the example for such a rule. The input value is the same as in
the previous case (see Fig. 18.6), therefore we can compare the results. Now it is
not a simple proportional mapping between intervals [0; 100] and [0; 1]. It considers
the preferences expressed linguistically. One can observe in Fig. 18.7 that a trend
is preserved, because the input is still on the down-part side of the OFN for the
premise part of the rule, thus the result is on the down-part side of the OFN from the
conclusion.

Using the same intuitive way, we can easily modify the conclusion of the rule.
If we want, for example, to keep the value of the learning rate above 0.7 until the
previous change of weight is not lower than 30%, we can express it by the rule as
follows.
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Fig. 18.7 OFNs for fuzzy system

• IF ‘previous change’ is ‘about 30% and decreasing’ THEN ‘learning rate’ is ‘about
0.7 and decreasing’.

The above examples show the intuitive and flexible usefulness of modeling the learn-
ing rate usingOFNs.Nevertheless it is alsoworth noting that we haveOFNs at output.
We can, of course, defuzzify the result, but the learning rate is only part of a com-
plex algorithm of calculating the weight change of connections between neurons as
presented in the formula 18.1. If we use the OFN for modeling other elements such
as ‘reward function’ or ‘eligibility trace’ there will be another fuzzy number in the
algorithms. Because defuzzification generally causes loss of part of the information,
we should therefore do it at the end of all calculations instead of only after determin-
ing the learning rate coefficient. It enables us to process full imprecise information
contained in the data until the moment when we really need a precise result.

18.7.1 Results of Other Scientists

Current approaches to central nervous system modeling aim at bringing experimen-
tal, computational, and theoretical results closer. Scientific questions should help
to decide which approach can be regarded as minimal. Experimental outcomes and
nonlinear interactions cannot be ignored even within the minimal computational
models, because they may cause misleading conclusions or even confirm erroneous
theories. Thus ad hoc simplification must be very careful. There are still many gaps
in neuroscience (e.g., fragmented data sets), as regards both knowledge and experi-
ence; thus there are discussions concerning limitation of amounts of free parameters
within models (which may cause so-called island models) without the possibility of
comparison with the others and tuning using experimental datasets. The most impor-
tant challenge is integration of the current data into a unified model of the brain as
a single multilevel model. We need to explore, verify, and apply experiences from
many various areas of science: frommodeling of severe illnesses [17] and traditional
neuronal networks [50, 51], through liquid state machines [63, 64] to liquid and gas
distribution in porous materials [7–9].
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18.7.2 Limitations of Our Approach and Directions
for Further Research

The main limitation is a high amount of knowledge and experience as well as a need
for an interdisciplinary research team to prepare valid and relevant models. Such
teams, incorporating clinicians, are rare.

Consensus concerning model classification, performance, and interpretation is
needed to provide consistent methodology to ensure diagnostic and prognostic con-
sistency. A coherent theoretical framework for explaining SC and FC patterns and
their alterations in brain diseases is required. The high computational power of the
brain coupled with low consumption of energy may serve as a basis for the next
generation of computational devices. Neuromorphic computing systems may allow
us to reflect the stochastic behavior of simple, reliable, very fast, low-power comput-
ing devices embedded in intensely recursive architectures, based on brain-derived
patterns [6].

18.8 Conclusions

Our results confirm that our new OFN fuzzy-based approach towards brain func-
tion modeling may be efficient and helpful in some time-consuming computational
problems. Such a fuzzy-based approach may in selected cases also be more similar
to natural neural signal processing than classical digital models. The idea of a fuzzy
inference block opens a new direction towards the use of good processing properties
of an OFNmodel in describing complex functions while preserving the intuitiveness
of linguistic description. It seems to be of particular importance for the area where
two scientific disciplines meet, that is, medical research dealing with diseases and
injuries of the brain and computer science research.
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