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Abstract. Nowadays, attackers seek various covert channels to access
the users’ privacy on the mobile devices. Recent research has demon-
strated that the built-in motion sensors can be exploited to monitor the
users’ screen taps and infer what they have typed. This paper presents
several practical and convenient countermeasures against this attack in
terms of the soft keyboard. We find that this attack is sensitive to the
motion noise of the mobile device and the layout variation of the soft
keyboard. We, thus, present two kinds of countermeasures against this
attack by introducing vibration noise in sensor readings and dynamics
in the keyboard layout, respectively. We implement these countermea-
sures on Android platform and recruit 20 volunteers to evaluate these
countermeasures’ effectiveness and usability on both the smartphones
and tablets. The results show that the proposed countermeasures can
effectively reduce the attackers’ keystroke inference accuracy without
significantly hurting the typing efficiency.

Keywords: Keystroke inference attack · Motion sensor · Mobile device ·
Countermeasure · Soft keyboard

1 Introduction

The mobile devices’ popularity makes themselves become one of the key targets
of the attackers. To collect the users’ privacy on the mobile devices, the attackers
seek various covert channels, for example, the on-board sensors. It has been
demonstrated that the cameras [9], gyroscopes [12], microphones [16,19] and
ambient-light sensors [21] all can be used directly to exhibit the users’ sensitive
information.

Recent research [1,2,4,5,8,14,17,23] has demonstrated that the motion sen-
sors can be utilized to record the user’s screen taps so as to further infer what the
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user has typed on the soft keyboard, which is called the motion based keystroke
inference attack (MoBaKIA attack). It is first proposed by Cai et al. in [4] and
they give a detailed presentation about it in [5]. Owusu et al. have proved that
it is possible to infer the 6-character passwords in as few as 4.5 trails with the
accelerometer readings [17]. Meanwhile, it can also get high accuracy on infer-
ring English words on both the smartphone and tablet [14]. Aviv et al. enhance
MoBaKIA attack with the polynomial fitting and signal processing techniques,
making it possible to infer 40% of the patterns and 20% of the PINs within 5
attempts when users are walking [2]. A real Android Trojan application about
MoBaKIA attack, TapLogger [23], has been implemented by Xu et al.

Nowadays, besides the standard soft keyboard, the users can utilize a vari-
ety of novel soft keyboards in the mobile application market, such as Swype1

and Dynamic Keyboard2, to type something on the mobile devices. Despite the
innovative user experience provided, these soft keyboards pay little attention to
defending against the covert channel attacks on the mobile devices, for example,
MoBaKIA attack. They are still vulnerable to MoBaKIA attack, since the oper-
ations on them depend heavily on the entered content, which can be recorded
by the motion sensors.

Prior work [2,14,17,23] has presented some countermeasures on MoBaKIA
attack such as reducing the sampling rate, requiring specific permission on the
motion sensors and so on, but they leave these countermeasures alone without
any further implementation or evaluation. Some researchers attempt to provide
a dynamic, flexible and fine-grained control on the access to the motion sensors
[3,6,7,13,18,22,24]. However, these countermeasures are highly specified, which
are implemented on the specific operating systems and require the alterations
on the Android framework as well as the Linux kernel that can only be done by
ROOT. With rooted Android, the users will encounter some practical problems,
such as invalidating warranty and causing update issues3. As a result, these
countermeasures cannot be widely applied to current Android versions.

To make the countermeasures more practical, a number of researchers seek to
defend against MoBaKIA attack on the application layer in terms of keyboard
[10,11,15,25–27], instead of security framework. Since these keyboards are much
different from the standard keyboard, the users have to spend much longer time
to learn about them and be more concentrative when they type.

In this paper, we take both the countermeasure’s effectiveness and usabil-
ity into account, and propose some practical and convenient countermeasures
against MoBaKIA attack in terms of keyboard.

When we analyze the process of launching MoBaKIA attack, we have the
following two observations:

I. MoBaKIA attack is sensitive to the shaking noise of the mobile device. When
the motion data are used to infer the typed content, the motion noise of the

1 https://play.google.com/store/apps/details?id=com.nuance.swype.trial.
2 https://play.google.com/store/apps/details?id=com.alastairbreeze.dynamickey

board&hl=en.
3 http://betanews.com/2013/10/01/5-reasons-not-to-root-android/.

https://play.google.com/store/apps/details?id=com.nuance.swype.trial
https://play.google.com/store/apps/details?id=com.alastairbreeze.dynamickeyboard&hl=en
https://play.google.com/store/apps/details?id=com.alastairbreeze.dynamickeyboard&hl=en
http://betanews.com/2013/10/01/5-reasons-not-to-root-android/
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mobile device has a great influence on the inference result. For example, the
shaking caused by the user’s movement usually has a greater influence on
the mobile device’s state than just tapping the screen, which makes it more
difficult to infer the typed content [23].

II. MoBaKIA attack relies on the fixed screen area and constant layout of the
soft keyboard. It is the soft keyboard’s fixed position and constant layout
that enable MoBaKIA attack to infer the content that the user has typed
with high accuracy [4]. Therefore, the fixed mappings from the keys to their
screen locations are very critical to MoBaKIA attack. We can try to break
these fixed mappings by dynamically modifying the soft keyboard’s layout.

Our countermeasures against MoBaKIA attack are just based on these two
observations. In this paper, we make the following contributions:

1. Driven by the first observation, we propose our first kind of countermeasures
that we take advantage of the vibrator in the mobile device to add noise to
the motion sensor readings. We make a detailed analysis of the vibration noise
in terms of correlation and frequency spectrum, and we find that it can be
difficult for the attackers to remove this noise.

2. Based on the second observation, we propose the second kind of countermea-
sures, which defends against MoBaKIA attack through dynamically modify-
ing the layout of the keyboard. We make use of the entropy theory to analyze
and select the modification strategies. Meanwhile, we present several effective
strategies to reduce the side effects on the usability.

3. Based on Google’s sample soft keyboard project, we implement these coun-
termeasures and evaluate their effectiveness and usability on both the smart-
phones and tablets. With the experiment conducted among 20 volunteers and
more than 90,000 keystrokes collected, we can see that the proposed coun-
termeasures can effectively reduce the attackers’ keystroke inference accuracy
without significantly affecting the typing efficiency.

As for the soft keyboard, it can be unavoidable to sacrifice some usability to
protect the user’s privacy. We try our best to keep the soft keyboard’s usability
while modifying it. What is more, we do not want to persuade the users to use
our countermeasures all the time. It depends on the specific contexts. When the
users type their account numbers, passwords and other sensitive information, it
could be acceptable for them to sacrifice the usability to protect their private
information. At other time, they can still use the standard keyboard without
any modification.

The rest of this paper is organized as follows. We start our work with the
realization of MoBaKIA attack in Sect. 2. In Sects. 3 and 4, we give a detailed
description of our two kinds of countermeasures against MoBaKIA attack respec-
tively. We present our experiments and evaluations of these countermeasures in
Sect. 5. We show the related work in Sect. 6. In Sect. 7, we conclude the whole
paper.
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2 MoBaKIA Attack Introduction

MoBaKIA attack can be considered as a problem of classification, and it can
be divided into two stages: training stage and inferring stage. Through a well-
designed malicious application (e.g., a mobile game application), the attacker can
collect the labeled motion data sequences, which have been associated with the
accurate touched areas on the mobile device. And then, the attacker builds the
classifiers with these labeled motion data sequences. When the malicious appli-
cation runs in the background, it stealthily accesses the motion data sequences
when the user types something on the mobile device. With these unlabeled
motion data sequences, the attacker can infer the original content that the user
has typed.

To make an evaluation of our countermeasures’ effectiveness, we implement
and launch MoBaKIA attack on Android platform first:

Step 1. Motion sensor selection: We use the accelerometer and orientation
sensor, which are utilized in prior work [2,4,5,14,17,23], to launch this attack.

Step 2. Configuration of motion sensor: To get a detailed presentation
about the touch event, we set the sensor’s receiving rate to the fastest one,
100 Hz.

Step 3. Touch event extraction: We record the exact time when a key is
pressed and released so that we can easily locate the touch event in the
motion data.

Step 4. Feature selection: Following the prior work [14,17], we extract both
time domain and frequency domain features from the motion data.

Step 5. Classifier selection: Different classification algorithms’ effect on
MoBaKIA attack has been compared by Owusu et al. in [17] and they have
claimed that the Random Forest classification algorithm has the best effect,
so in this paper we adopt the Random Forest classification algorithm.

In the following parts, we will give a detailed description about our counter-
measures which are based on the observations presented in Sect. 1. In this paper,
we only focus on the alphabetic soft keyboard. Other soft keyboards can utilize
the same strategies.

3 Countermeasure Based on Observation I

The prior work [23] has pointed out that MoBaKIA attack is sensitive to the
motion noise of the mobile device. Based on this point, we can add some noise
to the motion data before they are delivered to the registered SensorListeners.
There are two measures to add noise. The first one is to modify the real sensor
data by the programs. Raghavan et al. in [18] propose to add Gaussian noise to
the acceleration data when the soft keyboard is activated. However, it requires
the modifications of current operating systems, contradictive to our intention.
The second one is to dynamically change the state of the mobile device. It can
depend on the users to make extra motion when they operate the mobile devices,
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which can be inconvenient for the users. A more convenient way is to utilize the
vibrator in the mobile device. Once a key is pressed, the vibrator is started. In
Fig. 1, we can see that the noise produced by the vibrator can absolutely disturb
the motion sensor readings. In this part, we mainly consider the accelerometer’s
readings, since the vibration noise has the similar influence on the other motion
sensors’ readings, according to our observation.
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Fig. 1. Comparison of the accelerometer readings on the z-axis with the key “U” typed
(The blue lines mark the time when the touch events start and stop.) (Color figure
online)
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Fig. 2. Vibration noise analysis

Before fully utilizing the vibration noise, we start with an investigation to
learn about the features of the vibration noise. In Fig. 2(a), we can see that the
noise is periodic when the vibrator keeps working for some time, except for the
first 0.5 s when the vibrator starts to work. Our extra experiments’ result in
Fig. 2(b) validates our observation. Based on our observation, we can see that
the correlation coefficient of the vibration noise in the first 0.5 s each time follows
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the uniform distribution over [−1, 1], making it hard to filter out this kind of
noise. With 27,307 touch events collected, we obtain the average touching time
which is just 0.48 s, shorter than 0.5 s. Therefore, we can take advantage of the
irregular vibration noise in the first 0.5 s to disturb the original motion data
about the touch events. Moreover, with the spectral analysis, we can see that
the frequency spectrum of the vibration noise in Fig. 3(a) is much similar to that
of the touch events in Fig. 3(b). Therefore, even with the band-pass filter, it is
still difficult to remove the vibration noise from the motion sensor readings.
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Fig. 3. Spectral analysis of the touch event and the vibration noise
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(b) Mi One S

Fig. 4. Comparison of the touch events with different smartphones

Now, we test the vibration noise on different smartphones to gain the further
insights about it. We find that it highly relies on the smartphones, which can
be classified into two categories. To make a brief presentation about them, we
take the representative one from each category in this part. Compared with
the motion data without noise, some of the noise, in Fig. 4(a), can be strong
enough to disturb the original motion data, while some of them, in Fig. 4(b),
cannot. Moreover, with the spectral analysis of the touch events with different
smartphones’ vibration noise in Fig. 5, we can see that some vibration noise’s
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Fig. 5. Spectral analysis of the touch events with different smartphones’ vibration noise
(Mi One S vibration noises frequency is marked by the red dash rectangle.) (Color figure
online)

frequency in Fig. 5(b) is so high that it can be filtered out by the band-pass filter,
when compared with the touch events’ frequency in Fig. 3(a). Therefore, this
countermeasure’s effect heavily depends on the smartphones. In the next section,
we introduce some countermeasures that can be used on the whole smartphones.

4 Countermeasures Based on Observation II

The soft keyboard’s fixed position on the screen and constant layout establish
the fixed relations between letter keys and screen locations, which makes it
possible to infer the typed information with the motion data. Therefore, we
can dynamically adjust the keyboard’s layout to break the fixed relations so as
to increase the difficulty of MoBaKIA attack. Before we describe our detailed
schemes, we first present the principle guiding our design.

Fig. 6. The standard soft keyboard
layout

Fig. 7. Randomize the layout without
improvement

In the standard soft keyboard in Fig. 6, there are a total of 28 keys. We
represent them by k1, k2, · · · , k28. If the user taps on ki, a classifier may falsely
recognize it as a different key based on the eavesdropped motion data. We denote
by Pij the probability that the tapped key ki is falsely recognized as kj . To
break the fixed layout of the keyboard, we aim to find a randomization strategy
to dynamically change the representing letter of each key. Supposing that after
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applying this strategy, the probability that ki represents letter lj is Qkilj . Note
that the value of Pij is determined by the locations of ki and kj , which have
nothing to do with the randomization of the representing letters. Taking the
inference error into consideration, if the classifier claims that the user has tapped
on kj in the last tapping event, the probability that letter ls is entered is

Pkj→ls =
i=28∑

i=1

(Pij × Qkils). (1)

The values of Pkj→ls for s = 1, 2, · · · , 28 can be regarded as the probability
distribution of a stochastic event, which is denoted by Ekj

. Then, the entropy
of this event is

H(Ekj
) = −

s=28∑

s=1

(Pkj→ls × log(Pkj→ls)). (2)

As we know that a greater entropy indicates that the stochastic event is more
difficult to predict. Thus, we can claim that the greater the value of H(Ekj

) is, the
more difficult it is for the attacker to predict which letter has been typed when
the MoBaKIA attack classifier infers that kj has been tapped on. Therefore, we
should find a randomization strategy of the letter keys to maximize H(Ekj

) for
each i for security. Usability has a great influence on the users’ acceptance of
these strategies. Therefore, when we design these strategies, we take full consid-
eration of the usability and try to make the strategies user-friendly by following
users’ typing habits.

4.1 Completely Randomize the Layout

When we want to dynamically adjust the keyboard’s layout, the most direct way
is to completely randomize it. However, when the keyboard’s layout is completely
randomized, it makes it difficult for the user to pick up the target key. Therefore,
in this part, besides the basic strategy to randomize the layout, we come up with
some improved strategies to accelerate the user’s typing speed.

Basic Strategy. According to the entropy theory, H(Ekj
) reaches its maximal

value when Pkj→ls = 1/28 for all s = 1, 2, · · · , 28. We can easily prove that this
condition is satisfied when ∀i, Qkil1 = Qkil2 = · · · = Qkil28 = 1/28, which means
that the letters are completely randomly distributed to the keys. Therefore, our
first countermeasure follows this observation and completely randomizes the lay-
out of the alphabet keyboard as shown in Fig. 7. Note that our randomization
does not include “Shift” and “Del” keys. When this strategy is applied, once a
touched screen area is identified, the attacker can predict nothing but randomly
select one letter to report. The probability that one input letter is inferred cor-
rectly is 3.85% ( 1

26 ). This is the best strategy as for security. Nevertheless, this
solution may make it difficult for the user to find out the target letter, slowing
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(a) Decentralized (b) Centralized

Fig. 8. Randomize the layout with
improvement (keys marked with the white
dash rectangles are the keys with high
probabilities to be pressed.)

Fig. 9. Randomly resize the keys

down the typing speed. In our opinion, it can be acceptable for the users when
they are typing very sensitive information on the screens such as bank accounts
and passwords.

Improved Strategies. To provide a comprehensive and acceptable protection
on the typed content no matter whether it is sensitive or not, we need to work
further on the basic strategy to improve its usability. With the occurrence fre-
quencies of words and the letter sequence entered by the user, we can predict the
next letters with some probability and highlight them so as to speed up typing.
The first improvement that we make is to resize the letter keys according to the
probabilities that they are going to be pressed with. The higher probability the
letter key is going to be pressed, the larger its size will be made. Once the user
types one letter, we follow the basic strategy to randomize the letter keys’ posi-
tions and then resize each key according to the associated probability. It keeps
the basic strategy’s effectiveness. Figure 8(a) shows the soft keyboard when the
letter key “A” is touched. However, the predicted letter keys are decentralized,
which is still hard for the user to find out his target letter key. Therefore, we can
add an additional step to move the predicted letter keys with high probabilities
to the center of the soft keyboard so that the user can pick up his desired letter
key more easily. The initial keyboard’s layout is just as the one of the basic strat-
egy. With more letters typed, the attacker still can learn nothing since he cannot
build a robust classifier, in advance, to infer the associated letters, except for
random guess. Therefore, this improved strategy still keeps the basic strategy’s
effectiveness. Figure 8(b) shows the soft keyboard when the letter key “A” is
touched in this case. To make the countermeasures not only effective in resisting
MoBaKIA attack but also user-friendly, we should consider more information,
such as the keys’ proximate relations.

4.2 Randomly Resize the Keys

Randomly resizing the keys can adjust the soft keyboard’s layout as well as keep
the proximate relations between the keys in some degree in Fig. 9. Therefore, we
treat it as one of the promising strategies, but we should pay attention to its
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side effects such as it can be difficult for the user to touch the key accurately
and it may be impossible to present the whole soft keyboard on the screen. With
the minimum key size considered, we resize the keys. We firstly randomize the
keys’ width in each row and guarantee that they cover the whole space in the
horizontal direction. And then, we modify the keys’ height in each row. When we
modify the keys’ width and height, we also adjust the keys’ positions to avoid the
block between the keys. Based on the remained space in the vertical direction,
we randomly modify all the keys’ y-coordinate values in the first row so that all
the keys are randomly shifted in the vertical direction.

4.3 Heuristically Adjust the Layout

The neglect of the users’ habits formed on the standard soft keyboard leads to
the bad user experience. To guarantee the usability of the soft keyboard, we
focus our attention on the users’ habits. In Sect. 4.2, we randomly resize each
key. It keeps the proximate relations between the keys in some degree. However,
when the user tries to type the key with the small size, he may accidentally type
the key nearby instead of it. It is just because of the key’s small size. In this part,
we still adjust the keyboard’s layout, but we adjust the keys’ positions in the
local areas around their original positions, following some specific regulations.
Based on the entropy theory discussed in Sect. 4, it is easy to see that the larger
the key’s adjustment area is, the larger the key’s entropy value is. Driven by this
observation, we come up with the following strategies:

H1. Shift each column within a random distance. We make uniform modification
of the whole letter keys’ height so that the original 3 rows in Fig. 6 are
divided into 6 rows. In this way, each column can be shifted within a random
distance in the vertical direction in Fig. 10(a).

H2. Randomize the row order. We just randomly resort the three rows each time
a key is pressed just as shown in Fig. 10(b).

H3. Randomize the keys within a local area. We dynamically take the four keys
nearby as a group, and randomly rearrange them among these four posi-
tions, as shown in Fig. 10(c).

H4. Randomly shift the keys in each row. We randomly select a constant for
each row and all the keys in the same row are moved with the randomly
selected constant in a circle, just as shown in Fig. 10(d).

We can see that there can be various heuristic strategies to adjust the soft
keyboard’s layout and we just enumerate some of them. However, we want to find
a representative one among them. Now we give analysis about the effectiveness
of the above schemes based on the entropy theory that we described earlier.

We first divide the keyboard area into a grid of 3×10 cells as shown in Fig. 6.
Each cell represents a key (i.e., the minimal recognizable area that we consider
in this analysis). For simplicity, we think that the keystroke inference accuracy
reaches 100%, i.e., Pii = 1 and Pij = 0 (i �= j). We take the key kexample

highlighted in Fig. 6 as an example to compare the effectiveness of different
schemes.
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(a) H1 (b) H2 (c) H3 (d) H4

Fig. 10. Heuristic strategies ((c) is a moment that the keys marked within the white
dash rectangles are randomly rearranged. The keys marked with the white dash rec-
tangles in (d) are the first keys in each row in the standard soft keyboard.)

We first consider the strategy H1 shown in Fig. 10(a). In this scheme, if
kexample is considered to be tapped on, the input letter has three possibilities:
“Y”, “H”, and “V”. We can derive that QkexampleY = 1/3, QkexampleH = 1/3
and QkexampleV = 1/3. Therefore, according to Eq. 2, the entropy value is
H(kexample) = −3 × 1

3 log
1
3 = 1.58. Similarly, we can compute H(kexample) with

the other heuristic strategies H2–H4, which are equal to 1.92, 2.50, and 3.17,
respectively. We can see that H4 have the largest entropy value, so we choose
H4 as the representative of the heuristic strategies and make further evaluation
on it in the following section.

5 Experiment and Evaluation

From the aforementioned countermeasures, we select the representative ones
and implement them on Android platform to evaluate their effectiveness and
usability. For simplicity, we index all these countermeasures as Table 1. We use
BASIC, the standard soft keyboard without any modification, as a baseline to
make comparison with other countermeasures.

Table 1. Indexed countermeasures

Index Countermeasure

BASIC The standard soft keyboard without modification

C1 Add noise with the vibrator

C2 Randomize the layout without improvement

C3 Randomize the layout with improvement decentralized

C4 Randomize the layout with improvement centralized

C5 Randomly resize the keys

C6 Randomly shift the keys in each row

1. Participants: We recruit 20 volunteers (10 males, 10 females), whose average
age is 24.50 years old, to make evaluations of all these countermeasures on
both the smartphones and tablets.
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2. Test Devices: We conduct our experiments on 5 different smartphones
(Motorola XT910, Mi One S, Mi 2, Samsung Galaxy SII and Samsung Galaxy
S4 ) and 2 different tablets (Samsung GT-N8000 and Huawei MediaPad 10 ).

3. Further Illustrations: During the experiments, the participants sit when
they are typing and all the devices are kept in portrait mode. We do not have
any further restrictions on the participants’ typing manners so that they can
follow their own habits to keep the mobile device and type the content on it.

5.1 Effectiveness

Settings. As our purpose in this paper is to resist MoBaKIA attack, we evaluate
the countermeasures’ effectiveness at first. Prior work [1,2,4,14,17,23] focuses
on the keystroke inference accuracy, since it can directly affect the target key’s
rank among the candidates, which has a significant influence on the number of
attempts needed to correctly infer the whole content. Therefore, we also focus
on the keystroke inference accuracy when we evaluate these countermeasures’
effectiveness.

We require the participants to touch the keys one by one (“A” → “B” →
“C” → ... → “Z”) in each round and go on for about 10 rounds with each
countermeasure. With the captured motion data, we build the personal keystroke
inference models for each participant and make K-fold cross validations (K=10),
which are used in prior work [1,2,5,14,17], to obtain the inference accuracy on
each key with each countermeasure.

We do not take C3 and C4 into account in this subsection, as they are just
made to improve the usability of C2, which does not work in this experiment.
Just as we have talked in Sect. 3, C1 ’s effect highly depends on the mobile
devices, in this part, we only evaluate it on the mobile devices whose vibration
noise can be similar to that in Figs. 4(a) and 5(a).

Effectiveness on Smartphone. We firstly conduct the effectiveness evaluation
on the smartphones. Before we begin to evaluate these countermeasures, we
deploy BASIC at first to show MoBaKIA attack’s keystroke inference accuracy
without any countermeasures. Following the steps presented in Sect. 2, we obtain
the result in Fig. 11(a), similar to the result of Owusu et al. in [17]. We can see
that the inference accuracy of the letter keys varies, which is mainly because
of the keys’ positions in the soft keyboard. The average inference accuracy is
40.84%.

Compared with the average keystroke inference accuracy obtained without
any countermeasures, all the average keystroke inference accuracies are reduced
in Fig. 12 when we apply our countermeasures. We can see that C1 does have
some influence on the keystroke inference accuracy. However, since we do not
have any restrictions on the participants’ typing manners, C1 ’s effect varies
among the participants, which leads to the inconspicuous reducing on the average
keystroke inference accuracy. Although C1 ’s effect is not very significant, under
some conditions it can be still effective to defend against MoBaKIA attack as it
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Fig. 11. Keystroke inference accuracy of standard soft keyboard
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makes it hard to detect when a type starts and stops when the user types some
information continually.

Among these countermeasures, C2 is the most effective one to defend against
MoBaKIA attack, as it reduces the average inference accuracy to about 3.85%,
the inference accuracy of random guess. Just as we have talked above, it may cost
the user a much longer time to pick up the target letter key. If the content that is
going to be typed is sensitive, it can be acceptable for the user in consideration
of security. The second candidate is C6. Compared with C2, it preserves some
proximate relations on the standard soft keyboard, but it may not be as effective
as the first one, since it just reduces the accuracy to 10.89%. We can see that C5
does have some influence on the keystroke inference accuracy, but its influence
is not very significant. It is mainly because that when we dynamically modify
the keys’ size, the majority of the keys’ position do not change dramatically.



76 S. Du et al.

Therefore, each letter key is still located in a fixed area, compared with C6 in
which each letter key can appear at 7 possible areas at least.

Effectiveness on Tablet. Besides the smartphones, we also make an evaluation
on the tablets. The process on the tablets is the same as that on the smartphones.
With BASIC, we obtain the original keystroke inference accuracy as shown in
Fig. 11(b). The average value is 44.82%. The evaluation result of the proposed
countermeasures on the tablets is also presented in Fig. 12, from which the similar
result can be achieved.

Comparing the evaluation results on the smartphones and tablets, we can
see that the average keystroke inference accuracy of BASIC on the tablets is
higher than that on the smartphones, which is mainly because that the key’s
size on the tablets is larger than that on the smartphones, making it easier to
infer the target key, just as Owusu et al. state in [17]. It is also the keyboard’s
larger display area on the tablets that makes C2, C5 and C6 more effective on
the tablets, as the key’s variation that can be made is much larger on the tablets
than on the smartphones.

5.2 Usability

When we make some modifications of the soft keyboard’s layout, we need to
take the usability into account. In this paper, we pay attention to the time cost
to type. In Fig. 13, we can see that C1 does not introduce extra time when
compared with BASIC. Therefore, in this part, we do not take C1 into account
and just list time statistics on BASIC and the countermeasures that modify the
keyboard’s layout.

Table 2. Application scenarios

Index Scenario

S1 Entering account numbers and passwords

S2 Writing SMSes and making phone calls

S3 On-line chatting through the mobile social network Apps

S4 Posting and replying on the social networks

S5 Sending E-mails

S6 Searching through the Internet

We start our evaluation with a survey, which fully considers the application
scenarios in Table 2. It is about the keyboard’s popular application scenarios as
well as the sensitive information that the participants consider. There are 132
participants (96 males and 36 females, the average age of which is 22.27 years
old) taking part in this investigation. The obtained result is presented in Fig. 14.
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Fig. 14. Voting results about the keyboard’s application scenarios in Table 2
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In Fig. 2(a), we can see that the top 3 popular scenarios are S3, S2 and S1.
Under these scenarios, it is common that the content cannot be too long to type
at one time. In this way, we design 10 sentences for testing, the average length
of which is 11 words (about 56 letters per sentence, except for the blanks).
20 participants use the devices that we provide for testing. Considering their
familiarity with the keyboard as well as the content to be typed, which can have
some influence on the time cost to type, we demand them to repeatedly type
the sentence for 6 times with each countermeasure, and then we calculate and
compare the average typing time. We take into account the time that they spend
on correcting the mistakes that they accidentally made. The detailed result is
presented in Fig. 15. C2 is very effective to defend against MoBaKIA attack, but
it costs the longest time to enter which is about 3.63X times longer than that
cost by BASIC in Fig. 15 on smartphones, so it can be applied only when users
are entering some sensitive information such as account numbers and passwords.
With the improvement on usability, in Fig. 15, C4 can reduce the time to be only
about 2.21X times of that with BASIC. In this way, no matter what the users
enter, they can choose C4 that not only can resist MoBaKIA attack but also
does not cost too much time. However, if users think that the content to be
entered is long but not so sensitive, they can also select other secure strategies
instead, like C5.
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Fig. 17. Voting result about the keyboards over different application scenarios

What is more, we can see that the error rate that the participants tap the
wrong keys by mistake varies over the keyboards in Fig. 16. The error rates of
C2 and C3 are lower than that of BASIC, on both the smartphones and tablets.
It is mainly because that the participants need to spend more time searching the
target keys with C2 and C3 than with BASIC. C5 has the higher error rate than
BASIC, due to some keys’ small size that cannot be accurately tapped by the
users. On the smartphones, C4 has the highest error rate, since the centralized
target keys as well as the small key size lead to the users typing the wrong letters
frequently.

We conduct a further survey on the countermeasures’ adoption in different
scenarios with the 132 participants. However, in this part, only 107 participants’
feedbacks are analyzed since there are 25 participants who do not take MoBaKIA
attack seriously and persist in using current keyboard on the whole scenarios.
The obtained result is presented in Fig. 17. Comparing it with Fig. 14, we can
see that the more sensitive the content to enter is, the more effective secure
strategy they will choose. Under S1, 88.79% participants tend to adopt some
countermeasures to defend against MoBaKIA attack and 55.14% participants
directly select C2 to protect their sensitive information at the cost of usability.
Moreover, over the whole application scenarios, at least 40% participants tend
to adopt some defenses against MoBaKIA attack. In fact, these countermeasures
can be set to switch automatically based on the importance of the content to
be typed and so is the refreshing rate to modify the soft keyboard’s layout,
which can further improve our countermeasures’ usability as well as keep the
effectiveness in defending against MoBaKIA attack.

6 Related Work

The keyboard based countermeasure can be widely applied to current Android
versions, so it has attracted many researchers’ attention. Making use of the drag-
ging, dropping and tapping action, Kwon et al. propose Drag-and-Type [10], to
improve the typing accuracy. To defend against MoBaKIA attack, they propose
to randomize the keyboard layout based on their basic method. Furthermore,
they propose a rolling image visual keyboard, RIK [15], to fully utilize dragging
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and dropping actions to enter, which can effectively counter with MoBaKIA
attack. CoverPad [25] introduces variants that are randomly generated and only
can be seen by the users when they enter the sensitive information to build
a random mapping between the entering keys and the target keys so as to
defend against MoBaKIA attack. PassWindow [26] guarantees the security of
PIN with a moving grid-configured window over a virtual keypad. To defend
against MoBaKIA attack, the rear camera is utilized to imitate the touch events
instead of touching on the screen. This kind of keyboards is much different from
the standard keyboard, so the users need to spend much longer time to learn
about them and be more concentrative when they type.

Yue et al. in [27] propose Privacy Enhancing Keyboard (PEK), randomly
shuffling the keys and introducing the Brownian motion, respectively. Chu
et al. propose para-randomized keyboard with MoBaKIA attack considered when
designing TrustUI [11]. While both PEK and para-randomized keyboard can be
utilized to defend against MoBaKIA attack, the researchers do not pay much
attention to the further improvement on usability.

The most similar work is what Song et al. do in [20]. They propose two
kinds of defenses: reducing the accuracy of accelerometer readings with a ker-
nel modification that sets their square sum to a constant value, and completely
randomizing keyboard layout. Much different from their work, we make a deep
investigation on the vibrator’s effect on defending against MoBaKIA attack.
What is more, when we randomize the keyboard layout, we apply the entropy
theory to guide our design and analyze the proposed countermeasures’ effective-
ness. Meanwhile, we try our best to improve the countermeasures’ usability.

7 Conclusion

In this paper, we are engaged in the practical countermeasures against MoBaKIA
attack. In our opinion, it is the motion data without noise as well as the fixed
screen area and constant layout of soft keyboard that provide the opportunity to
launch this attack, based on which, we propose our countermeasures. We evaluate
them on Android platform in terms of effectiveness and usability. The result
shows that while all the countermeasures have some influence on the keystroke
inference accuracy, some of them can reduce the keystroke inference accuracy of
MoBaKIA attack without significantly hurting the typing efficiency.
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