
A Very Compact Masked S-Box
for High-Performance Implementation of SM4

Based on Composite Field

Hailiang Fu1, Guoqiang Bai1,2(B), and Xingjun Wu1

1 Institute of Microelectronics, Tsinghua University, Beijing, China
fhl14@mails.tsinghua.edu.cn, baigq@mail.tsinghua.edu.cn

2 Tsinghua National Laboratory for Information Science and Technology,
Beijing, China

Abstract. Implementations of the SM4 algorithm, including different
hardware applications with limited resources, are vulnerable to Side-
Channel Attacks. This paper presents a countermeasure against such
attacks by adding a random “mask” to the input plaintext and protect
all variables through the whole encryption process. As is known to all,
the unique nonlinear step in each round of SM4 algorithm is the “S-
Box” and the previous works using lookup-table method to implement
the S-Box always incur large area and high power. Here we give the com-
pact design of masked S-Box using the normal basis in the composite
field (consisting of a Galois inversion and several affine transformations).
Then we compute the different masks diffused to all the steps in the
SM4 algorithm process. The proposed design results in ultra-low cost
of hardware and capability to resist first-order differential power analy-
sis (DPA), which is suitable for the resource constrained devices. The
synthesis result of masked S-Box shows that the area under the SMIC
0.13µm is only about 978-gates, 46.8% fewer than the other works. Fur-
ther, we apply the pipeline technique to our proposed “masked S-Box”,
thereby to the whole masked SM4 algorithm. The results of FPGA imple-
mentation present that our works have achieved an ultra-high speed with
frequency nearly 551MHz and the throughput over 70Gbps.

Keywords: SM4 · S-Box · Mask · Pipeline · Composite field

1 Introduction

With the rapid development of the computer science and internet technology in
the modern world, the information and data security have become more and more
important. Thus, preventing the significant information from attacking by any
other unauthorized parts is a challenging and essential task. There is no doubt
that the security of hardware is the basis for data transmission, especially in the
Wireless Local Area Network (WLAN). For this reason, plenty of methods about
hardware cryptography (e.g. hiding, masking, etc.) have been come up with to

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 710–721, 2017.

DOI: 10.1007/978-3-319-59608-2 39



A Very Compact Masked S-Box for High-Performance Implementation 711

protect the sensitive data and applied in different domains, such as embedded
systems, wireless handsets and smart cards. In January 2006, the Office of State
Commercial Cipher Administration of China (OSCCA) announced a specific
encryption standard named SM4 block cipher, the purpose of which is to form
the Wireless LAN Authentication and Privacy Infrastructure (WAPI) standard
for our country [1]. Since then, there have been a large variety of researches
focusing on improving the performance and security of SM4. On the other hand,
some researchers try to seek the weakness of SM4 algorithm and do attacks
on the specific hardware implementations. For example, smart cards may be
vulnerable to first order side-channel attacks such as differential power analysis,
which takes advantages of the leakage of information to do the physical analysis
such as power consumption, electromagnetic radiation and so on, then to deduce
the real secret key of the algorithm.

Due to the potential attacks above, this paper proposes a countermeasure
against the first order side-channel attacks, applying the masking strategy to
the nonlinear S-Box as well as the data path in the SM4 algorithm based on
the composite field introduced by the previous work [2]. Compared to the other
method to achieve the masking, this protection saves 46.8% area for the whole
circuit. However, it incurs some other parts which slow down the encryption
process. Thus we make use of the pipeline technique to accelerate the calculation,
resulting in an ultra-high clock frequency up to 551 MHz and throughput over
70 Gbps for the masked SM4 algorithm.

The organization of this paper is as follows. In Sect. 2, we describe the SM4
block cipher and the algebraic description of S-Box very briefly. Section 3 shows
the detailed masking strategy for S-Box, including masking the inversion and
the affine transformation, and the reutilization of the masks. Section 4 presents
the implementation of the SM4 algorithm using the masked S-Box. Also, the
architecture of pipelined masked SM4 is designed and implemented in this part.
Then we state the low-cost results of area using masking strategy and the high
speed in pipeline scheme for SM4 in Sect. 5. At last, Sect. 6 concludes the paper.

2 Algebraic Description for S-Box

SM4 block cipher is a 32-round iterative algorithm with 128-bit input plaintext,
secret key and output ciphertext. The input plaintext is first divided into four
words and each word consists of 32 bits. Before encryption, the key for each round
(rki) will be generated through the key expansion arithmetic, which is nearly
identical with the encryption process, and the only difference between them is
the linear part—round shifting left. With the rki, a new word, i.e. Xi+4 will be
produced in the i-th round of the encryption process by doing XOR, nonlinear
substitution and round shifting left operations (Xi+4 = Xi ⊕ T (Xi+1 ⊕ Xi+2 ⊕
Xi+3⊕rki)(i = 0, ..., 31)), shown in Fig. 1. Finally, the order of the last four words
will be reversed to form the output ciphertext. The XOR and round shifting left
operations are linear with respect to the data block, so it provides “diffusion”;
While the S-Box is the only nonlinear step that provides “confusion”.



712 H. Fu et al.

Xi Xi+1 Xi+2 Xi+3

Xi+1 Xi+2 Xi+3 Xi+4

rki

Fig. 1. SM4 round arithmetic

The S-Box can be implemented using the lookup tables, which occupies the
majority of the cost in devices. In 2007, Liu et al. [3] gave the algebraic structure
for SM4 algorithm, comprising two substeps: (i) regarding the byte as an element
in the Galois Field GF (28), get its inversion in this field (Note that the zero byte
has no inversion, so it keeps unchanged); (ii) regarding the result of the inversion
as a vector of bits in GF (28), then multiply it by a given bit matrix and add
a constant row vector, that is the procedure of an affine transformation. The
inversion and affine transformation are shown below in Eq. (1):

S(X) = I(X · A + C) · A + C, (1)

where the input of S-Box (S) is a 8-bit row vector X = X7−0, and the cyclic
matrix A in the algebraic expression is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the row vector C is

C = C7−0 = [1, 1, 0, 1, 0, 0, 1, 1].

For SM4 in the specific Galois Field, a byte represents a polynomial where the
bits are coefficients of corresponding powers of x, and multiplication is modulo
the irreducible primitive polynomial:

f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1.



A Very Compact Masked S-Box for High-Performance Implementation 713

We could consider the root of this polynomial as θ, then f(θ) = 0 in GF (28).
Thus the bits of a byte could be related to the coefficients of powers of θ, e.g.,
3 = θ, 4 = θ + 1, 9 = θ2, etc. Therefore the bits make up a vector with respect to
what is known as polynomial basis. However, we can change the representation
of the polynomial basis in GF (28) to a different one, named normal basis in
composite field [4]. Instead of a vector of dimension 8 in GF (2), we regard a
byte as a vector of dimension 2 in GF (24), where each 4-bit element is in turn a
vector of dimension 2 in GF (22), and each 2-bit element is a vector of dimension
2 in GF (2). For each of these subfields, it has been introduced in details, referring
to [5].

3 Masking Strategy

To convert the standard polynomial representation to the composite field rep-
resentation, we need to choose the appropriate basis and build an isomorphic
matrix. For more detailed information, please refer to [4]. In this paper, we try to
add an additive mask to all the steps during the inversion, which will described
below.

3.1 Inversion Without Masking

Now we apply the following convention: upper-case bold symbols stand for ele-
ments in the main field (e.g. A ∈ GF (28)); upper-case italic symbols represent
elements in the subfield (e.g. A ∈ GF (24)); lower-case bold symbols are for the
sub-subfield (e.g. a ∈ GF (22)); and lower-case italic symbols are used for single
bits (e.g. a ∈ GF (2)).

To begin with, we don’t concern about the mask. So the inversion in
GF (28)/GF (24) (this expresses the representation of GF (28) as vectors in
GF (24) using a normal basis [Y16,Y]), where Y16 and Y are the roots of
Y2 + Y + N and N ∈ GF (24) is the norm (N = Y 16 · Y ), is given as [4]:

A = AhY16 + AlY(known), (2)

B = N ⊗ (Ah ⊕ Al)2 ⊕ Ah ⊗ Al, (3)

A−1 = (Al ⊗ B−1)Y16 + (Ah ⊗ B−1)Y(result). (4)

Here we make a agreement on the meaning of the operators above: ⊕ and ⊗
denote addition and multiplication in Galois Field, respectively. The expression
AhY16+AlY is an algebraic method using the normal basis to denote the vector
[Ah, Al] (i.e. [Ah, Al] = [A7−4,A3−0]). To achieve the inversion in GF (28), it
requires the inversion, addition, multiplication and the combined square-scaling
operation (N ⊗ A2) in the subfield GF (24). In the same way, the inversion in
GF (24)/GF (22) which uses a normal basis [X4,X], where the X4 and X are the
roots of X2 + X + n (and n ∈ GF (22) is the norm (n = X4 · X)), is given as:



714 H. Fu et al.

B = bhX4 + blX(known), (5)

c = n ⊗ (bh ⊕ bl)2 ⊕ bh ⊗ bl, (6)

B−1 = (bl ⊗ c−1)X4 + (bh ⊗ c−1)X(result). (7)

However, finding the inversion in the sub-subfield GF (22), using the normal
basis [w2,w], where w2 and w are the roots of w2 + w + 1 (and here we define
the norm as 1), is very easy. It is equivalent to the squaring operation, shown as
a bit swap:

c = chw2 + clw(known), (8)

c−1 = clw2 + chw(result). (9)

All the steps above are used to obtain the inversion in GF (28) without mask-
ing. In the following, we will detail the steps about how to mask the inversion.

3.2 Masking the Inversion

As is mentioned above, additive mask becomes our preference due to its resis-
tance to zero-value attacks. It has been analyzed in [2] that the statistical distri-
bution of masks is uniform over the field by adding a random mask. Therefore
the operands appear randomly, uncorrelated to either the input plaintext or the
secret key. Thus the data leaked from the side channel is independent of the
chosen input plaintext, might regarded as noise, and the key in this way will
be protected against first-order differential power attacks. To ensure the correct
process from the input mask to the output mask, we apply the masking strategy
as follows.

In GF (28), we express the masked byte with a tilde (i.e. Ã), and similarly
for the other masked variables. Now we use the mask (M) to mask the input
plaintext.

M = MhY16 + MlY; (10)

Ã = A ⊕ M = ÃhY16 + ÃlY (11)

Then let

B̃ = N ⊗ (Ãh ⊕ Ãl)2 ⊕ Ãh ⊗ Ãl ⊕ Ãh ⊗ Ml ⊕ Ãl ⊗ Mh ⊕ Mh ⊗ Ml, (12)

M2 = N ⊗ (Mh ⊕ Ml)2, (13)

Here the result B̃ is B above in Eq. (3) masked by M2 (i.e. B̃ = B⊕M2). Note
that the products in Eq. (12) must be added in turn to make all the intermediate
results uniformly distributed and masked, so that the information about the
original data will not be leaked out.

For the inversion in GF (24), say B̃ = b̃hX4 + b̃lX and M2 = mhX4 +mlX,
then let

c̃ = n ⊗ (b̃h ⊕ b̃l)2 ⊕ b̃h ⊗ b̃l ⊕ b̃h ⊗ ml ⊕ b̃l ⊗ mh ⊕ mh ⊗ ml, (14)

p = n ⊗ (mh ⊕ ml)2, (15)



A Very Compact Masked S-Box for High-Performance Implementation 715

and c̃ is c above in Eq. (6), masked by p (say p = phw2 + plw, and let q =
p2 = n2 ⊗ (mh ⊕ ml) = plw2 + phw). Above we employ the convention of the
inversion as squaring in the sub-subfield GF (22), so

c̃−1 = (c ⊕ p)−1 = (c ⊕ p)2 = c2 ⊕ p2 = c−1 ⊕ q, (16)

Therefore c̃−1 (say c̃−1 = c̃lW
2 + c̃hW ) is c−1 above in Eq. (9) masked by

another mask q.
Now we introduce a new 4-bit mask S = shX4 + slX, and let

b̃
−1

h = sh ⊕ b−1
h = sh ⊕ (bl ⊗ c−1),

= sh ⊕ [(b̃l ⊕ ml) ⊗ (c̃−1 ⊕ q)],

= sh ⊕ b̃l ⊗ c̃−1 ⊕ b̃l ⊗ q ⊕ ml ⊗ c̃−1 ⊕ ml ⊗ q, (17)

b̃
−1

l = sl ⊕ b−1
l = sl ⊕ (bh ⊗ c−1)

= sl ⊕ [(b̃h ⊕ mh) ⊗ (c̃−1 ⊕ q)]

= sl ⊕ b̃h ⊗ c̃−1 ⊕ b̃h ⊗ q ⊕ mh ⊗ c̃−1 ⊕ mh ⊗ q, (18)

thus the result B̃
−1

= b̃
−1

h X4 + b̃
−1

l X is B−1 above in Eq. (7) masked by S.
Similarly, apply the output 8-bit mask T = ThY16 +TlY to the output A−1,

and let:

Ã
−1

h = Th ⊕ Ãl ⊗ B̃
−1 ⊕ Ãl ⊗ S ⊕ Ml ⊗ B̃

−1 ⊕ Ml ⊗ S, (19)

Ã
−1

l = Tl ⊕ Ãh ⊗ B̃
−1 ⊕ Ãh ⊗ S ⊕ Mh ⊗ B̃

−1 ⊕ Mh ⊗ S (20)

So the result Ã
−1

= Ã
−1

h Y16 + Ã
−1

l Y is the original inversion A−1 above in
Eq. (4) masked by the output mask T:

Ã
−1

= A−1 ⊕ T. (21)

3.3 Reutilization of Masks

Canright and Batina [2] shows the re-using of the masks to make the implemen-
tation more vulnerable to the higher-order differential side channel attacks and
save the cost of the same operations. Firstly, by replacing the mask q by ml or
mh, we can modify the expression as follows:

c̃−1 = (c̃lw2 + c̃hw) ⊕ mh ⊕ q (masked by mh), (22)

b̃
−1

h = m1h ⊕ b̃l ⊗ c̃−1 ⊕ b̃l ⊗ mh ⊕ ml ⊗ c̃−1 ⊕ ml ⊗ mh, (23)

c̃−1
2 = c̃−1 ⊕ (ml ⊕ mh) (masked by ml), (24)

b̃
−1

l = m1l ⊕ b̃h ⊗ c̃−1
2 ⊕ b̃h ⊗ ml ⊕ mh ⊗ c̃−1

2 ⊕ mh ⊗ ml, (25)

where the underlined products had already been calculated in Eq. (14), so here
we can re-use these results. Now the result B̃

−1
= b̃

−1

h X4 + b̃
−1

l X is B−1 above,



716 H. Fu et al.

but here masked by Mh = m1hX4+m1lX, which is the upper nibble of the input
mask M. In the same way, we get the updated masked A−1 in the following:

Ã−1
h = Th ⊕ Ãl ⊗ B̃−1 ⊕ Ãl ⊗ Mh ⊕ Ml ⊗ B̃−1 ⊕ Ml ⊗ Mh, (26)

B̃−1
2 = B̃−1 ⊕ Ml ⊕ Mh (masked by Ml), (27)

Ã−1
l = Tl ⊕ Ãh ⊗ B̃−1

2 ⊕ Ãh ⊗ Ml ⊕ Mh ⊗ B̃−1
2 ⊕ Mh ⊗ Ml, (28)

the underlined products are re-used and the output Ã
−1

is still A−1 above
masked by output mask T (which might be same with the input mask M or
not):

Ã−1 = A−1 ⊕ T. (29)

× A1A0

M1M0

A1M0

A0M1

×

×

×

M1

A0

M0

Inv
GF(24)

×

×

×

×

A0M1

M1M0

A1

A1M0

A

M

AT1
&
-1

&
AT2A0

-1

A1
-1

S-Box_IN S-Box_OUT

×

Inv
GF(24)

&
AT2

Multiplier in GF(24)

Inversion in GF(24)

Square-scaling in GF(24)

(Reversed) Isomorphic Mapping
and Affine transformation

AT1
&
-1

Fig. 2. Architecture of masked S-Box: (a) Single cycle (without the red dash line); (b)
Pipeline (the red dash line is the pipeline registers) (Color figure online)

3.4 Mask Transformation

Equation (1) shows the algebraic expression of unmasked S-Box. Here we make
some changes to the mathematical relationship and deduce the correct mask
transformation from input to output, where the function I stands for inversion
process in GF (28) and the function Inv represents inversion process in the “tower
field”, i.e. GF (((22)2)2). Note the matrix δ is the isomorphic mapping from the
normal basis in composite field to the standard polynomial basis (and δ−1 is the
reversed mapping).



A Very Compact Masked S-Box for High-Performance Implementation 717

S(X + M) = I[(X + M) · A + C] · A + C (30)

= AT · I[AT · (X + M) + CT ] + CT

= AT · I[(ATX + CT ) + ATM] + CT

= AT δ · Inv[δ−1(ATX + CT ) + δ−1ATM] + CT (31)

where AT is the transposition of A (also similar with CT ). Here we can learn
from Eq. (29) that Inv(Â+ M̂) = Inv(Â) + M̂ only if the output mask is equal
to the input mask: S = M (this is the conclusion in GF (((22)2)2). With this
assumption, Eq. (31) in GF (28) could be modified as follows:

S(X + M) = (31)

= AT · I(ATX + CT ) + CT + ATATM

= S(X) + ATATM (32)

If the input mask of S-Box is M, the Eq. (32) shows the correct output mask
of S-Box in GF (28), i.e. ATATM, which is the “confusion” of the mask. Until
now, we have achieved the masking process using the normal basis in composite
field. Figure 2 gives the complete hardware implementation of the masked S-Box,
depending on all the mathematical computing above.

4 Implementation of Masked SM4

In this section, we apply our “masked S-Box” to the encryption process and
illustrate the architecture of the SM4 round arithmetic in two different directions:
(i) use the iterative architecture and make all the steps of SM4 secure, the
purpose of which is to decrease the cost of the area; (ii) insert some registers
inside the S-Box appropriately to increase the clock frequency and improve the
throughput, which will be very useful in high-speed applications.

4.1 Iterative Architecture of Masked SM4

In Fig. 3. The rki is well prepared in RAM or it can be produced by the iterative
architecture presented in [4] before each round. Here the latter is our preference
and we just concentrate on the masked encryption. For instance, we choose a
32-bit mask M for our design. Before the first round of encryption, the mask is
produced and extended to 128 bits (e.g. {4{M}}), which is XORed to the input
128-bit plaintext to obtain the masked input X = (X0,X1,X2,X3) for the first
round. It is obvious that all the variables before the function “Masked S-Box”
are masked by M. As is shown above, the outputs of the “Masked S-Box” are
masked by ATATM. So we do the same round shifting left to ATATM, then add
the outputs together and XOR the X0 simultaneously. Thus the mask ATATM
is eliminated and the output X4 has been already masked by M, which is diffused
from X0. In this way, we redo the arithmetic for 32 rounds, then reverse the last
four words and finally XOR the output with {4{M}}, we can certainly get the
right result of ciphertext.



718 H. Fu et al.

X0 X1 X2 X3

<<<2 <<<10 <<<18 <<<24

Masked
S-Box

Masked
S-Box

Masked
S-Box

Masked
S-Box

X

X1 X2 X3 X4

rki

M

(M)

(ATATM)
ATATM

RSL

Fig. 3. Architecture of masked SM4 round arithmetic using the single cycle “Masked
S-Box” (the underlined elements in this picture are masked variables and (·) in the
architecture shows the transient mask at that step. The red dash rectangle is the
round shifting left function) (Coloe figure online)

4.2 Pipelined Architecture of Masked SM4

For the pipeline scheme, we use the synchronous technique to adjust the structure
of the round arithmetic of SM4. However, one key problem is to balance the
pipeline stages. So we divide the round arithmetic into several periods to achieve
one round encryption in order to ensure the approximate executing time for
each part, which means to decrease the time of the critical-path. The registers
being inserted into the S-Box are shown as red dash line in Fig. 2. Although
the pipelined S-Box is well designed, the SM4 round arithmetic needs to be
seriously considered according to the linear parts execution. Here we present
the optimized architecture for pipelined masked SM4, given as Fig. 4. To keep
the variables of each period secure, we add the random mask to all the input
elements and transfer them to their corresponding buffers in each pipeline stage
(shown as the yellow registers in Fig. 4). In this way, all the elements in the
round encryption are securely masked and can be parallel implemented.



A Very Compact Masked S-Box for High-Performance Implementation 719

Figure 4 is just one round encryption for the SM4 algorithm, which contains
five levels for the pipeline. As we expect, we implement 32 same structures and
finally do the reversion function. The right results are realized and it will be
shown in next section.

X0
m

(32)

X1
m

(32)

X2
m

(32)

X3
m

(32)

m
(32)

AT1
&
-1

X0
m

(32)

X1
m

(32)

X2
m

(32)

X3
m

(32)

m
(32)

X0
m

(32)

X1
m

(32)

X2
m

(32)

X3
m

(32)

m
(32)

X0
m

(32)

X1
m

(32)

X2
m

(32)

X3
m

(32)

m
(32)

X0
m

(32)

X1
m

(32)

X2
m

(32)

X3
m

(32)

m
(32)

Reg_Xm(128)+m(32)

&
AT2

Round
Shift
Left

X1
m

(32)

X2
m

(32)

X3
m

(32)

X4
m

(32)

m
(32)

P1

P1

P1

P1

P2

P2

P2

P2

P3

P3

P3

P3

Reg_Xm(128)+m(32)

rk0

X0
m

(32)

Fig. 4. Pipelined round arithmetic of masked SM4 (the red dash rectangle is pipelined
masked S-Box described above in Fig. 2, similarly with the modules P1, P2 and P3)
(Color figure online)

5 Results

The proposed SM4 algorithm implemented in two different ways based on
“Masked S-Box” in composite field has been realized by Verilog HDL and simu-
lated in Modelsim software. All the input plaintexts have achieved correct output
ciphertexts.

Besides, the area reports of the masked S-Box under the SMIC 0.13µm in
the Synopsys Design Compiler indicate that the equivalent amount of gates is
978, at least 46.8% fewer than 1,840 in [6] (where the area has been divided
by 9.79, which is the area of one NAND2X1 cell under the SMIC 0.18µm). We
firmly believe that our compact masked S-Box has occupied the lowest area and
it certainly contributes to the low-cost iterative masked SM4 algorithm very
much.

In addition, comparing to the other designs, we implement it in different
FPGA boards and show the results in Table 1. Because of the large cost for
masking, our design has reached a very suitable and satisfying resource usage
and it is still much lower than some other works without anti-attack methods
(Table 2).

Furthermore, by employing the pipelined masked S-Box to the SM4 algo-
rithm, the pipeline SM4 round arithmetic shown in Fig. 4 achieve the ultra-high
clock frequency up to 551 MHz under Xilinx FPGAs, resulting in the ultra-
high throughput over 70 Gbps. To our knowledge, this is the highest speed and
throughput to date.



720 H. Fu et al.

Table 1. Resources comparison

Work FPGA devices Area Anti-attack

[4] Cyclone-II EP2C35F672C6 1657 LEs NO

[7] 3406 LEs NO

Ours 2255 LEs YES

[4] Stratix-II EP2S15F484C3 535 ALMs NO

[8] 1150 ALMs NO

[9] 1552 ALMs NO

Ours 1321 ALMs YES

Table 2. Performance comparison

Work Platform Frequency (MHz) Throughput (Gbps) Anti-attack

[10] Virtex-6 XC6VLX240T 253 0.253 NO

Virtex-5 XC5VLX110T 203 0.203

Virtex-4 XC4VLX100 211 0.211

Ours Virtex-6 XC6VLX240T 551 70.5 YES

Virtex-5 XC5VLX110T 462 59.1

Virtex-4 XC4VLX100 368 47.1

6 Conclusion

In this paper, the process to design a very compact “Masked S-Box” has been
described clearly using normal basis in composite field at first. Second, we
analyze the “diffusion” and “confusion” of the mask through the whole SM4
algorithm, and make sure every variable during encryption has been securely
masked. Third, we implement the masked S-Box in two architecture: iteration
and pipeline. Then we simulate all the designs and get the correctly inspir-
ing results. The synthesis results in different devices have been compared with
other works. As far as we know, our proposed work has reached the lowest
area of masked S-Box, which leads to the lowest cost for masked SM4 imple-
mentation. What’s more, the proposed pipelined S-Box has been implemented
to construct a pipelined masked SM4 architecture, which achieves the highest
speed to date. We believe this work has developed a good countermeasure to the
side-channel attacks and will be widely used in resource constrained devices and
speed demanded area in the future.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (Grants 61472208), and by the National Key Basic Research Program
of China (Grant 2013CB338004).



A Very Compact Masked S-Box for High-Performance Implementation 721

References

1. Office of State Commercial Cipher Administration of China. Block Cipher
for WLAN products-SMS4 (2006). http://www.oscca.gov.cn/UpFile/
200621016423197990.pdf

2. Canright, D., Batina, L.: A Very Compact Perfectly Masked S-Box for AES.
Springer, Berlin (2008)

3. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.-P.: Analysis
of the SMS4 block cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73458-1 13

4. Fu, H., Bai, G., Wu, X.: Low-cost hardware implementation of SM4 based on
composite field. In: IEEE Information Technology, Networking, Electronic and
Automation Control Conference, pp. 260–264. IEEE (2016)

5. Canright, D.: A very compact Rijndael S-box (2004)
6. Niu, Y., Jiang, A.: The low power design of SM4 cipher with resistance to differen-

tial power analysis. In: 2015 16th International Symposium on Quality Electronic
Design (ISQED) (2015)

7. Yuan-Yang, Z.: Area-efficient IP core design of block cipher SMS4. Electr. Technol.
Appl. 23, 127–129 (2007)

8. Husen, W., Shuguo, L.: High performance FPGA implementation for SMS4. In:
Wu, Y. (ed.) ICHCC 2011. CCIS, vol. 163, pp. 469–475. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-25002-6 66

9. Gao, X., Lu, E., Xian, L., Chen, H.: FPGA implementation of the SMS4 block
cipher in the Chinese WAPI standard. In: International Conference on Embedded
Software and Systems Symposia, ICESS Symposia 2008, pp. 104–106. IEEE (2008)

10. Shang, M., Zhang, Q., Liu, Z., Xiang, J.: An ultra-compact hardware implemen-
tation of SMS4. In: 2014 IIAI 3rd International Conference on Advanced Applied
Informatics (IIAIAAI), pp. 86–90 (2014)

http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://dx.doi.org/10.1007/978-3-540-73458-1_13
http://dx.doi.org/10.1007/978-3-540-73458-1_13
http://dx.doi.org/10.1007/978-3-642-25002-6_66

	A Very Compact Masked S-Box for High-Performance Implementation of SM4 Based on Composite Field
	1 Introduction
	2 Algebraic Description for S-Box
	3 Masking Strategy
	3.1 Inversion Without Masking
	3.2 Masking the Inversion
	3.3 Reutilization of Masks
	3.4 Mask Transformation

	4 Implementation of Masked SM4
	4.1 Iterative Architecture of Masked SM4
	4.2 Pipelined Architecture of Masked SM4

	5 Results
	6 Conclusion
	References


