
Extracting More Entropy for TRNGs
Based on Coherent Sampling

Jing Yang1,2,3, Yuan Ma1,2(B), Tianyu Chen1,2,3, Jingqiang Lin1,2,
and Jiwu Jing1,2

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

{yangjing,yma,tychen,linjq,jing}@is.ac.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. True Random Number Generators (TRNGs) are essential
for cryptographic systems and communication security. According to the
published standards, sufficient entropy derived from the stochastic model
is required for TRNGs. Compared with the directly sampling jittery oscil-
lating signal, the coherent sampling is a more efficient entropy extraction
technique. In this paper, under the premise that the entropy per bit is
sufficient, we focus on how to extract the entropy as much as possi-
ble from the coherent sampling in order to enhance the throughput of
TRNGs. We provide a parameter adjustment method to maximize the
generated entropy rate, and this method is based on our proposed sto-
chastic model. According to the method, we design a TRNG architecture
and implement it in Field Programmable Gate Arrays (FPGAs). In the
experiment, the improved generation speed is up to 4 Mbps, and the
output sequence is able to pass NIST SP 800-22 statistical tests with-
out postprocessing. Compared to the basic coherent sampling, the bit
generation rate is improved to 12 times.

Keywords: True Random Number Generators · Coherent sampling ·
FPGA · Stochastic model · Entropy extraction

1 Introduction

Random Number Generators (RNGs) play an important role in many crypto-
graphic applications, such as the session key generation in communications, dig-
ital signature generation and key exchange. The property of generated random
numbers determines the security of cryptographic systems. Generally speaking,
RNGs are separated into two categories: Pseudo Random Number Generators
(PRNGs) and True Random Number Generators (TRNGs). PRNGs extend the
seed to extremely long sequence by using deterministic algorithms, so the PRNG
security is based on the unpredictability of the seed. TRNGs collect random-
ness from physical phenomena such as temperature, noises, radiation, which are
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 694–709, 2017.

DOI: 10.1007/978-3-319-59608-2 38

Extracting More Entropy for TRNGs Based on Coherent Sampling 695

assumed to contain unpredictable random components. In addition, the TRNG
output usually serves for the seeds of PRNGs, so it is important to design secu-
rity TRNGs with sufficient entropy.

Entropy is used as the measurement of the unpredictability, and also quan-
tifies the true randomness of a TRNG output. The standards ISO 18031 [6] and
AIS 31 [7] recommend to use the entropy derived from stochastic model to assess
the security of a TRNG. Several works provided different modeling and entropy
calculation methods for different types of TRNGs. For example, the entropy of
oscillator-based TRNGs was calculated in [1,8,10], and Cherkaoui et al. [3] ana-
lyzed the behavior of self-timed ring (STR) and estimated the entropy of a STR
based TRNG.

In addition to the entropy, the speed (i.e., the generation rate) is another
important factor for a TRNG. Although the traditional method of sampling
jittery oscillating signals has been well studied in the aspect of entropy estimation
[1,10], the amount and the utilization rate of the randomness are both very low,
yielding that the bit generation speed is very slow. Hence, the improvements
either on refining the oscillator structure (such as [3,17]) or on improving the
probability of capturing jitter (such as [12,14]) have been presented in literature.

Coherent sampling is one of the improvement techniques, where an oscil-
lating signal is sampled by another with a similar frequency. The principle of
this method utilizes the tiny difference between the two close frequencies of
the signals to distinguish the jitter accumulation. In the traditional sampling,
the accumulation of jitter within one sampling interval is required to be large
than half or even one period of the sampled signal, thus the sampling inter-
val has to be significantly large to guarantee the sufficiency of entropy. While,
in coherent sampling, the required jitter accumulation is approximated to be
the period difference between the two signals, thus the accumulation time can
be much shortened to acquire a much higher generation speed. In general, the
sampling result is called beat signal, and its period is equal to an integer times
of the period of sampling signal. Actually, this integer times is random due to
the accumulation of jitter. Hence, an intuitive method is counting the number
edges of sampling signal within the period of beat signal, and using the Least
Significant Bit (LSB) as the outputted random bit.

The TRNG based on coherent sampling was first presented in [9], and the
random bit sequence was generated at a speed of up to 0.5 Mbps with good
statistical properties in Field Programmable Gate Arrays (FPGAs). For the
model of a Phase Locked Loop (PLL) based TRNG structure [4], Bernard et al.
[2] proposed a mathematical model using two oscillating signals with rationally
related frequencies, and then estimated the entropy per bit. An enhancement of
this type of a TRNG was presented in [16] which employed the mutual sampling
principle, and the improved speed up to 4 times compared to the basic coherent
sampling.

In this paper, on the premise that the entropy per bit is sufficient, we focus
on how to extract more entropy from the coherent sampling to enhance the
speed of TRNGs. Our key insight is that the counting edge number in the beat

696 J. Yang et al.

signal contains more entropy which is more than 1 bit in the basic [9] or 2 bits
in the enhanced [16]. Therefore, we provide a parameter adjustment method to
maximize the generated entropy rate, and this method is based on our proposed
stochastic model. According to the method, we design a TRNG architecture and
implement it in FPGAs. In the experiment, the improved generation speed is
up to 4 Mbps, and the output sequence is able to pass NIST SP 800-22 statistical
test suite [13]. Compared to the basic coherent sampling, the bit generation rate
is improved to 12 times.

In summary, we make the following contributions.

– We establish an equivalent model for coherent sampling from the aspect of
the bias of two frequencies rather than the ratio, thus the model has a wider
applicability.

– Based on the model, we propose a parameter adjustment method to maximize
the generated entropy rate, and design the TRNG architecture to acquire a
higher bit generation speed.

– We provide the simulation results to validate the correctness of the equivalent
model, and implement the TRNG architecture in Xilinx Virtex-5 FPGA. In
the experimental results, the generated bit sequence passes NIST SP800-22
statistical tests without postprocessing at a speed of 4 Mbps. The improve-
ment factor is 12 compared to the speed of the basic coherent sampling.

The rest of paper is organized as follows. In Sect. 2, we mainly establish an
equivalent model to evaluate entropy per bit. Next, we propose an architecture
of TRNGs, which is based on an improved method to extract more entropy in
Sect. 3. In Sect. 4, we give the simulation and implementation results to verify
the effectiveness of the architecture, and compare with other related work. We
conclude the paper in Sect. 5.

2 Equivalent Stochastic Model

In this section, we first introduce the principle of the traditional sampling and
the coherent sampling. Then, we propose an equivalent model to transfer the
coherent sampling process to the traditional sampling process. Finally, based
on the equivalent model, we evaluate the bit-rate entropy and give the required
condition to acquire sufficient entropy.

2.1 Principle of Traditional and Coherent Sampling Methods

The traditional sampling is defined that a stable slow clock signal (such as crystal
clock signal) samples an unstable fast oscillating signal to generate bit sequences
[1,10]. Relatively, the coherent sampling is defined that an oscillating signal Sro1

is sampled using a D flip-flop by another oscillating signal Sro2 with a similar
period of Sro1 [9]. The basic components of the coherent sampling are shown as
Fig. 1. The signal on the output of the D flip-flop is called a beat signal Sbeat

and it is a low-frequency signal depending on the period difference between Sro1

Extracting More Entropy for TRNGs Based on Coherent Sampling 697

and Sro2 . Figure 2 shows the principle of the basic coherent sampling. The period
of beat signal is always equal to an integer period number of Sro2 . Since the Sro1

and Sro2 are unstable due to the jitter, the number is random. Therefore, the
period number of Sro2 during the period of beat signal can be counted as the
random output.

DSro1

Sro2

Sbeat Cnt outRO1

RO2

Fig. 1. Basic components of the coherent sampling

Tro2 Tro2 Tro2

Tro1

∆

Tbeat

W1Tro1 Tro1
(1) (2) (k)

(k)(2)(1)

Fig. 2. Principle of the coherent sampling

2.2 Proposed Equivalent Model

Bernard et al. [2] proposed a mathematical model for the case of two oscillating
signals with rationally related frequencies. Their model is efficient for the signals
with known relationship (i.e., integer ratio), e.g., for the signals generated from
two PLLs [4]. However, for two free-oscillating signals, the ratio could not be
exactly the ratio of two (small) integers, thus the model is not applicable for
this case. Therefore, we provide a more general model from the aspect of the
bias of two frequencies rather than the ratio, and we succeed in transferring the
coherent sampling process to the traditional sampling process, whose model and
entropy have been well studied in literature [1,8,10].

Definition. The important notations are shown in Fig. 2, where the periods T
(k)
ro1

and T
(k)
ro2 are the time intervals between two adjacent rising edges of signal Sro1

and Sro2 , respectively. In this paper, we assume that T
(k)
ro1 and T

(k)
ro2 are inde-

pendent and identically distributed (i.i.d.), and Tro1 and Tro2 are independent

698 J. Yang et al.

of each other. The time span between the rising edge of the signal Sbeat and
the previous rising edge of the signal Sro1 is denoted as Wi. The rising edge
number of signal Sro2 from time zero to ith Tbeat is denoted as Ni. Hence, Ni is
represented as Ni = min{k|Yk > Xk+i}, where Xk = T

(1)
ro1 + T

(2)
ro1 + · · · + T

(k)
ro1 ,

Yk = T
(1)
ro2 + T

(2)
ro2 + · · · + T

(k)
ro2 , meaning Ni is the first increasing k ensuring that

the signal Sro1 has more i rising edges than the signal Sro2 .
Then we denote Ri = Ni − Ni−1 as the rising edge number of signal Sro2

within the ith Tbeat, which is employed as the random output. Then we have

Ri = min{k|Yk > Xk+i} − min{k|Yk > Xk+i−1}

= min{k|
Ni−1+k∑

j=Ni−1+1

(T (j)
ro2

− T (j+i−1)
ro1

) + Wi−1 > T (Ni−1+k+i)
ro1

} (1)

Let {Δn} = {T
(1)
ro2 − T

(1)
ro1 , T

(2)
ro2 − T

(2)
ro1 , · · · T (Ni−1+1)

ro2 − T
(Ni−1+i)
ro1 , · · · T (Ni)

ro2 −
T

(Ni+i−1)
ro1 , T

(Ni+1)
ro2 − T

(Ni+i+1)
ro1 , · · · }, where {Δn} is a sequence of random vari-

able Δ. The mean and variance of Δ are denoted as μΔ and σ2
Δ, respectively. Let

{Sn} = {T
(N1+1)
ro1 , T

(N2+2)
ro1 , · · · T (Ni+i)

ro1 , · · · }, where {Sn} is a sequence of random
variable S. The mean and variance of S are denoted as μS and σ2

S , respectively.
Under the above assumptions about the two oscillating signals, we conclude

(1) Δn are i.i.d. and Δ is subject to the same distribution with Tro2 − Tro1 ;
(2) Sn are i.i.d. and S is subject to the same distribution with Tro1 ;
(3) Δ and S are mutually independent.

According to Eq. (1), Ri also means the number of Δ within the interval
S. We ignore the jitter of S because jitter accumulation rate of which is much
slower than Δ (i.e., σ2

Δ

μΔ
� σ2

S

μS
). The time span Wi corresponds to the waiting

time in paper [10]. Therefore, we can declare that the coherent sampling process
(called the coherent sampling model) is approximated to the following sampling
process (called the traditional sampling model) as Fig. 3.

– The half-periods of the unstable fast oscillating signal is Δ;
– The sampling period of the stable slow oscillating signal is μS(= μTro1

).

Next, we only consider the case of injecting independent Gaussian jitter to
both oscillating signals in order to obtain the distribution of various random
variables. Let us assume the two oscillating signals are derived from two Ring
Oscillators (ROs), and let μTro1

and μTro2
be the two ideal jitter-free periods.

Hence, the periods of two oscillating signals Tro1 and Tro2 are assumed to be
Gaussian distributions

Tro1 ∼ N(μTro1
, σ2

Tro1
), (2)

Tro2 ∼ N(μTro2
, σ2

Tro2
), (3)

where N(0, σ2) denotes a zero-mean normal distribution with standard variance
σ. The values σ2

Tro1
and σ2

Tro2
denote the variances of Tro1 and Tro2 , respectively.

Extracting More Entropy for TRNGs Based on Coherent Sampling 699

Fig. 3. The description of equivalence between two models

Assuming μTro2
> μTro1

without loss of generality, we express the distribution
of the variable Δ as

Δ ∼ N(μΔ, σ2
Δ), (4)

where μΔ = μTro2
− μTro1

, σΔ =
√

σ2
Tro1

+ σ2
Tro2

.

Remark. In order to simplify the model, we assume only independent random
jitter exists in oscillating signals. Just as [5,10], the correlated noise also exists
in oscillating signals. However, research and analysis based on correlated noise
behavior are too complex to model. It is noticed as long as the amount of indepen-
dent random jitter is enough, the generated bits entropy is sufficient. Therefore,
we do not consider the influence of correlated noise in our model.

2.3 Entropy Evaluation

Ma et al. [10] presented a stochastic model to evaluate the entropy of oscillator-
based TRNGs, and used the typical example that a stable slow clock signal
samples an unstable fast oscillating signal to generate random bits which is the
same as proposed equivalent model (traditional sampling model). Hence, the
traditional sampling model can be employed to calculate the bit-rate entropy.
We use the conclusion in this paper that in the worst case, when the standard
variance of the counting results σR is larger than 1, the bit-rate entropy is
sufficient. According to the conclusion from [15], we can express σR by

σR =
√

μTro1

μΔ
· σΔ

μΔ
. (5)

3 Proposed Architecture

In this section, based on the analysis in previous section, we first propose an
improved method for extracting more entropy. Then, we propose an achievable
circuit architecture for the implementation.

700 J. Yang et al.

3.1 Improved Method for Extracting More Entropy

Key insight. Through the results of [15] and our experimental results, we have
noticed that the standard variances of the counting result σR are significantly
larger than 1. While, the condition of sufficient entropy derived from the pro-
posed equivalent model is just σR ≥ 1, which suggests that more entropy is con-
tained in individual counting process, not only the LSB of the counting result
R. Hence, our method is designed to maximize the extracted entropy from the
counting process.

According to the principle of coherent sampling, the bit generation speed Fs

is expressed as
Fs = 1/(

μTro1

μΔ
· μTro2

). (6)

In order to enhance throughput under the status of sufficient entropy, our
aim is to increase Fs and meanwhile guarantee σ2

R ≥ 1. If σ2
R > 1, we can reduce

the sampling period μS in the above equivalent model. According to Eqs. (5)
and (6), when the value of σ2

R drops to 1, the value of Fs would be increased
to σ2

R times. Therefore, the bit generation speed can be increased up to σ2
R

times in theory. If we can further adjust the period difference μΔ to improve the
sensitivity to jitter accumulation, the bit generation speed would be improved
to more than σ2

R times.
Our approach for maximizing the extracted entropy is listed as the following

Steps.

1. Minimize the period difference between two oscillating signals for increasing
the sensitivity to jitter accumulation (i.e., reduce μΔ);

2. Use the signal Sbeat to generate the m-multiple-frequency signal S′
beat, where

m is the largest value to guarantee the variance of the counting numbers of
Tro2 is greater than 1.

3. Count the number of periods Tro2 during the half-period of S′
beat, and use the

LSB as the random bit.

It is observed that the approach also agrees with the proposed equivalent
model. In the approach, we reduce μΔ (i.e., the half-periods of the unstable fast
oscillating signal in equivalent model) and reduce μS (i.e., the sampling period
in equivalent model), so the efficiency of extracting entropy is improved. When
the period difference μΔ has been adjusted to an expected value in Step 1, we
obtain

σ2
R′ =

1
2m

· σ2
R (F ′

s = 2m · Fs), (7)

where σ2
R′ and F ′

s denote the variance of counting results and bit generation speed
based on the improved method, respectively. The values σ2

R and Fs denote the
variance of counting results and bit generation speed based on the basic coherent
sampling, respectively. It means that the bit generation speed is increased to 2 m
times when the variance of counting results is decreased to 2 m times.

Extracting More Entropy for TRNGs Based on Coherent Sampling 701

3.2 Circuit Architecture

Challenges. We have described the improved approach, but it do not involve
the implementation methods. In practice, there are two challenges.

– For Step 1, how to perform a fine-grained adjustment to minimize the period
difference between two oscillating signals.

– In Step 2, employing a PLL is common to generate multiple-frequency signal,
but such an analog device is too heavy for a lightweight TRNG design. How
to use the existing digital components to complete the same function of Step 2
is a challenging task, especially to dynamically adjust the frequency multiple.

Carry-Chain Primitive. In FPGAs, we employ the carry-chain primitives to
address the above implementation problems. In Xilinx FPGAs, the circuit as
shown in Fig. 4 represents the fast carry logic in a Slice. The carry chain consists
of a series of four MUXes and four XORs that connect to the other logic in the
Slice via dedicated routes to form more complex function [18]. If we set the port
“CI” or “CYINIT” as the input port and the port “CO” as the output port, the
signal is just propagated through the four MUXes (called single delay elements).
It is found that the delay of a single delay element in a carry chain is much
smaller than a Look Up Table (LUT).

Fig. 4. Carry-chain primitives

Due to the much smaller delay and the property of cascade connection, carry
chains in FPGAs have two primary uses to implement our approach:

– Finely adjusting to the period difference μΔ between the two oscillating sig-
nals;

– Leading out more delayed sampled signals with the smaller delay Δt of adja-
cent delayed sampled signals.

Architecture. By employing the carry chains, we propose the circuit architec-
ture to implement the improved method, as shown in Fig. 5, which consists of an
entropy source, a sampler circuit, a counter circuit and a bit generation circuit.

702 J. Yang et al.

D

RO1

Cnt2

Cnt1
S(1)

S(2)

S(3)

s1

D

D

out2

out1

reset
bit

Sclk

D

D

Entropy source Sampler circuit Counter circuit Bit genera on circuit

D

D

S(m)

Cntm D

(same structure with RO1)
RO2

outm

S(m+1)
beat

beat

beat

beat

beat

Fig. 5. Proposed circuit architecture based on the improved method

The entropy source is composed of two independent and identically config-
ured ROs and a fast, tapped delay line. The frequency of two oscillating signals
is selected to be closest but not identical. One of the oscillating signals as the
sampled signal is propagated through the fast, tapped delay line to produce
m + 1 delayed sampled signals. The sampler unit uses another oscillating signal
to sample all the delayed sampled signals and produces m + 1 beat signals with
low-frequency. XORing the adjacent beat signals produces m XORed signals and
the lengths of these XORed signals lasting in high level are counted in counter
circuit. The bit generation circuit uses the XORed signals produced by counter
circuit to sample the LSB of the counting results, and then uses the random bit
clock signal Sclk which should has 2m periods during T

(i)
beat as the clock signal to

combine multiple-channel random bits. Next, we introduce various components
in details.

Entropy Source. Our ROs consist of a NAND gate, even inverters, some faster
delay elements and a multiplexer. The faster delay elements and the multiplexer

Extracting More Entropy for TRNGs Based on Coherent Sampling 703

are used to slightly alternate propagation delay of RO to adjust the period dif-
ference μΔ, in which we choose the smallest period difference μΔ for improving
the sensitivity to jitter accumulation. Then, the sampled signal in our architec-
ture is propagated through a fast, tapped line to generate more delayed sampled
signals.

Sampler Circuit. The sampler unit in our design uses the sampling signal
to sample all delayed sampled signals respectively and produces m beat signals
S
(i)
beat with period T

(i)
beat. The signal after XORing these signals can be treated as

the multiple-frequency signal, i.e., Sclk in the bit generation circuit.

Counter Circuit. In order to acquire the length of the delay between two
adjacent beat signals, the adjacent beat signals are XORed (i.e., S

(i)
xor = S

(i)
beat ⊕

S
(i+1)
beat) as enable terminal of respective counter and the lengths of these XORed

signals lasting in high level are counted in counter unit. Only the two adjacent
beat signals rather than all beat signals are XORed because it can be easier to
ensure smaller impact caused by the difference of placement and routing.

An example of the counting process (without jitter) in the counter circuit is
illustrated in Fig. 6, when m = 3. The shaded part is counting process, and the
blank part denotes halting process. We can see that the counting results are all
sampled at the halting process where these results are stable.

out1 halƟng

out2

out3

Tbeat

Sclk

(1)

counƟng

Fig. 6. Wave diagrams for the counter circuit (m = 3)

Bit Generation Circuit. There are m channels counting results from counter
circuit (out1, out2, ...outm). In order to acquire the random bit, the following
measures are taken. At first, the bit generation unit uses all signals S

(i)
xor as clock

signal to sample corresponding LSB of outi to obtain m channels random bit.
The constant counting results are sampled through this way for acquiring more
accurate counting values. Then, we use the random bit clock signal Sclk as the
clock signal to combine the multiple-channel random bits.

704 J. Yang et al.

4 Simulation and Implementation

In this section, we simulate these processes using Matlab to verify the proposed
equivalent model and the improved method. Furthermore, we implement our
proposed method in FPGAs and use statistical tests to test the output quality
of the generator. Finally, we evaluate the speed of the implementation, and
provide a comparison with related work.

4.1 Simulation Results in Matlab

We first use Matlab simulation to validate that the coherent sampling model
is approximated to the traditional sampling model, where the environment is
assumed to be ideal as the above mentioned. In the simulation, the period of
sampled signal Tro1 is set to be a normal distribution N(5 × 10−9, 5 × 10−12),
i.e., μTro1

= 5000 ps (200MHz), σTro1
= 5 ps. And the period of sampling signal

Tro2 is set to be N(5.04 × 10−9, 5 × 10−12), i.e., μTro2
= 5040 ps, σTro2 = 5 ps.

Then the period difference Δ is set to be N(40 × 10−12, 5
√

2 × 10−12), i.e.,
μΔ = 40 ps, σΔ =

√
52 + 52 ps. Then, we simulate the following two sampling

processes to verify the correctness of the equivalent model.

– Process 1: Coherent sampling the sampled signal Sro1 using the sampling
signal Sro2 ;

– Process 2: Traditional sampling the period difference Δ with the interval of
μTro1

.

115 120 125 130 135
0

500

1000

1500

2000

2500

3000

3500

4000
the coherent sampling: mean=124.9964 std=2.015

115 120 125 130 135
0

500

1000

1500

2000

2500

3000

3500

4000
the traditional sampling: mean=124.9962 std=2

Fig. 7. Histogram of the simulated Rcoh vs. Rtra

Figure 7 presents the results of counter based on the coherent sampling Rcoh

(the left), and which of the traditional sampling Rtra (the right). Obviously,
both of the distributions are normal, and the deviation of corresponding statistics
(including the expectation and variance) for these two distributions is negligible,
i.e., satisfying the same distribution, which agrees with our theoretical proof
mentioned above.

Extracting More Entropy for TRNGs Based on Coherent Sampling 705

In order to verify the relationship predicted by the theory (Eq. (7)), we cal-
culate the variances of counting results in term of the adjustable parameter
m using Matlab numerical calculation and plot the shape of σ2

R′ as a function
of m with simulation data (shown in Fig. 8). The variances of counting results
and the bit generation speeds for different m from 2 to 7 are listed in Table 1.
The μTro1

and μTro2
are set to be 5000 ps (200 MHz) and 5040 ps respectively.

The variables Tro1 and Tro2 are injected the same random jitter 10
√

2 ps, i.e.,
σTro1

= σTro1
≈ 14.1 ps. We can see that the expression of fitting curve is

σ2
R′ = 16.8355/m ≈ σ2

R/2 m, and the results indicate that the change of fitting
curve is coordinated with the change of Eq. (7).

Table 1. The variances and bit generation speeds for different m.

Basic m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

σ2
R′ 31.6131 8.0996 5.5265 4.1949 3.3225 2.8601 2.4413

Fs′ [Mbps] 1.587 6.347 9.520 12.695 15.870 19.041 22.216

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

m

σ2 R
’/v

ar
ia

nc
e

of
 c

ou
nt

er
 re

su
lts Simulated data

σ2
R’ =16.8355 /m

Fig. 8. The shape of σ2
R′ as a function of m

4.2 Implementation Results in FPGA

We implement the circuit on Xilinx Virtex-5 FPGA. The two ROs producing
oscillating signals consist of a single NAND gate, 8 inverters, 4 faster delay
elements and a multiplexer, where the single NAND gate, these inverters and the
multiplexer are implemented by LUTs, the faster delay elements are implemented
by a stage carry chain. In order to guarantee the period difference between the
two oscillating signals as small as possible, we should handle the placement
and routing manually and further adjust the two multiplexers. The frequency of
one RO producing sampled signal is about 146.22 MHz, The other RO producing
sampling signal is about 145.88 MHz. A fast, tapped delay line is implemented by
54-stages carry chains (54 ·4 = 216 single delay elements). We obtain μΔ � 16 ps
and T

(1)
beat � T

(2)
beat... � 0.34 MHz.

706 J. Yang et al.

An example of some key signals captured on oscilloscope is given in Fig. 9
with the case of m = 3. The upper signal is S

(1)
xor, the out1 is counting process

in high level of which. The middle signal is S
(2)
xor, similarly, the out2 is counting

process in high level of which. the bottom signal is the random bit clock signal
Sclk in bit generation unit.

Sxor

Sxor

Sclk

(2)

(1)

Fig. 9. Experimental S
(1)
xor, S

(2)
xor and Sclk signals example with m = 3.

We implement a TRNG that can manually select the number of delayed
sampled signal m. The parameter m can be set as 2, 3, 6 and 9 respectively. For
all cases, we test the quality of generator output with different m using both
the FIPS 140-2 [11] and NIST [13] statistical tests. For the NIST statistical test
suite, we use the software (version 2.1) with default significance level α = 0.01
and collect a set of 1000 consecutive sequences of 106 random bits for each case
of m.

Table 2. Statistical tests and output bit-rate results for different m.

Throughput Basic m = 2 m = 3 m = 6 m = 9

0.34 Mbps 1.36 Mbps 2.04 Mbps 4.08 Mbps 6.12 Mbps

FIPS 140-2 Pass Pass Pass Pass Pass

NIST Pass Pass Pass Pass Fail

Table 2 shows the results of both statistical tests and output bit-rate results
for different parameters m. We can see that all the cases successfully pass the
FIPS tests. However, the case for m = 9 does not pass the NIST test. Hence,
we draw the conclusion that a larger m implies a higher throughput, but also
a lower quality of the random bits due to the fact that the jitter accumulation

Extracting More Entropy for TRNGs Based on Coherent Sampling 707

Table 3. Results of the NIST test suite with m = 6 and m = 9.

Statistical test m = 6 m = 9

P-value Passing Rate P-value Passing Rate

Frequency 0.366918 990/1000 0.452173 994/1000

BlockFrequency 0.000136 983/1000 0.000000 941/1000

CumulativeSums 0.266235 990/1000 0.967382 991/1000

Runs 0.777265 991/1000 0.729870 989/1000

LongestRun 0.851383 986/1000 0.325206 9085/1000

Rank 0.858002 985/1000 0.368587 994/1000

FFT 0.861264 990/1000 0.426272 987/1000

NonOverlappingTemplate 0.329850 997/1000 0.522100 995/1000

OverlappingTemplate 0.534146 989/1000 0.969588 990/1000

Universal 0.699313 987/1000 0.189625 987/1000

ApproximateEntropy 0.000126 981/1000 0.000000 976/1000

RandomExcursions 0.739918 638/642 0.620056 612/615

RandomExcursionsVariant 0.785760 639/642 0.979761 610/615

Serial 0.380407 986/1000 0.695200 988/1000

LinearComplexity 0.363593 992/1000 0.645448 987/1000

Table 4. Comparison with related work.

Work Platform Resources Throughput

This work Virtex 5 109 Slices 4.08 Mbps

[9] SLAAC-1 V Not reported 0.5 Mbps

[16] Actel 14 tiles,1 PLL 2 Mbps

[3] Cyclone 3 > 511 LUTs 133 Mbps

Virtex 5 > 511 LUTs 100 Mbps

[17] Spartan 3E Not reported 0.25 Mbps

[14] Not reported Not reported 2.5 Mbps

[12] Spartan 6 67 Slices 14.3 Mbps

time is shortened. In addition, Table 3 shows the results of running the NIST
suite for cases m = 6 and m = 9, respectively. As the trade-off between the
security and speed, the output with the case m = 6 passes all of the tests, while
the BlockFrequency and the ApproximateEntropy are failed for m = 9.

The comparison with related work is summarized in Table 4. Our design
achieves higher throughput than all TRNGs based on coherent sampling [9,16].
As for other implementation, Our design achieves higher throughput than [14,
17]. However, the TRNG in [3] uses more than 511 LUTs. The generated data
of TRNG in [12] are compressed using XOR postprocessing. Our entropy source

708 J. Yang et al.

are a dual ROs which consumes 109 Slices. In addition, the circuit design can
adjust the period difference of two ROs and select various bit generation speeds
to serve different cryptographic applications.

5 Conclusion and Future Work

Under this premise of sufficient entropy, the throughput is an indispensable factor
for TRNG designs, such as for the application of session key generation in high-
speed communication systems. In this paper, we design and implement a coherent
sampling-based TRNG which can extract entropy as much as possible to enhance
the bit generation speed. We first provide a parameter adjustment method to
maximize the generated entropy rate, and this method is based on our proposed
stochastic model. According to the method, we design a TRNG architecture and
implement it in FPGAs. In the experiment, the improved generation speed is
up to 4 Mbps, and the output sequences pass NIST SP 800-22 statistical tests
successfully without postprocessing. Compared to the basic coherent sampling,
the bit generation rate is improved to 12 times. In future work, we will further
design the embedded module for the health test or online test of the TRNG.

Acknowledgments. This work was partially supported by National Basic Research
Program of China (973 Program No. 2013CB338001), Strategy Pilot Project of Chinese
Academy of Sciences (No. XDA06010702) and National Natural Science Foundation of
China (No. 61602476, No. 61402470).

References

1. Baudet, M., Lubicz, D., Micolod, J., Tassiaux, A.: On the security of oscillator-
based random number generators. J. Cryptology 24(2), 398–425 (2011)

2. Bernard, F., Fischer, V., Valtchanov, B.: Mathematical model of physical RNGs
based on coherent sampling. Tatra Mountains Math. Publ. 45(1), 1–14 (2010)

3. Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random
number generator with entropy assessment. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 179–196. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40349-1 11

4. Fischer, V., Drutarovský, M.: True random number generator embedded in recon-
figurable hardware. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 415–430. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5 30

5. Haddad, P., Teglia, Y., Bernard, F., Fischer, V.: On the assumption of mutual inde-
pendence of jitter realizations in P-TRNG stochastic models. In: Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany,
24–28 March 2014, pp. 1–6 (2014)

6. ISO/IEC JTC 1/SC 27, Berlin, Germany: ISO/IEC 18031: Information technology
- Security techniques - Random bit generation (2011)

7. Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation
Methodology for True (Physical) Random Number Generators. Version 3.1. T-
Systems GEI GmbH and Bundesamt fr Sicherheit in der Informationstechnik (BSI),
Bonn, Germany (2001)

http://dx.doi.org/10.1007/978-3-642-40349-1_11
http://dx.doi.org/10.1007/978-3-642-40349-1_11
http://dx.doi.org/10.1007/3-540-36400-5_30

Extracting More Entropy for TRNGs Based on Coherent Sampling 709

8. Killmann, W., Schindler, W.: A design for a physical RNG with robust entropy
estimators. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
146–163. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3 10

9. Kohlbrenner, P., Gaj, K.: An embedded true random number generator for FPGAs.
In: Proceedings of the ACM/SIGDA 12th International Symposium on Field Pro-
grammable Gate Arrays, FPGA 2004, Monterey, California, USA, 22–24 February
2004, pp. 71–78 (2004)

10. Ma, Y., Lin, J., Chen, T., Xu, C., Liu, Z., Jing, J.: Entropy evaluation for oscillator-
based true random number generators. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 544–561. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 30

11. PUB, N.F.: 140–2: Security Requirements for Cryptographic Modules, Washington,
DC, USA, May 2001

12. Rozic, V., Yang, B., Dehaene, W., Verbauwhede, I.: Highly efficient entropy extrac-
tion for true random number generators on FPGAs. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015,
pp. 116: 1–116: 6 (2015)

13. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., et al.: A Statistical Test Suite for the Valida-
tion of Random Number Generators and Pseudo Random Number Generators for
Cryptographic Applications, pp. 800–822. NIST special publication, USA (2001)

14. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number
generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1),
109–119 (2007)

15. Valtchanov, B., Fischer, V., Aubert, A.: A coherent sampling-based method for
estimating the jitter used as entropy source for true random number generators.
In: SAMPTA 2009, pp. Special-session (2009)

16. Valtchanov, B., Fischer, V., Aubert, A.: Enhanced TRNG based on the coherent
sampling. In: International Conference on Signals, Circuits and Systems (SCS)
(2009)

17. Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based
true random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 351–365. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15031-9 24

18. Xilinx: Virtex-5 Libraries Guide for HDL Designs (2012). http://www.xilinx.com/
support/documentation/sw manuals/xilinx14 1/virtex5 hdl.pdf

http://dx.doi.org/10.1007/978-3-540-85053-3_10
http://dx.doi.org/10.1007/978-3-662-44709-3_30
http://dx.doi.org/10.1007/978-3-662-44709-3_30
http://dx.doi.org/10.1007/978-3-642-15031-9_24
http://dx.doi.org/10.1007/978-3-642-15031-9_24
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/virtex5_hdl.pdf

	Extracting More Entropy for TRNGs Based on Coherent Sampling
	1 Introduction
	2 Equivalent Stochastic Model
	2.1 Principle of Traditional and Coherent Sampling Methods
	2.2 Proposed Equivalent Model
	2.3 Entropy Evaluation

	3 Proposed Architecture
	3.1 Improved Method for Extracting More Entropy
	3.2 Circuit Architecture

	4 Simulation and Implementation
	4.1 Simulation Results in Matlab
	4.2 Implementation Results in FPGA

	5 Conclusion and Future Work
	References

