
GreatEatlon: Fast, Static Detection of Mobile
Ransomware

Chengyu Zheng(B), Nicola Dellarocca, Niccolò Andronio, Stefano Zanero,
and Federico Maggi

DEIB, Politecnico di Milano, Milan, Italy
{chengyu.zheng,nicola.dellarocca,niccolo.andronio,

stefano.zanero,federico.maggi}@polimi.it

Abstract. Ransomware is a class of malware that aim at preventing vic-
tims from accessing valuable data, typically via data encryption or device
locking, and ask for a payment to release the target. In the past year,
instances of ransomware attacks have been spotted on mobile devices
too. However, despite their relatively low infection rate, we noticed that
the techniques used by mobile ransomware are quite sophisticated, and
different from those used by ransomware against traditional computers.

Through an in-depth analysis of about 100 samples of currently active
ransomware apps, we concluded that most of them pass undetected by
state-of-the-art tools, which are unable to recognize the abuse of benign
features for malicious purposes. The main reason is that such tools rely
on an inadequate and incomplete set of features. The most notable exam-
ples are the abuse of reflection and device-administration APIs, appear-
ing in modern ransomware to evade analysis and detection, and to ele-
vate their privileges (e.g., to lock or wipe the device). Moreover, current
solutions introduce several false positives in the näıve way they detect
cryptographic-APIs abuse, flagging goodware apps as ransomware merely
because they rely on cryptographic libraries. Last but not least, the per-
formance overhead of current approaches is unacceptable for appstore-
scale workloads.

In this work, we tackle the aforementioned limitations and propose
GreatEatlon, a next-generation mobile ransomware detector. We foresee
GreatEatlon deployed on the appstore side, as a preventive countermea-
sure. At its core, GreatEatlon uses static program-analysis techniques to
“resolve” reflection-based, anti-analysis attempts, to recognize abuses of
the device administration API, and extract accurate data-flow informa-
tion required to detect truly malicious uses of cryptographic APIs. Given
the significant resources utilized by GreatEatlon, we prepend to its core
a fast pre-filter that quickly discards obvious goodware, in order to avoid
wasting computer cycles.

We tested GreatEatlon on thousands of samples of goodware, generic
malware and ransomware applications, and showed that it surpasses cur-
rent approaches both in speed and detection capabilities, while keeping
the false negative rate below 1.3%.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 617–636, 2017.

DOI: 10.1007/978-3-319-59608-2 34



618 C. Zheng et al.

1 Introduction

Nowadays there are approximately 1.9 billion smartphone and tablet users world-
wide [1], using 3.7 billion devices, a number that is expected to grow to 6.75
billion by 2021 [2]. This widespread diffusion of mobile devices makes the attack
surface substantial and the tendency to store sensitive data on mobile devices
makes them an attractive target for malware authors.

According to GData [3], in the first half of 2015 more than 1 million infections
on Android devices occurred, which means 6,100 newly infected devices every
day, a 25% increase since 2014. Out of these infections, a few more than a half
are financially motivated. More specifically, in 2015 the most dangerous threats
were ransomware, whose number of families doubled in only one year and infected
nearly 100,000 distinct users, a five-fold increase since 2014 [4].

Even though there are tools [5] that aim at post-infection recovery, they are
effective only against some (known) ransomware families. Moreover, the state-of-
the-art approach [6] is imprecise since it is only partially able to recognize certain
feature of modern mobile ransomware. HelDroid works by analyzing three main
characteristics that belongs to a ransomware, composed by a text, encryption,
and locking analyzer. In this paper, we propose how to enhance HelDroid to
overcome the limitations that we noticed after about one year of operation on
modern ransomware families. More in detail, we modified the static taint analy-
sis tool, on which the encryption detector is based. For instance, preventing
decryption flows from being erroneously considered as malicious, lowering the
number of false positives. Furthermore, we identified a different set of sources
and sinks that allows the detector to identify encryption flows independently
of the particular folder that contains the target files and augmented HelDroid
for detecting the abuse of admin APIs, which are used by modern ransomware
to urge victims to effectively lock the device. In addition to that, we propose a
heuristic to statically resolve the method invoked via the most common reflection
patterns, even in the presence of lightweight method name obfuscation. Finally,
we implemented a pre-filter that aims to reduce the overhead of HelDroid by
recognizing goodware.

We tested the resulting system, named GreatEatlon, on thousands of sam-
ples including ransomware, generic malware and goodware, using HelDroid as a
benchmark.

In summary, the main contributions of this work are:

– a novel encryption-detection approach that can recognize, with good pre-
cision, malicious encryption flows, thanks to a generic set of sources and
sinks, and by taking into account the nature of the encryption operation
(i.e., encryption vs. decryption initiated by the user via UI);

– a static technique, to discover device administration APIs abuse, which is
widely used by modern ransomware families;

– a heuristic to detect the most common patterns used by malware to call
methods via reflection;

– a lightweight and fast pre-filter able to discard goodware from the analysis;



GreatEatlon: Fast, Static Detection of Mobile Ransomware 619

2 Motivation

In this section, we introduce the problem in more detail, together with some
solutions proposed by other researchers along with their limitations, and finally
set the goals for this work.

2.1 Ransomware

A ransomware is a particular kind of malware which business model is to extort
money from the victims. In order to force the user to pay the ransom, ransomware
usually performs actions that limit the ability for the victim to use her device
such as screen locking, or encrypting personal files. Mobile ransomware repre-
sents a concrete threat that is increasing by about 14.8% per year [7]. Mobile
ransomware started with SimpleLocker [8], which is the first family of mobile
ransomware that encrypts user’s data with a unique key embedded in the binary
and subsequently ask for money. In 2015 a more advanced version of Simple-
Locker [9] appeared, instead of using a unique key able to decrypt and encrypt,
it uses a per-device key.

It is important to note that by default Android’s security model does not
allow applications to do all kinds of operations. In particular, there are many
APIs that are considered as potentially dangerous. In order to let an applica-
tion to use these APIs, Android requires that, at install time, the user explicitly
grants an application all the permissions it needs. Moreover, if an application
needs to use the so-called Device Administration APIs (Sect. 3.2), then an addi-
tional run-time permission grant dialog is shown to the user, listing the admin-
istration policies the application requires, together with a brief message about
the associated risk. Since the decision of whether to grant or deny these permis-
sions is made by the user, it is very important that she understands the danger
associated with the permission. Unfortunately, in [10] researchers have demon-
strated that 84% of the users either do not pay attention to the permissions
they grant or do not even know about the existence of them, and only 20% of
all participants demonstrated “awareness of permissions and reasonable rates
of understanding,” choosing at least 70% of right answers to the survey they
took. In fact, malware authors exploit this lack of attention to massively obtain
permissions and use them to perform malicious actions and to spread quickly.

2.2 State of the Art

Being mobile ransomware a recent problem there are currently two kinds of
tools available: commercial removal/cleanup utilities (e.g., Avast Ransomware
Removal [5]) and a research prototype that we prosecuted in [6], which offer a
more generic approach, mainly based on static analysis.

Ransomware removal/cleanup utilities are specific to each ransomware family,
thus it requires a certain effort keep them up to date with the development of
new families. Additionally, these utilities are mobile applications that, like any
Android app, are restricted by the security model of Android, hence they have



620 C. Zheng et al.

limited functionalities. Therefore, their detection approach is not possible to
do anything more than signature checking [11]. Moreover, certain ransomware
families exploit high privileges (e.g., device admin API) to kill those processes
that are typically associated to common AVs.

The second approach HelDroid, proposes a feature-based detection mech-
anism using advanced static-analyses techniques directly on the bytecode
extracted from APK files. We envisioned HelDroid deployed on the app-store
side to scan submitted application’s code and resources in order to discover
whether they exhibit one or more characteristics that belong to a ransomware-
distinguishing feature set.

The quality of the outcome strongly depends both on the set of extracted fea-
tures and on the ability of HelDroid to extract them correctly. HelDroid recog-
nizes three main characterizing actions than can be used to distinguish ran-
somware from other kinds of malware or goodware. Namely, it detects whether
the app is (1) displaying threatening message, (2) locking the device, and (3)
encrypt personal files. Clearly, since HelDroid is based on static analysis, what
it actually detects is the presence of code dedicated to implement these features.
Such code may or may not be executed at runtime, depending on factors that
fall outside the scope of analysis of HelDroid.

After about one year of experience with running1 HelDroid on thousands of
mobile ransomware samples, taken from the VirusTotal daily feed, we concluded
that this set of features is good to characterize ransomware, it does not take into
account some new features introduced by the most recent families, such as the
ability to use highly privileged APIs. For this reason, we augmented the original
HelDroid it with new detectors, which will be explained in detail in the following
sections.

Moreover, we found that some of the features detectors were not precise
enough to detect all possible ways for a ransomware to perform a malicious
action. In particular, we refer to the encryption detector, which can easily be
circumvented by using the encryption API in a slight different way than the
expected one, and to the text detector, which does not take into account the
possibility to convey the threatening text through pictures instead of plain text.

2.3 Goals and Challenges

The goal of this work is to improve the ability of some detectors to correctly
identify those features that make ransomware distinguishable from other mal-
ware and goodware, providing at the same time new ones capable of finding
new characteristics. In this way, the updated system will be able to increase the
reliability of the outcomes.

The main challenge is to create a solution that is generic enough to be effec-
tive even with new samples.

1 http://ransom.mobi/scans.

http://ransom.mobi/scans


GreatEatlon: Fast, Static Detection of Mobile Ransomware 621

3 Approach

In this section, we introduce, at a high level, the novel detectors, postponing the
implementation details to Sect. 4. Recall that the process unit of GreatEatlon is
the APK file. Therefore, the detectors described in the rest of this section are run
on each APK file—in addition to the detectors already present in HelDroid. Each
APK file contains three kinds of files: a manifest file (AndroidManifest.xml),
source code files, and resource files. We used Apktool [12] to decode APK files,
but the same information can be extracted in other ways.

As in HelDroid [6], the final output of GreatEatlon is a combination of the
detectors. However, the focus of this paper is not how the detectors are combined,
but rather on how we improved the original ones.

3.1 Encryption Detector

Ransomware encrypts personal files of a victim, which can be stored in any paths,
typically under the SD card tree. These paths can be retrieved (by the malware)
in several ways. Therefore, a path- or folder-dependent detection can easily be
circumvented. Our solution, instead, is based on the impossibility of the attacker
to know the location of the target files in advance. As a result, ransomware will
perform at least one folder/file-listing operation, mediated by the OS, to know
which files are within inside a specific folder. Therefore, we take advantage of a
static taint analysis to track all code flows originating in a “query” (a request
sent to the OS to get the list of files contained inside a folder) and ending in one
of the encryption-related APIs that Android offers to developers. The OS offers
only a few ways to perform such query: a couple of methods from the File class
and a low-level query that relies on the underlying shell. For this reason, if we
are able to detect that there is an information flow starting from one of these
methods and ending in a bulk file encryption, then we can reasonably assume
that relevant encryption-related operations are made to user’s files.

We minimize the chances of false positives by focusing only in those flows that
actually perform encryption (and not decryption) because the latter is harmless,
and can be performed by a wide variety of benign applications. To this end, we
implemented the notion of conditional flows. A conditional flow is considered
by the taint-analysis engine only if there exists at least one path between the
source(s) and the sink(s) that satisfies all the given conditions. In our proof-of-
concept prototype, we support conditions on function arguments because this is
the minimum requirement for implementing our detection logic, but the concept
can be extended further.

The ability for an encryption-related flow to either encrypt or decrypt
depends on the value with which the Cipher (i.e., the Java class responsible
for performing encryption and decryption) is initialized. Therefore, we are inter-
ested in defining conditions that based on this value. In particular, the init()
method (and all its overloads) currently supports only two values: ENCRYPT MODE
(i.e., 0x1) and DECRYPT MODE (i.e., 0x2). Given that these values are numeric
constants, and that both the compiler for the Dalvik virtual machine and



622 C. Zheng et al.

the taint-analysis tool are able to perform constant propagation, we can
adopt static conditions to make sure that a given tainted flow is an encryp-
tion or decryption one. To satisfy such a condition, an instruction like
cipher.init(ENCRYPT MODE, ...) must be called before a sink is reached.

3.2 Device Administration APIs Misuse Detector

Android’s security model requires each application using Device Administration
APIs to declare a specific set of permissions and components in the manifest file.
Ransomware is obviously not exempted from doing so, allowing us discover the
misuse of these APIs. More specifically, an app that needs to use device-admin
policies must:

– Declare a class extending DeviceAdminReceiver, which is a component in
charge of receiving and processing specific broadcast messages sent by the
system whenever particular events happen (e.g., when the user grants or
revokes the privileges to the app).

– Declare a so-called policy meta-data XML file containing the list of all security
policies that the app wants to use.

– Associate the XML file with the Receiver through a <meta-data> XML
element.

Given these strict requirements, we created a detector that parses the
AndroidManifest file, looking for the declaration of the appropriate Receiver.
If found, and if the related meta-data contains dangerous policies (e.g., the abil-
ity to change the device unlock password and/or to remotely wipe the device),
then it proceeds to analyze the source code.

Whenever the manifest and policy meta-data file analyses are completed and
return a positive result, the detector processes the application source code. In
this phase, we are interested in discovering if there exists at least a call to one of
the potentially harmful methods of DevicePolicyManager, the main class that
implements the Device Administrator APIs. In particular, the methods of inter-
est are wipeData() and resetPassword(). To check whether the application
calls one of these methods, we inspect the CFG to perform reachability analysis.

Interestingly, in an effort to hinder abuse of such APIs for permanent screen
locking, the upcoming major release of Android (7.0, code-named “Nougat”)
eliminates [13] the possibility of creating device-admin policies to (program-
matically) change the pass-code (e.g., PIN, pattern) without user intervention.
This will certainly help in the future, but a short-time countermeasure—such as
the detector presented in this section—is still required until mass adoption of
Android Nougat.

3.3 Reflection Heuristic

Given the static nature of our analyses, all ransomware samples that make use
of reflection or other dynamic techniques would not be detected by HelDroid,



GreatEatlon: Fast, Static Detection of Mobile Ransomware 623

causing the detector to produce a wrong outcome. Therefore, we implemented
a heuristic that resolves the most common reflective calls and includes them in
the CFG. For efficiency, this heuristic is invoked only if the statically built CFG
does not trigger any of the GreatEatlon detectors. In particular, GreatEatlon
perform a series of forward and backward analyses that recognize the usage of
reflection (i.e., method calls like method.invoke()) and reconstruct which are
the target class and method in case they are obfuscated.

Although far from being general and exhaustive, we our heuristic traces
back to the origin of the string that holds the method name, including string-
obfuscating transformations—if any (e.g., the original string is “lockNow” but
the malware author obfuscated it by inserting random chars in between each cou-
ple of chars). Since we noticed that the de-obfuscating process typically involves
only methods from the String class (such as replace or substring), our detec-
tor re-applies any method found along the backward path on the target string.
This method is clearly not generic, and can certainly be improved. However,
string de-obfuscation is a wide research topic, falling outside the scope of this
paper, which leverages such program-analysis techniques rather than proposing
new ones.

3.4 Text Detector

In its original form implemented in HelDroid [6], this component is responsible
for analyzing any ASCII string extracted from the sample (both statically and
dynamically), guessing the language, and determining whether the phrases form
a threatening message—typical of any ransomware scheme.

In GreatEatlon, we pre-pended a lightweight image-processing phase to this
component in order extract text from images, so to make the overall system
resilient to evasion (e.g., text rendered into images). In particular, we added an
image scanner that inspects all image files shipped in the application resource
directories and applies a set of transformations to optimize them for optical
character recognition (OCR).

The extracted text is then automatically corrected by a standard spell
checker, to remove the obvious errors that may occur during OCR. The result-
ing, corrected text is then processed with the original text analyzer of HelDroid,
which queries a classifier that returns a score indicating the amount of “threaten-
ing” sentiment found. If higher than an empirically determined threshold, then
the text is considered as threatening, indicating that the sample is likely to be
ransomware.

3.5 Lightweight Pre-filtering

To quickly decide whether an application is suspicious, and thus worth spending
computing resources to analyze it, we adopt a supervised-learning classification
approach. When tackling a classification task it is crucial to design features
that best discriminate between goodware and all the rest. A great amount of
research work has been done in the area, proposing several static and dynamic



624 C. Zheng et al.

features that characterize malware vs. goodware [14–20]. However, if the goal is
malware detection, errors are very costly in either sense (i.e., false positives and
negatives).

Instead, we make use of (some of the) features identified by previous work
and relax some of these constraints by working on the dual problem (i.e., detect-
ing goodware). Since the pre-filtering is followed by the ransomware-detection
pipeline, the cost of a few benign samples mis-classified as suspicious is negligible,
because they will be eventually recognized as non ransomware. In other words,
we can allow a slight penalty in the pre-filter accuracy in favor of almost perfect
precision. We detail the choice of the classification algorithms and the features
that we selected in Sect. 4.4. Since we need this phase to be fast, features that
can be only extracted at runtime are unsuitable because the extraction would
be prohibitively time consuming. Therefore, we focus on features that can be
extracted efficiently by parsing the APK files. The output of this phase is a
binary decision: “goodware” or “suspicious”.

4 Implementation Details

In this section, we explain the technical details of GreatEatlon.

4.1 Encryption Detector

To implement our encryption detection approach, we extended FlowDroid [21]
(the state-of-art static taint-analysis tool for Android) to allow the taint-
propagation engine to track information flows through files (e.g., a function
writes to a file, another function reads such file, and passes the reference to
function). Note that FlowDroid can be configured to ignore flows that origi-
nate from the user interface, effectively eliminating many false positives due to
benign, user-initiate encryption. In particular, we modified FlowDroid to track
information flows between (1) InputStream (and related classes) linked to the
victim files and (2) Cipher objects in charge of encrypting them. Ransomware
usually reads the original file through a loop, placing the bytes read in one of
the parameters passed to the read() method, which is usually an array. Given
that this parameter is not tainted directly by the ransomware, but it is manipu-
lated internally by the InputStream, FlowDroid would not be able to detect this
information flow. Luckily, the component that is in charge of deciding whether a
particular instruction is involved in taint propagation (namely, one of the “taint
wrapper” classes) can be easily extended to override the default taint propaga-
tion rules. Hence, we created a custom TaintWrapper that taints the parameter
that will receive the file’s bytes if the underlying InputStream is tainted in turn.
In this way GreatEatlon is able to taint also the Cipher objects that receive the
same tainted parameter, and that will eventually perform the encryption.

Conditional Flows. We designed conditional flows to be as generic as possible,
in order to allow adding, removing and modifying conditions in a simple way



GreatEatlon: Fast, Static Detection of Mobile Ransomware 625

in the future. In particular, we created a module that “injects” conditions in
FlowDroid by reading them from a text file formatted as follows:

NUMBER -> <CLASS: RET TYPE METHOD(PARAMS)>

where:

– NUMBER is the index for the condition.
– CLASS is the fully-qualified class name for the class that declares the method

on which we want to check the condition.
– RET TYPE is the method return type.
– METHOD is the method name.
– PARAMS is the (possibly empty) list of comma-separated method’s parameters.

The NUMBER token can take any non-negative integer value (typically a sequential
number starting from 0 or 1) and is not part of the method signature, but instead
it is used by GreatEatlon to decide whether the condition should be considered
as an alternative or standalone. In fact, it is possible to specify an alternative
condition (i.e., a condition composed by two or more sub-conditions that is valid
if at least one of the sub-conditions is valid) by using the same value for two
or more conditions. In other words, the parser evaluates all conditions with the
same index as logical disjunctions and conditions with different indexes as logical
conjunctions. Alternative conditions can be useful to specify requirements on a
method that has overloads or on multiple different methods.

The PARAMS token represents the list of actual parameters used in a method
call. Currently, the only allowed values are Java primitive types, that are numbers
(both integers and floating-point decimals), Boolean values, and characters, plus
null, and a custom type indicated by “ ”. This custom type is essentially a
“don’t care”, meaning that the i-th parameter can take any value (including
reference types).

Condition Verification. In general, we could check for condition satisfac-
tion either while performing the taint propagation, or after the taint analysis
is completed. These two approaches have different impacts on performance and
resource usage. The latter needs to store all the potential source-to-sink paths
resulting from the taint analysis to perform the subsequent check. This number
can explode if the sample is complex. Moreover, given that FlowDroid does not
return the full path, but just a summary (i.e., a path that typically contains
only the source, the sink and the intermediate nodes involved in branch deci-
sions), it would be necessary to manually reconstruct the full source-to-sink path
to check whether there are some nodes that satisfy the conditions. This implies
performing an additional control-flow graph analysis. In the worst case, all the
potential paths are reconstructed and visited twice: the first time to perform
the taint propagation, and the second time to check for conditions verification.
This solution, however, does not require any modification to the taint analysis
tool, so it might be helpful to implement the analysis this way if taint analysis
is performed by a proprietary or immutable tool.



626 C. Zheng et al.

Instead, when conditions are checked while performing the taint analysis, the
control-flow graph is examined only once, by the taint-analysis tool, which would
also be in charge of verifying the conditions. This approach is undoubtedly faster
than the previous one, but it requires to modify the taint analysis tool source
code. Thanks to its open-source nature, we were able to extend InfoFlow, the
FlowDroid sub-component that computes the taint analysis, to perform it this
way, by modifying the objects that are responsible for taint tracking in order to
make them deal with conditions sets. In particular, for each node visited during
the taint propagation, we check whether it contributes in satisfying the condi-
tions set. This information is then stored inside the object responsible for con-
taining all data related to the taint, which is propagated to all children of a node
when the CFG is explored. We finally modified the TaintPropagationResults
class, which is responsible for adding paths to the set of results, to allow condi-
tions verification: In this way, whenever a sink node is reached, this component
adds the source-to-sink path to the set of results only if the associated condition
set has been verified by a previous node.

4.2 Device Administration APIs Misuse Detector

In order to detect misuses of the device-admin APIs, we created a component
that starts by analyzing the AndroidManifest. Subsequently, we take advan-
tage of FlowDroid for generating CFG and entry-points, because it is designed
to deal with this kind of applications and it can be configured to consider or
ignore specific callbacks that can be invoked during the application life-cycle.
For instance, two interesting entry-points are the onEnable() and onDisable()
methods from class DeviceAdminReceiver, which are called by the OS whenever
the user grants or revokes device administration rights to the application.

After these setup operations, the tool is ready to analyze the CFG. Since we
are interested only in knowing if some methods are called by the sample but not
in knowing the exact path, we can perform a simple reachability analysis, which
allows us to quickly discover such a method call, if it exists. In particular, we
decided to explore the CFG in a breadth-first fashion (BFS), because since the
step costs are uniform (i.e., we can assume that visiting a child node has a unitary
cost) it can provide the optimal solution, reaching the target node (if it exists)
by traversing as few edges as possible. Moreover, we avoid visiting the same node
twice. This serves both as an optimization (when a target node is present in the
CFG) and to avoid entering an infinite loop it the CFG is not acyclic. A never-
terminating analysis, for instance, could occur if a sample contains a suspicious
AndroidManifest, but it does not actually use any of the potentially dangerous
methods, which often happens with (usually benign) applications that require
more permissions than needed, or when the target nodes cannot be recognized
by the detector, which happens when the sample uses reflection or other kinds
of obfuscation.



GreatEatlon: Fast, Static Detection of Mobile Ransomware 627

4.3 Reflection Heuristic

Thanks to manual analyses, we observed that many ransomware applications
exploit reflection to call device administration-related methods, which we can-
not detect through the above-described procedure. For this reason, we decided to
implement a heuristic to detect some common cases, in order to reduce the num-
ber of false negatives. In this step, we reuse the CFG generated in Section 4.2 to
perform a series of forward and backward analyses in order to discover whether
reflection is used and, if this is the case, to try to figure out which method
is executed. In particular, we perform a first forward analysis from the appli-
cation entry-points trying to reach a reflection call, that is an instruction like
method.invoke(...), where method is an object from class Method and rep-
resents a Java-callable method. If we find at least one instruction of this kind,
it means that the application dynamically calls a method. Unfortunately, this
information is not enough to prove that the sample is performing something
malicious because we do not know the invoked method yet. To obtain this addi-
tional information, we perform a backward analysis whose target is to reach the
method variable assignment, which usually involves hard-coded strings (because
the attacker already knows which is the method to call).

Unluckily we discovered that in a few cases this procedure is not enough
because in several samples the hard-coded method name was obfuscated, in
order to circumvent those AVs that perform strings analysis. In particular, we
observed that attackers manipulate these strings by adding some extra characters
to the method name, for instance by transforming the string “resetPassword” to
“resLetXPassVUwgXord”. Given that the string de-obfuscation is performed by
applying some transformations on the string, such as String.replace, we, in
turn, take advantage of reflection to apply the same modifications to the original
string to try to clean it.

4.4 Lightweight Pre-filtering

The design of the filter revolves around the design of the classification features,
the automatic feature-selection algorithm, and the choice of the classifier.

Feature Set. Our features can be extracted via simple static analysis. Although
some of them are inspired by previous work (e.g., [15,21]), we propose novel
features. In particular, features that capture the app behavior, package name
heuristics, file types and count, obfuscation, domain name “well-formedness”
and reachability, and commands executed through Runtime.exec(). To keep
the filter lightweight, the majority of our features are either binary (i.e., pres-
ence vs. absence) or numeric. The behavioral features (namely, Called APIs and
Lightweight Behavioral Features) express runtime behavior of an app, although
we match them statically, at the price of a few more false positives, which are
perfectly acceptable given the problem setting.



628 C. Zheng et al.

Permission Features (Binary). Android applications are sandboxed within Linux
processes, plus an additional layer of permissions that regulate inter-process com-
munication. Permissions [22,23] are known to be abused by malware to escape
the sandbox. Indeed, previous research showed that permissions are distributed
differently among goodware vs. malware [19,24], and can certainly be used to
recognize goodware from “suspicious” applications.

Lightweight Behavioral Features (Binary, Novel). We developed simple reach-
ability heuristics that determine, statically (from the Smali code) whether the
application sends SMS at startup (i.e., onStartup), reads phone data at startup,
sends data when receiving an SMS, sends SMS to short numbers used in pre-
mium services, calls built in utilities (e.g., su, ls, grep, root, chmod), and so forth.
Clearly, these features alone are by no means complete nor perfect for malware
detection. However, combined with the others, they help in finding suspicious
samples.

Other Binary Features (Novel). We calculate some aggregated features from
package names, URLs and use of obfuscation. For example, one feature is whether
the package name is composed by only one part, whether the domain of the main
package name is valid, the presence of URLs whose domain does not match the
main package name, whether ProGuard has obfuscated the source code, and so
on. We designed this diverse but simple set of features by manually inspecting
several malicious and benign samples.

Numerical Features (Novel). We include numeric features such as the number of
files in an APK, its size, number of permissions, activities and services, the aver-
age class size, the total number of packages and the number of classes contained
only in the main package.

Feature Selection. We ended up with a collection of more than 220 attributes.
GreatEatlon automatically selects the first 120 most significant features by gain
ratio ranking [25]. The choice of gain ratio as information measure is driven
by the use of decision trees and random forests as suitable classifier models, as
explained in the next section.

Classifier Model and Training. We tested several classification techniques,
including decision trees (J48), random forests, support vector machine (SVM),
stochastic gradient descent (SGD), decision tables (DT), and rule learners (JRip,
FURIA, LAC, RIDOR). We found that the best trade off between time, accuracy
and precision is an ensemble classifier that performs majority voting [26] among
a J48 decision tree, a random forest and a decision table. Essentially, it chooses
the prediction on which most classifiers agree. A relevant aspect of our design
is that we incorporate a cost-sensitive wrapper around each classifier to make
false positives (non-goodware mis-classified as goodware) count more than false
negatives [27]. This is crucial to give more importance to precision. By empirical
tests, we found that the cost to assign to mis-classifications of such type in order



GreatEatlon: Fast, Static Detection of Mobile Ransomware 629

to obtain reasonably high accuracy and very high precision ranges between 16
and 20 times the default mis-classification cost.

5 Experimental Evaluation

In this section, we present the experiments that we performed to evaluate
GreatEatlon as well as the dataset we used to test it.

5.1 Experiments

We conducted four experiments to evaluate the ability of GreatEatlon to detect
file-encrypting ransomware apps, and three experiments to evaluate the perfor-
mance of the pre-filter. More precisely, Experiment 1 evaluates the detection
precision between GreatEatlon and the state of the art on dataset of manu-
ally vetted ransomware apps known to encrypt files. Experiment 2 is similar
to Experiment 1, but on a larger dataset, containing potential file-encrypting
ransomware. Experiment 3 evaluates the number of false positives on a dataset
of benign apps and generic malware samples. Experiment 4 evaluates the qual-
ity of the image scanner. Experiment 5 and 6 evaluate the precision and speed
of the pre-filter, and Experiment 7 evaluates the impact of the pre-filter on a
large-scale scenario.

5.2 Dataset

We have built 5 distinct data sets to evaluate the various characteristics of
GreatEatlon:

– The Ransomware1 dataset, composed by 75 ransomware samples of which
5 were obtained from “Contagio Mobile” dataset [28] and the rest from Virus-
Total Intelligence [29]. We manually vetted these samples to ensure that they
actually try to surreptitiously encrypt files.

– The Ransomware2 dataset, composed by samples downloaded from Virus-
Total based on the AV labels. In particular, we queried the database for
samples with labels containing the most common ransomware family names,
or the generic ‘‘crypto’’ keyworkd, filtering out samples with less than 5
positive detections. We expect the dataset to contain both the kind of ran-
somware we want to analyze and other kinds of malware samples, due to the
intrinsic imperfection of AVs.

– The Malware dataset, composed by 153,982 malware samples, of which
147,145 obtained from the AndRadar project [30] and 6,837 from the Andro-
Total repository [31] (having at least 5 positive detections). This dataset
contain malware that we used to test precision and speed of the pre-filter.

– The ThreateningPicture dataset, which contains screenshots of threaten-
ing messages displayed by real ransomware samples, in English and Russian
language. In this dataset we included uncommon font faces with handwritten
style, so as to test the capabilities of the Tesseract OCR decoder.



630 C. Zheng et al.

– The Generic dataset, composed by 1,239 goodware and generic malware
samples gathered both from the Google Play store and alternative markets.

– The AppScale dataset, taken from AndRadar, MalGenome, Contagio-
Minidump, and the top 1,000 APKs submitted to VirusTotal in between Dec
2014 and Jan 2015.

5.3 Experiment 1: GreatEatlon vs. State of the Art (Benchmark)

We compared the precision of the new encryption detectors of GreatEatlon
against those implemented in HelDroid using the Ransomware1 dataset. Hel-
Droid detected only 35 out of 75 ransomware samples, whereas GreatEatlon
detected 74 samples. GreatEatlon is able to detect more samples thanks to the
customized taint analysis engine. For instance, many samples create target file
paths by combining dynamically obtained strings (e.g., file names as a result
of a directory listing operation) with hard-coded ones (e.g., default directory
names), or by using only hard-coded names. HelDroid is not able to taint fully
hard-coded paths. Consequently, even if the malware composes the target path
using a mix of hard-coded and dynamically obtained paths, the resulting path
will not be tainted because the composition itself would cancel any existing taint.
Conversely, GreatEatlon can detect this data flow because the taint is generated
only when the application retrieves files in bulk, and not when it obtains a
reference to one particular folder.

The false negative was caused by the fact that MainActivity, which contain
flow sources, is placed as a public inner class of the device-admin class. Unfor-
tunately FlowDroid does not support nested classes, and therefore it is unable
to detect flow sources originating from them. Clearly, this is a simple technical
limitation of FlowDroid, by no means affecting the conceptual validity of our
approach.

5.4 Experiment 2: GreatEatlon vs. State of the Art

We found 11 positives out of 547 analyzed samples. However, only 54 of them
were positive to the text detector. If we consider only these 54 samples, we notice
that only 43 of them have the WRITE EXTERNAL STORAGE permission—to write on
the SD card (all the aforementioned 11 positives belong to this set). This means
that the remaining 504 samples are certainly not file-encrypting ransomware
apps. We manually analyzed 10 samples, randomly chosen among the remaining
32 samples confirming that they were true negatives.

5.5 Experiment 3: False Positive Rate

We analyzed the Generic dataset to test the false positives rate of GreatEatlon.
The results show that our improved detectors do not confuse generic malware
with ransomware.



GreatEatlon: Fast, Static Detection of Mobile Ransomware 631

5.6 Experiment 4: Image Scanner Quality

We tested the image scanner on the ThreateningPicture dataset. GreatEatlon
was able to extract text and classify it as threatening from all the original pic-
tures (i.e., the ones with original font). Instead, if we consider only the images
we created by using uncommon font faces, the detector was able to correctly
extract the ones with simple symbols, but failed in recognizing the others (e.g.,
handwritten style). However, we consider thin, handwritten or other fonts of the
like more difficult to read for victims, too, hence our assumptions on the reading
and understanding ease for threatening text would be no longer satisfied.

Table 1. Precision, accuracy, and area under the ROC curve of different classifiers.

Classifier(s) Accuracy Precision AUC

J48 93.74% 99.4% 0.979

SGD 90.90% 98.9% 0.916

Decision table 91.83% 99.5% 0.986

Random forests 87.18% 99.6% 0.991

J48 + DT + RF 92.75% 99.6% 0.934

J49 + DT + SGD 93.75% 99.6% 0.956

SGD + DT + RF 91.29% 99.6% 0.941

5.7 Experiment 5: Pre-filtering Precision

We evaluated the pre-filter on Malware dataset using the standard 10-fold
cross-validation approach. We split the dataset in 10 random sub-samples (9 for
training, 1 for validation) and repeated this procedure using each sub-sample
exactly once per validation. Table 1 shows that the classification capabilities
of our pre-filter are very encouraging, especially considering that the training
dataset is not homogeneous (e.g., samples from diverse sources and time frames).
Notice that the filter alone should not be used as a malware detector! Since
our scope is ransomware detection, as opposed to generic malware detection,
misclassified innocuous applications would have been analyzed anyways. The
goal of our filter is to reduce their amount vastly, and quickly, as showed in the
next experiment.

5.8 Experiment 6: Pre-filtering Speed

As training is performed offline, we are interested in measuring the speed of the
actual classification. Each APK goes through unpacking, feature extraction, and
then the actual classification. Using the Malware dataset, we measured that
the actual classification has a negligible impact (milliseconds), and unpacking
takes 2.484 seconds on average (median 1.922, 3rd quantile 2.814). The feature-
extraction step is the core of the pre-filter. Thus, we measured the execution time



632 C. Zheng et al.

Fig. 1. Pre-filter execution time.

while varying the total size of Smali classes, total Smali classes count, and total
files count, and APK size. We found out that time is mainly influenced by the
total size of the Smali classes. Therefore, we plot this dependency in Fig. 1. In
the worst cases encountered in our large dataset, the feature extraction takes less
than 1.5s. Even considering the unpacking, in less than 4 seconds our pre-filter
produces an answer.

5.9 Experiment 7: Impact of the Pre-filter on Large Scale Analysis

We measured the response time of HelDroid with and without the pre-filter on
50 distinct random splits of 1,000 samples each from the AppScale dataset.
Under this scenario, with the pre-filter we pay a small precision penalty but we
gain 1.5 to 2.0× on the overall processing time, on average.

6 Limitations

Despite the good performance, GreatEatlon has some limitations, which are
described in this section.

6.1 Native Code

GreatEatlon assumes that ransomware will use the Android APIs. Despite the
effectiveness of GreatEatlon on the majority of the samples that we analyzed,



GreatEatlon: Fast, Static Detection of Mobile Ransomware 633

it is unable to deal with native machine code, which could be used by malware
authors to evade static analyses. Nevertheless, it is possible to discover if a certain
sample makes use of native code, or by inspecting the Smali code looking for
methods containing the native modifier. In this case, it would be appropriate
to use an external, dedicated tool to perform the consequent analysis. Therefore,
this limitation is not conceptual, but simply technical.

6.2 Conditional Flows

Conditional flows are evaluated while performing the taint analysis. Although
in this way we save time and resources, we cannot specify complex conditions,
such as conditions related to object fields, or on values known only at runtime.
Therefore, if a sample bases its decision of whether to encrypt or decrypt a file
on a value that is computed at runtime, GreatEatlon would not be able to detect
it. Unluckily, there is no easy solution to both solve this problem with pure static
analysis, because the only way to precisely know the value stored inside a certain
variable is to watch such variable at runtime.

6.3 Reflection Heuristic

In Sect. 3.3, we anticipated that we designed this heuristic to detect the most
common approaches used by ransomware samples. Malware authors could evade
it by encrypting strings or other hard-coded values and decrypt them at runtime,
as soon as the application needs them. In this scenario, the only way to retrieve
those values would be to decrypt them (which requires to know the encryption
key), to retrieve the memory dump from a dynamic analysis or to use dynamic
techniques such as Harvester (see Sect. 7). Generally, the ultimate solution would
be to use a fully dynamic-analysis approach, because it would allow to know
with certainty which is the exact signature of the methods that the sample calls,
despite of the calling technique.

6.4 Image Scanner

Our image scanner assumes that each threatening text unit is contained inside a
single picture. In the future, though, ransomware samples could split the threat-
ening text in multiple images, rendering them in a sort of grid at runtime and
composing the complete message in a sort of “mosaic picture,” or an animated
sequence. In this scenario, GreatEatlon would probably be not able to extract
an amount of text significant enough to trigger the text analyzer, specially if the
complete threatening message is split in a great number of “tiles”.

In order to allow the image scanner to extract meaningful text, we would
need to pre-process the layout and Java files to an additional component that
is capable of deciding whether a given APK contains such “mosaic” pictures, if
that is the case, to reconstruct the final picture. Whenever the resulting image
is reconstructed, it can be submitted to our image scanner, that would treat it
as a traditional picture and extract any text it contains.



634 C. Zheng et al.

7 Related Work

Ransomware Detection. HelDroid represents the state of the art in the field of
static ransomware detection and is the ground on which GreatEatlon is based.
HelDroid mainly contributed with three techniques: the text analyzer, which is in
charge of deciding whether a given string should be considered as threatening or
not, the lock detector, which is able to detect active action made by ransomware
that are trying to lock the user out of his phone, and the encryption detector,
which is able to detect whether an application is trying to do an unsolicited
encryption operations. In particular, we improved the encryption detection sys-
tem and we added a lightweight pre-filter that is able to recognize goodwares,
and discard it from the analysis queue.

Runtime Values Extraction. Harvester [32] is a new system intended to dynami-
cally extract runtime values. Since it is based on a cyclical combination of slicing
and code execution, it can extract values regardless of any possible encryption,
obfuscation or other anti-analysis techniques applied to them. Given its extrac-
tion capabilities, we think that this tool could be integrated into GreatEatlon to
replace the heuristic we developed, in order to improve both the device admin-
istrator abuse and the encryption detectors as well as FlowDroid’s recall (as
demonstrated by paper authors, Harvester improved FlowDroid detection by
roughly three times).

8 Conclusions

Ransomware is a real threat for mobile devices and is expected to grow in the
next years. As a countermeasure against this threat, we propose an approach
for detecting encryption-capable apps based on a customized static taint analy-
sis tool, allowing it to accept or discard taint flows based on a set of static
conditions. We also designed and developed a new component to detect device
administration API abuse, a feature that is present in the newest ransomware
families as well as in other recent, non-ransomware malware families.

Our experiments show that GreatEatlon can identify more encryption-
capable apps than the state of the art, while maintaining a low false positive
rate. Moreover, the new device administration API abuse detector allow us to
identify modern ransomware families with better precision. In particular, in the
experiment relative to the pre-filter show that is possible to detect goodware
with around 99% accuracy.

We believe that merging these new components with the (already good) text
analyzer and lock detector of HelDroid can lead to improved and fast detection
of modern mobile ransomware families, making GreatEatlon the most advanced
mobile ransomware detection tools. If we could also include some external tools
such as Harvester or other runtime values extractor, then we would be able to
deal with obfuscated, encrypted or other kinds of evasive samples, too.

Finally, we provide a publicly accessible website, which allows other security
researchers or end users to submit their samples, to focus on prevention and
fight the mobile ransomware threat.



GreatEatlon: Fast, Static Detection of Mobile Ransomware 635

References

1. Statista: Number of smartphone users worldwide from 2014 to 2019, August 2015.
http://www.statista.com/

2. Ericcson: Mobility report, February 2016. http://www.ericsson.com/
3. G Data: G data mobile malware report (2015). https://www.gdatasoftware.com/
4. K Lab: The volume of new mobile malware tripled in 2015, February 2016. http://

www.kaspersky.com/
5. Avast Software: Avast ransomware removal, June 2014. https://play.google.com/
6. Andronio, N., Zanero, S., Maggi, F.: HelDroid: dissecting and detecting mobile

ransomware. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol.
9404, pp. 382–404. Springer, Cham (2015). doi:10.1007/978-3-319-26362-5 18

7. Spreitzenbarth Mobile Security and Forensics: Summary of the year 2015, January
2016. http://forensics.spreitzenbarth.de/

8. Symantec: Simplocker: first confirmed file-encrypting ransomware for android, June
2014. http://www.symantec.com/

9. Avast: Mobile crypto-ransomware simplocker now on steroids, February 2015.
http://www.symantec.com/

10. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. In: SOUP’S 2012 Proceedings
of the Eighth Symposium on Usable Privacy and Security, no. 3 (2012)

11. ESET: Eset simplocker decryptor, August 2014. http://www.eset.com/
12. Apktool v2.0.3. https://github.com/iBotPeaches/Apktool
13. Venkatesan, D.: Android nougat prevents ransomware from resetting

device passwords, July 2016. http://www.symantec.com/connect/blogs/
android-nougat-prevents-ransomware-resetting-device-passwords

14. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. NDSS 25(4), 50–52
(2012)

15. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective
and explainable detection of android malware in your pocket. In: NDSS (2014)

16. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: triage for market-scale
mobile malware analysis. In: Proceedings of the Sixth ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pp. 13–24. ACM (2013)

17. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a behav-
ioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1),
161–190 (2012)

18. Apvrille, L., Apvrille, A.: Pre-filtering mobile malware with heuristic techniques.
In: Proceedings of GreHack (2013)

19. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy (SP) 2012, pp. 95–109. IEEE (2012)

20. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der
Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: a view on current android
malware behaviors. In: Proceedings of the 3rd International Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS)
(2014)

21. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2014, pp. 259–269 (2014)

http://www.statista.com/
http://www.ericsson.com/
https://www.gdatasoftware.com/
http://www.kaspersky.com/
http://www.kaspersky.com/
https://play.google.com/
http://dx.doi.org/10.1007/978-3-319-26362-5_18
http://forensics.spreitzenbarth.de/
http://www.symantec.com/
http://www.symantec.com/
http://www.eset.com/
https://github.com/iBotPeaches/Apktool
http://www.symantec.com/connect/blogs/android-nougat-prevents-ransomware-resetting-device-passwords
http://www.symantec.com/connect/blogs/android-nougat-prevents-ransomware-resetting-device-passwords


636 C. Zheng et al.

22. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, pp. 627–638. ACM (2011)

23. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security, p. 3. ACM (2012)

24. Andrubin. https://anubis.iseclab.org
25. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier,

Amsterdam (2011)
26. Jarvis, K.: Cryptolocker ransomware. Viitattu 20, 2014 (2013)
27. Domingos, P.: Metacost: a general method for making classifiers cost-sensitive. In:

Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 155–164. ACM (1999)

28. Contagio mobile. http://contagiominidump.blogspot.it/
29. Virustotal. https://virustotal.com/
30. Lindorfer, M., Volanis, S., Sisto, A., Neugschwandtner, M., Athanasopoulos,

E., Maggi, F., Platzer, C., Zanero, S., Ioannidis, S.: AndRadar: fast dis-
covery of android applications in alternative markets. In: Dietrich, S. (ed.)
DIMVA 2014. LNCS, vol. 8550, pp. 51–71. Springer, Cham (2014). doi:10.1007/
978-3-319-08509-8 4

31. Maggi, F., Valdi, A., Zanero, S.: Andrototal: a flexible, scalable toolbox and service
for testing mobile malware detectors. In: Proceedings of the 3rd Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM).
ACM, November 2013

32. Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E.: Harvesting runtime values in
android applications that feature anti-analysis techniques. In: Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS) (2016)

https://anubis.iseclab.org
http://contagiominidump.blogspot.it/
https://virustotal.com/
http://dx.doi.org/10.1007/978-3-319-08509-8_4
http://dx.doi.org/10.1007/978-3-319-08509-8_4

	GreatEatlon: Fast, Static Detection of Mobile Ransomware
	1 Introduction
	2 Motivation
	2.1 Ransomware
	2.2 State of the Art
	2.3 Goals and Challenges

	3 Approach
	3.1 Encryption Detector
	3.2 Device Administration APIs Misuse Detector
	3.3 Reflection Heuristic
	3.4 Text Detector
	3.5 Lightweight Pre-filtering

	4 Implementation Details
	4.1 Encryption Detector
	4.2 Device Administration APIs Misuse Detector
	4.3 Reflection Heuristic
	4.4 Lightweight Pre-filtering

	5 Experimental Evaluation
	5.1 Experiments
	5.2 Dataset
	5.3 Experiment 1: GreatEatlon vs. State of the Art (Benchmark)
	5.4 Experiment 2: GreatEatlon vs. State of the Art
	5.5 Experiment 3: False Positive Rate
	5.6 Experiment 4: Image Scanner Quality
	5.7 Experiment 5: Pre-filtering Precision
	5.8 Experiment 6: Pre-filtering Speed
	5.9 Experiment 7: Impact of the Pre-filter on Large Scale Analysis

	6 Limitations
	6.1 Native Code
	6.2 Conditional Flows
	6.3 Reflection Heuristic
	6.4 Image Scanner

	7 Related Work
	8 Conclusions
	References


