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Abstract. In the current operating systems (OS), the kernel has complete
access to and control over all system sources. However, there are many secure
vulnerabilities in kernel because it has the large code base and attack surfaces.
Thus, an attacker can attack sensitive applications running on OS by exploiting
kernel vulnerabilities. Unfortunately, there are various shortcomings for the
existing applications protection mechanisms, such as ignoring the integrity of
kernel code, relying on special compiler and et al. In this paper, we have
proposed a security-sensitive application (SSApp) protection mechanism called
TZ-SSAP on TrustZone enabled platforms. TZ-SSAP introduces four protection
modules altogether to provide a safe executable environment for SSApp during
the system is running. The first one is the SSApp protection module which takes
advantage of the existing page table mechanism to protect the integrity of code
executed by SSApp as well as the confidentiality and integrity of SSApp’s data.
The second is the security arrangement which prevents an attacker from com-
promising SSApp protection module by depriving the kernel authority of the
ROS (Rich OS). The third is the page table update verification module in TOS
(Trusted OS) which traps the update of page table in ROS and handles with it
based on the predefined security policies. The last one is the security policies
module which prevents an attacker from tampering the code and data of SSApp.
At the same time, it keeps the memory of SSApp from an attacker to guarantee
the confidentiality of critical data. We have evaluated our prototype on a sim-
ulation environment by using ARM FastModel and presented our implemen-
tation on a real development by using ARM CoreTile Express A9x4. Our
security analysis and experimental results show that TZ-SSAP can ensure the
SSApp execute as expected even if the kernel is compromised.
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1 Introduction

As is known to all, applications are managed by OS (operating system), which always
use large monolithic kernels that have complete access to and control over all system
resources, including memory management, process scheduling and communication,
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device management, file management and so on [1]. A large amount of security defense
systems are implemented based on the view that the OS is the trusted root.

However, there is no denying that there are many secure vulnerabilities [2–4] due to
the large attack surfaces existed in the current OS kernel. This leads to the result that
the application running on the OS is no longer safe since an attacker can exploit kernel
vulnerabilities to escalate privilege or execute a rootshell. For example, attacker can
tamper the kernel code or insert some malicious code through the data segment via
PTMA [5] attack which can modify the attribute of physical pages by modifying the
content in page table entry. Once the kernel is compromised, attacker can control the
kernel to compromise applications. For example, it can manipulate the return value of
system services to attack applications, which is named Iago attack [6]. Furthermore,
attackers can freely acquire all the sensitive information belonging to security-sensitive
applications by accessing main memory or intercepting the control or data flow of the
applications, which can be achieved by the address mapping manipulation attacks [7],
such as mapping overlap attack, double mapping attack, mapping reorder and mapping
release attack. Even worse, the kernel has become an equally attractive attacked target
in the recent years. It is in urgent need of protection mechanism to make
security-sensitive application remain safe even if the OS is compromised.

Previous research about application protection mechanism widely relies on
hypervisor [14, 15, 17, 18]. Most of them use extended page table to provide an
isolated environment for sensitive applications. When the application interacts with the
OS, hypervisor has to verify the legitimacy of the operation. However, they ignore the
integrity of kernel code. Despite the fact that Virtual Ghost [19] interposes a thin
hardware abstraction layer to intercept instruction of kernel which can prevent unau-
thorized code from executing, it still have drawbacks. For example, it depends on new
instruction set and compiler and all operating system software has to be compiled
again.

In this paper, we have proposed a secure framework named TZ-SSAP based on
hardware-assisted environment provided by TrustZone technology. It provides a strong
protection mechanism for security-sensitive applications (SSApps). Unlike previous
protection mechanisms which need to establish an external page table to protect sen-
sitive applications, our prototype does not modify the existing page table and our
design is suitable to the current commercial OSes. TZ-SSAP traps all updates of the
page table in the ROS (Rich OS). The result is that the ROS has no right to tamper the
page table limited to its write protection mechanism. And each update of page table all
follow those rules: Firstly, physical pages of code and static data in kernel space is
mapped read only; and the rest of data pages is mapped non-executable forever.
Second, the physical pages belonging to SSApp’s user space will never be mapped to
the normal applications, vice versa. In the end, kernel stack of SSApps will be mapped
read only when their state switches from running to other during process scheduling.

To summarize, we make the following contributions:

• We enforce our security policies based on the existing page table mechanism in the
current OSes without extending page table, which has little modification to the ROS.
Therefore, our prototype is suitable to the existing commercial OSes.
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• We secure the execution environment for SSApps. Our design framework ensure the
integrity of all the code and the kernel static data used by SSApp. In other words, the
SSApp will always remain safe even if the ROS is compromised or even crashed.
Furthermore, TZ-SSAP can guarantee the confidentiality of SSApp’s data because it
prevents malicious process from accessing the memory of SSApp.

• TZ-SSAP does not need to encrypt and hash any application pages which is accessed
when the ROS is running. And it also does not need to validate the legitimacy of the
parameter when it interacts with the ROS.

• TZ-SSAP is safer than previous work which relies on hypervisor. It has been
implemented in the hardware-assisted isolated environment, so it is enough safe to
defense these attacks from the malicious ROS.

In the next section, we introduce something about application and our experiment
platform. Section 3 gives our threat model and some assumptions of TZ-SSAP. Then
Sect. 4 describes the TZ-SSAP design while Sect. 5 presents its implementation mode.
Section 6 discusses the security and performance of TZ-SSAP. Finally, we also describe
the related works at present in Sect. 7 and give a conclusion in Sect. 8.

2 Background

2.1 Application Analysis

There is no doubt that applications are made up of codes and data, which is illustrated
in Fig. 1. The first one states the implementation of the functionality it absolutely needs
while the last one is the carrier of sensitive information and the direction of control
flow. Therefore, it can ensure the security of applications if we can guarantee the safe
of its codes and data.

Each application’s code consists of three parts: basic code written by developer, the
standard library code and the kernel code when it is in kernel mode. It is clear that the
basic code is private and the kernel code must be shared with other applications. As for
standard library code, it will be shared with other applications when compiled
dynamically, and will be private like basic code while compiled statically.

Protection MechanismSecurity-sensitive Application

Code
implementation of the functionality

Data
carrier of sensitive information and 
the direction of control flow

Integrity

Integrity and Confidentiality

Fig. 1. Application architecture
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For application’s data, it consists of two parts: the kernel data and the user data. The
kernel data contains the dynamic data in application’s kernel stack and the static data.
Meanwhile, the static data is initialized when the OS starts and shared with other
applications, such as the system call table and the exception vectors table. Despite the
fact that each process has unique kernel stack to store dynamic data produced by
application during the run time, the data in kernel stack still can be accessed by other
processes because all processes share the same kernel page tables. Moreover, the user
data belonging to application is private as the basic code of application since they are
stored in the user space which is separated from other applications normally by OS.

2.2 ARM TrustZone

ARM TrustZone [10, 11] technology is a set of security extensions first added to
ARMv6 processors. Its architecture is illustrated in Fig. 2. Based on hardware logic
present in AMBA bus fabric, peripherals and processors, it partitions the computing
platform into two execution domains: SW (the Secure World) and NW (the Normal
World) and partitions system resources into two parts: the non-secure resources and the
secure resources. The OS running in NW is named ROS while TOS is running in SW.
ROS can only access non-secure resources whereas TOS can see all resources. TZ-SSAP
uses this feature to manage the page table mechanism in ROS.

To control the context switch between the two worlds, a special processor mode,
known as the monitor mode, is added by TrustZone. The monitor mode resides in SW,
and maintains the processor state during the world switch. To trigger the entry to
monitor mode, ROS or TOS can execute a Secure Monitor Call (SMC) instruction.
Therefore, TZ-SSAP can switch between ROS and TOS through SMC instruction.
Monitor can acquire the current context of the domain through the Non-secure (NS) bit
from the Secure Configuration Register (SCR). That’s to say, monitor can access NW if

the Normal World the Secure World

Rich OS

Secure-
Sensitive

Apps

Trusted OS

General
Apps

Secure 
Services

ARM processor with TrustZone security extensions

Monitor

Non-secure Resources Secure Resources

Fig. 2. TrustZone architecture
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the NS bit is set. TZ-SSAP takes advantage of this to save the coprocessor CP15 of NW
when it acquires the context of data abort exception.

Our software is the OV [13], which is the first open source and free implementation
for ARM TrustZone. When the system is power on, it starts from BootROM security.
Once the TOS is running, it will establish security perimeter and perform key opera-
tions such as decrypting NW OS images. And before activating NW bootloader, keys,
media and other assets are fully protected.

3 Threat Model and Assumption

We briefly describe our threat model and assumption in this section. Our goal is to
protect SSApps by guaranteeing the integrity of SSApps’ code and data as well as the
confidentiality of SSApps’ data. We assume the SSApp has strong sense to protect its
derived data using encryption techniques, for example, it can encrypt the file contents
before writing to disk, and use existing secure I/O path schemes like [8, 9] to protect
I/O data which used by peripheral devices, such as the fingerprint reader and keyboard.
Thus, attacks against the SSApp itself are not in our consideration. We assume that
SSApp’s base code is bug-free, thus to say, it will be carefully designed and tested in
order to achieve high confidence in its own security.

Besides, we also assume that SSApp is static-compiled. In other words, SSApp will
not share the standard library code with other processes, which can avoid malicious
applications attacking it by tampering the standard library code. And the LKM
(Loadable Kernel Module) is outside the scope of the current work.

We assume that the hardware implements the TrustZone extensions, and can be
trusted with no Trojan-Horse circuits and no bus traffic interception and so on. Both
ROS and TOS have been loaded securely which is guaranteed by the trusted boot. The
worst thing of all is that it cannot guarantee the security of ROS during its run time
since the kernel in ROS is vulnerable because of those discovered vulnerabilities, such
as [5–7]. The attacker may use existing attack methods to damage SSApp, such as
PTMA attack, Iago attack and address mapping manipulation attacks.

Moreover, the security-sensitive feature varies with the user. In this paper, we
assume that the user has established a whitelist about SSApps that should be protected
by TZ-SSAP. To prevent attacker modifying the whitelist, the user uses the TOS to
encrypt and hash it in a relatively safe environment. And TOS will decrypt the whitelist
and check the hash whenever it starts.

4 TZ-SSAP Design

TZ-SSAP is implemented on TrustZone which provides a hardware-assisted isolation
environment. According to application analysis in background, we can know that
SSApp consists of code and data. In the following, we put forward the SSApp protection
module in accordance with the characteristics of SSApp’s code and data. Then we
present the security arrangement including page table update and process schedule in
ROS. Afterwards, we propose how TZ-SSAP traps all updates of the page table and the
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security policies mechanism that TZ-SSAP uses them to verify the operation of the
kernel in ROS. TZ-SSAP prototype as illustrated in Fig. 3.

4.1 SSApp Protection Module

Code Protection. SSApp is static-compiled according to assumption. Thus, it only
contain the private code and the kernel code. The private code will not be changed
since it has become an executable file through compiling and linking. However, it is
different for the kernel code. In Linux, administrator may load LKM due to some
special requirements. In that case, additional code will be injected into the kernel at run
time. For convenience, we do not take LKM into consideration. Therefore, the kernel
code will remain unchanged during the system operation as well as the private code.

In order to protect integrity of the code executed by SSApp, TZ-SSAP maps all
physical pages of code to read-only. Meanwhile, it must make sure that there won’t be
any writable map of them to prevent attacker tampering them. Those can be achieved
through the page table management mechanism, which defines the virtual to physical
address mapping and the access permissions of virtual memory in ROS. That’s to say,
TZ-SSAP modifies the access permissions of those physical pages so that they are
write-protected and traps all updates of page table to avoid writable mapping of them.

Data Protection. According to application analysis, the user data is private in the
whole operation period. Therefore, the integrity and confidentiality of the user data can
be guaranteed as long as TZ-SSAP prevents malicious process from accessing them. We
know that the memory can be accessed by OS only if it is mapped to the virtual address
space. Therefore, TZ-SSAP can keep the SSApp’s user data from attacker by preventing
double mapping the memory holding SSApp’s user data to general applications.

TZ-SSAP takes different measures to protect the integrity and security of SSApp’s
kernel data. For static data, TZ-SSAP protects it by mapping its physical pages to

TOS
ROS

Security Arrangement

the Normal World

SSApps

the Secure World

TZ-SSAP

General
Apps

MonitorPage Table Protection
Page Table Update Verification

Security Policies Mechanism

SSApp Protection Module

Data Protection

Process Schedule

Code Protection

Fig. 3. TZ-SSAP system architecture
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read-only as the kernel code. And for dynamic data in kernel stack, it cannot be
write-protected since it may be changed when SSApp’s process is running. Similarly, it
cannot prevent other process accessing them because they share the same kernel page
tables. For those reasons, TZ-SSAP makes the SSApp’s kernel stack to be
write-protected when the process’s state switches from running to other during process
scheduling. As a result, other process cannot tamper it via kernel page table, which can
ensure the integrity of SSApp’s control flow in kernel mode.

4.2 Security Arrangement

Page Table Protection. As mentioned above, both code protection and data protection
of SSApp are based on the page table management mechanism which is managed by the
kernel in OS. When a new process is created, kernel establishes a new set of page tables
for it. And after that, the kernel always keep updating it whenever process wants to
change its map, such as applying for new physical pages, releasing old physical pages
or modifying the attribute in page table entry. Unfortunately, because of the kernel
ability to manage page table management, attacker can make SSApp protection module
be out of control by attacking kernel through privilege escalation or PTMA attack.

To guarantee the security of SSApp protection module, we have to protect the page
table management mechanism. Moreover, page tables are also in the form of physical
pages in kernel. The updates of page table are normal memory writes which can be
controlled by memory access permissions like code protection. And as described in
background, TOS is capable of accessing the non-secure physical memory in NW. As a
result, we replace kernel with TZ-SSAP to control the update of page tables. This can be
achieved by modifying the access permissions of page tables to be read only in ROS.
Besides, a great part of TZ-SSAP is realized in SW. Details are as follows.

In order to deprive the kernel’s ability to update page tables, TZ-SSAP makes page
tables of every process read-only once the process is scheduled into the ROS at the first
time. Then TZ-SSAP intercepts the update of page tables through data abort whenever
the kernel attempts to modify them. At that point, TZ-SSAP acquires the intention of
kernel by decoding the instruction that generates the data abort exception in ROS.
Furthermore, TZ-SSAP verifies the legitimacy of the instruction on the basis of the
security policies. If it goes against any point of them, it will be rejected. On the
opposite, TZ-SSAP will write the value to the corresponding address in SW.

Process Schedule. Trapping the update of page tables is critical to TZ-SSAP. Since
TZ-SSAP completely makes page tables write-protected, the attacker can bypass TZ-
SSAP through one possible method which is forging the whole page tables of process.
In other words, attacker can forge a whole page table via rootkit and then set the base
physical address of it to TTBR0 (translation table base register 0) which stores the base
address of page table in ARM Linux. On this occasion, TZ-SSAP will lose the ability to
trap the update of fake page table since it not be write-protected by TZ-SSAP. As a
result, attacker can steal the sensitive information and tamper the critical data structure
or code of SSApp by double mapping SSApp’s physical page into fake page table.
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To prevent these attack, TZ-SSAP must make sure that the value in TTBR0 keep the
same with which transferred to TZ-SSAP at the first time. TZ-SSAP enforces this policy
by depriving the kernel from its own ability to set the value of TTBR0 during the
process scheduling. Once the kernel tries to schedule process, it must request TZ-SSAP
for changing the value in TTBR0. In that case, TZ-SSAP can use this opportunity to
verify the legitimacy of kernel operation in ROS.

4.3 Page Table Update Verification

TZ-SSAP gets the ability to update all page table of process running in the ROS since
the physical pages of page table are write-protected. In order to verify the legitimacy of
kernel operation, TZ-SSAP must get the content of the instruction that caused the fault.
Then, TZ-SSAP decodes this instruction and retrieve it on the basis of the data abort
exception context. Finally, TZ-SSAP takes action based on the result whether it goes
against security policies mechanism. Security policies mechanism is described in
Sect. 4.4 and implementation is described in Sect. 5.

4.4 Security Policies Mechanism

TZ-SSAP enforces the following policies for protecting the SSApp whenever the kernel
attempts to update page table or schedule process.

• Write-protection. The access permissions of all process’s page tables play an
important role in TZ-SSAP. Not only physical pages of code and static data in kernel
mode should be write-protected, but also all page tables should be non-writable in
ROS at run time. Any writable maps of write-protected pages or operations
changing the read only attribute of kernel space into writable should be prohibited.

• Double-mapping. It’s important to make sure that any physical page of SSApp does
not exist double-mapping to general applications. When the SSApp tries to map a
new physical page to its address space, TZ-SSAP must guarantee that it does not
exist virtual to physical mapping. In this way, we can easily keep security-sensitive
data from attacker, which ensures the integrity and confidentiality of those data.

• Executable attribute. In order to prevent attacker from inserting some malicious
code through its data area and then making it executable by attacks such as PTMA,
operations that change those non-executable attribute to executable should be
prohibited.

• Inherited attribute. It’s clear that child process which is created by parent process
belonging to SSApp is also security-sensitive, and the same with normal process.
Any protection mechanism for parent process is still suitable for its child process.

• Share property. All SSApps can share protected physical pages with each other.
However, it should be rejected between SSApps and general applications since it
may damage protection mechanism.

• Zero clearing. Whenever SSApp requests physical page frames from the ROS, it’s
necessary to verify that all virtual to physical mappings for this frames have been
removed. Afterwards, it cannot be neglected to clear the frame’s contents since
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malicious applications may have injected some threat thing. Moreover, TZ-SSAP
also zero out the physical frame’s contents when it’s no longer needed by SSApps.

5 Implementation

We have implemented TZ-SSAP on the ARM platform which supports TrustZone
hardware extensions. In order to facilitate debugging, we used Fastmodel to emulate
ARM Cotex-A15 in the beginning. Finally, we presented TZ-SSAP on a
TrustZone-enabled development board ARM CoreTile Express A9x4 [12]. Our soft-
ware experimental environment is Open Virtualization [13], which is the first open
source and free implementation for ARM TrustZone.

5.1 Foundation Work of TZ-SSAP

Splitting Section Mapping. According to Sect. 4, we learn that TZ-SSAP’s design
idea is mainly concentrated on write-protection method to deprive the kernel from its
ability to update the page tables. Only under such circumstance can TZ-SSAP prevent
malicious process from accessing the private physical pages of SSApp and tampering
the share content in kernel space via damaging the page table mechanism. Unfortu-
nately, the kernel space is mapped in section, which just use the first-level table and
each entry of it consists of 1 MB blocks of memory in ARM-Linux OS. However, the
user space is converted to small page mapping through the second-level table. In other
words, the first-level descriptors contains the pointers to a second-level table for a small
page, which consists of 4 KB blocks of memory, instead of the base address and
translation properties for a section. Meanwhile, the page tables allocated by kernel are
page-aligned small page, and the physical page of page tables must be mapped in
kernel space to prevent unauthorized tampering with the user. Therefore, if TZ-SSAP
makes the memory area where the page table information is stored read only through
translation properties in first-level table, the 1 MB blocks of memory mapped by the
entry will all become read-only. The trouble is that we cannot make sure the content
stored in the 1 MB blocks of memory are page table information since all small pages
are allocated dynamically. It may cause the system to crash if there are some dynamic
data.

That problems described above can be solved by either one of two ways. First, we
can aggregate the small page belonging to page tables of all process so that they are in a
1 MB blocks of memory. Only in this way can we make the 1 MB blocks of memory
read-only through first-level descriptors. Second, we can change the section map into
small page map in kernel space by modifying the kernel initialization code. In order to
facilitate subsequent operation, TZ-SSAP directly change the map mode into small page
and map the kernel code and static data to read only at the same time.

TZ-SSAP Interaction Between the ROS and TOS. In our implementation, TZ-SSAP
uses SMC instruction to switch between ROS and TOS and passes parameters through
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general-purpose register. Specific implementation details are as follows. When
switching from the ROS to TOS, TZ-SSAP uses ARM core register R0 to transfer the
variable corresponding to the SMC handler while register R1 transfers the parameters
that required by SMC handler. Examples as below.

The content CALL_TRUSTZONE_FAULT in register R0 indicates that TOS will
invoke the function corresponding to CALL_TRUSTZONE_FAULT after monitor mode
switch to SW. The content param in register R1 indicates the parameters that SMC
handler in TZ-SSAP requires. When the number of parameters is greater than one, we
can transfer the parameters via memory since TOS is able to access all physical
memory including the source in NW. In other words, TZ-SSAP in ROS declares a
parameter structure, and uses register R1 to transfer the physical base address of this
structure. TZ-SSAP in TOS can acquire those parameters through mapping these
physical address to its virtual address space.

The same goes with TOS switch to ROS when TZ-SSAP completed SMC handler.

Getting the Context of Data Abort Exception. It will generate a data abort exception
whenever the kernel of ROS tries to update the page tables since they are read only.
Next, the kernel saves the context of data abort exception and jumps to exception
handler which has been set in the exception vector table. As a result, it will execute
SMC instruction which has been added in the __do_kernel_fault() by TZ-SSAP
to enter to monitor mode. Then the monitor saves the context of the ROS and restores
the context of the TOS. Finally, TZ-SSAP invokes the SMC handler related to the
parameters transferred by the ROS.

The context of the ROS does not contain the coprocessor CP15 because most of the
CP15 register are banked in NW and SW. It’s necessary for TZ-SSAP to access the
coprocessor CP15 of NW. On one hand, TZ-SSAP has to get the value in TTBR0 of NW
to traverse the page table in ROS. On the other hand, TZ-SSAP has to set the value in
TTBR0 of NW due to it removes the ability to set TTBR0 from kernel in ROS to prevent
attacker from forging page tables. This can be achieved in monitor mode because
monitor can access the coprocessor CP15 of NW when the NS bit in SCR is set.
Pseudocode is as follows.

The procedures above proves that TZ-SSAP gets the context of ROS is the context
of SMC exception instead of the context of the data abort exception. Therefore, we
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must transfer them to the TOS in the form of parameter relating to SMC exception in
order to get the specific content of the instruction which generated the data abort.

In ARMv7, OS will invoke __dabt_svc assemble function when it generates
data abort in kernel mode. Moreover, the __dabt_svc calls the svc_entry
assemble function to save the context of data abort exception in stack in the form of
global structure pt_regs in kernel firstly. As a result, TZ-SSAP introduces a global
variable svc_dabt_sp to store the base address of the context in stack. TZ-SSAP in
TOS can acquire the context of data abort exception in ROS by mapping
svc_dabt_sp into its virtual address space. In order to get the instruction that has
generated the data abort exception, TZ-SSAP must get the address of the instruction.
Besides, the register LR is a special register which holds return link information.
However, in ARMv7 architecture, the LR register is banked in supervisor mode and
abort mode, which of them are named lr_svc and lr_abt. Despite the fact that the
monitor has saved both lr_svc and lr_abt, the value in lr_abt is no longer the
address to be restored since it has been used as a general register in abort mode after
kernel saved it in abort stack. To solve this problem, TZ-SSAP in ROS changes the
CPSR (the current program status register) mode field into abort mode through CPS
(change processor state) instruction and then recovers lr_abt from the stack in
__do_kernel_fault(). After doing it, TZ-SSAP changes the ROS mode into
supervisor and executes SMC instruction to enter monitor mode.

5.2 Security Policies Implementation

It’s obvious that our main work is to ensure page tables all write-protected and secure
update at the same time. In our implementation, we built an array named ns_phy to
store the information of physical pages in ROS, which is similar to physmap in
TZ-RKP [21]. Each entry of ns_phy corresponds to a 4 KB physical page of ROS.
The value of the entry is a 32 bits integrity that indicates the state of this physical page.
Besides, ns_phy is initialized to zero by TZ-SSAP at beginning.

TZ-SSAP divides the physical pages into four types by using a flag which is the bits
[1:0] in the value. The value format as illustrated in Fig. 4.

– 0b00: Unmapped. The physical page is unmapped. The extended value is invalid.
– 0b01: Normal. The physical page is mapped by general applications and the

extended value represents how many virtual page mappings the physical page has.

FlagExtended value

31 2 1 0

Value

Fig. 4. Value format
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– 0b10: Protected. The physical page is mapped by SSApps or used by the code or
static data of kernel. The extended value is the same with 0b01.

– 0b11: Page table. The physical page is mapped as the page table of each process. In
this case, the front 20 bits of extended value marks the base address of its first-level
page table.

Process Schedule. To prevent attacker from forging the whole page table, TZ-SSAP
must guarantee that the value wrote to TTBR0 is authorized during process schedule in
ROS. And when the security-sensitive process is scheduled to go out, in other words, its
state is switched from running to other, TZ-SSAP must map the kernel stack of SSApp
read only to avoid being tampered by malicious process.

In TOS, TZ-SSAP establishes a read-black tree structure process_info to store
critical information of running process in ROS.

Variable process_task represents the base address of the data structure
task_struct in ROS, which is the process descriptor in Linux system. Variable
process_ttbr0 represents the base address of the process’s first-level page table in
ROS. There are four small pages as the first-level page table for each process owing to
the size of each process virtual address space is four Gigabytes. What counts is the four
physical pages of first-level page tables are continuous. It’s capable of TZ-SSAP in TOS
to get the physical address of the process’s first-level page tables in ROS according to
the base address and size of each page. As pages are aligned, TZ-SSAP uses the last bit
of process_ttbr0 as flag to indicate whether the process is security-sensitive.
Variable process_thread represents the virtual base address of the process’s
thread_union, which contains the process’s kernel stack in ROS.

In ROS, the kernel will invoke switch_mm() function to complete the switch of
process’s address space by writing the physical base address of the first-level page
table, belonging to the process to be executed, into TTBR0. The MMU (memory
management unit) will convert the virtual address to physical address according to the
value in TTBR0. To prevent attacker from forging the page table, TZ-SSAP inserts SMC
instruction during the process is scheduled in ROS. Namely, TZ-SSAP updates TTBR0
of NW instead of the kernel in ROS. When kernel invokes switch_mm() function, it
will execute the SMC instruction and then the processor will switch to SW.
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Algorithm 1 is the SMC handler in TZ-SSAP when the process is scheduled by
kernel in ROS. The process_task_pre is represented the process whose state will
be non-running while the process_task_n will be scheduled to run in ROS.

Page Table Update. In ARM Linux, a data abort exception will be generated if the OS
tries to access memory that it has no right to access it. As a result, the kernel will
generate a data abort exception when it attempts to update page tables which is
write-protected. To solve this exception, the kernel in ROS will call the corresponding
exception handling function named do_page_fault(). The last function to be
executed is __do_kernel_fault() because the virtual address that caused the
data abort exception are in kernel space. In order to update the page table, TZ-SSAP
inserts SMC instruction in the __do_kernel_fault() function of ROS. When the
processor switches to TZ-SSAP through SMC instruction, it will invoke the SMC
handler.
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Algorithm 2 is the SMC handler in TZ-SSAP when kernel tries to update page table
in ROS. The phy_base_addr is the base physical address of pt_regs which stores
the context of data abort exception in ROS. When kernel tries to unmap a physical
page, TZ-SSAP must change the value in ns_phy array to maintain consistency.

5.3 Performance Enhancement

One method that can improve performance is locality principle. During the process
running, it may generate data abort exception successional because of page fault
interrupt. Under this circumstances, it will always update page table entry located in
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one physical page. So TZ-SSAP can apply a variable fault_addr_latest to
record the latest address which generated the data abort exception and mark its attribute
to indicate the address belongs to the second-level page table in ROS or not. When the
data abort exception is generated again next time, TZ-SSAP will compare the
fault_addr_latest with the content in DFAR (the Data Fault Address Register).
It will reduce some operations to get the content in ns_phy array if the
fault_addr_latest and the value in DFAR are in the same physical page.

6 Evaluation

TZ-SSAP provides a safe execution environment for SSApp to ensure it executes as
expected even if the kernel is compromised. It achieves that by protecting the integrity
of SSApp’s control flow and data flow. During runtime, TZ-SSAP keeps the SSApp’s
memory from attacker through inserting SMC instruction and depriving the kernel of
ROS from its own ability to set TTBR0 and update page table in NW. In that case, TZ-
SSAP can enforce our security policies mechanism whenever it traps SMC exception
from the kernel. As a result, TZ-SSAP can prevent the attacker from tampering the code
executed by SSApp and stealing critical information of SSApp.

TZ-SSAP can keep SSApp from the PTMA attack because the update of page tables
must obey the security policies. For example, when the attacker attempts to change the
read only attribute into writable in page table entry via PTMA attack, TZ-SSAP will
intercept and verify it on the basis of security policies. It’s clear that it will be rejected
due to write protection in security policies, and the same with executable attribute in
page table entry. As a result, TZ-SSAP can prevent attacker from tampering kernel code
directly because of write protection. Besides, TZ-SSAP also prevent attacker from
executing unauthorized code which is inserted into kernel space through malicious
process’s data segment since it is non-executable.

TZ-SSAP can defense the Iago attack. There is no doubt that TZ-SSAP can prevent
attacker from modifying the kernel code and the static data in kernel as well as the data
in kernel stack of the SSApps. If the attacker tries to tamper those, it will generate a data
abort exception. According to our implementation, TZ-SSAP will handle with this
exception. At the beginning of the SMC hander in TZ-SSAP, it will verify whether the
address generated the data abort exception belongs to the address range of current
process’s page table in ROS. TZ-SSAP will refuse to modify the content in the fault
address if the operation is unauthorized.

What’s more, TZ-SSAP can keep SSApp from the address mapping manipulation
attacks. When SSApp requests physical page frames from ROS, TZ-SSAP will verify
that there is not any virtual to physical mapping for this physical pages and zero out the
content of this physical page. In additional, when general applications attempt to map
new physical page, TZ-SSAP guarantees that the new physical page has not been
mapped by SSApp or used as page table. Moreover, TZ-SSAP zeroes the physical
page’s content when changes its attribute as non-protected page.

To evaluate the security of TZ-SSAP, we built a malicious LKM that attempts to
attack the TEST application which is designed as SSApp in our platform. The LKM
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tries to directly tamper the code and static data in kernel space, such as sys_-
call_table. Also, LKM takes advantage of its privilege to write a fake value into
TTBR0. Moreover, it also tries to double map the protected physical page into its virtual
space. Firstly, we can get the base address of physical page in TEST through traversing
its page table. Then, we change the source code of LKM to map the physical page to its
virtual address. Our experimental results show that TZ-SSAP can prevent those attacks
effectively.

And for performance evaluation, we define the consuming time in ROS from
invoking the SMC instruction to backing from SW. Details as Table 1.

According to Table 1, traversing page tables costs the most time. But it only take
6.7% for SSApps whose executed time is only one minute. This percentage will be
smaller and smaller as the executed time increases. Therefore, TZ-SSAP will not cause
too much time loss for SSApps.

7 Related Work

In recent years, there are several systems attempt to protect security-sensitive appli-
cation code and data. We divide them into two classes in term of the way used to
protect applications. One is the whole application protection which regards all the
application code and data as a whole. The other is the split application protection
achieved by protecting the critical part of the application instead of the whole.

7.1 Whole Application Protection

InkTag [14] is a virtualization-based architecture that uses a trusted hypervisor to
isolate the HAP (high-assurance process) from OS which is achieved by the EPT
(extended page tables). InkTag uses two separate EPT: the trusted EPT is installed for
HAP execution while the untrusted EPT is used for OS and other applications. HAP
updates the trusted EPT through hypercall. InkTag can defend again Iago attacks
because of its paraverification to ease verifying of OS. Also it protects the confiden-
tiality of secure page via encryption technology and detects corruption of the secure
page through digital signing. However, it cannot keep the encrypted pages from
reading and modifying by OS as well as Overshadow [15, 16] system which also need
complex encryption and decryption technologies to protect the whole application
execution. In addition, Overshadow cannot prevent the address mapping manipulation
attacks.

Table 1. Consuming time

Operations Switching
time

Traversing page
tables

Update page
table

Find page table
entry

Consuming
time

8us 257ms 345us 754us
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Sego [17] is similar with InkTag for the EPT. But it is faster than InkTag since it
does not need encryption technology. All secure data stays in plain text which is
protected by hardware memory protection to ensure OS cannot access them. AppShield
[7] is a hypervisor-based approach that reliably safeguards code, data and execution
integrity of a critical application. It consists of two parts: a transit module in kernel
space mediating control flow between the CAP (critical application) and OS, and a
trusted shim in user space assisting the data flows between CAP and shared buffer. It
can defense the address mapping manipulation attacks since the hypervisor and shim
code jointly to protect the address space of CAP when OS updates the page tables.
What is worse is that both of them cannot guarantee the integrity of kernel code.

7.2 Split Application Protection

SeCage [18] retrofits commodity hardware virtualization extensions to support efficient
isolation of sensitive code manipulating critical secrets from the remaining code. It
decomposes the applications into two parts. One is the secret compartment which
contains a set of secrets defined by user as well as its corresponding code. Another is
the main compartment that deals with the rest of the application logic. Firstly, it uses an
analysis framework CI to discover potential functions related to secrets statically. And
then it combines the mprotect and debug exception together to dynamic analysis
with different workloads. Once the analysis result comes to a fixed point, SeCage
decomposes the application to secret and main compartments on the basis of them. It
also use the extended page tables to guarantee two compartments isolation. Despite the
fact that SeCage can keep applications from many attacks, such as PTMA attack and
the address mapping manipulation attacks, there are still some weaknesses. The closure
related to secrets may be not complete since designers cannot be exhaustive of all
possible input about applications. Besides, it also cannot guarantee the effectiveness of
non-secret data accessed by secret functions due to no protection against them.

Virtual Ghost [19] is different with the above systems. It protects secret data and
code with the ghost memory instead of EPT. The ghost memory is achieved by adding
a compiler-based virtual machine (VM) between OS and hardware. All system software
is compiled to the virtual instruction set based on the LLVM compiler intermediate
representation [20]. Therefore, Virtual Ghost can prevent OS accessing the ghost
memory since those virtual instruction set are implemented by VM and need to be
validity verification, which can defense the address mapping manipulation attacks and
prevent repurposing existing instruction sequences because of its control flow integrity
enforcement. However, it depends on the virtual instruction set and compiler which are
not always practical for current infrastructures.

8 Conclusion

In this paper, we have presents TZ-SSAP, which provides a safe execution environment
for security-sensitive applications in the face of the OS may be compromised because
of the kernel vulnerability. TZ-SSAP is implemented based on the hardware-assisted

554 Y. He et al.



isolated environment TrustZone. The general OS is installed in NW while TZ-SSAP is
mainly located in SW. TZ-SSAP takes advantage of the page table mechanism instead of
the extended page tables. TZ-SSAP makes SSApp perform as expected since it can
guarantee the integrity of both the code and its control flow during run time. In
addition, it also guarantee the confidentiality of SSApps’ data through preventing
attacker from double mapping the SSApp’s physical page, which leads to keep the
security-sensitive information of SSApps from attacker.

In future work, we can add safeguard to protect the code of standard library and
LKM in TZ-SSAP. For example, we can verify the integrity of the library file or LKM
module before it is loaded into memory, and make them write-protected once they are
authorized and loaded into physical page.
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