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Abstract. Nowadays aggregated web browsing histories of individ-
ual users have been collected and extensively used by Internet service
providers as well as third-party researchers, due to their great value to
data mining for in-depth understanding of important phenomena, such
as suspicious behavior detection. While providing tremendous benefits,
the release of private users’ data to the public will pose a considerable
threat to users’ privacy. Sharing web browsing data with privacy preser-
vation has so far received very limited research attention. In this paper,
we investigate the problem of real-time privacy-preserving web browsing
monitoring, and propose SecWeb, an online aggregated web browsing
behavior monitoring scheme over infinite time with theoretical privacy
guarantee. Specifically, we propose an adaptive sampling mechanism and
an adaptive budget allocation mechanism to better allocate appropriate
privacy budget to sampling points within any successive w time stamps.
In addition, we propose a dynamic grouping mechanism that groups web
pages with small visits together and adds Laplace noise to each group
instead of single web page to eliminate the effects of perturbation error
for the web pages. We prove that SecWeb satisfies w-event differential
privacy and the experimental results on a real-world dataset show that
SecWeb outperforms the state-of-the-art approaches.

Keywords: Web browsing · Privacy preservation · Real-time data pub-
lishing · Differential privacy · w-event privacy

1 Introduction

The Internet plays a more and more important role in people’s daily life as the
explosive growth of mobile devices. People can obtain their interested informa-
tion by browsing various websites, while their browsing behaviors which can be
characterized by browsing histories are also recorded by the host servers simul-
taneously. The servers may publish the browsing histories1 to the public since
1 In this paper, we interchangeably use “web browsing histories” and “web browsing

data” throughout the paper without confusion.
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Fig. 1. An example of web browsing behaviors

Table 1. Statistics of web browsing behaviors

News Games Sports Science

T1 0 0 1 1

T2 0 0 3 0

T3 2 0 0 0

T4 0 1 0 1

these data is of great value for companies or third-party researchers in many
data mining applications to analyze the browsing behavior of users. It is also
strategic significance for understanding the users’ habits in order to improve
the user experience and websites performance, such as recommending web pages
to users based on their browsing behavior, finding the current hot news, and
watching the network traffic to detect anomaly [5].

However, there is always a risk in releasing this kind of private and sensitive
data to the public. Studies have indicated that a user’s web browsing history
(i.e., a sequence of visited websites) can be regarded as a fingerprint which can
be used to uniquely identify or track the user [21]. The AOL data release [4] is a
representative privacy incident where a newspaper journalist quickly identified
a user by the released anonymized search logs and consequently the sensitive
information of this user was disclosed. This and other related findings indicate
that the released private data must be carefully processed to protect the privacy
of individuals [25].

Generally speaking, different people behave different web browsing patterns.
Thus, people’s sensitive information can be easily figured out by exploiting users’
browsing histories. Even the identification information is hidden from the public,
it is still possible to discover the browsing histories of users. For example, Fig. 1
illustrates the browsing behaviors of three people, e.g., Baron starts his browsing
session at time stamp T2, visiting a sports news page, then he moves to a local
news page and his session ends after browsing a web page about games. Table 1
shows the number of visits to each type of web page without any identification
information. With background information, the adversary knows that Baron
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starts to browse the web page at time stamp T2. Then the adversary can easily
obtain two browsing traces for Baron, i.e., sports → news → games or sports →
news → science, from the released data. Suppose the adversary already knows
that Baron is interested in playing games from the side channel information, e.g.,
the public tweet from Twitter. Then he can infer that sports → news → games
is more likely to be the true browsing trace of Baron. Therefore, it is important
and necessary to process the web browsing data before publishing so that the
released data is not only useful but also privacy-preserved.

The technique of differential privacy (DP) [9] can ensure privacy protection
for statistic data publishing with vigorous guarantee theoretically. Now it has
become an appealing privacy model. In particular, DP does not need to make
any assumption about the adversary’s background information. That is, even
the adversary has obtained a user’s background information, it cannot derive
any additional information about the user based on his/her published data.

Almost all of the existing differentially private protocols investigated either
event-level privacy on infinite streams [6,7,11] or user-level privacy on finite
streams [12,13]. The authors in [18] successfully bridged the gap between the
user-level and the event-level over streams using the w-event ε-differential pri-
vacy model (i.e., w-event privacy) to make a good trade-off between the privacy
and the utility, and thus it can protect any sequence of events existing within
any time stamp window of length w.

In this paper, we investigate the real-time web browsing data publishing
problem with privacy protection, e.g., securing the number of visits to different
web pages at each time stamp. [12] took the first step to share web browsing data
with differential privacy, which focused on real-time web browsing data release
over a pre-specified finite time stamps. However, the continuous publication of
web browsing data (called data streaming) may further reveal sensitive infor-
mation of users, which motivates the research on privacy preserving real-time
web browsing data publishing over infinite time. The w-event privacy model
well suits for the infinite stream case, and it can provide a full protection of any
user’s browsing traces (e.g., a sequence of visited web pages) over any sequence
of continuous time stamps of length w. We summarize the main contributions
of this paper as follows.

– We design a novel privacy preserving scheme, called SecWeb, for real-time web
browsing data publishing with strong privacy guarantee. We design a dynamic
grouping mechanism which groups all web pages with a small number of visits,
and Laplace noise is inserted to every group other than a single web page to
eliminate the effects of perturbation error on web pages.

– We propose adaptive sampling and budget allocation schemes to better allo-
cate appropriate budget of privacy to the sampling points within any sequence
of continuous time stamps of length w. We further propose a pre-sampling
mechanism to reduce the high query sensitivity and integrate it with SecWeb
seamlessly.

– We theoretically prove that SecWeb satisfies the notion of w-event
ε-differential privacy. SecWeb is evaluated with a real-world dataset,
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and compare it with the state-of-the-art approaches. The results demonstrate
that SecWeb outperforms the previous approaches and improves the utility or
accuracy of real-time web browsing data publishing with a vigorous privacy
guarantee.

The remaining parts of this paper are organized as the following sections.
Section 2 introduces some preliminary knowledge, describes the problem formu-
lation and briefly discuss the related works. We present SecWeb and analyze
its privacy in Sect. 3. We evaluate the performance of SecWeb with extensive
experiments in Sect. 4 and finally conclude the paper in Sect. 5.

2 Backgroud

2.1 Preliminaries and Problem Statement

In this section, we introduce some preliminary knowledge of differential privacy
and w-event privacy, and present the problem to be studied in this paper.

Differential Privacy. Differential privacy has become a de-facto standard
privacy model for statistics analysis with provable privacy guarantee. Intu-
itively, a mechanism satisfies differential privacy if its outputs are approximately
unchanged even if a record in the dataset is removed, so that an adversary infers
no more information about the record from the mechanism outputs.

Definition 1 (Differential Privacy [9]). A privacy mechanism M gives ε-
differential privacy, where ε > 0, if for any datasets D and D′ differing on at
most one record, and for all sets S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S], (1)

where ε is the privacy budget representing the privacy level the mechanism pro-
vides. Generally speaking, a smaller ε guarantees a stronger privacy level.

Definition 2 (l1-norm Sensitivity [10]). For any function f : D → Rd, the
l1-norm sensitivity of f w.r.t. D is

Δ(f) = max
D,D′∈D

||f(D) − f(D′)||1 (2)

for all D, D′ differing on at most one record.

Laplace mechanism is commonly used to realize ε-differential privacy, which
adds noise drawn from a Laplace distribution into the datasets to be published.

Theorem 1 (Laplace Mechanism [10]). For any function f : D → Rd, the
Laplace Mechanism M for any dataset D ∈ D

M(D) = f(D) + 〈Lap(Δ(f)/ε)〉d (3)

satisfies ε-differential privacy, where the noise Lap(Δ(f)/ε) is drawn from a
Laplace distribution with mean zero and scale Δ(f)/ε.
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Intuitively, the noise is large if sensitivity Δ(f) is big or the budget ε is small.

w-Event Privacy. The notion of w-event ε-differential privacy (i.e., w-event
privacy) was first proposed in [18]. This new privacy model can give provable
privacy assurance for any sequence of events within successive time stamps of
length w.

Before giving the formal definition of w-event privacy, we first introduce some
necessary notions. Two data sets Di,D

′
i at time stamp i are neighboring if they

have at most one different row. At time stamp t, we define the stream prefix of
an infinite series S = (D1,D2, ...) as St = (D1,D2, ...,Dt).

Definition 3 (w-neighboring [18]). w is a positive integer, we say that St, S
′
t

are w-neighboring, if

1. For every St[i], S′
t[i] such that i ∈ [t] and St[i] �= S′

t[i], it holds that St[i], S′
t[i]

are neighboring, and
2. For every St[i1], St[i2], S′

t[i1], S′
t[i2] with i1 < i2, St[i1] �= S′

t[i1] and St[i2] �=
S′

t[i2], it holds that i2 − i1 + 1 ≤ w.

Simply put, if St, S′
t are w-neighboring, their elements are pairwise the same

or neighboring, and the time interval of any two neighboring datasets will not
exceed w time stamps.

Definition 4 (w-Event Privacy [18]). A mechanism M satisfies w-event ε-
differential privacy, if for all sets S ⊆ Range(M) and all w-neighboring stream
prefixes St, S′

t and all t, it holds that

Pr[M(St) ∈ S] ≤ exp(ε) · Pr[M(S′
t) ∈ S]. (4)

A mechanism satisfying w-event privacy will protect the sensitive information
that may be disclosed from a sequence of some length w.

Theorem 2 ([18]). Let M be a mechanism that takes stream prefix St as input,
where St[i] = Di ∈ D, and outputs s = (s1,..., st) ∈ Range(M). Suppose M can
be decomposed into t mechanisms M1, ...,Mt such that Mi(Di) = si, each Mi

generates independent randomness and achieves εi-differential privacy. Then, M
satisfies w-event privacy if

∀i ∈ [t],
i∑

k=i−w+1

εk ≤ ε. (5)

This theorem enables us to view ε as the total available privacy budget in
any sliding window of size w, and appropriately allocate portions of it across the
time stamps.



Privacy-Preserving Web Browsing Monitoring 459

Problem Statement. In this paper, we consider the application of continually
publishing web browsing histories to the public in real-time manner and aim
to realize w-event privacy for real-time web browsing data publishing. Here, a
browsing history is defined as a sequence of web pages browsed at consecutive
and discrete time stamps. A host server collects and records users’ browsing
data, and generates a database D as time goes. The objective is to continually
make the data statistics calculated on D public in a real-time manner with the
guarantee of w-event privacy. To achieve this goal, the host server will not release
the real value of statistics, but apply a well-designed privacy protection scheme
to publish a sanitised version of the original statistics.

The server gathers the users’ browsing logs throughout the time, and at
time stamp i obtains a two-dimensional database/matrix Di, where the columns
correspond to the web pages and the rows correspond to the users. Di[m][n] is
set to 1 if the user m has visited the web page n at time stamp i(during time
stamp i − 1 and i), and 0 otherwise. Note that each row of Di may contains
several 1 s since a user may visit more than one web page for a period of time
in reality. The server then publishes the statistics of the visits for each page at
time stamps i. Here, we define the statistic of the visits for each web page as a
query function Q on Di, Q(Di) = Xi = (x1

i , x
2
i , · · · , xd

i ), where d denotes the
total number of pages and xj

i denotes the number of visits of page j. Since each
user can visit several web pages for each time stamp, the sensitivity Δ(Q) may
be large and consequently leads to a huge injected noise.

Instead of directly releasing xj
i with high privacy leakage, the server publishes

a sanitized version of xj
i , denoted by rj

i . At time stamp i, based on the statis-
tics Xi, we denote its corresponding sanitized version by Ri = (r1i , r2i , · · · , rd

i ).
Therefore, the goal of this paper is to design a privacy protection mechanism to
generate and publish the sanitized version Ri in real-time and guarantee that
the subsequent releases R = {R1, R2, ..., Ri, ...} is satisfying w-event privacy.

Here, we briefly explain several important notions to be used throughout the
paper.

Utility. The utility of the published data measures how valid the data is used
for subsequent analysis or mining tasks. In this paper, we evaluate the utility
with the following metrics: Mean Absolute Error (MAE), Mean Relative Error
(MRE), and Top-K mining precision.

Sampling Point and Non-Sampling Point. A sampling point is a selected time
stamp where the raw statistic is queried and perturbed. The statistic at a non-
sampling point will not be queried but instead will be approximated by the
perturbed data at last sampling point.

2.2 Related Work

In [4,21], it has been shown that there exist severe privacy risks when users’
data is released, and many privacy-assured data publishing schemes have been
designed accordingly.
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To publish search logs or web browsing data, many schemes were proposed
to achieve k-anonymity [2,16]. However, it was shown in [15] that the existing
solutions always assume the attackers have no background knowledge, and this
is not true in practice. In comparison, the notion of differential privacy proposed
in [9] can ensure much stronger privacy guarantee, where a user’s privacy can
be well protected even if the attackers have obtained the others’ information in
the database. Following the differential privacy model, [10] proposed the first
differentially private scheme called Laplace mechanism. On top of that, many
schemes have been presented for achieving differentially private data publishing
in the past years.

In [8,20,24], several mechanisms were proposed for the release of statistical
data computed based on the static database. Until recently, researchers began
to consider releasing time series data. One direction is to study the off-line
data release [1,23] while the other direction is to investigate the real-time data
publishing [7,11]. The key difference between these two direction is that the
solutions for the off-line data release deal with the whole time series data at
one time, but the solutions for the real-time data publishing deal with the data
streamingly.

In [7,11], the authors proposed differentially private solutions for continual
counting queries over time series data, and the techniques can be used for real-
time monitoring. Their limitation is that only event-level privacy guarantee is
provided. That is, only one’s presence at a single time stamp is fully protected
over the whole data stream.

In [12,13,18], the proposed solutions considered differentially private release
of real-time time series. Different from [7,11,13] established a new framework
called FAST. FAST consists of sampling and filtering operations with the appeal-
ing property of providing user-level privacy. That is, the presence of a user over
the whole time series is protected. But FAST has the limitation of pre-assigning
the maximum times of publications, so it is only suitable for finite-time data
publishing. To fill the gap between event-level privacy and user-level privacy,
Kellaris et al. [18] proposed w-event ε-differential privacy, and it can protect
any sequence of events existing in any continuous time stamps of length w over
infinite time. Due to its nice property, in this paper we use it to protect users’
web browsing traces within any window of w continuous time stamps.

Fan and Xiong [12] took the first step towards sharing web browsing data
with differential privacy. They proposed two algorithms based on FAST. The
first algorithm slightly changes FAST to the web browsing scenario, which is
called univariate Kalman filter (U-KF). The second algorithm, called multi-
variate Kalman filter (M-KF), establishes a multivariate model and utilizes the
Markov property of web browsing behavior. M-KF uses Markov chain to improve
accuracy of the prediction step in Kalman filter and have a more accurate result
than U-KF. However, the Markov model must be learned by an appropriate
training set in advance and the multiple steps of matrix operations in M-KF
extremely reduce its efficiency, which is especially vital for a real-time algorithm.

Competitors. We identify three competitors. The first is an application of LPA
[10] on w-event privacy, which is also called UNIFORM in [18]. UNIFORM
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assigns ε
w to every time stamp, where ε is the total budget. And then UNIFORM

straightforwardly applies LPA at each time stamp. Obviously, the budget for each
time stamp will be very small if w is large, which leads to a very bad utility.

The last two competitors are U-KF and M-KF. Since U-KF and M-KF are not
w-event private, we slightly change them to satisfy w-event privacy according
to [18] and name the new schemes as U-KFw and M-KFw. To be precise, we
make an instantiation of the two methods which consist of sub mechanisms,
each operating on a disjoint w time stamps. In order to guarantee that the total
budget allocated in any w successive time stamps is less than ε, for each sub
mechanism, we allocate budget ε/2 to satisfy w-event privacy.

3 SecWeb: Real-Time Web Browsing Data Publishing
with Privacy Preservation

In this section, we present our SecWeb design to achieve real-time web brows-
ing data publishing with privacy preservation. In order to realize this purpose,
we propose a framework for SecWeb, as shown in Fig. 2, which is mainly com-
posed of five components: adaptive sampling, dynamic grouping, adaptive budget
allocation, grouping based perturbation, filtering and pre-sampling.

Fig. 2. The framework of SecWeb

Specifically, the adaptive sampling component can adjust the sampling rate
based on dynamic data, and it enables SecWeb to perturb statistics at selected
sampling time stamps while approximating the non-sampled statistics with per-
turbed statistics at the last sampling time stamp. The adaptive budget allocation
component can dynamically allocate appropriate budget for each sampling page
according to the changing trend of each web page. For the sampling pages at
each time stamp, the dynamic grouping component can group sampling pages
with similar features together, and the group based perturbation component can
inject Laplace noise to the groups other than individual web pages with the
allocated budget to reduce the perturbation error to each web page. Moreover,
following FAST, the filtering component is used to further enhance the utility
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of published sanitized data. Finally, the server publishes the sanitized data after
filtering and chooses the new sampling interval for the sampling pages using the
adaptive sampling component. After presenting SecWeb, we further propose a
pre-sampling method to reduce the high query sensitivity, and this method can
be integrating with SecWeb seamlessly.

3.1 Adaptive Sampling

Every noisy data release comes at the cost of budget consumption while the
entire budget ε is a constant. Thus, publishing noisy data at every time stamp
will introduce large magnitude of noise when the window size w is large. An
efficient way to overcome this problem is to use a sampling mechanism which
queries and perturbs statistics at selected time stamps and approximates the
non-sampled statistics with perturbed sampled statistics. Consequently, non-
sampled statistics can be approximated without any budget allocation, and more
budget can be allocated to sampling points within any successive w time stamps
given a fixed ε.

Figure 3 shows the general idea of the adaptive sampling mechanism. The blue
line with markers represents the raw data series, the red line denotes the released
data and the dashed green lines denote the sampling points. Note that here we
inject Laplace noise at each sampling point with value of zero for simplicity.
As shown in Fig. 3, the adaptive sampling mechanism only samples three points
through time stamp 1 to 10, since the raw series change gently and the non-
sampled statistics could be roughly approximated. The sampling rate increases
when the raw data changes dramatically through time stamp 10 to 20 in order
to avoid large error introduced by approximation.

Fig. 3. An illustration of adaptive sampling (Color figure online)

In this paper, we consider both the data dynamics and the remaining bud-
get to design an adaptive sampling mechanism. Specifically, the proportional-
integral-derivative (PID) control is utilized to characterize the dynamic data. At
the next time stamp, we then choose the next sampling interval for every page
with the PID error and the remaining budget. In comparison to FAST [13], here
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a new feedback error measure is used to compute the PID error. This is because
FAST’s feedback error can be too sensitive to data dynamics, and the adaptive
sampling performance would be affected when we have small data values.

Let kn and kn−1 be the current and the last sampling points, respectively.
For page j, we have the feedback error :

Ej
kn

= |rj
kn

− rj
kn−1

|.
It is actually the error of the released data values between the current and the
last sampling points. The PID error δj for statistics on the jth column of Dkn

(i.e., page j) is computed as

δj = KpE
j
kn

+ Ki

∑n
o=n−π−1 Ej

ko

π
+ Kd

Ej
kn

kn − kn−1
, (6)

where Kp, Ki, and Kd denote the standard PID scale factors, which respectively
represents the proportional gain, the integral gain and the derivative gain. The
first term KpE

j
kn

is the proportional error standing for the present error; the

second term Ki

∑n
o=n−π−1 Ej

ko

π is the integral error standing for the accumulation
of past errors, and π is how many recent errors are taken for the integral error;

the third term Kd
Ej

kn

kn−kn−1
denotes the derivative error used to predict the future

error. In our experiments, for the PID controller we choose π = 3, Kp = 0.9,
Ki = 0.1, and Kd = 0.

It may seem that we should choose a small sampling interval if the data
rapidly changes. However, this is not always the case. When we have a very
small remaining budget, sampling and perturbing statistics at the next time
stamp may incur quite high perturbation error. So, a better choice is to adopt
a relatively large sampling interval, then the previously-allocated budget can be
used again, and it will approximate the statistics at the next time stamp with
the previous publication. We have the new sampling interval

I = max{1, Il + θ(1 − (
δj

λr
)2)}, (7)

where I and Il respectively denotes the next and the last sampling intervals of
page j. In our settings, λr = 1/εr is chosen to measure the scale of Laplace noise.
Here εr denotes the remaining budget at the next time stamp, and θ denotes a
pre-defined scale factor used to adjust the sampling interval. In our experiments,
we set θ = 10. In particular, the relative value of PID error δj and the scale of
Laplace noise λr are used to determine the increase or decrease of the sampling
interval. In fact, we increase the sampling interval when δj < λr and decrease it
when δj > λr.

3.2 Dynamic Grouping

Intuitively, directly injecting Laplace noise to each statistic is the simple and
straightforward way to achieve differential privacy. However, this is not true.
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For the web pages with small statistics, their utilities will be severely affected
when the privacy level is satisfied, especially when the limited privacy budget
should be allocated to multiple time stamps. Even a small noise may cause large
relative error when the statistics of sampling pages are small.

Fan et al. [14] proposed a grouping mechanism to solve this kind of problems.
The main idea is to aggregate the statistics of similar regions together and inject
noise to each aggregated group, and then average the noisy count to each group
member. Note that the proposed grouping mechanism in [14] is based on the
assumption that the statistics of regions which are close in space have similar
changing trend, and the grouping process is performed offline at one time. This
assumption however does not hold for real-time web browsing data publishing
since the statistics of web pages behave high dynamics and should not be grouped
offline at one time.

Inspired by the grouping mechanism in [14], in this paper, we propose a
dynamic grouping mechanism that aggregates the web pages with small statistics
dynamically based on their real-time changing trend. The main idea is that web
pages with small statistics can be grouped together if their statistics are close
and the changing trends of statistics are similar.

To realize this objective, we use the released statistics at previous sampling
points to predict the statistic at current sampling point as well as characterize the
changing trends of statistics. Let (rj

ki−κ
, rj

ki−κ+1
, · · · , rj

ki−1
) denote the released

statistics at previous κ sampling points, and x̄j
ki

denote the predicted statistic
at sampling point ki for page j. We let x̄j

ki
=

∑i−1
o=i−κ rj

ko
/κ, and adopt Pearson

Correlation Coefficient [22], the most commonly used measure of correlation in
statistics, to measure the similarity of changing trend of statistics. Finally, pages
with small statistics and high similarity are grouped together.

The pseudocode of the dynamic grouping mechanism is formally presented
in Algorithm 1. Note that at each time stamp, dynamic grouping only considers
the set of pages that need to be sampled, denoted by Ψ . Let Gki

denote the
group strategy at time stamp ki. First, the mechanism predicts the statistic at
ki for each sampling page in Ψ . Let τ1 denotes the noise resistance threshold that
reflects whether the statistics of pages have sufficient capacity to resist noise. If
x̄j

ki
≥ τ1, the page itself can be a group; otherwise, the page is encouraged to

be grouped with other pages. Thus, in lines 2–7, the mechanism filters out the
pages that can resist noise individually which do not need to be grouped with
other pages together. These found pages are put into the group strategy Gki

where each of them is an individual group.
Lines 8–20 describes how to group web pages with small statistics together.

Generally speaking, two pages i and j can be grouped together if they have
small error between x̄i

ki
and x̄j

ki
, and also they have sufficient similarity of the

changing trend. The similarity of two pages i and j at time stamp ki can be
calculated by the Pearson Correlation Coefficient of Ri

k and Rj
k. Let τ2 denote

the similarity threshold that decides whether two pages have similar changing
trends of statistics. Thus, when the similarity of two pages is no less than τ2,
the two pages have sufficient similarity. Let τ3 denote the error threshold that
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Algorithm 1. Dynamic Grouping
Input: Ψ : the collection of sampling pages;

Rj
k = (rj

ki−κ
, rj

ki−κ+1
, · · · , rj

ki−1
): the released statistics at previous κ sampling

points for a sampling page j.
Output: Group strategy Gki .
1: Calculate x̄j

ki
=
∑i−1

o=i−κ rj
ko

/κ for each page j in Ψ
2: for each page in Ψ , say j do
3: if x̄j

ki
> τ1 then

4: Let the page j itself as a group and add it to Gki

5: Remove page j from Ψ
6: end if
7: end for
8: Sort Ψ in increasing order according to x̄j

ki

9: while Ψ �= ∅ do
10: Initialize a empty group g with the first page in Ψ
11: Let o = 2
12: while o < Ψ.length, x̄o

ki
− x̄1

ki
< τ2 and the sum of x̄j

ki
in g < τ1 do

13: pc ← calculate Pearson Correlation Coefficient between page o and page 1
14: if pc > τ3 then
15: Add page o to g
16: end if
17: o = o + 1
18: end while
19: Remove the pages in g from Ψ and add g to Gki

20: end while
21: Return grouping strategy Gki

decides whether two pages are close or not in terms of predicted statistics. Thus,
when the error is less than τ3 and the similarity is larger than τ2, two pages are
encouraged to be grouped together.

In line 8, the dynamic grouping mechanism first sorts the remaining web
pages in Ψ in increasing order according to x̄j

ki
. In lines 9–20, the mechanism

repeatedly forms groups by putting the pages in Ψ with small error and high
similarity to the first page in Ψ , and puts the formed groups into the group
strategy Gki

. The process terminates until there is no page in Ψ . Note that when
forming a group, the grouping process checks the remaining pages one by one
in Ψ and put qualified pages into a group. However, if the sum of predicted
statistics of all pages put in the group is larger than τ1, which means the group
has sufficient capacity to resist noise, no more page need to be added to this
group and a new grouping process can start.

3.3 Adaptive Budget Allocation

To achieve w-event differential privacy, we should make sure that the budget
sum of any successive w time stamps is at most ε. Here, we propose an adaptive
budget allocation mechanism based on the trend of data change to adaptively
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Algorithm 2. Adaptive Budget Allocation
Input: Privacy budget ε, new sampling interval I, allocated budget for each time

stamp (ε1, ..., εi−1), and the maximum allocated budget at each sampling point
εmax. Note that εk = 0 if time stamp k is not a sampling point.

Output: Budget allocation εi for the sampling time stamp i
1: Compute the remaining budget εr = ε −∑i−1

k=i−w+1 εk

2: Compute the portion p = min(φ · ln(I + 1), pmax)
3: Compute the allocated budget εi = min(p · εr, εmax)

allocate appropriate budget at each sampling point. In our design, based on
the data change trend, we adjust the length of the sampling interval. In fact,
when data changes rapidly (slowly) the new sampling interval is small (large).
Thus, for the small sampling interval, we could infer that the data is changing
rapidly, so we have more sampling points within a time window of length w.
Then, we determine to put a small portion of the remaining budget to the next
sampling point. In this case, more available budget can be given to the (potential)
successive sampling points. When we have a large the sampling interval, we could
infer that the data is changing slowly, so we only have fewer sampling points
within the time window of length w. So, we determine to put a large portion of
the remaining budget to the next sampling point.

To achieve our goal, we propose to use the natural logarithm to link p (the
portion of the remaining budget) and I. So, we define p = φ · ln(I + 1), where
the scale factor φ ranges in (0,1]. Because I has the minimum value 1, to avoid
the case that p = 0 we use ln(I + 1) other than ln I.

Algorithm 2 formally presents the adaptive budget allocation mechanism.
First, we compute the remaining budget εr in [i − w + 1, i]. Here εr equals to ε
minus the budget sum allocated in [i−w+1, i−1]. Then we compute the portion
p to determine how much budget will be used for the current sampling point i. It
is worth noting that p ≤ pmax is set to avoid the case that we leave to the next
sampling point too few budget. Finally, we compute the budget allocated to the
current time stamp as εi = min(p · εr, εmax), where εmax is the upperbound for
the budget allocated at each sampling point. The introduction of εmax is due
to the fact that the utility enhancement is small when the allocated budget is
larger than εmax, say εmax = 0.2 when ε = 1.

3.4 Group-Based Perturbation and Filtering

At each time stamp, we apply Laplace mechanism to inject Laplace noise to
statistics at sampling pages to provide differential privacy guarantee. For each
non-sampling page, the publication is approximated by its last release. Here,
Laplace mechanism is applied to every group other than every page. Then we
compute the average of the perturbed statistic to each page. To guarantee that
the total budget assigned to every page at any successive w time stamps is less
than ε, the budget assigned to a group is the smallest budget assigned to pages
in the group.
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Assume we have a group g of ϕ pages. Thus, g contains ϕ columns of Di and
g ⊆ Di. We use f(g) to denote the statistic function that accumulates all 1’s in
g. We use λ(g) to denote the scale of Laplace noise injected to f(g). The Laplace
mechanism is applied to group g, and we have

M(g) = f(g) + Lap(λ(g))

=
ϕ∑

j=1

∑
g[j] + Lap(Δ(f)/min(εg[j])), (8)

where g[j] is the jth column of g and Δ(f) is decided by the database.
Then the perturbed statistic for each column/page at group g is calculated

as the average of M(g). That is,

M(g[j]) = M(g)/ϕ, ∀j = 1, · · · , ϕ. (9)

However, we would not release M(g[j]) directly and further apply the Kalman
filtering mechanism of FAST algorithm [13] to improve the utility of released
statistics. The detail of the mechanism can be found in [13].

3.5 Pre-sampling to Reduce Sensitivity

We use dynamic grouping to diminish the perturbation error on small statistics,
which greatly improves the data utility of pages with small counts. However, the
high query sensitivity will still bring a huge injected noise, which may also have
a bad influence on the utility of released data.

In [17], the authors proposed a sampling method to generate a small portion
of the original database, which is used to calculate the grouping strategy. Inspired
by their work, we consider whether we can further reduce the injected noise by
cutting down the sensitivity Δ(Q) through a pre-sampling method.

Here, we propose a concise and effective pre-sampling method to generate
the representative database D′

i at each sampling point i. Specifically, at each
sampling point i, our method gets a new database D′

i by randomly sampling
m 1s in each row in Di(if there are only n < m 1s in a row, preserve them
all), and setting the remaining to 0. Consequently, there are at most m 1s in
each row after pre-sampling, i.e., each user can visits at most m web pages per
time stamp and the sensitivity Δ(Q(D′

i)) = m. We then use D′
i to replace the

original database Di, and the remaining procedures are just the same as the
original SecWeb. The only difference is, for each group g, only Lap(m/min(εg))
of noise is needed to be injected, where m can be a user-defined parameter. Note
that the pre-sampling method also cause a biased estimate error since D′

i is a
selected portion of Di. The error is heavily data-dependent which can not be
rigorously analyzed, and consequently we cannot give a certain value of m to get
the optimal performance without knowing the data distribution. Intuitively, the
value of m should be close to the average counts of each page in the database,
we will test the effectiveness of pre-sampling over different values of m in our
experiments.
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3.6 Privacy Analysis

Theorem 3. SecWeb satisfies w-event ε-differential privacy.

Proof. According to Axiom 2.1.1 in [19], post-processing the sanitized data main-
tains privacy as long as the post-processing algorithm does not use the sensitive
information directly. In SecWeb, group-based perturbation is the only component
processing the raw data directly, while other components process the sanitized
data. Thus, we will first show that the group-based perturbation component
achieves w-event ε-differential privacy, then it is easy to prove that SecWeb can
achieve the same privacy guarantee.

Based on G, Di is separated to n disjoint groups {g1, g2,. . . , gn}, and every
group contains some columns of Di. Without any loss of generality, we consider
g1, and suppose g1 consists of ϕ1 columns. Based on Eq. 8, we have

M(g1) = f(g1) + Lap(λ(g1))

=
ϕ1∑

j=1

∑
g1[j] + Lap(Δ(f)/min(εg1)).

Here, g1[j] denotes g1’s j-th column.
Based on Theorem 1, M(g1) achieves min(εg1)-differential privacy. Based on

Axiom 2.1.1 in [19], M(g1[j]) (∀j = 1, · · · , ϕ) also achieves min(εg1)-differential
privacy. Analogously, every group runs Laplace mechanism independently on a
column/page in group gk satisfying min(εgk

)-differential privacy. We use ε̂k and
εk to respectively denote the budget used for perturbation and the allocated
budget (generated by the adaptive budget allocation component) for a page at
time stamp k, then we have ε̂k ≤ εk.

Based on Theorem 2, to show that the perturbation component for a page
achieves w-event ε-differential privacy, we should show that for each t and i ∈ [t],∑i

k=i−w+1 ε̂k ≤ ε will hold. Because our adaptive budget allocation component
guarantees that

∑i
k=i−w+1 εk ≤ ε for any w successive time stamps, and ε̂k ≤ εk,

then we have
∑i

k=i−w+1 ε̂k ≤ ε. Hence, the perturbation component on each
group achieves w-event ε-differential privacy. Hence, SecWeb can also achieve
the same privacy guarantee.

Theorem 4. SecWeb with pre-sampling(SecWeb-S for short) satisfies w-event
ε-differential privacy.

Proof. The only differences between SecWeb-S and SecWeb are the procedure
of pre-sampling and the noise injected in group-based perturbation. Consider a
possible D′

i derived from pre-sampling Di, each row in D′
i contains at most m 1s.

Therefore, the sensitivity of the query f on D′
i in proof Sect. 3.6 is Δ(f(D′

i)) = m.
Recall that, for each group g we inject noise Lap(m/min(εg)), where min(εg)
is the minimum budget in g, thus we can derive that the pre-sampling and
group-based perturbation in SecWeb-S satisfies min(εg)-differential privacy. Sim-
ilar to proof Sect. 3.6, we can then conclude that SecWeb-S satisfies w-event
ε-differential privacy.



Privacy-Preserving Web Browsing Monitoring 469

4 Performance Evaluation

In this section, we used a real-world web dataset, WorldCup [3], as a source
of the input stream to evaluate the performance of SecWeb. The entire dataset
contains 1,352,804,107 web server logs collected by the FIFA 1998 World Cup
Web site between April 30, 1998 and July 26, 1998. These logs are the requests
made to 89,997 different URLs and each log consists of a client ID, a requested
URL, a time stamp, etc. We randomly choose 1,500 URLs as the test set, create
a stream from the set and publish the data per hour, which has a total of 1000
time stamps. The query sensitivity defined in Sect. 2.1 is 30, and the average
count of each page per time stamp is 17.9.

We compare our schemes SecWeb and SecWeb-S with three competitors as
introduced in Sect. 2.2, UNIFORM, U-KFw and M-KFw, where the latter are
the first two schemes proposed for web browsing monitoring with differential
privacy [12]. All the mechanisms are fine-tuned and implemented in Python.
We conduct all the experiments on a machine with Intel Core i5 CPU 2.9 GHz
and 12 GB RAM, running Windows 10. We set φ = 0.2 for the adaptive budget
allocation, and let τ1 = 50, τ2 = 0.5 and τ3 = 25 for dynamic grouping.

We use Mean Absolute Error (MAE) and Mean Relative Error (MRE) as the
utility metrics to evaluate the performance of the five mechanisms.

For any web page, let x = {x1, ..., xn} denote the raw time series and r =
{r1, ..., rn} denote the sanitized time series. The MAE and MRE for this page
are

MAE(x, r) =
1
n

n∑

i=1

|ri − xi| (10)

MRE(x, r) =
1
n

n∑

i=1

|ri − xi|
max(γ, xi)

(11)

For the bound γ, we set its value to 0.1% of
∑n

i=1 xi to mitigate the effect of
excessively small results. In experiments, we first calculate the MAE and MRE
for each page and then figure out the average of all pages as the final results.

(a) MAE (b) MRE

Fig. 4. Utility comparison when m changes (w = 120, ε = 1)
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Fig. 5. Utility comparison when ε changes (w = 120)

Fig. 6. Utility comparison when w changes (ε = 1)

Varying parameter m. Figure 4 illustrates the different performances of
SecWeb-S when changing the value of m. As we can see, the pre-sampling method
can improve the data utility by reducing the query sensitivity, and SecWeb-
S achieves the best performance in both MAE and MRE when m = 20. This
results also verify our intuition that the value of m should be close to the average
count of each page per time stamp(the average count is 17.9 in our dataset). We
set m = 20 for SecWeb-S in the rest of our experiments.

Utility vs. Privacy. Figure 5 shows the relationship between data utility and
privacy budget ε. As we can see, the MAE and MRE of all five mechanisms
decrease when ε increases. This is because that lager ε requires smaller noise
to preserve privacy, which results in a better utility. UNIFORM has the worst
performance since it uniformly allocates the budget and simply adopts LPA at
each time stamp. U-KFw performs much better compared to UNIFORM, since
the posteriori estimate on each web page produced by Kalman Filter extremely
improves the utility. While the improved method M-KFw performs better than
U-KFw due to its adoption of fisrt-order Markov chain utilizing user pattern to
improve utility. SecWeb and SecWeb-S have the best performance compared to
other algorithms, and SecWeb-S performs a little better. The reason is that the
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well designed dynamic grouping strategy significantly improves the capacity of
resisting Laplace noise for pages with small statistics by grouping them together,
and the adaptive sampling mechanism also helps avoiding unnecessary noise. The
pre-sampling method in SecWeb-S also helps reducing the injected noise.

Utility vs. w. Figure 6 shows the comparison of different utility metrics between
the five schemes when window size w varies from 40 to 240. We can also observe
that SecWeb and SecWeb-S outperforms other algorithms when w changes. The
MAE and MRE of M-KFw and U-KFw increase when w becomes large. The
reason is that the budget allocated to each time stamp becomes less when w
increases since both of them allocate budget uniformly, which results in larger
error. The MAE and MRE of our two schemes are much smaller than that of
M-KFw and U-KFw and are robust to w changes, which is because that SecWeb
takes the remaining budget into consideration to adaptively allocate budget on
sampling points to reduce the error.

Effects of Dynamic Grouping. We evaluate the performance of our group-
ing method. Specifically, we calculate the average statistics of each page and
pick out the half part of pages with smallest statistics being the test set to see
the performance of dynamic grouping. Figure 7 shows the comparison of MAE
and MRE between the five schemes on the pages with small statistics. We can
observe that SecWeb achieves a much better utility on both MAE and MRE. The
reason is that the grouping mechanism in SecWeb groups these pages together
dynamically, injects noise to the whole group and averages the counts, which can
extremely reduce the perturbation error compared to the schemes that inject
noise to each page individually. Note that SecWeb-S also achieves a much better
utility, but not always as good as SecWeb. That is because the pages that we
select have small counts, where the selected portion of the original database pro-
duced by pre-sampling mechanism cannot represent them well since these pages
have a less times to be selected than the pages with larger statistics.

(a) MAE (b) MRE

Fig. 7. Utility comparison on pages with small statistics(w = 120, ε = 1)

Running Time. Table 2 shows the comparison of time complexity of the five
mechanisms. We can see that U-KFw and UNIFORM are the fastest mechanisms
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Table 2. Comparison of running time

UNIFORM U-KFw M-KFw SecWeb SecWeb-S

Time complexity O(d) O(d) O(d3) O(d2) O(d2)

Running time (d = 1500) 0.4× 10−5 s 0.4× 10−5 s 1.2 s 0.4× 10−2 s 0.45× 10−2 s

with time complexity O(d), while M-KFw is the slowest mechanism with time
complexity O(d3), where d is the number of pages. SecWeb and SecWeb-S with
the time complexity of O(d2) are slower than U-KFw but much faster than M-
KFw. Note that although U-KFw and UNIFORM are the most fast schemes,
they have the worst utility as seen from Figs. 5 and 6. Although the MAE and
MRE of M-KFw are close to that of SecWeb, SecWeb is much faster than M-KFw.
Note that SecWeb-S is a little bit slower than SecWeb since it has a pre-sampling
procedure. Overall, SecWeb and SecWeb-S achieve a well tradeoff between time
efficiency and utility.

5 Conclusions

In this paper, we proposed SecWeb to enable continually publishing aggregated
web browsing data for real-time monitoring purposes with w-event privacy guar-
antee. SecWeb is designed with five integrated components: adaptive sampling,
adaptive budget allocation, dynamic grouping, group-based perturbation and fil-
tering. We proved that SecWeb satisfies w-event ε-differential privacy. We fur-
ther proposed a pre-sampling method to reduce the high query sensitivity and
integrated it with SecWeb seamlessly (SecWeb-S). Extensive experiments on
real-world dataset showed that SecWeb-S outperforms the existing methods and
improves the utility of the released data with strong privacy guarantee.
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15. Götz, M., Machanavajjhala, A., Wang, G., Xiao, X., Gehrke, J.: Publishing search
logsa comparative study of privacy guarantees. IEEE Trans. Knowl. Data Eng.
24(3), 520–532 (2012)

16. Hong, Y., He, X., Vaidya, J., Adam, N., Atluri, V.: Effective anonymization of
query logs. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, pp. 1465–1468 (2009)

17. Kellaris, G., Papadopoulos, S.: Practical differential privacy via grouping and
smoothing. In: Proceedings of the VLDB Endowment, vol. 6, pp. 301–312. VLDB
Endowment (2013)

18. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event
sequences over infinite streams. Proc. VLDB Endowment 7(12), 1155–1166 (2014)

19. Kifer, D., Lin, B.R.: Towards an axiomatization of statistical privacy and utility.
In: Proceedings of ACM PODS, pp. 147–158 (2010)

20. Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries
and clicks privately. In: Proceedings of the 18th International Conference on World
Wide Web, pp. 171–180 (2009)

21. Olejnik, L., Castelluccia, C., Janc, A.: Why Johnny can’t browse in peace: on the
uniqueness of web browsing history patterns. In: 5th Workshop on Hot Topics in
Privacy Enhancing Technologies (HotPETs 2012) (2012)

22. Pearson, K.: Note on regression and inheritance in the case of two parents. Proc.
R. Soc. Lond. 58, 240–242 (1895)

23. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pp. 735–746 (2010)

http://arxiv.org/abs/1103.0825
http://dx.doi.org/10.1007/11787006_1


474 Q. Wang et al.

24. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially pri-
vate histogram publication. VLDB J. Int. J. Very Large Databases 22(6), 797–822
(2013)

25. Zang, H., Bolot, J.: Anonymization of location data does not work: a large-scale
measurement study. In: Proceedings of ACM MobiCom, pp. 145–156 (2011)


	SecWeb: Privacy-Preserving Web Browsing Monitoring with w-Event Differential Privacy
	1 Introduction
	2 Backgroud
	2.1 Preliminaries and Problem Statement
	2.2 Related Work

	3 SecWeb: Real-Time Web Browsing Data Publishing with Privacy Preservation
	3.1 Adaptive Sampling
	3.2 Dynamic Grouping
	3.3 Adaptive Budget Allocation
	3.4 Group-Based Perturbation and Filtering
	3.5 Pre-sampling to Reduce Sensitivity
	3.6 Privacy Analysis

	4 Performance Evaluation
	5 Conclusions
	References


