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Abstract. Proof-of-Ownership (PoW) can be an effective deduplication
technique to reduce storage requirements, by providing cloud storage
servers the capability to guarantee that clients only upload and down-
load files that they are in possession of. In this paper, we propose an
attribute symmetric encryption PoW scheme (ase-PoW) for hierarchi-
cal environments such as corporations, in which (1) the external cloud
service provider is honest-but-curious and (2) there is a flexible access
control in place to ensure only users with the right privilege can access
sensitive files. This is, to the best of our knowledge, the first such scheme
and it is built upon the ce-PoW scheme of González-Manzano and Orfila
(2015). ase-PoW outperforms ce-PoW in thaact it does not suffer from
content-guessing attacks, it reduces client storage needs and computa-
tional workload.

Keywords: Deduplication technique · Proof of Ownership · Symmetric
encryption · Access control

1 Introduction

Cloud storage services are increasingly popular with both individual and orga-
nizational users1. This is, perhaps, unsurprising due to the wide range of cloud
storage solutions offering significant or unlimited amount of storage to individual
users and organizations such as educational institutions [1,2]. Cloud storage has
also attracted the attention of researchers [3] such as forensics [4–6], security and
privacy [7–9], in addition to designing efficient and effective storage solutions.
For example, deduplication techniques have been the subject of recent research
focus due to their potential in significant reduction of cloud storage requirements.
1 http://www.computerweekly.com/opinion/Time-to-outsource-data-storage and

http://www.lima.co.uk/blog/3-reasons-why-businesses-choose-to-outsource-their-
data-storage/; last accessed 10 May 2016.
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Specifically, the deployment of deduplication techniques allows cloud servers to
store only a single copy of the uploaded data together with the list of owners,
thus, significantly reducing the storage requirements [10].

There are two main security challenges faced in deploying deduplication tech-
niques in a hierarchical context, namely file access control and data leakage pre-
vention. In the former, it is critical to ensure that only authorized users are
granted access to the file. Let us consider a naive deduplication scheme, where a
client sends a file identifier to the cloud and if it is already stored, then the server
assumes that the client owns the file. However, this allows an attacker (including
another malicious client) who only knows a file identifier but does not have the
file to gain access to the file (e.g. by “colluding” with the file owner such as
compromising the device of the file owner using malware). Proof of Ownership
(PoW) scheme has been shown to be a viable solution against such an attack.
PoW schemes, first introduced by Halevi et al. [11], guarantee that clients are
in possession of the uploaded files, by presenting a proof of file ownership that
can only be established when the file is available to the clients. Under a secu-
rity parameter, a PoW is assumed to be secure even when an adversary knows
part of the file [12]. Several PoW schemes extending the work of Halevi et al.
have been proposed in the literature. For example, Di Pietro et al. [12] propose
the s-PoW scheme designed to enhance client-side efficiency, Blasco et al. [13]
present the bf-PoW scheme designed to achieve flexibility and scalability, and
González-Manzano et al. [14] propose the ce-PoW scheme designed to deal with
honest-but-curious servers and to achieve efficiency. In a hierarchical deploy-
ment, deduplication also needs to ensure that users have rights to access the
data and a number of proposals have been presented in this regard [15–21]. Such
requirement is also referred to as authorized deduplication [19]. However, exist-
ing proposals generally impose a significant burden on the cloud server or do not
necessarily ensure that users own the file.

In the data leakage prevention scenario, given that data storage is outsourced,
cloud servers are assumed to be honest-but-curious. Such servers honestly exe-
cute the proposed scheme but they may attempt to learn the stored content. To
mitigate such threats, previous attempts have focused on encrypting the files.
We observe that current solutions generally use symmetric encryption, due to
the need to ensure that the result of the encryption of a same file remains the
same in order to allow deduplication. The most common approach is to apply
the Convergent Encryption (CE) scheme [16], where files are encrypted using
their content as a key [22]. However, CE suffers from a number of limitations
including content guessing attacks (i.e. malicious clients are able to discover the
plaintext content) [14,16]. There is no known PoW solution that provides both
file access control and data leakage prevention. This is the gap that this paper
seeks to contribute to.

We present the Attribute Symmetric Encryption Proof of Ownership scheme
(hereafter referred to as ase-PoW), which extends the ce-PoW scheme presented
in [14]. Specifically, we include a lightweight access control procedure that does
not impose any burden on the cloud server and our proposed scheme is designed
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to withstand content guessing attacks. To ensure that the scheme can be deployed
in a hierarchical application, access control is achieved through encryption where
the keys are linked to user attributes. Thus, only users with a given attribute
(say belonging to a particular department, e.g. human resources) can access (and
further deduplicate) the corresponding file (e.g. employees’ contracts). We then
demonstrate that ase-PoW outperforms ce-PoW, in terms of both storage and
client efficiency.

The structure of the paper is as follows. Section 2 reviews the ce-PoW scheme.
Section 3 describes the proposed scheme ase-PoW. We demonstrate the security
and utility of the proposed scheme in Sects. 4 and 5. Related work is discussed
in Sect. 6. Finally, Sect. 7 concludes the paper and outlines future research direc-
tions.

2 Revisiting the ce-PoW Scheme

The ce-PoW scheme [14] is an efficient PoW scheme designed for an environment
involving honest-but-curious servers. In the scheme, files are encrypted using
Convergent Encryption (CE) where the encryption key is the file itself, and
proof of ownership is achieved by requesting from clients some CE-encrypted
chunks. Specifically, let H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}B → {0, 1}l

cryptographic hash functions, where B and l represent the chunk size and the
token size respectively; and n is a positive integer. There are two phases in the
ce-PoW scheme, namely:

– Initialization: The client sends the file size to the server, which responds
with the number of chunks the file should be split into. Then, the client
convergently encrypts each chunk, computes H2 over each encrypted chunk
and finally, computes H1 over the resulting hashes obtaining hc. Both hc and
the encrypted chunks are then sent to the server. The server will compute hc

from the received encrypted chunks and verify whether the computed result
is the same as the received data to avoid poisoning attacks. If the verification
returns true, then the server creates an array storing three structures, namely:
one structure to store the list of owners, one structure to maintain a list of
challenges, and another one to store the responses to the challenges.

– Challenge: The server receives a hc value. If hc entry is not found, then
the server requests the client to upload the file size; thus, reverting to the
initialization phase. If an entry for hc exists, then the server loads in memory
the first unused challenge together with the corresponding responses, prior to
sending the challenge to the “claiming” client. The client then computes the
response token for each of the J chunk indices and sends the array of response
tokens to the server. Subsequently, the server checks whether the received
tokens match the stored tokens. If the check returns true, then the server
labels the PoW as successful and assigns the file to the client. Otherwise, the
client is considered to have failed the PoW.
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This scheme is proven to be secure under the bounded leakage setting, in
which a limited portion of a file may be leaked (i.e. 64 MB) but the file owner is
able to prove the possession of such a file in a secure manner [11].

However, the ce-PoW scheme suffers from two main weaknesses.

1. Due to the use of convergent encryption, the scheme is vulnerable to the
inherent content-guessing attacks.

2. Due to the need to store decryption keys (i.e. chunk hashes) on the client
devices in order to decrypt downloaded files, the number of keys stored by
any client corresponds to the file size for files smaller than 64 MB and 5% of
the file size for files larger than 64 MB. This is an unrealistic requirement,
particularly for client devices such as smart phones.

3 Attribute Symmetric Encryption Proof of Ownership
Scheme

In this section, we present an overview of the system, the threat model and the
goals of the proposed scheme, prior to describing the scheme.

3.1 System Overview

To explain how ase-PoW can be implemented in practice, let us consider the
following use case.

Use Case . A University consists of Departments (Di) divided into Groups (Gi),
which work in different Projects (Pi). Members of a given Gi may work in differ-
ent Pi. In addition, each Pi has a Gi who is the designated leader. Users involved
in Di, Gi and Pi have their own attributes and thus, they have corresponding
keys.

For simplicity, we now assume that there are two departments, D1 and D2

(Fig. 1). The former is composed by G1 and G2, which manage a pair of projects,
P1 and P2. G1 and G2 are leaders of P1 and P2 respectively. In D2, there is only
one group, G3, which is the leader of P3. Moreover, G1 takes part in P2 and G2

is involved in P3.
In terms of managing files f1 and f2 of P3, there are two main steps, namely:

encryption and deduplication. For encryption, let us assume that f1 needs to be
accessible only to users involved in P3 whereas f2 can only be accessed by G2

members working on P3. Thus, f1 is symmetrically encrypted with KP3 while f2
is also symmetrically encrypted with Kf2 which is created encrypting KG2 with
KP3 .

For deduplication, we will now focus our discussion on f1. At first, one of
the users involved in P3 uploads f1 after encryption, together with its digest
hc (recall Sect. 2). It must be noted that hc is used by the server to identify f1
in subsequent uploads. Then, the server prepares three data structures, namely
one to store the list of owners, another to keep a list of challenges, and the third
for their expected responses. Thus, at the time other client tries to upload f1,
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Fig. 1. An example use case

the server requests a set of challenges. If such challenges are provided as per
specification, it is assumed that f1 is owned by this client and the client will be
added to the list of owners.

3.2 Entities

In ase-PoW, three entities are identified. First, the client is the entity that holds
the file to be deduplicated. Each client is a user of a hierarchical organizations,
i.e. a corporation, that belongs to one or more of its areas, i.e. departments. He
performs the PoW to the storage server, which is in charge of keeping all files.
For each file, the server manages data structures that contain the identities of
clients which are allowed to access to the file and the challenges to be satisfied
in the PoW, as it will be explained later. Apart from the client and the server
an Attribute Certificate Service (ACS) is introduced. It is responsible for
managing which users belong to each department over time. As such, ACS grants
or revokes the permission to access to confidential files, once a user joins or leaves
an area.

3.3 Threat Model

The adversary is assumed to be an attacker who attempts to download a file he
does not possess, via the following means:

– Content-guessing attack where attackers intercept interchanged PoW
challenges and try to guess their content.

– Collusion attack in which the legitimate file owner colludes with a malicious
client (an adversary C̃) leaking part of the file content. In [14], a PoW scheme
works on the assumption that the exchange of information is not interactively
performed along the PoW challenge, in addition to the assumption that 64 MB
is sufficiently large to discourage collusion [11].
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3.4 Goals

A total of six goals are considered in this proposal. The first three goals focus
on security, namely: goals one and two capture the scenario where an adver-
sary seeking to download a file he does not own, and the third goal deals with
access control. The remaining set of goals capture the performance requirements,
namely: minimizing bandwidth, memory consumption and storage space. Specif-
ically, the goals of this proposal are as follows:

Security: an adversary C̃, who does not possess a complete file f , has a negli-
gible advantage in succeeding in a PoW given a security parameter κ.

Collusion resistance: an adversary C̃, who does not possess a complete file f ,
must exchange a minimum amount Smin of information with the legitimate
owner of f to be successful in the PoW. According to Halevi et al. [11] Smin

is set to 64 MB.
Simple fine-grained access control: the encryption, apart from providing

confidentiality, should allow the management of access control without involv-
ing the cloud server in the access control management process and without
requiring the involvement of additional tasks for the client and the server.
Besides, it should be as fine-grained as possible, thus allowing the specifica-
tion of different encryption policies.

Bandwidth efficiency: the number of exchanged bytes between client and
server along a PoW execution should be minimized.

Server space efficiency: in a PoW, the server should load in memory a small
piece of information independent of the input file size.

Client space efficiency: regardless of the use of cryptography, clients have to
store as few keys as possible. In addition, the number of stored keys should
be independent of file sizes.

3.5 The Proposed Scheme

The scheme builds on the scheme presented in [14], and the key differences are
the use of symmetric encryption on the chunks and the enforcement of access
control.

To carry out cryptographic computations, ase-PoW leverages on the hierar-
chical structure of organizations as well as the existence of ACS. In particular,
belonging to each organizational unit (say Department or Group) or working
on a given Project implies that each user holds an attribute. Each attribute is
linked to a key provided by ACS. Thus, when a user requests the attestation of
attributes, ACS verifies such attributes and provides keys accordingly.

In this scheme, there are two phases – see Fig. 2. In the Initialization phase,
the client firstly requests keys to ACS and symmetric keys are delivered when
the client possesses the right attributes. Then, the client requests the upload of
a file sending the digest of the encrypted file hc to the server. Once the server
verifies the file is not already stored (hc not stored), the client sends the file size
and the server provides the amount of chunks the file should be split into. The
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Fig. 2. ase-PoW description.

client symmetrically encrypts each file chunk applying keys provided by ACS
(Algorithm 1). In case multiple keys are at stake, each chunk is symmetrically
encrypted with a key (KS). Such key is formed by a recursive encryption of the
set of keys that are found in the path from fi to the highest group of corporate
members that need access to it. Thus, let a and b the levels in which fi and
the said group are located, respectively. The encryption key is then formed by
KS = EKa

(...(EKb−1(Kb))). Note that if a = b, then no recursive encryption is
needed since the file is already accessible to the smallest group of members. After
encryption, each encrypted chunk of file f is denoted as EKS

f [i]. In last place,
the encrypted file is sent to the server which initializes an array A where hc

is the lookup key - A[hc].ENC contains encrypted file chunks, A[hc].CH stores
10,000 challenges (with J random positions each), A[hc].RES keeps the expected
response tokens that correspond to the challenges and A[hc].AL contains a list
of identifiers of clients who own f (Algorithm 2).

In the Challenge phase, when a stored file is requested because hc sent by
the client matches with the one stored in the server, the client encrypts requested
file chunks and performs a digest H2 over it until complete the requested chal-
lenge (Algorithm 3). As aforementioned, the encryption may involve creating KS

recursively. Finally, the PoW will be passed or not according to the verification
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Algorithm 1. First client upload at client side
Input: Number of chunks N , a file f and encryption key(s) Kj in the
encryption order {1;...;j}
Output: Hash hc of the symmetrically encrypted file chunks; and symmetric
encrypted chunks EKj f [i] or EKj (...(EK1f [i]))
for i ← 0 to N − 1 do

token[i] ← [H2(EKN f [i]) or H2(EKj (...(EK1f [i])))];
end
hc ← H1(token);
return hc and EKj f [i] or EKj (...(EK1f [i]));

Algorithm 2. First client upload in ase-PoW. Server side (analogous to
ce-PoW [14] except for the encryption procedure)
Input: Encrypted chunks ENC[i] = EKS f [i] and hc uploaded by client C.
Output: The entry A[hc]
for i ← 0 to N − 1 do

Compute array token from received ENC[i]
token[i] ← H2(ENC[i]);

end
hc ← H1(token);
if ¬Match(hc, H1(token)) then

return ⊥;
end
Store 10,000 random challenges CH with J indexes each
for x ← 0 to 9999 do

for y ← 0 to J − 1 do
pos[y] ← PRF (seed); CH[x, y] ← pos[y]; RES[x, y] ← token[pos[y]];

end

end
A[hc].ENC ← ENC; A[hc].CH ← CH; A[hc].RES ← RES; A[hc].AL ←
{id(C)};
return A[hc];

the server performs comparing the received responses (res) with the stored ones
(A[hc].RES) (Algorithm 4).

4 Security Analysis

We now demonstrate that the ase-PoW scheme achieves the first three goals
described in Sect. 3.4, and the remaining goals will be addressed in Sect. 5.

4.1 Security

The security analysis of ase-PoW is based on ce-PoW [14] and builds on the
earlier proofs of Di Pietro et al. [12] and Blasco et al. [13]. The adversary is
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Algorithm 3. Challenge phase at client side
Input: A file f , an array pos of J indexes and encryption key(s) Kj in the
encryption order {1,...,j}
Output: An array res of J response tokens
for i ← 0 to J − 1 do

res[i] ← [H2(EKj f [i]) or H2(EKj (...(EK1f [i])))];
end
return res;

Algorithm 4. Challenge phase in ase-PoW. Server side. (Analogous to
ce-PoW [14])
Input: hc of a file f ; two arrays pos and res of J indexes and client response
tokens, respectively
Output: The outcome of the challenge
for i ← 0 to J − 1 do

if ¬Match(res[i], A[hc].RES[∗, i])) then
return ⊥;

end

end
A[hc].AL ← A[hc].AL

⋃{id(C)};
return �;

challenged on J independent chunk positions where the probability of success is:

P (succ) = P (toki)
J = (p + 0.5l(1 − p))J , (1)

where p is the probability that a malicious client C̃ knows part of the file; thus,
able to perform a collusion or a content guessing attack.
From Eq. 1, a lowerbound for J is derived which ensures P (succ) ≤ 2κ, where κ
is the security parameter, as

J ≥ κ ln 2

(1 − p)(1 − (0.5l))
(2)

In this regard, the first goal of ase-PoW, security, is satisfied when Eq. 2
holds under parameter κ. Moreover, the second requirement, collusion resis-
tance involves ensuring that a legitimate client C does not exchange Smin bytes
with a malicious client C̃ to allow the malicious client to run a successful PoW
for an unknown file. Considering that chunks are managed, there are F

B tokens
in a file f of size F of chunks of size B, the token length l can be set as:

l ≥ Smin
B

F
(3)

The third security goal, simple access control, is also achieved. Access control is
enforced by the fact that the ownership of attributes becomes a key to access
files. Just an ACS is introduced to deliver keys once attributes are attested and
it does not have any active role in the deduplication process. In addition, fine
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grained access control is achieved due to the use of recursive encryptions. They
can be compared with the encryption of files with attributes (keys) concatenated
with AND operators, meaning that different encryption policies can be applied.

Apart from the previous issues, ase-PoW tackles the content-guessing attack.
In contrast to [12,13] which do not apply encryption and to [14] which applies
CE, a symmetric encryption scheme is applied herein. It ensures encrypted
chunks are independent of files entropy, thus preventing this attack. Indeed,
even if files were obtained by attackers they could not be decrypted.

4.2 Complexity

We now evaluate the complexity of ase-PoW with that of Di Pietro et al. [12],
Blasco et al. [13] and González-Manzano et al. [14]. In particular, the evaluations
(see Table 1) focus on client and server computation and I/O, server memory
usage, bandwidth, and number of used keys (if required).

We remark that ase-PoW complexity differs from ce-PoW in a critical aspect,
namely: the number of keys managed by the client. Particularly, in ase-PoW,
client computation involves a symmetric encryption scheme based on a chosen
number of recursive encryptions (nre) in relation to owned attributes. As a result,
the client only needs to manage up to nre keys, regardless of the number of files
under deduplication. In ce-PoW, the client needs to store all chunk hashes of
every file deduplicated, as these hashes are the file-specific decryption key. This
may be up to 5% the file size, e.g. 50 MB for 1 GB files. Thus, ase-PoW reduces
the storage space needed in the client to allow deduplication.

The comparisons between ase-PoW and s-PoW and bf-PoW are similar to
those with ce-PoW. It is clear that client and server computations involve less
complexity in s-PoW and bf-PoW than in the other schemes, since there is
no encryption involved. The bandwidth requirement is also noticeably lower
in s-PoW and bf-PoW, as in ase-PoW and ce-PoW J tokens are sent to the
server. However, neither s-Pow nor bf-PoW protect against honest-but-curious
servers. Thus, striking a balance between security and efficiency is expected. The
remaining set of features can be considered similar among all studied schemes.

5 Performance Evaluation

We now present the findings of our evaluations, based on the settings described
in [14]. Specifically, ase-PoW is evaluated against bf-PoW [13] and ce-PoW [14].
We did not evaluate our proposal against s-PoW [12] because it has been shown
that ce-PoW outperforms s-PoW.

All schemes were implemented in C++ using OpenSSL as a cryptographic
library. AES in counter mode and SHA-1 are the two main operations. As in
[14], H1 and H2 are based on SHA-1 being H2 applied over encrypted chunks
extending the length of the hash to l through the use of the stream cipher RC4.

To ensure a fair evaluation, we used the parameters defined in [13,14], namely:
the security parameter is set to κ = 66; Smin = 64 MB, the size of tokens (l) is
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Table 1. Complexity comparative summary. Applied symbols are taken from Sect. 4

s-PoW [12] bf-PoW [13] ce-PoW ase-PoW [14]

Client

computation

O(F ) · hash O(F ) · hash O(B) · CE · hash ·
hash

O(B) · Sym. · nre · hash

Client I/O O(F ) O(F ) O(F ) O(F )

Server init

computation

O(F ) · hash O(F ) · hash O(B) · hash · hash O(B) · hash

Server regular

computation

O(n · κ) · PRF O

(
l·κ·(log1/pf )

pf

)
·

hash

O(n · l · κ) · PRNG O(n · l · κ) · PRNG

Server init I/O O(F ) O(F ) O(F ) O(F )

Server regular I/O O(n · κ) O(0) O(0) O(0)

Server memory

usage

O(n · κ) O

(
log(1/pf )

l

)
O(n · l · κ) O(n · l · κ)

Bandwidth O(κ) O

(
l·κ
pf

)
O(l · κ) O(l · κ)

# stored keys – – up to 5% file size | att |

Table 2. Chunk sizes (B) in bytes, computed from the file size, the token size and
Smin

l(B) File size (MB)

4 8 16 32 64 128 256 512 1024 2048

16 16 16 16 16 16 32 64 128 256 512

64 64 64 64 64 64 128 256 512 1024 2048

256 256 256 256 256 256 512 1024 2048 4096 8192

1024 1024 1024 1024 1024 1024 2048 4096 8192 16384 32768

set to {16, 64, 256,1024} bytes, the probability (p) that an adversary knows a
chunk of a file is set to {0.3; 0.5; 0.75; 0.95} and that key size is 256B. According
to these values and Eq. 2, the number of requested challenges (J) corresponds
to {65, 91, 182, 914}. Similarly, considering the said values of l, Smin and the
input file size, the size of chunks (B) is according to Eq. 3 – see Table 2.

The experiments were performed on a AMD Athlon(tm) II x2 220 processor
with 4 GB of RAM. Input files were randomly generated and their sizes ranged
from 4 MB to 2 GB doubling the size at each step.

The client side computation is studied in the following section. Server side
computation of ase-PoW is similar to that of ce-PoW since the server tasks
remain unaltered. Then, server side computation in ase-PoW (and ce-PoW) is
comparable with that of bf-PoW (see [14]).

On the client side, the most relevant issue to consider is the time taken (in
clock cycles units) to compute challenges. First of all, the time taken to create
the chunk encryption key were computed, resulting in 12262 clock cycles when
there were 7 keys (6 recursive encryptions) and 18743 clock cycles when there
were 11 keys (10 recursive encryptions). These values are considered negligible
relative to the remaining part of the scheme. Then, to present a worst case



ase-PoW: A Proof of Ownership Mechanism 423

Fig. 3. Client response creation clock cycles for J = {65,91,182,914} challenges and 11
keys.

analysis, the computation of challenges considering 11 keys was studied. Results
are depicted in Fig. 3. We concluded that:

– The time remains constant regardless of the number of requested challenges,
namely for J = 65 and J = 91. As expected, the time increases when more
challenges are computed, specially for J = 914.

– The time also remains constant regardless of the file and chunk size when
l < 64B. In case of higher l, e.g. l = 1024 B, the time increases between files
of 512 MB and 2 GB but it is just particularly noticeable for J = 914, and to
a lesser extent for J = 182.

Figure 4 describes the evaluation findings of bf-PoW, ce-PoW and ase-PoW
when there were 11 keys, and it is clear that bf-PoW has the best performance.
This is because in bf-PoW, a token is computed for each J chunk index through a
hash function. However, performance of bf-PoW is comparable with ase-PoW for
l = 1024 b and bf-PoW does not protect against honest-but-curious servers. On
the other hand, ase-PoW outperforms ce-Pow in all cases. In ce-PoW, a hash per
encrypted chunk is computed which increases the computation time. By contrast,
ase-PoW symmetrically encrypts chunks and though the chunk encryption key
may involve several recursive encryptions, findings demonstrate that the time to
compute this key is negligible in comparison with the rest of the process.

6 Related Work

Deduplication, such as PoW schemes, has been the subject of research focus
[11–14,23]. For example, the PoW schemes in [15,17,24–27] are designed to work
with honest-but-curious servers. Due to the use of CE in many existing PoW
schemes such as [16,17,22,25,26], these schemes are not secure against content
analysis attacks as previously discussed [16]. A number of proposals to avoid
such pitfalls has also been proposed in recent years. For example, in [27], files are
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Fig. 4. Client response creation clock cycles for J = {65,91,182,914} challenges and 11
keys.

asymmetrically encrypted and decryption keys are interchanged among clients.
The proposed approach in [24] involves an identity provider designed to prevent
sybil attacks, and an indexing server to prevent data leakage.

The significant amount of data managed by cloud servers necessitates the
implementation of access control solutions, as this will allow servers the capabil-
ity to determine whether a requesting client has the appropriate access rights.
Attribute based encryption (ABE) is one commonly used method to achieve fine
grained access control in the cloud [28–31], where files are encrypted under a
set of attributes and decrypted by a key with the right attribute policy [28].
However, deduplication is not considered in these works which is unsurprisingly
since ABE is a non-deterministic encryption scheme and therefore, cannot be
applied to this context.

Table 3 compares the proposed ase-PoW scheme and other similar dedupli-
cation and access control schemes, based on the use of a PoW scheme, secu-
rity against honest-but-curious servers, involvement of third parties, theoretical
security analysis, search of bandwidth, server and client side space efficiency,
and empirical performance analysis.
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Table 3. Comparative summary

Proposals PoW

scheme

Honest-

but-

curious

servers

Third parties Theoretical

security

analysis

Bandwidth

efficiency

Server

space

efficiency

Client

space

efficiency

Empirical

analysis

[15]
√

Not

specified

Public

keys used

Intermediator – – – – –

[16] – Metadata

manager,

additional

server

– – – –
√

[17,21]
√∗ Message-

lock

encrypt

Key server –
√

– –
√

[19]
√∗ Convergent

encryption

Private – – – – –

[20] – Convergent

encryption

Multiple

servers

– – – –
√

[18] – Convergent

encryption

Distributed

key server

– – – –
√

[32]
√

– Auditor
√

– – – –

ase-PoW
√

Symmetric

encryption

Attribute

certification

server

√ √ √ √ √

*: mentioned but not applied

It is clear that access control and deduplication require additional entities
and additional management tasks. In [16], for example, a metadata manager
enforces key management and handles deduplication. In [17,21], there exists a
key server per group of clients which is in charge of key management and helps
in the deduplication process. In [20], the Dekey scheme shares encryption keys
among clients via distributed key servers. The SecDep scheme in [18] involves
multiple key servers, which are also tasked with deduplication. In [32], an auditor
verifies the integrity of data in the cloud.

There are only a small number of proposals using a PoW scheme while man-
aging deduplication and access control [15,17,19,21]. Although [15,17,21] men-
tion the use of PoW, no concrete details are provided. In [19], an intermediator
becomes the PoW verifier.

Shin et al. [32] appears to be the only work that provides a security analysis
and no other studies examine server and client space efficiency. With the excep-
tion of [15], key storage is externalized to additional servers, relieving clients from
the burden of managing and storing keys. Bandwidth efficiency is considered only
in [17,21], and just some schemes do an empirical analysis [16–18,20,21].

In summary, it is clear that achieving both effective and secure PoW and
access control management for deduplication in the presence of honest-but-
curious servers is an understudied topic.
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7 Conclusion

Cloud storage is a trend that is unlikely to go away anytime soon, and one
of the key challenges is to reduce storage requirements. Deduplication schemes
are a viable solution, and in this paper, we present the Attribute Symmetric
Encryption Proof of Ownership (ase-PoW) scheme. The scheme is based on
recursively and symmetrically encrypting file chunks to prove the possession of
files. We demonstrate the security of the scheme, as well as the utility of the
scheme using empirical analysis. Specifically, we show that ase-PoW is efficient
and has better performance compared with similar schemes in the literature
(e.g. outperforms ce-PoW, and ase-PoW has the benefit of having a constant
computation time for file types when l < 64 B).

Future work includes enhancing access control expressiveness, and combining
deduplication and Proof of Works [33] and Remote Data Possession Checking [34]
in an environment with untrusted cloud servers. Moreover, simple fine-grained
access control is achieved in this work but the development of a more complex
access control management scheme, e.g. [30], is the following step.
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