
Attribution of Economic Denial
of Sustainability Attacks in Public Clouds

Mohammad Karami and Songqing Chen(&)

Department of Computer Science, George Mason University, Fairfax, VA, USA
{mkarami,sqchen}@gmu.edu

Abstract. The cloud pricing model leaves cloud consumers vulnerable to
Economic Denial of Sustainability (EDoS) attacks. In this type of attacks, an
adversary first identifies web resources with high levels of cloud resource
consumption, and then uses a botnet of compromised hosts to make fraudulent
requests to these costly web resources. The attacker’s goal is to disrupt the
economical sustainability of the victim by inflicting cost through fraudulent
consumption of billable cloud resources.
In this paper, we propose two different Markov-based models to profile the

behavior of legitimate users in terms of their resource consumption and to detect
malicious sources engaged in fraudulent use of cloud resources. Our experi-
mental evaluation results demonstrate the effectiveness of the proposed attri-
bution methodology for identifying malicious sources participating in EDoS
attacks.

Keywords: Economic Denial of Sustainability � EDoS detection � Markov
chain � Hidden semi Markov model

1 Introduction

As a new paradigm, cloud computing is reshaping the entire information technology
industry. Cloud service providers enable their consumers to access shared computing
resources in a flexible way without the need for upfront investment on infrastructure,
platform, and software. Although the adoption of cloud computing has experienced
significant growth in recent years, some concerns regarding the unique features of
cloud computing environments have hindered its broader adoption. Security and pri-
vacy concerns in particular are frequently ranked as one of the top reasons why some
organizations are reluctant to adopt cloud computing [5, 26, 27].

The understanding and mitigation of security and privacy risks of the public cloud
computing model has been an active area of research in recent years. The research
efforts, however, have been primarily focused on protecting the confidentiality and
integrity of sensitive data processed in public cloud environments as well as ensuring
the continuous availability of cloud services for their intended users [23]. Very little
attention has been paid to security threats targeting the cost model of consumers
running their services on the public cloud [11].

Services running on public clouds are vulnerable to fraudulent resource con-
sumption attacks aiming at increasing the financial burden of the victim service.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 373–391, 2017.
DOI: 10.1007/978-3-319-59608-2_22

This is enabled by exploiting the utility-based pricing model of the cloud where
consumers are charged for the actual consumption of computing resources such as CPU
cycles, RAM, bandwidth, and storage [14].

An adversary can conveniently rent a botnet [24] consisting of thousands of bot
machines to incur artificial cost to a victim service. The target of the attack will have to
pay for the cost of fraudulent resource consumption resulted from requests made by bot
clients. By keeping the rate of fraudulent requests made by individual bots low to
mimic the behavior of legitimate users, and intelligently focusing on requests that are
most costly in terms of resource consumption, an attacker can sustain the attack over an
extended period of time and maximize the effectiveness of the attack.

In practice, any device with an Internet connection is capable of launching an EDoS
attack. The attacker can simply instrument the device to send HTTP GET requests to
the victim service at the highest rate possible. This is basically the method used in
application layer DDoS attacks where the attacker’s goal is to render a targeted service
unavailable to its intended users by overwhelming victim’s resources. However, this
will very quickly result in a significant deviation from the request rate of normal users
and this artifact can be used for detecting and blocking the offending source [6, 15, 30].

In this paper, we focus on an adversarial scenario in which the attacker’s goal is to
increase the financial burden of the victim. This attack is also refereed to as Fraudulent
Resource Consumption (FRC) attack by some researchers in the literature [11, 14]. In a
recent empirical study, Wang et al. [29] show how practical EDoS attacks can be
launched by abusing popular third-party services provided by companies such as
Google, Facebook, etc.

In this paper, we assume that the attacker is intelligent in the sense that she makes
requests that are resource-intensive resulting in higher costs for the victim. To be
effective, an EDoS attack needs to be stealthy and remain undetected for an extended
period of time (e.g., weeks or months). To this end, not only that malicious requests
must not cause any noticeable degradation of service quality, but also the quantity of
requests made by malicious sources should not be significantly different from those of
legitimate users. Although high-rate DDoS attacks with the intention of overwhelming
resources of a victim hosted on a public cloud can increase the resource consumption
cost for the victim, in our threat model we assume that targets are properly protected
against such attacks and we instead only focus on addressing low-rate and stealth EDoS
attacks.

As malicious clients participating in a stealth EDoS attack make requests in a
similar rate as legitimate users, this type of attacks can be challenging to detect and
mitigate. In this paper, we present a method for detecting stealth EDoS attackers by
directly assigning a cost to each user request in proportion to the resources consumed to
serve that request.

The proposed methodology is based on statistical anomaly detection. First, we
process web server logs to identify the sequence of requests made by each individual
user over a predefined period of time. Next, according to the amount of resources
consumed to serve each request, a relative cost value is assigned to each request. The
result is a dataset consisting of a sequence of request costs for each of the legitimate
users in the processed web access logs. The sequence of request costs for each user is
considered as a random or stochastic process and this data is used to construct two

374 M. Karami and S. Chen

different Markov-based models to capture the behavior of users in terms of the cost
they incur to a service over time. We use sequence of request costs collected for normal
users as training data to estimate the model parameters. Once the parameters are
estimated, at the detection phase, the abnormality of a newly observed sequence of
request costs is tested against the trained model to identify malicious sources partici-
pating in an EDoS attack.

We use real-world web access logs of about a month from an academic website to
experimentally evaluate the effectiveness of the proposed method. Experimental results
are presented for the two Markov-based detection methods that we propose, a simple
Markov chain model, and a more complex Hidden semi-Markov Model (HsMM). The
experimental results show that our proposed detection methods are very effective in
differentiating normal users and malicious users participating in EDoS attacks. While
most of previously proposed methods require a malicious source to make significantly
more requests than legitimate users to be effective, our proposed attribution method-
ology can successfully detect malicious sources that try to remain undetected by
making only a few resource-intensive requests.

The remainder of this paper is structured as follows. We begin with a discussion on
the exploitation of the cloud pricing model that motivates this work. Related work is
discussed in Sect. 3. Section 4 presents a brief background on Markov chains and
HsMM as well as our proposed Markov-based methods for identifying malicious
sources participating in EDoS attacks. The details of experiments designed to validate
the proposed methodology and their results are presented in Sect. 5. Finally, discussion
and conclusion remarks are presented in Sects. 6 and 7, respectively.

2 Exploitation of the Utility-Based Pricing Model

The cloud computing technology provides many attractive benefits such as avoiding
the need for upfront spendings on computing infrastructure, improved manageability,
security, and elasticity to businesses of various sizes. While the flexibility of the
“pay-as-you-go” pricing model adopted by cloud service providers can be beneficial to
cloud consumers, it leaves them vulnerable to financial risks imposed by EDoS attacks
[11, 14].

To launch an EDoS attack, all an attacker needs to do is to simply send seemingly
legitimate requests to a victim service to make it consume cloud resources for which
the victim will have to pay for the cost. If the attacker is able to enforce significant
fraudulent resource consumption over an extended period of time, the economical
sustainability of the victim service could be threatened.

In an EDoS attack, the attack target can be a website or web applications hosted on
a third party public cloud and we assume that attack targets predominantly serve public
content accessible to all Internet users.

Unlike Distributed Denial of Service (DDoS) attacks, an EDoS attack is not meant
to cause availability issues or noticeable degradation of service quality for the users of a
target service. To be effective, an EDoS attack needs to be stealthy and remain
undetected over an extended period of time (e.g., weeks or months). To remain
undetected, a wise attacker will want to keep the rate of fraudulent requests low to

Attribution of Economic Denial of Sustainability Attacks 375

blend them into the noise of legitimate requests, while trying to focus on requests
resulting in high levels of cloud resource consumption to achieve the objective of the
attack.

As documented in recent studies, DDoS-for-hire services can be readily located and
rented on underground black markets [4, 16, 17]. These abusive services are often
supported by botnets consisting of tens of thousands of compromised hosts and offer
both network layer and application layer attacks [28]. With the availability of
DDoS-for-hire services, an attacker does not need to be capable of building a sup-
porting attack infrastructure.

The potential impact of an EDoS attack can be best quantified by examining a
hypothetical attack on a service hosted on a real public cloud service provider. In the
sequel, we consider a hypothetical attack on a victim service hosted on Amazon’s
Elastic Compute Cloud (EC2) platform. Although cloud consumers are billed for
various cloud resources including computing, network, and storage resources, for
simplicity, this work only focuses on data transferred from the cloud environment to
the Internet to serve received requests. Table 1 shows the cost of outgoing data transfer
for Amazon’s EC2 platform [3].

According to the HTTP Archive [2], which regularly measures the Alexa top
10,000 websites [1], the average page size was 2,225 KB for the homepage of the top
10,000 websites visited in January 2016. However, many websites host a number of
much larger web resources such as videos or large compressed files that an attacker can
focus on to maximize the cost of resource consumption for a victim operating on a
public cloud. For the purpose of our hypothetical EDoS attack, we assume the average
size of web resources requested by malicious bots participating in the attack to be
100 MB.

At the rate of only 100 requests per month which is too low to raise any red flags, a
single bot would consume about 10 GB of outgoing bandwidth and the monthly bill
will increase by . Sending requests with the same characteristics as the single bot
scenario from 1000 bots will approximately cost the victim $900 per month. The
inflicted cost grows linearly by increasing the request rate, requesting larger files, or
employing more malicious bots. For instance, by locating and requesting files that are
1 GB in size, the fraudulent resource consumption cost of the previous EDoS attack
scenario will escalate to about $9000 per month. As seen from the hypothetical attack
scenarios, the resource consumption cost accumulated over time can impose an
important financial burden to public cloud consumers, especially small businesses.

Table 1. Amazon EC2 outgoing data transfer pricing as of February 2016.

Traffic volume Cost

First 1 GB /month $0.00 Per GB
Up to 10 TB/month $0.09 Per GB
Next 40 TB/month $0.085 Per GB
Next 100 TB/month $0.07 Per GB
Next 350 TB/month $0.05 Per GB

376 M. Karami and S. Chen

As individual bots show no trace of excessive request rates, most of existing detection
schemes that look for a large number of requests in a short period of time [15, 22] will
not succeed at detecting the described hypothetical attack.

It is worth noting that leasing a botnet to carry out an EDoS attack will be a cost
factor that an attacker would need to take into consideration. However, due to the fact
that only a very small fraction of resources available to a compromised host are actually
required to make a few requests at a very low rate, the cost of accessing a botnet can be
significantly reduced for an attacker by renting nondedicated botnets shared with other
cybercriminals using the bots for various purposes. According to Huang et al. [10],
using the pay-per-install marketplace, an attacker can gain access to 1000 compromised
machines for as low as $10.

3 Related Work

So far there are only a few studies in the literature directly concerning the issue of
EDoS attacks.

Khor and Nakao [18] propose a mitigation mechanism based on cryptographic
puzzles to dissuade clients from submitting fraudulent requests. The basic idea of their
proposed scheme called self-verifying Proof of Work (sPoW) is to require clients to
present a proof of work before a protected service commits its resources to serve
clients’ requests. When a client first requests a resource, it receives a “crypto-puzzle”
from sPoW that mediates all communications between clients and the protected service.
The puzzle contains encrypted information necessary to reach the intended service such
as the IP address and port number as well as a partial encryption key with k bits
concealed. The client will have to spend its resources to discover the encryption key by
brute forcing the k concealed bits so that it can decrypt the information necessary to
contact the requested service.

However, sPoW or any other solution based on the “crypto-puzzle” approach [21]
are more relevant when malicious sources are sending requests at a high rate to a target
service. In an intelligent and stealth EDoS attack, malicious clients can afford to solve
the puzzles to submit only a few well-crafted, resource intensive requests and succeed
at adding financial burden to a victim service protected by sPoW.

Sqalli et al. propose a mitigation scheme called EDoS-Shield to address the issue of
EDoS attacks in cloud environments [25]. The main idea of EDoS-Shield is to detect
whether an incoming request is initiated by a legitimate user or by an automated source.
EDoS-Shield depends on CAPTCHA tests to verify the source of requests. The pro-
posed architecture consists of virtual firewalls (VF) and verifier nodes (V-Nodes) that
are deployed as virtual machines in the cloud. The V-Nodes are responsible for veri-
fication of request sources, and VF nodes are implemented to decide if incoming
packets should be forwarded or dropped based on the verification results received from
the V-nodes. One weakness of the EDoS-Shield mitigation scheme has to do with the
cost of additional cloud resources required for deploying the verifier nodes and the
virtual firewalls. But, more importantly, this approach requires all users to be verified

Attribution of Economic Denial of Sustainability Attacks 377

and research studies suggest that CAPTCHA tests could be annoying for some users
and even a certain portion of legitimate users may not be able to solve them [7].
In addition, some existing CAPTCHA tests have been shown to be vulnerable to
automated attacks [8], and recently inexpensive CAPTCHA solving services backed by
crowd sourced human labor can be used to effectively defeat the protection purpose of
CAPTCHA tests [20].

In [12] the authors use a number of statistical self-similarity metrics including
Zipf’s law, and Spearman’s Footrule distance to detect the occurrence of FRC attacks.
The proposed detection mechanism only looks at the aggregate pattern of user requests
and does not deal with identification of individual malicious sources participating in an
attack. In contrast, our proposed method is concerned with identification of malicious
sources exhibiting a similar behavior as legitimate users in terms of request rates, but
focusing on resource-intensive requests to maximize the cost for the victim service.

Idziorek and Tannian propose a method that attempts to model the behavior of
individual users based on the number of requests per session generated by each user
over a fixed period of time [11]. A pause of 900 or more seconds between consecutive
requests from the same user is used as the criterion to group user requests into web
sessions. The premise is that malicious users generating sessions with a random
number of requests would be sufficiently different from the profile of normal users, so
that an entropy-based detection method could be used to identify malicious sources.
This method is based on the assumption of malicious users making more requests/web
sessions than legitimate users. However, as mentioned earlier, an intelligent attacker
does not necessarily need to make malicious sources to send more requests than
legitimate users to succeed. By focusing on web resources that are expensive in terms
of resource consumption, malicious sources with similar request rates as legitimate
users can be still effective.

In [13], the authors propose a methodology for identifying malicious sources trying
to inflate the utility bill of a victim by making fraudulent requests. The proposed
methodology combines four different usage metrics including the number of sessions,
the number of requests, and the average number of requests per session. For the last
usage metric, the overall request frequency distribution of documents hosted on a
website is computed, and the requests made by individual users are compared against
this distribution. To evaluate a user, a probability score is calculated for each of the four
metrics and then an overall average probability is computed. The more deviation
observed from the normal usage, the higher would be the probability score and the
more likely the user would be a malicious client. Again, this model is heavily influ-
enced by the quantity of requests made by individual users, and it will not be effective
for detecting malicious users making a small number of high cost requests. As we will
show in Sect. 5, our proposed method is able to detect both malicious sources making
an anomalous number of random requests, as well as more subtle malicious sources
with a request rate similar to that of legitimate users but focusing on requests that are
more costly for the victim.

378 M. Karami and S. Chen

4 The Proposed Markov-Based Models for Detecting Sources
Participating in an EDoS Attack

In this study, our goal is to build an anomaly detection system to identify malicious
sources participating in EDoS attacks. In this section we introduce our proposed
detection methodology and describe our formulation of detecting malicious sources
participating in an EDoS attack using two different Markov-based models.

Most web requests are for HTML documents that are meant to be rendered, and
displayed by a user browser. These requests are typically followed shortly by several
subsequent HTTP GET requests to fetch objects such as images, scripts, and CSS files
embedded in the main requested document. The requests can also be for downloading
objects such as binary files over HTTP. Web servers can be configured to log the
details of all user requests including the IP address of the requesting host, the requested
document, the type of request (GET, POST, etc.), and the size of data transferred to
serve the request. Although all the HTTP request types cause resource consumption on
the server side, to simplify our experimentations, we only focus on HTTP GET
requests in our work.

Proportional to the amount of data transferred to serve a request, a relative cost
value can be calculated and assigned to each request. Based on the data size of various
requests, one can decide on a small number of buckets to represent different cost values
to be associated with user requests. We will see an example of this in Sect. 5 where we
use cost values from 1 to 5 for requests in our dataset.

Using collected web server logs, requests made by each individual user during a
specific period of time can be identified and mapped to request cost values. The result
would be a sequence of request cost values for each user. We assume that individual
users (both legitimate and malicious) can be uniquely identified by their IP addresses.
Using browser fingerprinting techniques [9] can be a potential solution for cases where
some users can not be reliably identified by their IP addresses.

The sequence of request costs from individual users during a specific period of time
can be considered as a discrete-time stochastic process and a Markov-based model can
be used to describe the behavior of users in terms of the cost they incur to a service over
time. A much simpler approach to distinguish between legitimate and malicious users
would be to calculate the sum of request costs per user over a predefined period of time
and apply a threshold value to identify users exceeding the threshold as malicious.
However, as we will show in Sect. 5, such a naive approach will result in high false
positive rates where legitimate users are incorrectly identified as malicious.

We use requests made by legitimate users to estimate the parameters of the Markov
model and then use the trained model to compute the likelihood of new request cost
sequences generated by users. The request cost sequences generated by malicious users
would be different from legitimate users and this will result in much smaller likelihood
values than those of legitimate users. As we will show in Sect. 5, using the right
threshold likelihood value, legitimate users and malicious users can be effectively
distinguished.

In this paper, we propose and evaluate the detection performance for two different
Markov-based models. The first one is a simple Markov chain model in which the

Attribution of Economic Denial of Sustainability Attacks 379

observed request costs are considered as the states of the Markov chain. We also
evaluate a HsMM which has more complexity and computational cost but can out-
perform the simple Markov chain model for detecting low rate attacks focusing on high
cost requests. In our HsMM, the request cost values are the observable outputs and the
hidden states represent different levels of resource consumption by users. The models
that we propose and evaluate are both discrete-time and the discrete points in time
correspond to user requests as recorded in the web access logs. In the subsequent
subsections, we give a brief background on the theory of Markov chains and HsMM
and briefly discuss the process of learning model parameters using training data.

4.1 Markov Chain Model

A Markov chain models the state of a system with a random variable taking states from
a finite state space as the time passes. Given the current state of a Markov chain
denoted as st, the state of the chain at time t + 1 will only depend on st. In a stationary
Markov chain, the state transition probabilities are assumed to be constant and inde-
pendent of time. Consider a Markov chain model with M states denoted as S = {s1, s2,
…, sM }. A Markov chain model can then be specified by its parameters as k = ({pm},
{amn}) where:

– pm � Pr[s1 = m] is the initial state probability distribution. st denotes the state taken
by the model at time t and m 2 S. The sum of initial state probabilities adds up to 1
(Rmpm = 1).

– amn � Pr[st = n|st−1 = m] is the state transition probability for m, n 2 S, satisfying
Rnamn = 1.

Given the model parameters, the probability of a particular sequence of states s1, s2,
…, sT to be taken by the model is computed as follows:

Pðs1; s2; . . .sTÞ ¼ ps1
XT

t¼2

ast�1st

The initial state probability distribution and the state transition probability matrix
can be readily learned from historical observations of the system states. These two
model parameters can be learned using the formulas below [19]:

amn ¼ Nmn

Nm

pm ¼ Nm

N

where:

– Nmn is the number of observed direct transitions from state m to state n.
– Nm is the number of observations where the Markov chain is in state m.
– N is the total number of observations.

380 M. Karami and S. Chen

In our context, we process web access logs to compute the sequence of request
costs for normal users and then use this data to learn the parameters of a Markov chain
model representing the resource consumption behavior of normal users. At the
detection phase, newly observed sequences of request costs are analyzed to compute
the likelihood of those sequences being supported by the trained Markov chain model.
The resource consumption behavior of users participating in EDoS attacks would be
different from that of normal users and the requests from these users are therefore
expected to receive low likelihood of support when analyzed by the trained model.

4.2 Hidden Semi-Markov Model

A hidden Markov model (HMM) is a Markov model in which the states of the system
being modeled are not directly observable (hidden). HsMM extends the traditional
HMM by allowing states to have variable durations [31]. The duration of a state
represents the number of observations made while in that state. Consider a HsMM with
M states denoted as S = {s1, s2,…, sM }. A HsMM can be specified by its parameters as
k = ({pm}, {amn}, {bm(k)}, {pm(d)}) where:

– pm � Pr[s1 = m] is the initial state probability distribution. st denotes the state taken
by the model at time t and m 2 S. The sum of initial state probabilities adds up to 1
(Rmpm = 1).

– amn � Pr[st = n|st−1 = m] is the state transition probability for m, n 2 S, satisfying
Rnamn = 1.

– bm(k) � Pr[ot = k|st = m], for m 2 S, k 2 {1, …, K} is the state output distribution.
The observable output at t is denoted by ot and k is the index into the observable
output set with cardinality K. The output distribution satisfies Rkbm(k) = 1.

– pm(d) � Pr[st = d|st = m] is the state residual time distribution, for m 2 S, d 2 1,…,
D. D represents the maximum interval between any consecutive state transitions and
the residual time distribution satisfies Rd pm(d) = 1.

Then, if at time t, the pair process (st , st) takes on the value (m, d), where d >= 1,
the semi-markov chain will remain in state m until time t + d − 1 and will transit to the
next state at time t + d. The states themselves are not directly observable. The
observables are a sequence of observations O = (o1, …, oT). The notation oba represents
the observation sequence from time a to time b and conditional independence of
observed outputs is assumed so that bmðobaÞ ¼ Pb

t¼abmðotÞ The model parameters are
initially estimated and are then updated as new observations ot are collected. This
process is known as parameter reestimation and it can be done by following the
forward and backward algorithm proposed by Yu and Kobayashi [32]. The forward and
backward variables are defined as follows:

atðm; dÞ � Pr ot1; ðst; stÞ ¼ ðm; dÞ kj� �

btðm; dÞ � Pr oTtþ 1; ðst; stÞ ¼ ðm; dÞ kj� �

Attribution of Economic Denial of Sustainability Attacks 381

which can be recursively computed by forward and backward algorithms. Next, the
three following joint probabilities are defined that can be expressed and computed in
terms of the model parameters and the forward and backward variables defined above.
These probabilities are used to readily derive the reestimation formulas to update the
model parameters after collecting new observation sequences.

1tðm; nÞ � Pr½oT1 ; st�1 ¼ m; st ¼ n kj �
gtðm; nÞ � Pr½oT1 ; st�1 6¼ m; st ¼ m; st ¼ d kj �

ctðmÞ � Pr½oT1 ; st ¼ m; kj �

Now, using the joint probabilities defined above, the model parameters can be
reestimated by the following formulas:

p̂m ¼ c1ðmÞ=
XM

m¼1

c1ðmÞ

âmn ¼
XT

t¼1

1tðm; nÞ=
XT

t¼1

XM

n¼1

1tðm; nÞ

b̂mðkÞ ¼
X

t:ot¼k

ctðmÞ=
X

k

X

t:ot¼k

ctðmÞ

p̂mðdÞ ¼
XT

t¼1

gtðm; dÞ=
XT

t¼1

XD

d¼1

gtðm; dÞ

The model parameters are reestimated for each observation and after processing all
observation sequences, the trained model can be used to compute the likelihood of a
new observation sequence by the following formula:

Pr½oT1 kj � ¼
X

m

X

d

Pr½oT1 ; ðsT ; sTÞ ¼ ðm; dÞ k�j

¼
X

m

X

d

aTðm; dÞ

For our HsMM, the request cost values are the observable outputs and the hidden
states represent different levels of resource consumption by users. In our implemented
model, we use 5 hidden states where the model is always initialized in the first state.
Also, in our model a transition can only happen from a lower state to a higher state.

Similar to the Markov chain model, we use requests made by legitimate users to
estimate the parameters of the HsMM and then use the trained model to compute the
likelihood of new request cost sequences generated by users. The request cost
sequences generated by malicious users would be different from legitimate users and
this will result in much lower likelihood values than those of legitimate users. As we
will show in the next section, using the right threshold likelihood value, legitimate
users and malicious users can be effectively distinguished.

382 M. Karami and S. Chen

5 Experimental Evaluation

We conduct experiments to evaluate the effectiveness of the proposed method for
detecting malicious sources engaged in fraudulent use of cloud resources. This section
provides a description of our experiments and presents the obtained results.

5.1 Dataset Description

Our experiments are based on request logs from a university department’s public web
server collected over 32 days from Nov 8, 2015 to Dec 9, 2015. We use the rules below
to filter out requests that are irrelevant for our purpose:

– Requests that are not HTTP GET.
– HTTP GET requests with a response code other than 200 (OK).
– Requests with a user agent string indicating access from a non-user entity (e.g.,

Googlebot, wget, etc.).
– Request sources making requests using 10 or more different user agent strings. This

is to remove aggregate request sources such as NAT boxes or web proxies making
requests on behalf of their clients. About 90% of all request sources in the dataset
only use a single user agent string.

– The access logs are split into two 16-day periods. We only include requests from
users making at least 3 requests in one of the 16-day periods.

A request for an HTML document and the subsequent requests for fetching objects
embedded in the same HTML document are combined and treated as a single request.
Table 2 presents a summary of the normal dataset used for training and testing the
proposed methodology.

To generate the normal training dataset, requests in the first half of the logs are
grouped based on the request source, and then, proportional to the amount of data
transferred to serve the requests, they are mapped to relative cost values. The same
process is applied to the requests in the second period of the logs to generate the test
dataset representing users with normal resource usage behavior. Based on our observa-
tion of the user requests in the dataset, we choose to use the values from 1 to 5 to represent
the relative cost of user requests. Thus, the final dataset is a sequence of request costs
ranging from 1 to 5 in value for each user. Table 3 summarizes the mapping from the
request size to relative cost values and the distribution of requests in terms of their cost
values in our dataset.

Table 2. Summary of the normal experimental dataset.

Metric Train dataset Normal test dataset

Number of days 16 16
Total number of unique users 4,933 5,252
Total number of requests 36,466 36,474
Avg number of requests per user 7.39 6.94

Attribution of Economic Denial of Sustainability Attacks 383

Although in our experiments we use an observation window of 16 days to profile
the behavior of normal users and the same observation period is used for detection of
malicious users, the proposed methodology is only sensitive to the resource usage
pattern of users and is not restricted to a specific observation period.

5.2 Attack Scenarios

To conduct an EDoS attack, an attacker needs to specify the behavior of individual bots
by defining the request rate and the requested resources in term of their resource
consumption cost. By varying these two parameters, various attack strategies that an
attacker is likely to adopt can be constructed and the effectiveness of the proposed
detection methodology can be evaluated for those attack strategies. We first consider
attack strategies where the attacker focuses on making requests that result in high levels
of resource consumption. For these attack strategies we assume that the attacker has a
prior knowledge about the rate of requests made by legitimate users, and uses this
knowledge to avoid suspicions by making requests with similar rates as legitimate
users.

In sequel, we briefly describe a number of various attack scenarios that we use to
generate synthetic malicious request sequences to evaluate the performance of the
proposed attribution methodology. These attack scenarios are ordered in a decreasing
order of attack effectiveness from the attacker’s perspective. For the attack scenarios
listed below the number of requests made by individual malicious sources is normally
distributed with parameters µ = 7 and r = 2 which means the number of requests made
by malicious users are not significantly different from those of legitimate users. The
lengths of malicious request sequences drawn for this normal distribution is shared by
all of the attack scenarios.

– Scenario 1 (S1): All malicious requests have a cost of 5.
– Scenario 2 (S2): All malicious requests have a cost of 4 or 5.
– Scenario 3 (S3): The request cost is 5 for 75% of malicious requests. The cost for

the remaining 25% of requests is uniformly distributed between 1 and 4.
– Scenario 4 (S4): 75% of malicious requests have a cost of 4 or 5. The cost for the

remaining 25% of requests is uniformly distributed between 1 and 3.
– Scenario 5 (S5): The request cost is 5 for 50% of malicious requests. The cost for

the remaining 50% of requests is uniformly distributed between 1 and 4.
– Scenario 6 (S6): 50% of malicious requests have a cost of 4 or 5. The cost for the

remaining 50% of requests is uniformly distributed between 1 and 3.

Table 3. Mapping of request sizes to relative cost values.

Request size Relative cost Percentage of requests

< 500 KB 1 86.7
� 500 KB and < 5 MB 2 11.4
� 5 MB and < 50 MB 3 1.9
� 50 MB and < 500 MB 4 0.1
� 500 MB 5 5.4e−03

384 M. Karami and S. Chen

5.3 Experimental Results

For each attack scenario, we generate a dataset of malicious requests according to the
description of that attack scenario. Each test dataset consists of generated malicious
request sequences, combined with the request sequences from the normal test dataset.
The normal test dataset is the same for all attack scenarios. Also, in our experiments,
each test dataset contains the same number of normal and malicious sources (5,252).
False Positive Rate (FPR), and False Negative Rate (FNR) are the metrics used for
performance evaluation of the proposed attribution methodology under various attack
scenarios. These metrics are briefly described in the following:

– FPR: The percentage of request sequences generated by legitimate users classified
as malicious. Keeping the FPR under a low threshold is very important. Otherwise,
legitimate users will be denied access to the protected service.

– FNR: The percentage of malicious request sequences generated by sources par-
ticipating in an EDoS attack scenario not detected by the proposed method. Unlike
an Intrusion Detection System (IDS) where it is very crucial not to miss any
intrusions, because a single missed intrusion can result in system compromise, in
our context, missed malicious sequences would only cause some billable fraudulent
resource consumption.

For each attack scenario, the trained model is used for computing the log likelihood
for all request sequences in the test dataset of that attack scenario. In general, the
request sequences from legitimate users which are similar to the data used for training
the model are expected to receive higher log likelihood values. On the other hand,
malicious request sequences representing a resource consumption behavior dissimilar
to that of legitimate users are expected to be assigned lower log likelihood values. Once
the log likelihoods are computed for all request sequences, the detection performance
can be evaluated for different threshold values.

Table 4 shows experimental detection results for the attack scenarios based on the
strategy of focusing on high cost requests using the simple Markov chain model.
Table 5 shows the results for the same attack scenarios using the HsMM. The results
are presented for several different threshold values to demonstrate the trade-off between
higher false positive rates and lower false negative rates and vice versa. For each
threshold value, the resulting FPR and the FNR for each of the six attack scenarios are
presented. As shown, both models can achieve low FPRs for reasonable FNRs. The
HsMM however consistently outperforms the simple Markov chain model for the same
FPR value.

For instance for a FPR of 0.67%, the FNR is 0.00% for the first attack scenario
when the HsMM is used. This means that for a small FPR, all sources generating
malicious requests according to the description of the first attack scenario (S1) are
successfully detected. In comparison, the simple Markov chain Model produces a FNR
of 7.24% for the attack scenario and the same FPR. In our experiments, the last attack
scenario (S6) is the most challenging to detect as it is more similar to requests from
legitimate users. But even for this attack scenario, for a FPR of 0.51%, still close to
70% of malicious request sequences are successfully detected using the HsMM.

Attribution of Economic Denial of Sustainability Attacks 385

It should be noted that the undetected malicious sequences are usually comprised of
fewer requests compared to the successfully detected malicious sequences. For
instance, when applying a threshold value of –25 for the attack scenario S5 using the
HsMM, about 10% of malicious users are not identified as malicious. The average
number of requests for these undetected malicious users is 3.98 versus 7.23 for the
detected malicious users. This implies that the undetected malicious request sequences
are less effective in terms of fraudulent resource consumption and the more effective
malicious request sequences that are more aggressive in nature run higher risk of
detection.

In our experiments, the FPRs are resulted by legitimate users in the test dataset
generating significantly more requests than the other legitimate users. For instance,
when applying a threshold value of −25 for the HsMM, 35 legitimate users out of 5252
users are incorrectly identified as malicious. On average, each of these 35 users gen-
erates 72 requests. In comparison, the overall average number of requests for all
legitimate users is only 7. Longer request sequences result in lower log likelihood
values and therefore legitimate users generating a large number of requests contribute
to some undesirable false positives. Sometimes a given website may have legitimate
users that use the website in unusual ways. If unusual request patterns are expected
from specific users, false positives can be avoided by ignoring requests from these
known users. In our experiments, the legitimate users with an abnormally large number
of requests are incorrectly identified as malicious.

Table 4. Experimental results for the Markov chain model for the attack strategy of focusing on
high cost requests.

Threshold FPR (%) Attack scenario FNR (%)
S1 S2 S3 S4 S5 S6

−20 2.32 0.00 2.55 0.97 5.79 5.14 13.58
−25 1.35 0.00 6.32 2.30 10.68 8.87 22.51
−30 0.91 0.00 7.81 3.77 14.58 13.40 31.51
−35 0.67 7.24 16.85 11.23 25.08 22.37 43.01
−40 0.46 7.24 21.63 13.08 31.70 28.64 52.36
−45 0.29 16.28 28.66 22.43 42.25 37.93 63.06

Table 5. Experimental results for the HsMM for the attack strategy of focusing on high cost
requests.

Threshold FPR (%) Attack scenario FNR (%)
S1 S2 S3 S4 S5 S6

−15 2.32 0.00 0.00 0.44 1.64 2.76 7.52
−20 1.26 0.00 2.57 2.02 5.62 6.84 15.69
−25 0.67 0.00 2.57 3.56 8.95 10.68 23.67
−30 0.51 7.24 9.04 10.95 16.70 20.13 33.80
−35 0.36 7.24 11.18 15.19 23.38 28.87 45.35
−40 0.21 16.28 18.55 23.59 33.45 38.42 57.60

386 M. Karami and S. Chen

Comparison with the naive detection approach: as mentioned previously, a naive
detection approach based solely on the cumulative sum of request costs will suffer high
positive rates. As a concrete example, to achieve a FNR of 0.00% for the S1 attack
scenario, the naive approach will need to identify all users with a cumulative sum of
request costs of 15 or more as malicious. This however will result in a very high FPR of
9.96% making this approach inapplicable in practice. In contrast, as shown in Tables 4
and 5, using the proposed attribution methodology, for the S1 attack scenario all
malicious users can be successfully detected with FPRs less than 1%.

As evidenced by the obtained experimental results, attacks based on the strategy of
focusing on requests with high resource consumption costs can not go undetected. The
alternative for an attacker would be to attempt making requests with a similar distri-
bution of request costs as legitimate users, but in larger quantities to increase the
amount of fraudulently consumed resources.

Tables 6 and 7 show experimental detection results for the attack strategy where the
attacker focuses on making larger numbers of requests that have the same distribution
of request costs as legitimate users. FNRs are reported for various number of requests
per source and the same threshold and FPRs as the previous experiments. As expected,

Table 6. Experimental results for the Markov chain model for the attack strategy of focusing on
high number of requests.

Threshold FPR (%) Number of requests per source FNR
(%)
50 60 70 80 90 100

−20 2.32 3.77 0.72 0.00 0.00 0.00 0.00
−25 1.35 17.02 3.41 0.32 0.00 0.00 0.00
−30 0.91 42.19 14.38 3.24 0.32 0.02 0.00
−35 0.67 67.82 34.22 12.20 2.65 0.30 0.02
−40 0.46 86.27 59.12 29.86 10.45 2.21 0.49
−45 0.29 95.00 79.38 51.71 25.46 8.85 2.70

Table 7. Experimental results for the HsMM for the attack strategy of focusing on high number
of requests.

Threshold FPR (%) Number of requests per source FNR (%)
50 60 70 80 90 100

−15 2.32 6.51 2.11 0.76 0.15 0.02 0.00
−20 1.26 23.42 10.66 3.27 0.74 0.23 0.06
−25 0.67 49.58 20.91 9.69 4.23 1.52 0.74
−30 0.51 82.77 51.79 25.32 10.62 4.09 2.04
−35 0.36 94.94 79.59 54.72 24.68 12.32 6.78
−40 0.21 98.19 92.90 79.99 53.98 27.88 13.23

Attribution of Economic Denial of Sustainability Attacks 387

malicious users are more likely to be detected when making higher number of requests.
For instance, when malicious clients are making 70 requests, for a FPR of 0.67%, more
than 90% of malicious sources are successfully detected by the HsMM. For the
experiments involving long sequences of malicious requests, the performance of the
two models are comparable and none of them consistently outperforms the other model
for the same FPR value. However, when the number of requests per source is 80 or
more, the simple Markov chain model seems to produce lower FNRs.

It should be noted that from the standpoint of an EDoS attacker, regular requests
not causing high levels of resource consumption are not very helpful and this attack
strategy only makes sense when malicious sources are able to make a significant
number of regular requests and manage to remain undetected.

6 Discussion

The proposed EDoS attribution methodology directly considers the cost of user
requests as the metric to model the behavior of individual users. This makes it very
challenging for malicious users involved in an EDoS attack to be effective in terms of
fraudulent consumption of billable cloud resources and at the same time managing to
remain undetected. As demonstrated experimentally, malicious users exhibiting
anomalous resource consumption behavior can be quickly identified and prevented
after making only a small number of suspicious requests. An attacker can attempt to
optimize the requests made by individual participating bots by learning and mimicking
the request pattern of top legitimate users in terms of higher usage footprint. However,
it is unlikely for an attacker to be able to access historical data on requests of legitimate
users or intercept communications to collect such data to optimize the behavior of
participating bots. Even assuming the lack of such restrictions, applying such optimized
request patterns can still significantly limit the effectiveness of the participating bots.
An attacker can try to compensate for the limited utility of individual bots by
employing a much larger botnet. However, larger botnets could be very difficult to
locate, rent and operate and may not be practical in practice.

The proposed EDoS attribution methodology only relies on resource usage foot-
print of users for detecting malicious sources. For future work, we plan to incorporate
other aspects of user behavior to further improve detection of malicious sources par-
ticipating in EDoS attacks. For instance, the popularity of requested documents can be
computed for each request cost bucket, and this can be considered when computing the
likelihood of observed request sequences. In general, attackers are not expected to
know the distribution of document popularity on victim websites. Focusing on requests
involving documents with the highest resource consumption can result in deviation
from the normal document popularity distribution and this additional metric can help to
improve the detection performance.

388 M. Karami and S. Chen

7 Conclusion

The consumers of public cloud services are charged for computing resources that they
use. This pricing model exposes the cloud consumers to EDoS attacks where the
adversary seeks to increase the financial burden of the victim service by making
fraudulent requests that result in high consumption of billable resources.

We have presented a Markov-based anomaly detection scheme to profile the
behavior of legitimate users in terms of their resource consumption. To detect users
participating in an EDoS attack, the likelihood of request sequences generated by
individual clients during a specific period of time is computed by the trained model.
Users with likelihood values smaller than a threshold are identified as malicious. The
effectiveness of the proposed attribution methodology for identifying malicious sources
engaged in fraudulent use of cloud resources has been demonstrated using experimental
evaluations for various attack scenarios. While most of previously proposed methods
are only effective when malicious sources make significantly more requests than
legitimate users, our proposed method is able to detect both malicious sources making
an anomalous number of random requests, as well as more subtle malicious sources
with a request rate similar to that of legitimate users but focusing on requests that are
more costly for the victim.

Acknowledgements. We would like to thank anonymous reviewers for their comments. This
work was supported in part by an ARO grant W911NF-15-1-0262 and a NSF grant
CNS-1524462.

References

1. Alexa. http://www.alexa.com/
2. Http archive. http://httparchive.org/interesting.php?a=All&l=Jan%2015%202016
3. Amazon ec2 pricing (2016). https://aws.amazon.com/ec2/pricing/
4. Alomari, E., Manickam, S., Gupta, B., Karuppayah, S., Alfaris, R.: Botnet-based distributed

denial of service (DDoS) attacks on web servers: classification and art. arXiv preprint arXiv:
1208.0403 (2012)

5. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM
53(4), 50–58 (2010)

6. Beitollahi, H., Deconinck, G.: Tackling application-layer DDoS attacks. Procedia Comput.
Sci. 10, 432–441 (2012)

7. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are humans at
solving captchas? A large scale evaluation. In: 2010 IEEE Symposium on Security and
Privacy (SP), pp. 399–413. IEEE (2010)

8. Bursztein, E., Martin, M., Mitchell, J.: Text-based captcha strengths and weaknesses. In:
Proceedings of the 18th ACM Conference on Computer and Communications Security,
pp. 125–138. ACM (2011)

9. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J. (eds.) PETS
2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). doi:10.1007/978-3-642-
14527-8_1

Attribution of Economic Denial of Sustainability Attacks 389

http://www.alexa.com/
http://httparchive.org/interesting.php%3fa%3dAll%26l%3dJan%2015%202016
https://aws.amazon.com/ec2/pricing/
http://arxiv.org/abs/1208.0403
http://arxiv.org/abs/1208.0403
http://dx.doi.org/10.1007/978-3-642-14527-8_1
http://dx.doi.org/10.1007/978-3-642-14527-8_1

10. Thomas, K., Huang, D., Wang, D., Bursztein, E., Grier, C., Holt, T.J., Kruegel, C., McCoy,
D., Savage, S., Vigna, G.: Framing dependencies introduced by underground commoditi-
zation. In: Proceedings of the 14th Annual Workshop on the Economics of Information
Security (2015), Netherlands, June 22–23 (2015)

11. Idziorek, J., Tannian, M.: Exploiting cloud utility models for profit and ruin. In: 2011 IEEE
International Conference on Cloud Computing (CLOUD), pp. 33–40. IEEE (2011)

12. Idziorek, J., Tannian, M., Jacobson, D.: Detecting fraudulent use of cloud resources. In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 61–
72. ACM (2011)

13. Idziorek, J., Tannian, M., Jacobson, D.: Attribution of fraudulent resource consumption in
the cloud. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD),
pp. 99–106. IEEE (2012)

14. Idziorek, J., Tannian, M.F., Jacobson, D.: The insecurity of cloud utility models. IT Prof. 2,
22–27 (2013)

15. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks:
characterization and implications for CDNs and web sites. In: Proceedings of the 11th
International Conference on World Wide Web, pp. 293–304. ACM (2002)

16. Karami, M., McCoy, D.: Understanding the emerging threat of DDoS-as-a-service. In:
Proceedings of the USENIX Workshop on Large-Scale Exploits and Emergent Threats
(2013)

17. Karami, M., Park, Y., McCoy, D.: Stress testing the booters: understanding and undermining
the business of DDoS services. In: Proceedings of the World Wide Web Conference
(WWW) (2016)

18. Khor, S.H., Nakao, A.: sPoW: on-demand cloud-based eDDOS mitigation mechanism. In:
HotDep (Fifth Workshop on Hot Topics in System Dependability) (2009)

19. Mitchell, T.M.: Machine Learning, vol. 45, p. 995. McGraw-Hill, Burr Ridge (1997)
20. Motoyama, M., Levchenko, K., Kanich, C., McCoy, D., Voelker, G.M., Savage, S.: Re:

Captchas-understanding captcha-solving services in an economic context. In: USENIX
Security Symposium, vol. 10, p. 3 (2010)

21. Naresh Kumar, M., Sujatha, P., Kalva, V., Nagori, R., Katukojwala, K., Kumar, M.:
Mitigating economic denial of sustainability (edos) in cloud computing using in-cloud
scrubber service. In: 2012 Fourth International Conference on Computational Intelligence
and Communication Networks (CICN), pp. 535–539. IEEE (2012)

22. Oikonomou, G., Mirkovic, J.: Modeling human behavior for defense against flash-crowd
attacks. In: IEEE International Conference on Communications, ICC 2009, pp. 1–6. IEEE
(2009)

23. Ryan, M.D.: Cloud computing security: the scientific challenge, and a survey of solutions.
J. Syst. Softw. 86(9), 2263–2268 (2013)

24. Sood, A.K., Enbody, R.J.: Crimeware-as-a-service—a survey of commoditized crimeware in
the underground market. Int. J. Crit. Infrastruct. Prot. 6(1), 28–38 (2013)

25. Sqalli, M.H., Al-Haidari, F., Salah, K.: Edos-shield-a two-steps mitigation technique against
edos attacks in cloud computing. In: 2011 Fourth IEEE International Conference on Utility
and Cloud Computing (UCC), pp. 49–56. IEEE (2011)

26. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud
computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

27. Takabi, H., Joshi, J.B., Ahn, G.-J.: Security and privacy challenges in cloud computing
environments. IEEE Secur. Priv. 6, 24–31 (2010)

390 M. Karami and S. Chen

28. Thing, V.L., Sloman, M., Dulay, N.: A Survey of Bots Used for Distributed Denial of
Service Attacks. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., Solms, R. (eds.) SEC
2007. IFIP, vol. 232, pp. 229–240. Springer, Boston, MA (2007). doi:10.1007/978-0-387-
72367-9_20

29. Wang, H., Xi, Z., Li, F., Chen, S.: Abusing public third-party services for EDoS attacks. In:
10th USENIX Workshop on Offensive Technologies (WOOT 2016) (2016)

30. Wen, S., Jia, W., Zhou, W., Zhou, W., Xu, C.: Cald: surviving various application-layer
DDoS attacks that mimic flash crowd. In: 2010 4th International Conference on Network and
System Security (NSS), pp. 247–254. IEEE (2010)

31. Yu, S.-Z.: Hidden semi-Markov models. Artif. Intell. 174(2), 215–243 (2010)
32. Yu, S.-Z., Kobayashi, H.: An efficient forward-backward algorithm for an explicit-duration

hidden Markov model. IEEE Sig. Process. Lett. 10(1), 11–14 (2003)

Attribution of Economic Denial of Sustainability Attacks 391

http://dx.doi.org/10.1007/978-0-387-72367-9_20
http://dx.doi.org/10.1007/978-0-387-72367-9_20

	Attribution of Economic Denial of Sustainability Attacks in Public Clouds
	Abstract
	1 Introduction
	2 Exploitation of the Utility-Based Pricing Model
	3 Related Work
	4 The Proposed Markov-Based Models for Detecting Sources Participating in an EDoS Attack
	4.1 Markov Chain Model
	4.2 Hidden Semi-Markov Model

	5 Experimental Evaluation
	5.1 Dataset Description
	5.2 Attack Scenarios
	5.3 Experimental Results

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

