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Abstract. A solution to spam emails remains elusive despite over a decade
long research efforts on spam filtering. Among different spam detection mech-
anisms that have been proposed, Naive Bayesian Content Filtering has been
very popular and has attained a reasonable level of success. SpamBayes is one
such content filtering spam detection tool based on Naive Bayesian classification
using textual features. It is easy to deceive the learning techniques focusing only
on textual attributes. Hence, in this paper we propose a multi-layer model that
imposes, on top of SpamBayes, a second layer of non-textual filtering that
exploits alternative machine learning techniques. This multi-layer model
improves the accuracy of classification and eliminates the grey email into spam
and ham emails. The experimental results of this model are quite encouraging.

Keywords: SpamBayes - Client based email filtering - Email spam - Content
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1 Introduction

Spam exists in various forms such as spam email, web spam [1, 2], spam SMS [3, 4],
and social spam [5]. Oxford dictionary defines spam as irrelevant messages sent on the
internet to a large number of recipients.

The spam emails in any user’s inbox has taken many forms such as phishing, image
spam, DOS attacks, and malware distribution. It has impacted users and organizations
from simple annoyance, loss of productivity, loss of personal information, system
crashes to financial losses. Spam has varied from 36-95% [6-10] in more than a
decade, the highest being 96% in 2010 [11] when this problem was at its peak and has
reduced to about 53% in April-June 2015 [12, 13].

Though email is a form of communication for most these days, majority of the
email traffic comes from business emails which account for over 116 billion emails sent
and received per day [14] in 2015. This trend is going to continue and emails remain
predominant form of communication in the business world [14]. Therefore, at least 58
billion emails sent and received daily are spam. For more than a decade efforts have
been put into controlling the issue of spam. Various solutions such as blacklists, white
lists, grey lists, content filtering, AIS (Artificial Immune Systems) filtering, reputation
based filtering, content filtering (at mail server and email client) techniques have been
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suggested [15-23], however the statistics above indicate that the issue is still ongoing
and the area is open to further research.

Among the above mentioned techniques, machine learning techniques [24-26]
have gained a reasonable amount of success and popularity in content filtering [27]
both at mail server and client side. When applying filtering solutions at mail server, it is
important to consider the following two points. Firstly, the filtering is being applied to
all the emails being received on behalf of email users of the organization. Secondly, the
same email may be spam to one user and not spam to some other user. Therefore, if the
level of filtering at server side is very stringent, it would lead to a high number of false
positives (FP: legitimate emails tagged/classified as spam by the filter). FP causes loss
of important information. On the other hand if filtering at server side is too relaxed it
would lead to high number of false negatives (FN: spam email that is classified/tagged
as legitimate email) which is a source of annoyance for the user. Hence, another level
of filtering at client’s end should be applied. In summary, server side mail filtering is
not enough to classify incoming emails correctly, and client side filtering is essential.
Many tools, both open source and commercial exist as an add-on to give another level
of filtering at the client side. The major focus of these tools is to filter spam email that
escapes the mail server filter. For this research, we are focusing on client level filtering
that is at an optimum level of accuracy to reduce FP and FN. Earlier experiments have
found that training this tool with user preferred training data reduces the FN in user
inbox by 86% [28].

Since Naive Bayesian Content Filtering has been very popular and achieved some
level of success [22, 29-32], we explored Naive Bayesian implementation. Many open
source tools based on Naive Bayesian classification techniques exist; one of the
existing tools called SpamBayes was chosen to analyze the performance at client level
filtering. SpamBayes classifies emails using text features into three categories: spam,
ham and unsures. Unsure is an email that lies between the threshold values called the
grey area and is not clearly classified as spam or ham. It contains features that belong to
both spam and ham. From now on, we would refer to unsures as grey in this paper. An
example spam email that SpamBayes would successfully classify is given in Fig. 1. It
would be able to identify the words such as ‘information’, ‘$2 million’, ‘1-800" as
spam words and classify the email a spam.

Subject: re : information requested
hi , name is john ' m 27 years old . was able $ 2 million
working home , 'd share did . please few moments busy life

listen short message tell ! call listen , 1-800 - 764-6203
change life !

Fig. 1. Sample spam email with text features

Spammers keep innovating new ways to deceive the filters. The content of the spam
has evolved to contain more than just words such as links, numeric digits, special
characters etc. Most of these features are non-textual as shown in the sample spam
(Fig. 2) and would not be identified by SpamBayes or any textual based filtering
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Subject: free promotional offer

' ' own 100 % free web site site : http : / / 000000138
0000127 . 000044 . 00000005 . cearth . . ca / wusers /
freewebsites / * * * charge * * * * * * commitment * * * *
* * problem * * * opportunity s33kers internet m@rketers
small lagre site is . slte linked thousands web sites °?
amazing site . . . http : / / 000000000138. 000027 . 44 . 5
cearth . . ca / users / freewebsites / * * * charge * * *

* % % commitment * * * * * * problem * * * is truly going
Site century | * * k*k *x *x *x *x *x *x *x X * * *x *x *x *x *x * x ok %

please excuse intrusion . one fr33 offer mailing * * * * *
* * *x * *x * %

Fig. 2. Sample spam with non-text features

mechanism. Therefore, as suggested in [33], to improve the performance of SpamBayes
we decided to introduce non-textual features.

The introduction of non-textual features is also testified by the Spam Reports
published by Kaspersky labs for Quarter 2, 2015 [12] which highlighted the variation
in features identified in spam emails that spammers are using to deceive the filtering
solutions. These features listed are modified IP addresses, presence of upper case and
lower case letters, special characters, use of number symbols, mis-spelt words, and
number of links used to go to spam resources. In order to identify potential non-textual
features, we analyzed the spam datasets and identified list of potential non-textual
features. Subsequently to select the optimal non-textual features, we ran the program
and observed the performance on the test set using F1 score and selected the features
that gave high performance.

We explored the possibility to change the token type, size and thresholds in
SpamBayes. To analyze the performance of the tool, we conducted further experiments
to monitor its performance with various thresholds, token types (unigrams, bigrams and
trigrams) and token sizes (15 to 25000 for different token types) which is elaborated in
Sect. 2.2. We found that the overall performance would not substantially improve by
increasing token type and size. Thresholds can be modified by the user as per need in
SpamBayes.

In this paper we propose a multi-layer model that firstly builds an attribute set using
many non-text features (Table 3) along with text features as a frequency matrix as
shown in Fig. 3. Various non-text features such as number of link symbols, number of
mis-spelt words, over use of numeric characters provide significant information about
emails.

The aim of the model is to increase user productivity by not losing important emails
as FP in greys and spam. This model eliminates unsures by classifying them as spam or
ham. It also removes any FP by verifying the emails identified as spam in the junk
folder. This model is based on CART, SVM, k nearest neighbor and Logistic regression
machine learning techniques that have been used for spam categorization and classi-
fication [34, 35]. It has been tested with 10 datasets and results show that it has
achieved 99+ % correct classification, with FP is as low as 0% to highest being 0.8%,
at the max averaging at 0.3-0.4%.
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Layer 1: SpamBayes: Content Filtering using
Text Features
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Layer 2: Content Filtering using Textand
Non-Text Features

Fig. 3. Flowchart showing 2 layer filtering process

The paper is structured as follows. Section 2 introduces Spam Bayes in Subsect. 2.1
followed by performance testing of SpamBayes using various token types, max-
discriminators (token sizes) and thresholds in Subsect. 2.2. Results of SpamBayes
experiments are reported in Sect. 2.3 along with the discussion justifying the need for a
model to improve the performance of SpamBayes. Section 3 focuses on the multi-layer
model and its integration with SpamBayes framework to eliminate greys from Spam-
Bayes with the acceptable level of FP and FN. The experimental results to validate the
model are reported in Sect. 4 followed by conclusion and future work in Sect. 5. In this
paper, we would refer to spam email as spam and a legitimate email as ham.

2 Spambayes Performance Testing

2.1 SpamBayes

SpamBayes' is an open source content filtering tool that classifies emails on the basis of
Naive Bayesian techniques and can be installed as an add-on to the users email client
such as Microsoft outlook. It builds the learning model from the training data and
classifies the new incoming emails into three categories-spam, ham and grey (unsure).
To classify an email, SpamBayes selects 150 significant unigram (single word) tokens
called max_discriminators from the header and body of an email and calculates the
total spam score of the email. It uses the default threshold of 0.15 and 0.9 to classify

! http:/spambayes.sourceforge.net.
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emails. In SpamBayes manager a user can change the settings of thresholds such as
ham and spam cut offs to suit their individual needs.

Readers are referred to [28] that elaborates background, training model and learning
method of SpamBayes. Training data plays an important role in training the classifier.
Our experiments on training the filter with user specific data [28] indicated that such
training improves the performance of the tool. We noted similar trend during the
experiments conducted while conducting this research as elaborated in Sect. 2.3.

2.2 Performance Testing Experiments

With an aim to find the optimal level of performance for SpamBayes, we conducted
experiments using various datasets. As mentioned in Sect. 2.1, SpamBayes uses uni-
grams with 150 significant tokens based on the probability of occurrence of a particular
token in the training data. To find the optimum performance parameters for SpamBayes
we decided to conduct experiments using bigrams and trigrams with varying thresholds
(Table 1) and tokens sizes (Table 2). Since getting access to live data is difficult, we
decided to use publically available spam email datasets. The datasets chosen were
Lingspam [36], PU1 [37], ENRON (divided into 6 preprocessed datasets since ENRON
is very large dataset) [38], and CSDMC2010 SPAM corpus® available at csmining
website. We also used dataset published at the Text REtrieval conference 2007
(TREC20073), by University of Waterloo, Canada. In all, we used 10 datasets to
conduct the experiments.

Table 1. Various thresholds

Ham cut-off |{0.5]0.15/0.2/0.3/0.8
Spam cut-off | 0.5/0.9 |.9 |0.8]0.6

Table 2. Various token sizes (max discriminators) used for 3 token types

Unigram | Bigrams | Trigrams

15 150 150
50 500 500
75 5000 5000
150 10000 | 10000

200 20000 | 20000
25000 | 25000

Naive Bayesian classification considers tokens as independent to each other;
however correlations are possible between various tokens in an email. To identify these
correlations we considered creating a correlation matrix. Since the size of matrix would

2 http://www.csmining.org/index.php/spam-email-datasets-.html.
3 hitp://plg.uwaterloo.ca/ ~ gvcormac/treccorpus07/.


http://www.csmining.org/index.php/spam-email-datasets-.html
http://plg.uwaterloo.ca/%7egvcormac/treccorpus07/

A Multi-layer Model to Detect Spam Email at Client Side 339

become very large, consume large amount of memory, and make the classifier per-
formance very slow, we decided to consider the correlations between neighboring
tokens by using bigrams and trigrams.

Bigrams are created only with neighbouring tokens. For example, if a, b and c are
the three tokens then bigrams are ab, bc, a, b, and c. The frequencies of bigrams are
calculated as the number of times they appeared in spam and ham emails. Trigrams are
created in a similar manner. Subsequently, all tokens (normal, bigrams or trigrams) are
sorted by their importance and only first max_discriminators are taken for calculating
the score of an email.

We divided each dataset randomly in a 70-30 ratio; 70% used for training and 30%
used for testing. For each parameter set, we ran 20 iterations randomly selecting emails
for training and testing. For example, for unigrams, token size 15 and thresholds as
0.5-0.5 for spam and ham cut off, 20 iterations for each dataset was conducted with
emails selected randomly allocated into the pool of training and testing set for each
iteration. Results were recorded and averaged for FP, FN and Grey rates along with the
time taken to process for every parameter set. There were totals 85 parameter sets —25
for unigrams, 30 each for bigrams and trigrams.

2.3 Results and Discussion — Spam Bayes

Initial results indicated inconsistent behavior among various datasets. The value of FP,
FN and grey varied for all 5 datasets. Different data sets have different optimum values
for cutoffs and max discriminators. This may mean that each data set is a bit different
since data sets belong to different times, probably have different styles of both spam
and ham emails belonging to different authors and spam designs.

In this light, we can conclude that training data set has great impact on choice of
parameters of a classification [28]. So we decided to run experiments with mix of data
from all of the datasets and record the results. Mixed dataset namely, data from all the
datasets that are messages belonging to different persons, involving different authors,
styles, written in different times, showing different notions of what is spam, etc., thus
preventing the classifier to “find the rule” for classification.

From the results for unigrams for mixed dataset shown in Fig. 4, it is evident that
amount of greys are high, implying unacceptable loss of important emails.

The performance of the tool was monitored based on reduction in FP and FN verses the
time it takes to achieve these values of FP and FN. Though we found that using bigrams
with higher token sizes improved the performance of the tool with thresholds of .4 and .6, it
was taking longer to process. Increasing the number of tokens (max_discriminators) didn’t
contribute much to the performance of the classifier as shown in Fig. 5.

Hence, we conclude that though the values of unsures was high for the default
thresholds of .15 and .9 contributing to more FP and FN for default 150 token size, the
scores were comparable for unigrams, bigrams and trigrams as shown in Fig. 4.
Therefore, we decided to focus on improving the performance of SpamBayes for
unigrams with token size of 150.

It is known that merely increasing the number of features does not necessarily (and
usually does not) provide better models in machine learning. This is verified by the
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Fig. 4. Rates for unigrams for mixed dataset

results obtained from our experiments. The trick is to find only a few most important
features. Hence, there is a need to find the optimum text features and to consider the
non-text features to be added to SpamBayes as stated in [33].

3 Multi-layer Model - A Hybrid Classifier

3.1 Definitions

3.1.1 Text Features

Text Features help user make sense of what they are reading. It generally comprises of
the actual text in the document that contributes towards user understanding the content
and context of the document. They are the building block of the document that
enhances the comprehension.

3.1.2 Non-text Features

Non-text features contribute to the information about the document such as the size and
structure of the document. It also includes the features such as illustrations, labels,
subtitles, table of contents, glossary, maps, index, comparisons etc. as shown in Fig. 6.
In case of emails non-text information would include date and time of an email, subject
field, hyperlinks, numeric digits, word count, use of special characters, etc. (Fig. 0).

3.1.3 Machine Learning Techniques

CART. Classification And Regression Trees (CART) algorithm is a supervised learn-
ing techniques for prediction, and classification. It constructs decision trees based upon
attributes that belong to predefined classes from a collection of training data.
For CART to construct these regression trees, we must define the list of attributes and
the number of classes as an outcome. It then uses the training data with assigned classes
to construct the rules via the decision trees. These decision trees are then used to
classify new data into the said classes defined.
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Fig. 6. Non Fiction Text Features for a document

For our case the attributes defined are text as well as non-text attributes are defined in
Sect. 3.1.2 and the classes are spam and ham. The training data is the data used to train
SpamBayes and for experiments purpose the datasets listed in Sect. 2.2.

SVM. Support vector machines [34] (SVMs) are a set of supervised learning methods
used for classification, regression and detection. Unlike normal classification methods,
SVM uses a subset of training points called support vectors and finds a boundary that
has maximum margin by solving an optimization problem. In SVM, we tried to find a
hyperplane in an n-dimensional space defined by the attributes of the emails in the
training data. One side of this hyper plane is spam emails and other side is ham emails.
Since support vector machine are effective not only in high dimensional spaces, but
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also effective in cases where number of dimensions is greater than the number of
samples.

knn. k-nearest neighbors is a supervised learning method that, as its name suggest, uses
the labels of k-nearest training data points to figure out the label of the test data point
under consideration. Once again we imagine all the vectors as points in a space and the
distance being Euclidean distance.

KNN can be used for both classification and regression. In case of classification, we
take the majority vote of k-nearest neighbors to find the label of a test data point. For
regression, we take the average of the values for the k-nearest of a point to find the
response for a new test point. In order make the regression more accurate, the response
of the nearer neighbors is given more weight compared to the farther points. Usually,
the weight given to points decrease inversely with their distance from the test point.

Logistic Regression. Logistic regression is a common classification technique used
in situations where there is not much need to be very deterministic about the predic-
tions made.

It works by maximizing likelihood, i.e. maximizing P[y|X] where X is the feature
matrix each row of which is a feature vector and y is the vector of labels, one element
for each row in X. We train the model such that it learns the probability distribution of
the labels over the set of attributes.

Logistic regression is called regression even though we use it for classification
because we try to approximate a real continuous function in this case. This function is
the probability of getting a label; let’s say the label ‘spam’, given a feature vector of an
email. Since the probability function is continuous and real as opposed to discrete, it’s
called logistic regression.

Training a model for logistic regression involves defining an error measure. An
error is a value whose magnitude tells us how far we are from the learned model that
would predict correctly on the training data.

Once we have defined the error measure, the problem of learning the model is
translated into an optimization problem wherein we have to reduce the error measure
while changing the variables that it depends upon.

An example of error measure is that of likelihood, i.e. how likely are we to generate
the training responses from the training features.

3.2 Multi-layer-Model

The proposed multi-layer model, a hybrid classifier is based on supervised alternative
machine learning techniques applied to the features selected using text and non-text
components of the email. This classifier carries out supervised learning, extracts text as
well as non-text features from training data and applies that learning to detect and
classify new email documents.

The emails that arrive at the email client are first filtered by the mail server. The
filtering mechanism at the mail server marks an incoming email as ham, sends it to the
Inbox or as spam, and sends to the Junk Mail. Some other work has gone into this area
of adaptive, multi-stage learning systems to filter email spam using a variety of
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machine learning techniques [18, 39] but none of them provide 2 layer filtering at the
client side. SpamBayes provides a layer (Layer 1) of filtering that reclassifies the emails
in Inbox and Junk mail as spam, ham and grey, landing ham in Inbox, greys in Junk
Suspect and spam in Spam Folder. The proposed multi-layer model applies yet another
layer (Layer 2) of filtering as shown in Fig. 3, to the greys as well as spam classified by
SpamBayes to increase the precision and accuracy of classification since both would
contain FP and FN and the aim is to reduce FP. It is very important that this model
achieves a high level of performance (correct classification of spam and ham or least
FP). To ensure this we analyzed the data sets to carefully identify the features that
provide correct classification. The following sub-sections explain the selection of text
and non-text features and how they were combined to build the multi-layer model.

Text Features

To extract text features from the training data, bag-of-words approach has been applied
to transforms data into numerical features that can be used for machine learning
techniques. Term frequency-inverse document frequency (tf-idf) has been applied to
this bag of words. To do so tf-idf reflects the importance of each word related to a
document in the training documents. The value of tf-idf increases proportionally to
number of times a word appears in the document, but is offset by the frequency of the
word in the corpus, which helps to adjust for the fact that some words appear more
frequently in general in the training documents.

This gives us sparse Document-Term Matrix with a huge number of columns. To
apply machine learning algorithm to such a matrix, we have to filter these columns. We
tried different methods such as sparse LSA, mutual information and chi-square test for
filtering and found that chi-square test works well. Using this method we filter 1000—
2000 columns of the document-term matrix which is then used as feature for
classification.

Non-text Features

To extract non-text features, analysis of the selected datasets was conducted to identify
the possible list of attributes. To select the correct features cross validation of manual
analysis was done with classifier. The right feature is the feature that helps the classifier
to improve its performance i.e. if we run the classifier without feature and the F1-score
is F_without and then run it with feature and the score is F_with, then the feature is the
“right” feature if F_with > F_without with statistical significance. This corresponds to
suggestions made in [33]. Features set containing non-text features was developed as
given in Table 3.

For combining features, we used a statistical non-parametric learning technique
called Gradient Boosting Regression Trees classifier that gives the highest score. It’s
one of the strongest methods in machine learning for classification. After extracting the
features from training data and combining them using Gradient boosting, we tested the
performance using F-1 score.

Once the features extraction is completed, the model then uses those features as
attributes for classification. The model contains methods such as CART, Support vector
machine (SVM), k-Nearest Neighbor and Logistic Regression. These methods utilize
the decision boundaries that they identify from the training data and apply for classi-
fication. The detailed description of how these methods are applied has been provided
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Table 3. List of non-text attributes

: email header and body lengths,
: number of abnormal symbols,

: number of numeric characters,

: number of punctuation symbols,
: number of links symbols,

: ‘number of keywords’,

: number of keyword ‘unsubscribe’
: ‘send time in 8:00:00-18:59:59,
: length of subject field,

: mis-spelt word count

10: similar to abnormal words

O 003N LB W N~ O

11: maximum run length of capitals
12: average run length of capitals

in Sect. 3.1. Each of these methods individually classifies the email spam and greys
classified by Spam Bayes into clear spam and ham. The multi-layer model further uses
rules on these classifications to predict an email as spam or ham. The rules are defined
by the following voting system to classify an email document:

[all four methods agree]: outcome is the agreed classification decision

[Three methods agree]: outcome is the agreed classification decision

[Two methods agree]: outcome is Ham. This outcome has been chosen with an aim
to reduce FP as some degree of FN is acceptable whereas FP is not acceptable.

3.3 SpamBayes Framework with Multi-layer Model

Since SpamBayes results in classification of emails into three categories, we apply the
multi-layer model to the emails tagged as greys and spam. The rationale behind doing
this has been explained in Sect. 2. The integration of the multi-layer model — a hybrid
classifier to SpamBayes aims to eliminate greys category from the outcome classifi-
cation Fig. 7.

4 Experiments and Results - Multi Layer Model

The experiments were conducted to test the multi-layer model at two levels. At the first
level, we conducted experiments to test the performance of the multi-later model using
the datasets and at the second level after integrating the multi-layer model with
SpamBayes in order to classify the greys and reclassify the ‘spams’ moved to the junk
folder by the SpamBayes. The model was tested with same 10 datasets as mentioned in
Sect. 2.2 to measure the performance in terms of FP and FN. Once a satisfactory level
of performance was achieved with the multi-layer model on its own, the integrated
SpamBayes Framework (Fig. 7) was tested with the same set of 10 datasets.
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The performance of new SpamBayes framework was measured with respect to % of
ham, greys and FP in SpamBayes.

The results showed that the multi-layer model improves the performance of
SpamBayes by reducing the overall % of FP to less than 0.2. This means that model is
performing at 99.8% which is very encouraging improvement (Table 4).

Table 4. Comparison of SpamBayes and multi-layer model showing % of FP, FN and greys

Dataset name | Percentage of | SpamBayes % | Multi-layer model %
CSDMC2010 | FP 0 0
FN 0 1.2
Ham greys 1.01 0
ENRON1 FP 1.3 0.9
FN 0 23
Ham greys | 5.1 0
ENRON2 FP 0 0.2
FN 0.1 2
Ham greys | 0.8 0
ENRON3 FP 0.1 0.06
FN 0.1 4.6
Ham greys 1.2 0
ENRON4 FP 0.1 0.2
FN 0.3 0.9
Ham greys 0.2 0
ENRONS5 FP 0.1 0.4
FN 0.2 0.3
Ham greys | 0.8 0
ENRONG6 FP 0.2 0.6
FN 0.3 0.7
Ham greys 1.3 0
Lingspam FP 0 0.1
FN 0 1.4
Ham greys 1.7 0
PU1 FP 0.9 0.3
FN 0 54
Ham greys 4.8
TRECO07 FP 0 0
FN 2.9 2.9
Ham greys 0

We also calculated the % improvement for each of the datasets for overall FP which
includes ham greys in SpamBayes that contributes towards FP. Figure 8 below shows
the percentage improvement multi-layer model bring to SpamBayes for each dataset.
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5 Conclusion and Future Work

Spam is an annoying and causes financial damage to organizations and individual
users. This paper focused on supervised machine learning techniques based ensemble
and its implementation via an open source tool called SpamBayes. As a base point we
tested the performance of SpamBayes with various parameters such as different settings
for thresholds and token size as well as the characteristics of feature sets such as
unigrams, bigrams and trigrams of different sizes ranging from 75 to 20000 and noted
that there is room for improvement. SpamBayes classifies a new email as spam, ham or
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grey. Greys leave an area that user has to manually classify to eliminate the false
positives and false negatives. Results reported showed that for optimum parameters that
give the least amount of FP and FN, the size of greys needs to be reduced. A mul-
ti-layer model was proposed to eliminate the greys from SpamBayes. This model
applied to SpamBayes framework was tested and results are reported. We would like to
further compare these results of multi-layer model to some other models against the
same datasets.

We believe the application of this multi-layer can also be applied for social network
analysis. In our future work, we would like to extend the application of this multi-layer
model to social networks such as Twitter, Facebook and alike.
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