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Abstract. There exists a need for overall security analysis of a set of apps. We
demonstrate IacCE, a tool implementing our approach that applies concolic exe-
cution on combined apps guided by extended Inter-App taint paths. Furthermore,
we replay the event-and-input generated by concolic execution on the original app
set, tomonitor the actual data-leakage behavior. To our knowledge, we are the first
to apply concolic execution for dynamic analysis of Inter-App communications.
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1 Introduction

Android is by far the most ubiquitous mobile operating system, and we are witnessing a
surge in the adoption of Android applications (also called apps). The situation for app
security is severe, due to the weakness of the permission system and the programming
model. The Inter-Component communication model for instance, which is used as an
efficient data-exchange mechanism for loosely-coupled apps, might be misused to leak
private data outside the device without user consent.

There are growing efforts for analyzing Android apps, aimed at discovering such
safety issues as malware behavior and application vulnerabilities. Static app analysis
tools, such as the static taint analysis tool FlowDroid [4], can efficiently analyze all the
code in the application, but they are inherently imprecise as there may be behavior
misses or falsely behavior report. Dynamic analysis tools, such as TaintDroid [29],
avoid those shortcomings, but are relatively slow as they have to run the code, and are
inherently incomplete as they can only tell the behavior that they execute [18–20].

Despite those researches on single app security, there are few tools for Inter-App
vulnerability analysis. Literature [3] performed an investigation on 500 apps from
Google Play [24], F-Droid [25], Bazaar [26], and MalGenome [27]. It found that only
32 percent of acquired permissions are necessary for API calls and averagely each app
has about two unchecked but used permissions. This incurs a vulnerable path from the
exported interface of the app component to the API use, which can be exploited by the
interaction of the app with other apps. Issues related to this kind of vulnerability
already exist, such as collusion attacks and privilege escalation chaining [28]. The need
for overall security analysis of a set of apps exists.
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Thus, in this paper, we propose the first tool named “IacCE” (analyzing Inter-App
Communications using Concolic Execution) that dynamically analyze Inter-App data
leakage by combining static taint analysis and cocolic execution. We first apply static
Inter-App data-flow analysis on the combined app of the app set, then generate inputs
and events to execute sensitive Inter-App paths by extended-taint-path guided concolic
execution, finally dynamically verify the leakage by executing apps in the app set with
those generated inputs and events.

The contribution of this paper is three fold. First, to our knowledge, we are the first
to apply concolic execution for dynamic analysis of Inter-App communications. Our
combination of static taint analysis and concolic execution achieves higher precision
and recall than state-of-the-art tools. Second, we developed IacCE, an open-source tool
for Inter-Component and Inter-App dynamic analysis. Third, we compose a benchmark
based on DroidBench [22] and ICC-Bench [23] for better assessment of Inter-
Component and Inter-App analyzers with 77 apps.

2 Background

Android Basis. Android defines four types of app component, i.e., Activity (defining
user interface), Service (performing background processing), ContentProvider
(managing database), and BroadcastReceiver (receiving Inter-App broadcast mes-
sages). There are discontinuities within a component, which are used to drive apps with
runtime events (system events or user interactions) and life-cycle callbacks (state
transition of an app) from Android framework, besides the traditional input form of
data inputs. Android provides specific methods, for triggering Inter-Component
communications (ICC) and Inter-App communications (IAC). These methods are called
with Intent, which specifies the action, category, mimetype, data, etc. Intent can be
either explicit or implicit by define the receiver component or not. Components
determine which Intent to receive by specifying an Intent Filter. Android permission
system identifies the privileges of an app in the manifest file.

Static Taint Analysis. Static taint analysis starts at a sensitive source (location get by
getLastKnownLocation(), for instance) and then tracks the sensitive data through the
app until it reaches a sensitive sink (e.g. the sendTextMessage() API) [4]. It gives
precise information about which data may be leaked.

Concolic Execution. Concolic (concrete + symbolic) execution (or dynamic symbolic
execution) uses a combination of concrete and symbolic execution to analyze how
input values flow through a program as it executes, and uses this analysis to identify
other inputs that can result in alternative execution behaviors [10]. It traces symbolic
registers at each conditional statement in order to build path conditions for specific
execution traces. After collecting path constraints, a constraint solver is used for
solving them and the result is just the program input we desire.
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3 Motivating Example

To motivate and illustrate our approach, consider the app set “SWE” (SendSMS,
WriteFile, and Echoer) in Fig. 1, which leaks data through Inter-App communication.
The apps are inspired those used by IccTA [1] and DidFail [2], but further contain
several challenging issues for existing static analysis methods as described in [3].

The SendSMS app get device’s id by calling the sensitive API getDeviceId(), and
sends the private data to other apps for returned results using the implicit Intent call
startActivityForResult(). Once some app receives the Intent (as long as the Intent
matches its Intent Filter) and replies with exactly the received Intent by calling
setResult(), the Echoer app for instance, the callback method onActivityResult() of
SendSMS will be called by Android SDK. This method sends replied data outwards in
SMS message by calling the sensitive API sendTextMessage(). Note that Android
framework requires the SendSMS app declare READ_PHONE_STATE and
SEND_SMS permissions to use those two sensitive APIs, while the Intent receiver app
Echoer need none of such declarations. It is similar for the WriteFile app.

Neither SendSMS nor WriteFile can leak private data independently. They rely on
Echoer to pass on those data to avoid merely intra-component data flows.

We further add the challenging stateful operations in SWE. For example, the field
of the Intent that SendSMS sends out contains a key constructed by StringBuilder. This
method appends “1” to the string “secrete”. When SendSMS receives the echoed
Intent, it only sends out the data specified by the key “secrete1” in SMS.

(B)

(A)

(C)

public class Echoer extends Activity {
protected void onCreate(Bundle savedInstanceState) {

...
Button b = (Button) findViewById(R.id.b);
b.setOnClickListener(new OnClickListener(){

public void onClick(View v) {
// check emul
if (!android.os.Build.BOARD.contains("goldfish")) {

Intent i = getIntent();// SRC
this.setResult(0, i);// SNK

}
}

});
}

}

public class SendSMS extends Activity {
protected void onCreate(Bundle savedInstanceState) {

...
Button b = (Button) findViewById(R.id.b);
b.setOnClickListener(new OnClickListener(){

public void onClick(View v) {
Intent i = new Intent(Intent.ACTION_SEND);
i.setType("text/plain");
String uid = (TelephonyManager) 

getSystemService(Context.TELEPHONY_SERVICE).getDeviceId();// SRC
StringBuilder sb = new StringBuilder();
sb.append("secret");
sb.append("1");// SRC
i.putExtra(sb.toString(), uid);
this.startActivityForResult(i, 0);// SNK

}
});

}

protected void onActivityResult(int rq, int rs, Intent i) {
...
String msg = i.getExtras().getString("secret1");// SRC
SmsManager.getDefault().sendTextMessage("10086",, msg,,);// SNK

    ...
}

}

public class WriteFile extends Activity {
protected void onCreate(Bundle savedInstanceState) {

...
Button b = (Button) findViewById(R.id.b);
b.setOnClickListener(new OnClickListener(){

public void onClick(View v) {
Intent i = new Intent(Intent.ACTION_SEND);
i.setType("text/plain");
String curLoc = (LocationManager) 

this.act.getSystemService(Context.LOCATION_SERVICE).getLastKnownLoc
ation(LocationManager.GPS_PROVIDER).toString();

i.putExtra("secret2", curLoc);
this.startActivityForResult(i, 0);// SNK

}
});

}

protected void onActivityResult(int rq, int rs, Intent i) {
…
StringBuilder sb = new StringBuilder();
sb.append("secret");
sb.append("2");
String sinkData = data.getExtras().getString(sb.toString());// SRC
FileOutputStream outputStream;
…
//  check perm
if  (checkCallingPermission(“android.permission.WRITE_EXTE 

RNAL_STORAGE”)==PackageManager.PERMISSION_GRANTED) {
    outputStream.write(sinkData.getBytes());// SNK

}
    ...
}

}

Fig. 1. Code snippets of the app set SWE.
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We also include runtime conditional execution. For instance, WriteFile checks
permission declared by the caller component, and it won’t write files if the caller does
not have the permission to access SD card. Echoer, for another instance, won’t send
sensitive data via SMS when resided in an emulator, thus circumventing detection.

4 Analysis Method

The workflow of IacCE can be depicted as Fig. 2, which proceeds as follows.

• App combination: The apps under analysis are analyzed for IAC/ICC links and are
combined as a single app.

• Static model extraction: We extract interface model, input specifications, control
flow graph, and sensitive Inter-App paths. We further extend taint paths with
implicit-control-flow-dependent event-chains.

• Instrumentation: The combined apk file will be instrumented for Android life-cycle
entry points, event handlers, symbolic registers, register-related assignments along
the extended taint paths, and user-specified external APIs.

• Concolic execution: It executes the instrumented app in emulator, performs sym-
bolic tracing, and generate app inputs.

• Runtime monitoring: A simple dynamic monitor is implemented by running and
observing the original apps with inputs generated by concolic executor.

4.1 App Combination

The first phase of IacCE builds links and combines apps in the set.

(1) ICC link exaction: An ICC link [1] is used to link two components in which the
source component contains an ICC method m that holds explicit/implicit Intent
information to access the target componentC. Our extraction includes identifying ICC
methods and Intent information, identifying target components by parsing the Intent

Concolic executorConcolic executor

Concolic engine

InstrumentorInstrumentor

API Modler

Handler instrumentor

Symbol instrumentor

Instrumented apk

Runner

Solver

Inputs

App

Combined App

Static model extractorStatic model extractor

Interface model,
input specification

XML parser

Taint path extractor

CFG analyzer

Inter-App taint paths

Extended taint paths

App ...

App combinerApp combiner

CombinerLink builder

Links

Runtime monitorRuntime monitor

Fig. 2. Overview of IacCE.

320 T. Wu and Y. Yang



Filters statically declared inmanifest file or dynamically defined in Java bytecode, and
finally matching ICC methods with target components according to [5].
(2) App combination: In order to perform Inter-App analysis, we combine multiple
Android apps to a single app in a naïve way, by extracting components and UI
layout files of each app and repacking them into one apk file. This combination
eases instrumentation and concolic execution of the apps, because we can consider
the apps as a whole without the need of dynamically coordinating them.

4.2 Static Model Extraction

This phase produces following models.

(1) The interface model: It provides information about all input fields, as well as
information about the Android IPC message (i.e., Intent) handled by Activities. All
Android components contained in the app and Intent information can be decided by
parsing the manifest file. Input fields can be obtained from the layout XML files.
(2) The Inter-App taint paths: Those paths cross app-boundaries before combina-
tion. They are computed by performing taint flow analysis on the connected app
code. Blindly execution of all possible program paths is boring, and instructions
which transmit sensitive information are better places which deserve our focus.

Before path extraction, we need to do some connection. Each ICC method call will
be replaced with an instantiation of the target component with the appropriate Intent.
And a dummyMain method will be generated for each component where all the
life-cycle and callback methods are modeled.

After specifying sensitive source-and-sink APIs, we can then apply static taint flow
analysis to find out all those Inter-App taint paths. For more details please refer to [1].

(3) The extended taint paths:

Firstly, we add supportive method calls to the paths. Taint paths only contain
taint-data transmitting instructions, which may be not able to execute all by
themselves. For the example shown in Fig. 3, the taint path we get is {getDevId,
i1} => {sendSMS, i2}. We need additionally include callers of getDevId() and
sendSMS(), that is, onCreate() and onResume() for getDevId(), and onClick(b2) for
sendSMS().

onCreate()

getDevId()

getDevId():

…
String uid;
i1: uid = telMgr.getDeviceId();
…

onResume() onClick(b2)

sendSMS()

sendSMS():

…
if (a == State.Started) {
i2: smsMgr.sendTextMessage(
"111",, uid,,);
}
…

onClick(b1)

onClick():

…
a = START;
…

Fig. 3. Example of taint path extension. (Color figure online)
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Secondly, we consider supportive event-chain extension, which is inspired by [9].
We examine implicit-control-flow dependent events with regard to the branch condi-
tions of those extracted taint paths, for which we here only consider channels of static
fields. Other channels such as file system and network should be future works. We say
two events are dependent when the field read by one event is previous written by the
other. For each dependency, we added a directed edge. As shown in Fig. 3, the event
handler onClick(b2) contains a branch condition that depends on the global variable
a. The require value START for a is set by the event handler onClick(b1). Thus, the
taint path will additionally include the edge {onClick(b1),} => {onClick(b2),}, where
b1 and b2 are two distinct button instances.

The extended taint path for the example in Fig. 3 is depicted in red bold line.

4.3 Java Bytecode Instrumentation

The app is mostly executed normally, while only some variables have to be traced
symbolically. To achieve this, instrumentation is needed, as illustrated by Fig. 4.

(1) Inserting calls to event handlers: It is an optional heuristic to instrument
component’s default entry point, such as onCreate()/onResume() of Activity, to
allowing for direct calls to event handlers thus simulating the injection of raw
events. Events are distinguished by taint-path id, guaranteeing that only event
handlers related to current taint path will be called. Although it is more general to
inject raw events in the Android framework boundary, tracing the extra injection
path require heavy instrumentation of Android system.

public class MainActivity extends Activity {
...
protected void onCreate(android.os.Bundle)
{

Expression _sym_tmp_1 = null, $r2$sym, $z0$sym;
MainActivity $r0 := @this: MainActivity;
Button1Listener $r1 = new Button1Listener;
...
a3targs$symargs = argpop(0, 0, 2);
$r2$sym = models.strVar$sym;// Modeling user-specified external APIs or fields
String $r2 = strVar;
$r2 = getSolution_string("$X$sym_sample_vars__java_lang_String_strVar");// Injecting solutions
$z0$sym = _contains($r2$sym, null, $r2, "pwd");// Symbolizing registers
boolean $z0 = $r2.contains("pwd");
_sym_tmp_1 = $z0$sym;
if $z0 == 0 goto label1;// Symbolizing path conditions
assume(_sym_tmp_1, 0, 0);
... /*  SNK API  */

label1:
assume(_sym_tmp_1, 0, 1);
goto label2;

label2:
View $r3 = new View($r0.getApplicationContext());
$r1.onClick($r3);// Inserting calls to event handlers
return;

}
}

Fig. 4. A sample code after instrumentation. Method summaries are simplified for reading.
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(2) Symbolizing registers, assignments and path conditions: This prepares for
symbolic tracing, dumping path conditions, and overwriting registers with solutions
at runtime. We need instrument registers, assignments and path conditions with
their symbolic counterparts. However, we do not instrument all these occurrences in
the app, rather than limit to those on the extended taint paths. We symbolically trace
input-tainted variables within components as well as through Intent bundles.
(3) Modeling user-specified external APIs or fields: We specify user inputs such as
UI text field according to the interface model we get in the static model extraction
phase, to enable symbolic tracing of them. Besides, the target app might call
external APIs or fields which may be hard to be symbolized. We model those
user-specified APIs or fields by replacing the actual API methods with stub methods
which return certain concrete values or even symbolic variable.
(4) Injecting solutions: After constraint solver find a solution, we replace each
symbolic register or model w.r.t. the r-value of the original assignment with its
corresponding solution. This is done by inserting method calls in the form of
getSolution_Xxx(String symVarName), where “Xxx” is a certain variable type.

4.4 Concolic Execution

We run and symbolically trace the instrumented combined app in Android emulators.
Our extended-taint-path (ETP, for short) guided concolic execution iteratively does
following procedures as depicted in Algorithm 1.

For each ETP, we first generate symbolic model/input configuration according to
interface model which specifies user inputs. Secondly, the emulator’s environment is
cleaned and the instrumented combined apk is installed. Thirdly, we determine the
default entry component by finding the root’s containing component for each ETP. And
then we start the component via am-start command. Fourthly, the solutions to inputs
and modeled APIs will be injected into symbolic registers in the instrumented app*.
When execution deviates from the intended taint path by branching to the wrong basic
block, we dump conditions over symbolic registers in a path condition*, negate the last
clause of the path condition*1, and then feed the resulted path constraint to a SMT
solver for a new solution of concrete register values leading to execution of the
intended basic block. Iterate above steps until we hit the sink API for each taint path.

Note that our concolic execution is enforced only along the ETP, which avoids the
notorious problem of path explosion and drives execution only along data-transmitting
paths.

1 These steps marked with the superscript “*” will be done by the instrumented app itself, rather than
by the concolic engine.
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Algorithm 1. ETP guided concolic execution
Input: ETP:extended taint paths, IM:interface model APK:instrumented

combined apk,
Output: In:data inputs, Ev:event inputs

1 model← getInputAndModel(IM)
2 i← 0
3 foreach path in EPT.getPaths() do
4 do
5 In[i]← {}, Ev[i]← {}
6 clean()
7 install(APK)
8 entry← getEntry(ETP)
9 startComponent(entry)
10 path← EPT.getNextPath()
11 Ev[i].add(path.getHandlers())
12 In[i].add(getSolution(model))
13 while !isSnkHit()
14 i← i+1
15end
16return In,Ev

4.5 Runtime Monitoring

Although we can just directly observe the behavior of the instrumented combined app,
we should further ensure that discovered Inter-App data leaks do happen for the
original apps. What is more, vendors often do not expect that data-leak issues rendered
by analyst are merely related to a modified or combined version of the original app set.

We inject events and inputs through Android Debug Bridge (adb) [11], step by step
along each extended taint path, without any repacking of the original apps.

# start entry component
adb shell am start -n app1/app1.MainActivity

# tap button1
Tap(248.0,351.0)
UserWait(4000)

# set GPS
adb -s emulator-5554 emu geo fix 121.420413 31.215345

# tap button 2
Tap(279.0,493.0)
UserWait(4000)

# send sms
adb shell am start -a android.intent.action.SENDTO -d 
sms:10086 --es sms_body “secrete” --es exit_on_sent true

# press sender key to submit
adb shell input keyevent 66

Fig. 5. An example of Monkey scripts and am commands.
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Firstly, according to the triggering order of events and inputs along the path, we
generate a script for each path which contains directly injectable events. For instance, it
can be a Monkey script [12] for UI events according to their location on the screen, or
may be a list of the Activity Manager tool (am) [13] commands for system events
according to their concrete types and the solutions to event parameters. Note that as the
resolution and size of emulator’s screen is fully under control, we can statically
determine the location of UI widgets according to their layout files. The mixed scripts
and commands shown in Fig. 5 is an example of a test that we generate.

Then, we replay UI events and system events on the original app set, by means of
separate mechanisms. Raw UI events are injected directly to the emulator using the
monkeyrunner tool [12]. System events are triggered using am. Specifically, we need to
send an explicit Intent by am to launch the entry component of the current taint path.

Text inputs are regarded as the combination of UI events. For example, when
injecting a text-input solution to an editable text widget, we generate such sequence of
events as tapping the editable text widget, typing each character of the solution string
by tap the corresponding soft/hard key, and typing the submitting soft/hard key.

For those modeled environment-dependent APIs or fields which cannot be directly
injected, such as emulator checkers or timing bombs, we set them with the solution we
get from the SMT solver facilitated by Android InstrumentationTestRunner [14].

Finally, by observing the triggered behavior for each taint paths, we can confirm the
existence of data-leakage in our original app set.

5 Implementation Details

5.1 IC3 and AppCombiner

The ICC links are built by IC3 [16] and stored in database for further analysis of
Inter-Component/Inter-App taint paths. ApkCombiner [17] takes all apps in the target
app set as input, and outputs a combined app.

5.2 IccTA (Modified)

We use IccTA [1] to extract the Inter-App taint paths. To seamlessly integrate the static
analysis process with concolic executor, we modify IccTA to store paths in the global
ArrayList structure resided in the main entry of instrumentor. Along with that, we
extract interface model and extend taint paths, thus avoiding preparing Soot [15]
structures in memory for many times.

5.3 Instrumentor

We borrow ConDroid’s [8] instrumentation utility, which in fact is inherited from
Acteve [8]. For methods along the extended taint paths, we implement path-sensitive
event-handler instrumentation, symbolic tracing of various variable types, input
symbolization, and Android SDK and third-party libraries instrumentation.
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5.4 Concolic Executor

We used Acteve [8] as our concolic execution engine. Extended-taint-path guided
execution is already guaranteed by our customized instrumentation, while more works
are involved to determine the entry component of the combined app, and to store
event-and-input sequence for runtime replaying.

When encountering input-related objects which require complex instantiation, such
as strings created by StringBuilder and intent data contained in Bundle, we symboli-
cally trace them by modeling the instantiation operations of the data structure.

When those complex objects are not input-related, to avoid missing true positive,
just add paths from intent with complex key to receiver. We are not worried about the
might resulted false positive, as we can directly observing whether those paths actually
leak data in the runtime monitor.

We integrate the string-constraint solving via z3-str SMT solver, by referring to the
code of ConDroid [6] which introduces a back-tracing procedure for semantically
richer solutions to registers of boolean type.

5.5 Runtime Monitor

For runtime monitor, we write a generator of Monkey scripts and am commands. It
reads path information and solutions from concolic executor. We replay events and
inputs contained in those scripts and commands, and observe the dynamic behavior of
the whole app set.

6 Experimental Evaluation

In the following subsections, we evaluate how IacCE can be used to automatically
drive sensitive data transmission, how IacCE compares with existing tools, and what
capabilities IacCE has to analyze real-world apps.

6.1 Case Study: The SWE App Set

To demonstrate its capabilities in practice, we first evaluate IacCE on the SWE example
described in Sect. 3. IacCE analyzes the set as follows.

• Inter-App taint analysis

Two Inter-App taint paths will be extracted for the combined app. Methods con-
taining instructions along those two paths are SendSMS$1.onClick(View) => Echoer
$1.onClick(View) => SendSMS.onActivityResult(int,int,Intent) and WriteFile$1.
onClick(View) => Echoer$1.onClick(View) => WriteFile.onActivityResult(int,int,
Intent).

• Extending Inter-App taint paths

Supportive life-cycle handlers are added. As there exists none static-field-related
event dependency, no extra extension is needed.
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• Instrumentation for event-handler calls

Take SendSMS for example. The invocation “ocl.onClick(view);” is inserted at the
end of SendSMS.onCreate(Bundle), where ocl is an anonymous instance of
OnClickListener and view is created according to the app context.

• Symbolization, symbolic tracing, and solution injection

The API/field android.os.Build.BOARD is path-condition related. It is modeled and
to be symbolic traced during concolic execution. Every statement along taint paths will
be instrumented to have its symbolic counterpart. A solution will overwrite the variable
storing BOARD, when there is any. The instrumented code is similar to that of Fig. 4.

For each path, concolic executor iteratively performs following steps until hitting
the sink APIs. Just take the first path as example:

• Concolic execution

We perform concrete execution of the combined app along with the symbolic
tracing of the modeled BOARD field. As with an emulator, the branch condition in
Echoer will not be taken. The path constraint “not (Contains $X$sym_an-
droid_os_Build__java_lang_String_BOARD “goldfish”)” is dumped as the sink API is
not hit.

• Solving path consraints

The SMT solver find a solution string, say “abc”, which is injected into the variable
storing the value retrieved from the BOARD field.

• Hitting the sink API

As there is no other symbolic-variable related branch on the Inter-App taint path,
the sink sendTextMessage(“10086”,,msg,) is hit in the second run of concolic exe-
cution. The iteration for the first path will then stop.

Since no symbolic-variable related branch exists for the second path, concolic
execution degrades to simple concrete execution. As no relative permission granted, the
branch checking the permission of Echoer in WriteFile is not taken. Thus, the sink
write(sinkData.getBytes()) will never be hit, and the leakage implied by the second
taint path does not happen.

• Replaying inputs and monitoring data-leakage

All apps in SWE are installed in a fresh emulator. We launch the root component of
the first path, i.e., SendSMS, by running an am command that sends to it an explicit
starting Intent. The UI events, i.e., successive taps on the buttons, are injected via a
Monkey script. The field BOARD is set as the solved string “abc”. A message con-
taining device id is observed to be sent, and we confirm the first path as Inter-App
data-leaking.
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6.2 Comparison with Existing Tools

Subject Apps. We choose two benchmarks, one contains 40 apps from DroidBench
[22], ICC-Bench [23], and the SWE app set; the other with 77 apps is an improved
version of the first one. DroidBench and ICC-Bench are frequently used as ground truth
to evaluate data-leakage analyzers. DroidBench has lately added 3 app sets for eval-
uating IAC analyzers. As these naïve apps are initially composed for static analysis, no
branches appear on any data-flow paths. Therefore, we duplicate those apps (except
SWE) into two groups, and each sensitive-API call in those apps is enclosed by an
additional branch condition. The resulted apps along with SWE comprise our second
benchmark. All added branch conditions in one group are satisfiable, while those in the
other group cannot be satisfied at runtime.

As IAC and ICC are essentially the same, we also evaluate the efficacy of existing
analyzers on ICC leaks.

We compare IacCE with three existing tools: FlowDroid, IccTA, and ConDroid.
We manually match the Intra-Component results of FlowDroid to report ICC leaks, just
like [1] did. As with ConDroid, we add support for other components besides Activity
and instrumentation of explicit intent call to enable ICC analysis, which are all
described in the paper [7] while not implemented in the provided source code. We
guide ConDroid with taint flows analyzed by IccTA instead of targeted call graph.
COVERT is not considered as it does not perform data-leakage analysis.

For each tool on the first benchmark, each precision is 27.4%, 93.9%, 100%, and
100%, and each recall is 60.6%, 93.9%, 48.5%, and 100%.2 The result on the second
benchmark is detailedly given in Table 1.

(a) FlowDroid misses lots of ICC flows and all IAC leakages, as it cannot produce
precise data-flow traces, even in the case where the components are within a single
app. (b) ConDroid, as a dynamic methodology, reports no false positive. However, it
misses a large number of leakages as it does not solve the problem of symbolically
tracing implicit ICC Intents, not to mention those explicit and implicit IAC Intents. (c)
IccTA performs well on the first benchmark of simple apps. The precision sharply
degrades on the second benchmark, due to the inefficacy of static analysis for deter-
mining whether those added branch conditions on taint paths will be satisfied at run-
time. (d) IacCE achieves higher precision and recall. It reports no false positive as it
dynamically observes the execution of apps. And it does not miss any leakages as it
performs conservative static taint path extraction for complicated state-full operations.
However, the 100% result does not mean IacCE always detect exactly all leaks for
any app set, as will be described in Sect. 7.

2 Due to space limitation as well as the relative incapability of evaluating dynamic tools experienced
by this benchmark, the result is not included in the paper.
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Table 1. Experimental results on the second benchmark. For each app (or app set) and tool,
indication of explicit or implicit ICC/IAC, true positive (TP), false positive (FP), and false
negative (FN) are listed. Precision (TP/(TP + FP)) and recall (TP/(TP + FN)) are mesmerized.

App name Explicit? FlowDroid IccTA ConDroid IacCE

DroidBench (Extended)
startActivity1 Y TP, FP(3) TP, FP TP TP
startActivity2 Y TP, FP(9) TP, FP TP TP
startActivity3 Y TP, FP(65) TP, FP TP TP
startActivity4 N FP(4) – – –

startActivity5 N FP(4) – – –

startActivity6 Y FP(4) – – –

startActivity7 Y FP(4) FP(2) – –

startActivityForResult1 Y TP, FP TP, FP TP TP
startActivityForResult2 Y TP, FP TP, FP TP TP
startActivityForResult3 Y TP, FP(3) TP, FP TP TP
startActivityForResult4 Y TP(2), FP(4) TP(2), FP(2) TP(2) TP(2)
startService1 Y TP, FP(3) TP, FP TP TP
startService2 Y TP, FP(3) TP, FP TP TP
bindService1 Y TP, FP(3) TP, FP TP TP
bindService2 Y FN TP, FP TP TP
bindService3 Y FN TP, FP TP TP
bindService4 Y TP, FP(3), FN TP(2), FP(2) TP(2) TP(2)
sendBroadcast1 N TP, FP(3) TP, FP FN TP
insert1 N FN TP, FP FN TP
delete1 N FN TP, FP FN TP
update1 N FN TP, FP FN TP
query1 N FN TP, FP FN TP
startActivity1_src,snk N FN TP, FP FN TP
startService1_src,snk N FN TP, FP FN TP
sendBroadcast1_src,snk N FN TP, FP FN TP
ICC-Bench (extended)
Explicit1 Y TP, FP TP, FP TP TP
Implicit1 N TP, FP TP, FP FN TP
Implicit2 N TP, FP TP, FP FN TP
Implicit3 N TP, FP TP, FP FN TP
Implicit4 N TP, FP TP, FP FN TP
Implicit5 N TP, FP(3) TP, FP FN TP
Implicit6 N TP, FP TP, FP FN TP
DynRegister1 N FN TP, FP FN TP
DynRegister2 N FN FN FN TP
SWE
SendSMS,Echoer,WriteFile N FN FP, FN FN TP

(continued)
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6.3 Application to Real-World Apps

Although IacCE is only a prototype by far, we successfully dynamically confirm (or
eliminate false positives) several suspicious real-world leakages reported by previous
static analyzers [1, 3]. Those apps are crawled from Google Play [24] and F-Droid [25].

We here describe an example of our findings. Ermete SMS is reported by COVERT
to be vulnerable to privilege escalation if it is installed along with Binaural beats
therapy [3]. In that case, Binaural beats therapy, designed for relaxation, creativity and
many other desirable mental states and is without WRITE_SMS permission, sends an
Intent with SEND action and text/plain payload data to Ermete SMS, a free web-based
text messaging application that has WRITE_SMS permission.

The authors of COVERT, however, had to manually review them to confirm the
vulnerability. Rather, IacCE dynamically checks the vulnerability and find it is a false
positive as Ermete SMS acctually does not receive the Intent sent by the former app
due to Intent field mismatching.

We further compose a malicious app which leaks location through an Intent
deliberately constructed to be receivable by Ermete SMS. In this case, IacCE verified
that the Inter-App data leakage does take place.

7 Discussion and Limitations

Here are some sources of unsoundness and imprecision of IacCE.

(1) Complex object symbolization. Objects which require complex initialization are
difficult to symbolize and trace for symbolic execution. Although concolic execu-
tion already elevates this by concretely executing none relevant part of code and
only symbolizing a rather small part, there are situations where symbolization of
complex object is necessary. Presently, we tackle this problem by modeling some of
the most frequently used Android complex objects.
(2) Native code, reflection and dynamic loading. Both commercial apps and
malicious apps are starting to use native codes, reflection, dynamic loading, and
other tricks to hide their real business logic to avoid being analyzed. This is a
common issue for all existing static and dynamic analysis tools. Although
researchers are trying to solve this, none satisfying solutions are available.
(3) Remote procedure calls (RPC). Besides Intent-based ICC/IAC, apps also can
communicate through remote procedure calls. The latter induces method-invocation

Table 1. (continued)

App name Explicit? FlowDroid IccTA ConDroid IacCE

Summary
TP 20 31 16 32
FP 126 34 0 0
FN 13 2 17 0
Precision 13.7% 47.7% 100% 100%
Recall 60.6% 93.9% 48.5% 100%
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interaction using stubs which are automatically generated by specifying component
interface described in Android’s Interface Definition Language (AIDL). RPC is less
used than Intent. We plan to support RPC in the future.

8 Related Work

FlowDroid [4] is a state-of-the-art open-source tool for intra-component static taint
analysis. It is context-,flow-, object-, andfield-sensitive andAndroid app lifecycle-aware.
However, it is confined to single components.

Didfail [2] and IccTA [1] are state-of-the-art tools for statically detecting
Android ICC leaks, all based on FlowDroid. IccTA achieves better precision and recall
than Didfail. It extracts the ICC links and then modifies the Jimple code of apps to
directly connect the components to enable data-flow analysis between components. It
then uses FlowDroid to perform high precise intra-component taint analysis and builds
a complete control-flow graph of the whole Android application. IccTA allows prop-
agating the context (e.g., the value of Intents) between Android components.

TaintDroid [29] is probably the most prominent tool for dynamic analysis of
Android apps. It dynamically traces data leaks occurred during the execution of apps by
applying dynamic taint analysis. Such tools are not suited for fully automated analysis
since they require user interaction to drive execution of the apps.

AppIntent [6], ConDroid [7] and IntelliDroid [9], however, successfully tackles the
problem of automate input generation. They use concolic execution for dynamic
analysis of apps. AppIntent identifies paths which incur information leaks and performs
concolic execution only on those paths. The notion of event space proposed by
AppIntent is incomplete, as it only take method-call like control flow into account.
ConDroid is a directed concolic analyzer for dynamic code loading in Android apps.
Similar to AppIntent, it performs directed concolic execution. IntelliDroid [7] further
extract event dependency according to path conditions to generate event chains.

Only quite recently, tools have emerged for IAC analysis. COVERT [3], one of
such tools, detects Inter-App vulnerabilities with static model checking. It mainly
performs call graph analysis for privilege escalation vulnerability rather than flow
analysis for information leakage. Also, it inherits the drawbacks of static analysis.

9 Conclusion

We proposed a tool for dynamic analysis of Inter-App data leakage. It performs con-
colic execution guided by extended taint paths extracted by static taint analysis, and
then dynamically observe and confirm whether the leakage happens at runtime. Future
works include conducting tests on more real-world apps, and analyzing other types of
vulnerabilities by applying model checking.
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