
Parallel and Dynamic Structured Encryption

Russell W.F. Lai and Sherman S.M. Chow(B)

Department of Information Engineering,
The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong

{russell,sherman}@ie.cuhk.edu.hk

Abstract. We design a searchable symmetric encryption scheme for
structured data which supports dynamic updates and parallel compu-
tation. The abstract data type supported by our scheme not only can
represent the usual keyword-file search but also other data type such as
graph structure. Unlike previous parallelizable schemes, search complex-
ity of our scheme is optimal, namely, linear in the number of matches
divided by the number of processors. Moreover, previous parallel and
dynamic schemes require an interactive update protocol to minimize the
leakage caused by the updates. It is thus a major technical challenge
to mandate non-interactive updates. While achieving multiple require-
ments simultaneously, our scheme leverages a simple tree structure. Our
scheme is secure against adaptive chosen query attack. We also evaluate
the efficiency of our scheme with synthetic data (of higher edge den-
sity) and real-life data for the application of online social network where
connections among users are represented by graphs.

Keywords: Searchable symmetric encryption · Structured encryption ·
Non-interactive · Dynamic · Parallel · Graph encryption

1 Introduction

In searchable symmetric encryption (SSE), the key used for encryption has an
additional capability of generating a search token, with which the encrypted
content can be queried efficiently without leaking the plaintext data. A com-
mon application of SSE is to outsource the storage of a set of documents to an
untrusted server. The ability to search is especially critical to mobile devices
where transmission speed and storage space are usually limited.

Structured Encryption. Since the seminal work of Song et al. [11], many SSE
schemes focus on keyword search over files. Later schemes extended the query
type to more complex keyword searches, such as range search [13], similarity

Sherman S.M. Chow is supported in part by General Research Fund Grant No.
14201914 and the Early Career Award from Research Grants Council, Hong Kong;
and Huawei Innovation Research Program (HIRP) 2015 (Proj. No. YB2015110147).
We thank Chen Change Loy and Multimedia Lab, Dept. of Information Engineering,
CUHK for their computational resources we used for some of our initial experiments.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Deng et al. (Eds.): SecureComm 2016, LNICST 198, pp. 219–238, 2017.

DOI: 10.1007/978-3-319-59608-2 12

220 R.W.F. Lai and S.S.M. Chow

search [14], etc. Chase and Kamara [1] generalize SSE to structured encryption
for supporting queries over arbitrary structured data.

Leakage. Ideally, an SSE scheme should satisfy two security requirements: (1) the
encrypted database does not reveal any information about the plaintext, and (2)
the tokens for adaptively issued queries and updates do not reveal any further
information beyond the query results. Typically, SSE schemes often reveal the
access and search pattern [2,3]. Yet they are non-interactive, which means that
the client only needs to delegate the search token and needs not to provide further
help for any subsequent searches. There are interactive solutions like oblivious
RAM [4] which can hide the access pattern, yet at the cost of efficiency.

Beyond access and search patterns, other information about the plaintext
could be leaked to the server. This information can be precisely defined by a
set of leakage functions [1,2,7]. Informally, we say that an SSE scheme is secure
against adaptive chosen query attack (CQA2), a generalization of adaptive cho-
sen keyword attack (CKA2) [2], if any adversary issuing a polynomial number of
queries adaptively cannot distinguish a real SSE scheme from one simulated with
the knowledge of the leakages. Note that the adversaries for different schemes
(of different efficiency) are often given different sets of leakage functions.

Existing Parallel and Dynamic SSE. SSE schemes proposed by Kamara et al. [7],
Kamara and Papamanthou [6], and Hahn and Kerschbaum [5] (denoted by KPR,
KP, and HK respectively) support dynamic updates of files, i.e., files can be
added or removed. This can be done via the help of an update token. A recent SSE
scheme proposed by Stefanov et al. [12] (denoted by SPS) can update individual
(keyword, file) pairs dynamically, but is unable to directly remove a file, i.e., the
client needs to manually remove all the (keyword, file) pairs for the unwanted file.

Supporting update poses more challenges in preventing leakage. For sup-
porting efficient dynamic updates, early work (e.g., KPR [7]) made compromise
in allowing more leakage when compared with some prior static SSE schemes.
Moreover, KPR uses linked list as its internal data structure which is inherently
sequential, making the scheme not parallelizable and less practical to be used in
parallel computing architecture.

Recent parallel and dynamic schemes (KP [6] and SPS [12]) made the trade-
off by requiring interaction between the data owner and the server in every
updates to minimize leakage. These schemes adopt different design principles in
addressing the same problem. From a high-level point of view, KP employs a
simple and direct approach which passes the data structure maintenance prob-
lem incurred by the update back to the owner. On the other hand, SPS relies on
an interactive cryptographic protocol known as oblivious sorting. One can view
these two schemes as adopting approaches at two ends of a spectrum. The for-
mer method requires the data owner to locally decrypt the relevant part of the
data structure, and upload again an encryption of them after maintenance for
keeping the parallel efficiency. The use of oblivious sorting requires local storage
at the client side (apart from the private key) and makes the resulting scheme
relatively heavyweight. In short, both approaches require quite a large amount of
communication and work at the client side. These schemes also store redundant

Parallel and Dynamic Structured Encryption 221

information which required to be traversed during a search, thus the full power
of parallel computation diminishes. In more details, KP stores the actual data
only in the leaf nodes of a tree and SPS firstly creates a “Delete” node during
deletion rather than actually removing the data.

HK uses a simplistic approach for handling data dynamic by exploiting the
leakage incurred from the first search on any keyword. While the majority of
the existing SSE schemes required a pre-computed inverted index, HK simply
stores the encrypted files as sequences of encrypted keywords in the database,
and creates a simple inverted index on the fly using the leaked access pattern.
Therefore, adding and deleting files in HK are as easy as adding or removing
the corresponding sequence of encrypted keywords as a whole, and updating the
rather small inverted index. Subsequent search can be easily parallelized as the
inverted index is stored in plaintext. However, as the search history becomes
longer, the inverted index becomes larger which slows down the addition and
deletion algorithms.

To summarize, it is fair to say that designing SSE with a desirable trade-off
between functionality, security, and efficiency is a challenging problem.

Our Contribution. We propose a searchable symmetric encryption scheme RBT
which supports dynamic updates and parallel computation. In summary, our
scheme makes technical contributions in two dimensions.

First, we extend structured encryption for dynamic abstract data type which
allows updates to both the data space and the query space. Specifically, RBT
allows updates to individual (query, data) pairs. This requires a more fine-grained
access control over the encrypted database. Under this abstraction, RBT allows
deletion of data which automatically deletes all (query, data) pairs related to
the piece of data in question. To the best of our knowledge, our scheme is the
first to support both types of updates. In addition to returning all data related
to a given query, our scheme also supports meta-query to check if a (query,
data) pair exists in the database, i.e., that the query is related to the data. This
contribution will be presented in Sect. 2. We will illustrate the applicability of
this abstract data type, particularly to representing connections in online social
network, in Sect. 2.2.

Second, in the premise of parallel SSE, we aim at the optimal search com-
plexity linear in the number of matches divided by the number of processors,
simultaneously ensuring that searches only leak search and access patterns,
while minimizing the leakages during updates. This will be presented in Sect. 4.
Despite making the above improvements, our scheme leverages a simple random-
ized binary tree (hence the name RBT) to achieve non-interactive queries and
updates.

Finally, we show that our scheme is secure against adaptive chosen query
attack, and demonstrate its performance in Sect. 5 using both synthetic data for
general scenarios and real-life data for online social networks.

Performance Comparison. We compare our scheme with KPR, KP, and SPS
and HK in Table 1. Yet, we remark that it is a simplified discussion due
to the differences in leakages (of different data-structures), the interaction

222 R.W.F. Lai and S.S.M. Chow

Table 1. The search complexities of KPR, KP, SPS, HK, and RBT (m, N , and p denote
the number of matches, number of all files/data, and number of processors resp.)

Scheme Search complexity

KPR O(m)

KP O(m/p) log N (∵ storing data only in leaf nodes)

SPS O(m/p) log3 N (∵ rebuild mechanism)

HK O(N/p) (first time, ∵ no pre-built inverted index)

O(m/p) (subsequent search)

RBT O(m/p)

requirements, etc. In particular, during updates, KPR leaks local information;
RBT leaks the affected sub-trees’ traversal information μt (Table 2); KP and
SPS leak nothing by interaction (throwing back the update-task to the client
and performing interactive oblivious-updates respectively) as we explained.

2 Our Dynamic Abstract Data Type

2.1 Definition

We extend the definition of static data type by Chase and Kamara [1] to dynamic
data type. A dynamic abstract data type T is defined by a data space D with
a query operation Query : D × Q → R and an update operation Update :
D × U → D, where Q is the query space, R is the response space, and U is the
update space.

As in most of the other SSE schemes, the responses to the queries are pre-
pared during encryption. Without loss of generality, we let a data structure δ of
type T and size parameter (M,N) to have the following structure:

– Data set: δ ⊂ δ∗ = {(qi, rj)}M,N
i=1,j=1 ∈ D

– Query space: Q(δ) = {q : ∃r s.t. (q, r) ∈ δ}
– Response space: R(δ) = {r : ∃q s.t. (q, r) ∈ δ}
– Update space: U(δ) = {(“Add”, d) : d ∈ δ∗ \ δ} ∪ {(“Del”, d) : d ∈ δ}

where qi is a query, rj is a piece of data corresponding to a query, and δ∗ is
considered to be the largest possible collection of data. The operations Query
and Update are defined in the natural way. This representation expresses each
of the possible query-response pairs as a data item.

It can be useful to check if a certain pair of query and response exists. We
therefore build extra “meta-queries” based on the normal query-response pairs.
Concretely, we extend the query space to Q′ = Q ∪ δ and the response space
to R′ = R ∪ {true, false}. The query operation is also extended so that, given a
“meta-query” d = (q, r), it checks if (q, r) is in the data set. If so, it returns true.
Otherwise, it returns false. The update operation is extended in the natural way.

Parallel and Dynamic Structured Encryption 223

2.2 Instantiating Our Abstract Data Type

To illustrate the generality and flexibility of our abstract data type, we show how
it covers (the common) searches for keyword in files, and other common data
types considered in existing structured encryption of Chase and Kamara [1].

For keyword search, each keyword is encoded as a query, all the files con-
taining a certain keyword are the corresponding responses. Via the meta-query,
our data type further supports the query for checking if a certain keyword exists
in a particular file, which minimizes the unnecessary traversal (and leakage) of
other files containing the same keyword.

For lookup queries on matrix-structured data (e.g., pixel-based images) [1],
we just encode the matrix data (e.g., the colors in different models like RGB
and CMYK) as the responses. There can be various instantiations according
to the specific needs of the application, e.g., one may assign (the index of) a
row as the query and all the responses as the entries of that row, or one may
assign a multi-dimension index (e.g., (row, column) pair in a 2D matrix) as the
query, and our list of responses allow storing more than one data item in a single
(indexed) entry. Looking ahead, with the dual structure storing both (query,
response) and (response, query) pairs, our schemes can be extended to support
transpose-related operations on matrices natively.

Finally, for graph, one natural representation is to assign nodes with outgoing
edges as queries, and those with incoming edges as responses. The existing struc-
tured encryption [1] scheme supports neighbor queries and adjacency queries.
Neighbor queries return all the nodes adjacent to a given node i. It is apparent
that i will be the query and the adjacent nodes are all stored as its response.
For queries to check if two nodes are adjacent, it can be easily supported by our
meta-query. As mentioned in the original application [1], this allows us to sup-
port controlled disclosure of friendship graphs of a social network, for example.

3 Cryptography Background

3.1 Basic Notations

Let λ be the security parameter. All sets and other parameters depend on λ
implicitly. {0, 1}n denotes the set of all binary strings of length n. {0, 1}∗ denotes
the set of all finite length binary strings. 0 denotes the λ-bit string with all zeros.
0k denotes k consecutive zero strings 0. φ denotes the empty set. If X is a set,
x ← X denotes the sampling of an element x uniformly from X. If A is an
algorithm, x ← A means that x is the output of A. “⊕” denotes the bit-wise
exclusive OR (XOR) operation. If x, y ∈ {0, 1}n, |y| denotes the length of y,
i.e., n; and x ⊕= y denotes x = x ⊕ y, i.e., assigning x ⊕ y as the new value of
variable x. “;” denotes string concatenation.

3.2 Pseudorandom Functions and Symmetric-Key Encryption

Pseudorandom functions (PRFs), informally, is a class of polynomial-time com-
putable function family such that no polynomial-time adversary can distinguish

224 R.W.F. Lai and S.S.M. Chow

between a randomly chosen function among this family and a truly random func-
tion (whose outputs are sampled uniformly and independently at random), with
a significant advantage relative to the security parameter. Each PRF takes a
secret key and an input. The secret key serves as an index to determine which
function in the family to use.

To build a symmetric-key encryption scheme with computational security,
one can use a PRF to output the mask to be XOR-ed with the message. Note
that the input of the PRF should be unique to ensure security.

3.3 Dynamic Symmetric Structured Encryption

We combine and simplify existing definitions of dynamic SSE and (static) struc-
tured encryption to dynamic structured encryption for our abstract data type
defined in Sect. 2. The standard security notion of SSE designed for keyword
search over files is the notion of security against adaptive chosen keyword attack
(CKA2). Below we generalize it to the notion of security against adaptive cho-
sen query attack (CQA2) for structured encryption. For modeling the security of
our dynamic structured encryption, we also extend dynamic CKA2 and (static)
CQA2 security [1,7] to dynamic CQA2.

Definition 1. Let T be a dynamic abstract data type with query operation
Query : D × Q → R and update operation Update : D × U → D. A dynamic
symmetric-key structured encryption scheme for T is a tuple of six probabilistic
polynomial-time algorithms DSSE = (Gen,Enc,QryTkn,Qry,UdtTkn,Udt):

– K ← Gen(1λ): The key generation algorithm inputs a security parameter λ
and outputs a secret key K.

– γ ← Enc(K, δ): The encryption algorithm inputs a secret key K and a data
structure δ of type T . It outputs an encrypted data structure γ.

– τq ← QryTkn(K, q): The query token generation algorithm inputs a secret
key K and a query q ∈ Q. It outputs a query token τq.

– R ← Qry(τq, γ): The query algorithm inputs a query token τq and an
encrypted data structure γ. It outputs a sequence of identifiers R.

– τu ← UdtTkn(K,u): The update token generation algorithm inputs a secret
key K and an update u ∈ U . It outputs an update token τu.

– γ′ ← Udt(τu, γ): The update algorithm inputs an update token τu and an
encrypted data structure γ. It outputs a new encrypted data structure γ′.

We say that DSSE is correct if for all λ ∈ N, for all K output by Gen(1λ), for
all δ ∈ D, for all γ output by Enc(K, δ), for all sequences of queries and updates,
the queries always return the correct sequences of identifiers of the responses
from δ matching to the queries.

Definition 2 (Dynamic CQA2-security). Let DSSE be a structured encryption
scheme as defined in Definition 1. Consider two probabilistic experiments, where
A is a stateful adversary, S is a stateful simulator, and Le, Lq, Lu are stateful
leakage algorithms:

Parallel and Dynamic Structured Encryption 225

– RealA(1λ): the challenger runs DSSE with the input data structure δ specified
by A. A returns a bit b that is output by the experiment.

– IdealA,S(1λ): A outputs δ. Given Le(δ), S generates and sends γ to A. A
makes a polynomial number of adaptive updates u and queries q. For queries,
S is given Lq(δ, q). It returns a query token τq and a response R. For updates,
S is given Lu(δ, u). It returns an update token τu and an encrypted data
structure γ. Finally, A returns a bit b that is output by the experiment.

We say that DSSE is (Le, Lq, Lu)-secure against adaptive dynamic chosen-
query attacks if for all PPT adversaries A, there exists a PPT simulator S such
that

|Pr[RealA(1λ) = 1] − Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

4 DSSE from Random Binary Tree

Our goal is to construct a dynamic SSE scheme for structured data, such that:
(1) the computation complexity of the server during queries is optimal up to
a constant time overhead, and (2) updates are non-interactive. Our solution is
to represent the response spaces using random binary search trees. We use the
concept of normal and dual nodes to support updates like KPR [7]. For any data
(q, r) ∈ δ, there are a normal node and a dual node storing (q, r) which is indexed
by q and r respectively.

4.1 Intuition

Take keyword search over files as an example. All keyword-file pairs are prepared;
and an index is built where the pairs with the same keyword are grouped into
sets. Searching for a keyword (or making a query q) is then equivalent to travers-
ing through a set (of responses {r : (q, r) ∈ δ}). Yet, the server can only traverse
the set upon receipt of the corresponding token; otherwise, it can identify all
(encrypted) responses to a specific (unknown) query by traversing a set.

To delete a file, the server needs to retrieve all the keywords associated with
it. Hence, one can consider it as “file search over keywords” instead of keyword
search over files. This explains the role played by the set of dual nodes.

The simplest method to represent either kind of set is to use a linked list, as
adopted in, for example, KPR. Yet traversing a linked list is inherently sequential.
Another way is to use binary trees (e.g., KP). While traversing a binary tree
can be parallelized, updating a binary tree requires balancing or the tree will
eventually degenerate to a linked list. However, balancing a tree often requires
finding a suitable “replacement” node which can be at a branch “faraway” from
the position where the modification was originally made. Reaching this node
requires traversal and hence the client needs to leak sufficient secret to the server.
To avoid balancing the tree explicitly, we use binary search trees with random
addresses as their search keys [10].

226 R.W.F. Lai and S.S.M. Chow

4.2 High-Level Description

We first describe our scheme RBT in high-level. This part emphasizes on the
encryption and decryption part, in particular, how to use different kinds of keys
in the tokens (listed in Table 3) to retrieve the information stored in each cell
(listed in Table 2).

(a) Setup: RBT consists of dictionaries I and A, where I is an index pointing
to some cell of A, and the cells of A are connected in random binary trees. For
each data (q; r) ∈ δ, query q ∈ Q(δ), and response r ∈ R(δ), a normal node and
a dual node are created and stored at random addresses in A. Each node stores
multiple types of information labeled as μs, μt, μd, and μa as explained in Table 2.
This information is masked by XOR-ing with a pseudo-random function (PRF)
output computed from a key and the randomness stored in μa of the node. The
keys for masking each type of information are listed in Table 3.

The dictionary I maps an index to a masked address of A, where the index
and the mask are computed by applying PRFs to the corresponding data, query,
or response. The normal nodes in A correspond to the data (q, ·). Data cor-
responding to the same q are connected in a random binary search tree using
random addresses as their search keys. Similarly, the dual nodes correspond to
the data (·, r) and response r are connected in a random binary search tree.
Figure 1 shows a toy-example of an encrypted database. Since our binary search
trees use random addresses as their search keys, the trees are roughly balanced
even after a sequence of insertion and deletion [10], hence expect no balancing.

Table 2. The information stored in an array cell of RBT, with subscript in boldface in
the description: μt of a node stores the traversal keys of its children, which thus grants
the access to all μt down its sub-tree

Info. Description

μs The response r to be returned upon search query corresponding to the
data (q; r)

μt The addresses of the parent and children nodes, and the traversal keys
of the children nodes used for traversal during queries and updates

μd The address and traversal key of the dual node used for delete updates
only

μa The randomness used (in PRF to derive the key) for masking the above

Table 3. The keys required for masking the information stored in an array cell: S, Tb

and Db are PRFs where b is the type (0:normal; or 1:dual) of the node

Info Key

μs of all (q; ·) The search key S(q)

μt of (q; r) The traversal key Tb(q; r)

μd of (q; r) The dual key D0(q̂) or D1(r̂)

Parallel and Dynamic Structured Encryption 227

As in KPR [7], one reason for storing a dual structure is to support the dele-
tion of queries and responses. For example, to delete a response r′, all nodes
corresponding to r′, namely {(q, r′) ∈ δ}, must also be removed from the data-
base. The dual structure provides a mechanism for updating each (q, r) which
belongs to different trees.

66, (q1,⊥)

82, (q1, r2)

99, (q1, r5)75, (q1, r8)

30, (q1, r7)

50, (q1, r3)27, (q1, r1)

7, (⊥, r2)
∗

42, (q4, r2)
∗

87, (q5, r2)
∗39, (q1, r2)

∗

2, (q3, r2)
∗

Fig. 1. Setup: Tree for q1 and dual tree for r2; Searching q1 returns r1, r7, r3, r8, r2, r5
(in-order traversal based on the randomly assigned addresses 27, 30, 50, 66, 75, 82, 99)

(b) Queries: μt of a node is masked using a traversal key stored in its parent
node. So, to query q, the client computes and sends the following to the server:
the index (in I), the index mask (to unmask the entry in I), the search key (to
unmask μs and get back response r of a node), and the traversal key of q.

In more details, by unmasking the appropriate index of I, the server locates
the root node of q, and traverses down by unlocking the traversal key of the
children nodes iteratively. Parallel traversal is done by traversing both the left
and right sub-trees of a node simultaneously. Upon arrival at a node, it uses the
search key to unmask μs. The response to client contains all μs obtained during
traversal.

(c) Meta-Queries: For meta-query (q, r), the client only sends the index and the
index mask to the server (while the search key and traversal key are replaced
by random strings). This means that the server is able to locate the node cor-
responding to (q, r), but cannot obtain the μs stored nor traverse down the
sub-tree. Nevertheless, the server performs the same operations as for (normal)
queries and returns the “unmasked” μs if a node is located. The client interprets
the response as false if the server returns the empty set φ, or true otherwise.

(d) Add and Link Updates: The server creates a new node to be inserted under
a random address in A. Adding a new query q or response r are considered to
be Add updates, while adding a new data d = (q, r) is a Link update.

For the Add update, the new node for q or r serves as the root node. For
the Link update, node d is inserted into the tree corresponding to query q. To
do this, the update token includes the traversal key of the root node, so that
the server can use it to unmask the traversal keys of its children, traverse down
the tree, and update the tree linkage. The same procedure is then repeated for
adding the dual node of d. Figure 2 shows an example of a “Link” update.

228 R.W.F. Lai and S.S.M. Chow

66, (q1,⊥)

82, (q1, r2)

99, (q1, r5)75, (q1, r8)

68, (q1, r6)

30, (q1, r7)

50, (q1, r3)27, (q1, r1)

7, (⊥, r2)
∗

42, (q4, r2)
∗

87, (q5, r2)
∗39, (q1, r2)

∗

2, (q3, r2)
∗

Fig. 2. Adding (q1, r6) to address 68

(e) Unlink Updates: Deleting d = (q, r) from the database is considered to be
an Unlink update. The server looks up I and locates the normal node for d
in A, traverses down the sub-tree using the traversal key Tb(d) to find the right-
most left-sibling (or left-most right-sibling), and replaces the target node with
the sibling. The same procedure is repeated for removing the dual node of d.
Figure 3 shows an example of an “Unlink” update.

66, (q1,⊥)

75, (q1, r8)

99, (q1, r5)68, (q1, r6)

30, (q1, r7)

50, (q1, r3)27, (q1, r1)

7, (⊥, r2)
∗

42, (q4, r2)
∗

87, (q5, r2)
∗

2, (q3, r2)
∗

Fig. 3. Removing (q1, r2) from address 82 (replaced by (q1, r8) in address 75) and
(q1, r2)

∗ in address 39

(f) Delete Updates: To delete a response r, the server traverses the dual tree
corresponding to r and delete all the dual nodes down the tree. Each dual of
the dual nodes, which is a normal node, is also deleted from the corresponding
normal tree. Parallel deletion is possible by deleting the left and right sub-trees
simultaneously. Similar procedures can be done to delete a query q.

4.3 Concrete Construction

Now we give the details in how to construct our RBT scheme, according to the
high-level description explained in the last sub-section. This part will be espe-
cially helpful for those who want to implement or possibly optimize our scheme.
Recall that in last sub-section we have explained the encryption/decryption part
of RBT. The rest is mostly about tree traversal and addition/deletion of nodes,
which should be simple to understand for any computer scientists. While con-
ceptually simple, writing down the actual steps in algorithm require a careful

Parallel and Dynamic Structured Encryption 229

management of the pointers involved in (possibly more than one kinds of) the
tree. Readers who are interested in its security can go straight to Sect. 4.4, or
the performance evaluation in Sect. 5 which also explains part of the codes below
and their sub-routines in AppendixA.

Let δ be a data structure of type T of size parameter (M,N) as defined
in Sect. 2. Let ∗ be a special symbol denoting an empty string. Let F =
{{Fb, Gb, Tb,Db}b∈{0,1}, S} be a set of PRFs such that for each f ∈ F ,
f : {0, 1}λ × {0, 1}∗ → {0, 1}λ. Let Hs : {0, 1}λ × {0, 1}∗ → {0, 1}λ, Ht :
{0, 1}λ × {0, 1}∗ → {0, 1}5λ, and Hd : {0, 1}λ × {0, 1}∗ → {0, 1}2λ be another
three PRFs to be modeled as random oracles. All PRFs use different keys. For
brevity, we will not specify the key each time we use a PRF.

Our scheme RBT = (Gen,Enc,QryTkn,Qry,UdtTkn,Udt,Dec) is defined as
follows, and the sub-routines QryTrav, Ins, Del, DelTrav, and replc are defined in
AppendixA.

Algorithm K ← Gen(1λ):
1: Generate λ-bit random strings as keys of each PRF
2: Output K which includes all the generated keys

Algorithm γ ← Enc(K, δ):
1: Initialize empty dictionaries I and A
2: Set γ = (I,A)
3: for all d = (q; r) ∈ δ do
4: if q̂ = (q; ∗) is not added then
5: Run τu ← UdtTkn(K, (“Add”, (q̂)))
6: Run γ ← Udt(τu, γ)
7: end if
8: if r̂ = (∗; r) is not added then
9: Run τu ← UdtTkn(K, (“Add”, (r̂)))

10: Run γ ← Udt(τu, γ)
11: end if
12: Run τu ← UdtTkn(K, (“Add”, d))
13: Run γ ← Udt(τu, γ)
14: end for
15: Return γ

Algorithm τq ← QryTkn(K, d):
1: Parse d as (q, r)
2: if r = ∗ then
3: Return τq = (F0(d), G0(d), T0(d), S(d))
4: else
5: Return τq = (Fb(d), Gb(d), t, s), where b ← {0, 1} and t, s ← {0, 1}λ

6: end if

Algorithm R ← Qry(τq, γ):
1: Parse γ as (I,A) and τq as (τ1, τ2, τ3, τ4)
2: Abort if τ1 is not in I

230 R.W.F. Lai and S.S.M. Chow

3: Retrieve addr = I[τ1] ⊕ τ2
4: Run R ← QryTrav(addr, τ3, τ4)
5: Return R

Algorithm τu ← UdtTkn(K, (mode, d)):
1: Parse d as (q, r)
2: if mode = “Add” and (q = ∗ or r = ∗) then
3: Set b = (q = ∗)
4: Set μs ← {0, 1}λ

5: Set μt = Ht(Tb(d), rt)
6: Set μd ← {0, 1}2λ

7: Set μa = (rs, rt, rd) ← {0, 1}3λ

8: Set τu = (“Add”, Fb(d), Gb(d), (μs, μt, μd, μa))
9: else if mode = “Add”, q �= ∗ and r �= ∗ then

10: Set μa = (rs, rt, rd) ← {0, 1}3λ

11: Set μa
′ = (r′

s, r
′
t, r

′
d) ← {0, 1}3λ

12: Set μs = r ⊕ Hs(S(q̂), rs).
13: Set μs

′ ← {0, 1}λ

14: Set μt = Ht(T0(d), rt)
15: Set μt

′ = Ht(T1(d), r′
t)

16: Set μd = (0, T1(d)) ⊕ Hd(D0(d), rd)
17: Set μd

′ = (0, T0(d)) ⊕ Hd(D1(d), r′
d)

18: Set

τu = (“Link”,

F0(q̂), G0(q̂), T0(q̂), F0(d), G0(d), T0(d),
F1(r̂), G1(r̂), T1(r̂), F1(d), G1(d), T1(d),

(μs, μt, μd, μa), (μs
′, μt

′, μd
′, μa

′))

19: else if mode = “Del” and (q = ∗ or r = ∗) then
20: Set b = (q = ∗)
21: Set τu = (“Del”, Fb(d), Gb(d), Tb(d),Db(d))
22: else if mode = “Del”, q �= ∗ and r �= ∗ then
23: Set τu =

(“Unlink”, F0(d), G0(d), T0(d), F1(d), G1(d), T1(d))

24: else
25: Set τu =⊥
26: end if
27: Return τu

Algorithm γ′ ← Udt(τu, γ):
1: Parse γ as (I,A) and τu as (mode, τ1, τ2, . . .)
2: if mode = “Add” then
3: Recall that

τu = (“Add”, Fb(d), Gb(d), (μs, μt, μd, μa))

Parallel and Dynamic Structured Encryption 231

4: Abort if τ1 or τ4 is in I
5: repeat
6: Sample root ← {0, 1}λ

7: until A[root] is free
8: Set I[τ1] = root ⊕ τ2
9: Set A[root] = τ3

10: else if mode = “Link” then
11: Recall that

τu = (“Link”,

F0(q̂), G0(q̂), T0(q̂), F0(d), G0(d), T0(d),
F1(r̂), G1(r̂), T1(r̂), F1(d), G1(d), T1(d),

(μs, μt, μd, μa), (μs
′, μt

′, μd
′, μa

′))

12: Abort if τ1 or τ7 is not in I
13: Set rootq = I[τ1] ⊕ τ2
14: Set rootr = I[τ7] ⊕ τ8
15: repeat
16: Sample tgt, dual ← {0, 1}λ

17: until A[tgt] and A[dual] are free
18: Set I[τ4] = tgt ⊕ τ5 and I[τ10] = dual ⊕ τ11
19: Set A[tgt] = τ13 and A[dual] = τ14
20: Set A[tgt].μd.dual ⊕= dual
21: Set A[dual].μd.dual ⊕= tgt
22: Run A ← Ins(rootq, τ3, tgt, τ6)
23: Run A ← Ins(rootr, τ9, dual, τ12)
24: else if mode = “Del” then
25: Recall that

τu = (“Del”, Fb(d), Gb(d), Tb(d),Db(d))

26: Abort if τ1 is not in I
27: Set root = I[τ1] ⊕ τ2
28: Run A ← DelTrav(root, τ3, τ4)
29: else if mode = “Unlink” then
30: Recall that

τu = (“Unlink”, F0(d), G0(d), T0(d), F1(d), G1(d), T1(d))

31: Set tgt = I[τ1] ⊕ τ2
32: Set dual = I[τ4] ⊕ τ6
33: Run A ← Del(tgt, τ3)
34: Run A ← Del(dual, τ6)
35: end if
36: Set γ = (I,A)
37: Return γ

232 R.W.F. Lai and S.S.M. Chow

4.4 Security Analysis

We follow the existing framework [7] which describes the security of SSE schemes
against an honest-but-curious server by a set of leakage functions (Le,Lq,Lu)
for encryption, queries, and updates respectively. RBT leaks information about
the internal data structure when performing updates on the tree structure. Its
security is asserted in Theorem 1 while the details of (Le, Lq, Lu) are specified
in its proof. The proof can be found in AppendixB.

Theorem 1. The dynamic searchable symmetric encryption scheme on struc-
tured data presented above is (Le, Lq, Lu)-secure against adaptive dynamic
chosen-query attacks in the random oracle model.

5 Efficiency Evaluation

5.1 Complexities Analysis

Let p be the number of processors and m be the number of data related to a
given query q or response r. It is easy to see from Qry algorithm that (after
Line 1–3 which takes O(1) time) it just applies QryTrav to traverse from the
root of a tree. The algorithm QryTrav (after Line 4–8 which recovers the key for
unwrapping the two child pointers in particular) just applies QryTrav to traverse
the tree recursively. So the query complexity of our scheme is optimal, namely
O(m/p).

The update algorithm Udt encapsulates different modes of updates, namely,
“Add”, “Link”, “Unlink”, and “Delete”. For “Add” update, which just samples a
free address (Line 5–7) and masks them (Line 8–9) from the corresponding keys
in the update token (Line 3), is constant time. “Link” and “Unlink” updates
have complexity O(log m). Here we just explain “Link”. Similar to “Add’, it
firstly parses the update token (Line 11). From there, the root addresses for q
and r are obtained (Line 13–14). To insert the new node, it samples a target
address (tgt) for storing the node itself and dual for storing its dual (Line 15–17),
sets them up (e.g., masking) appropriately (Line 18–21), and eventually calls Ins
(Line 22–23) for locating the actual place to insert into an existing tree. Ins then
calls itself recursively if needed just like the traversal in QryTrav. The longest
traversal happens when it is inserted at the leaves level of the tree having m
nodes, hence the complexity is O(log m).

Finally, “Delete” mode of update, i.e., DelTrav, traverses the tree to find the
node to be deleted similar to Qry. This traversal can be done in parallel, results
in a complexity of O(m/p). The sub-routine Del in DelTrav performs the actual
deletion. It updates the pointers related to the normal node and the dual node
accordingly after finding the replacement node, which is in O(1) time. The step
of finding replacement node via Replc simply traverses a tree which can be done
in O(log m) time. To summarize, the complexity of the whole DelTrav algorithm
is O(m/p).

Parallel and Dynamic Structured Encryption 233

5.2 Experiments on Implementations

To demonstrate the applicability of RBT, we consider a privacy-preserving ver-
sion of decentralized social networks where user connections are represented by
graphs. The connections between users are encrypted by RBT, and are search-
able by the users possessing search tokens delegated by the host. As described
in Sect. 2.2, our scheme naturally supports “friends of friends” and “are Alice
and Bob friends” types of queries.

To evaluate the performance of our scheme we implemented RBT in C++

using Crypto++ 5.6.2 library for cryptographic primitives and Intel Threading
Building Blocks 4.2 Update 3 library for multi-threading. All PRFs are imple-
mented by HMAC-SHA256. All computations were performed locally in memory
(without network transfer). A distinctive feature of RBT over existing schemes
is that it supports non-interactive parallel queries and updates. Computations
are sequential unless specified.

The experiments were conducted on a machine with Intel Core i5-4590 at
3.50 GHz and 8.00 GB of memory running Windows 8.1. In each experiment,
we used RBT to encrypt a set of synthetic data or real-life data. For real-life
data, we used a graph [9] representing some Facebook social circles with 4039

Table 4. Timing for RBT (“//” denotes parallel computation)

Type Synthetic Synthetic Facebook

M 500 1000 4039

N 500 1000 4039

|δ| 125,000 500,000 176,468

Density 50% 50% 1.08%

Enc 88 s 451 s 110 s

QryTkn (Normal) 15µs 17µs 15µs

QryTkn (Meta) 12µs 12µs 12µs

Qry (Meta) 420µs 1173µs 5µs

Qry (Normal, //) 39µs 101µs 59µs

Qry (Normal) 64µs 168µs 94µs

UdtTkn (Add) 122µs 121µs 121µs

UdtTkn (Link) 139µs 137µs 141µs

UdtTkn (Delete) 14µs 20µs 12µs

UdtTkn (Unlink) 11µs 11µs 12µs

Udt (Add) 577µs 780µs 453µs

Udt (Delete, //) 29ms 89 ms 5 ms

Udt (Delete) 38ms 133 ms 9 ms

Udt (Link) 582µs 783µs 472µs

Udt (Unlink) 360µs 566µs 353µs

234 R.W.F. Lai and S.S.M. Chow

nodes and 88,234 undirected (i.e., 176,468 directed) edges. The edge density
is relatively small for this set of data. Hence, we also perform experiments on
synthetic data which better model other application scenarios. The synthetic
data contains graphs with 500 and 1000 nodes respectively with 50% of edge
density.

The timing for encryption, “Add” updates, and “Link” updates, are com-
puted by taking the average time needed for the respective operations for
building the encrypted database from scratch. The timing for queries, “Delete”
updates, and “Link” updates are computed by taking the average time needed
for 100 times of the respective operations selected at random. For the timing
of normal queries, the values are further divided by the number of responses
returned by each query.

Our implementations were hardly optimized, yet the results show the mod-
erate efficiency of our scheme; in particular, parallel computation effectively
reduces the time for queries and especially for deletion (Table 4).

6 Conclusion

Searchable symmetric encryption (SSE) has been extensively studied in recent
years. One can view the researches on designing SSE as finding a desirable trade-
off between functionalities, security, and efficiency. As shown in the literature,
devising an SSE scheme which simultaneously achieves a number of desirable
properties across these three domains is not an easy task. In this paper, we pre-
sented an SSE scheme on structured data supporting parallel traversal. Our aim
is to achieve optimal query efficiency while minimizing leakage and communica-
tion incurred by the updates.

The abstract data type supported by our SSE scheme can represent queries
over many common structured data. In particular, we consider an online social
network such as Facebook. The connections between users can be represented
by graphs, and common types of queries such as “friends of Alice” and “are
Alice and Bob friends” can be represented by neighbor and adjacency queries
respectively, which naturally correspond to the normal and meta queries over
our abstract data type.

Moreover, we demonstrated the practicality of our scheme by evaluating its
efficiency against both real-life graph data of online social network, and synthetic
data for graphs in general. We believe our work makes an important step in
advancing the field of SSE.

A Sub-routines in Our Construction

To make our scheme easier to understand, we modularize a number of operations
for traversal during a query, insertion, and (the traversal needed for) deletion.
Specifically, now we give the details of the operations1 performed in the sub-
routines QryTrav, Ins, Del, DelTrav, and Replc. Algorithms QryTrav and DelTrav

1 Our poster [8] suggested a preliminary idea of using tree structure, but gave no
details on the actual construction.

Parallel and Dynamic Structured Encryption 235

are invoked by Qry and “Del” mode of Udt respectively to traverse the binary
search trees. They are identical to ordinary tree traversal algorithms except that
the addresses of the children nodes need to be unmasked by using the traversal
key. Due to the nature of tree traversal, QryTrav and DelTrav are parallelizable.

Algorithm R ← QryTrav(tgt, tkey, ksrch):
1: if A[tgt] is free then
2: Return φ
3: end if
4: Compute h0 = Hs(ksrch, A[tgt].μa.rs)
5: Compute h1 = Ht(tkey, A[tgt].μa.rt)
6: Compute μs = A[tgt].μs ⊕ h0

7: Compute μt = A[tgt].μt ⊕ h1

8: Parse μt as (prt, chd0, k0, chd1, k1)
9: Set R0 ← QryTrav(chd0, k0, ksrch)

10: Set R1 ← QryTrav(chd1, k1, ksrch)
11: Return R = R0 ∪ R1 ∪ {μs}

Algorithm A′ ← DelTrav(tgt, tkey, dkey):
1: if A[tgt] is free then
2: Return A
3: end if
4: Compute h1 = Ht(tkey, A[tgt].μa.rt)
5: Compute h2 = Hd(dkey, A[tgt].μa.rd)
6: Compute μt = A[tgt].μt ⊕ h1

7: Compute μd = A[tgt].μd ⊕ h2

8: Parse μt as (prt, chd0, k0, chd1, k1)
9: Parse μd as (dual, kD)

10: Run A ← Del(dual, kD)
11: Run A ← DelTrav(chd0, k0, dkey)
12: Run A ← DelTrav(chd1, k1, dkey)
13: Remove tgt from A
14: Return A

Ins is identical to an ordinary tree insertion algorithm except that it uses the
traversal key to unmask the addresses of the children. Note that Ins determines
the position of the insertion based on the address, which is chosen at random.

Algorithm A′ ← Ins(root, tkeyroot, tgt, tkeytgt):
1: Compute h1 = Ht(tkeyroot, A[root].μa.rt)
2: Compute μt = A[root].μt ⊕ h1

3: Parse μt as (prt, chd0, k0, chd1, k1)
4: Set b = (addr > root)
5: if chdb = 0 then
6: Set A[root].μt.chdb ⊕= tgt
7: Set A[root].μt.kb ⊕= tkeytgt
8: Set A[tgt].μt.prt ⊕= root

236 R.W.F. Lai and S.S.M. Chow

9: else
10: Run A ← Ins(chdb, kb, tgt, tkeytgt)
11: end if
12: Output A

Del is identical to an ordinary tree deletion algorithm except that it uses the
traversal key to unmask the addresses of the children nodes, and uses the dual
key to unmask the addresses of the dual node. It also truly deletes the target node
by updating its children and parent to point to the replacement node, instead
of just copying the values as in some tree deletion algorithms, or just marked
as “deletion pending” which requires housekeeping later. The replacement node
is either the right-most left-sibling or the left-most right-sibling of the tree,
computed using the algorithm Replc.

Algorithm A′ ← Del(tgt, tkeytgt):
1: if A[tgt] is free then
2: Return A
3: end if
4: Compute h1 = Ht(tkeytgt, A[tgt].μa.rt)
5: Compute μt = A[tgt].μt ⊕ h1

6: Parse μt as (prt, chd0, k0, chd1, k1)
� Updating Replacement Node and its Neighbors

7: Sample b ← {0, 1}
8: Compute Δ ← replc(b, chdb, kb)
9: Parse Δ as (replc, tkeyreplc, μt

′)
10: Parse μt

′ as (prt′, chd′
0, k0

′, chd′
1, k1

′)
11: Set A[prt′].μt.chd1−b ⊕= replc ⊕ chd′

b

12: Set A[prt′].μt.k1−b ⊕= tkeyreplc ⊕ kb
′

13: Set A[chd′
b].μt.prt ⊕= replc ⊕ prt′

14: Set A[replc].μt.prt ⊕= prt′ ⊕ prt
15: Set A[replc].μt.chd0 ⊕= chd′

0 ⊕ chd0
16: Set A[replc].μt.k0 ⊕= k0

′ ⊕ k0
17: Set A[replc].μt.chd1 ⊕= chd′

1 ⊕ chd1
18: Set A[replc].μt.k1 ⊕= k1

′ ⊕ k1
� Updating Target Node and its Neighbors

19: Set b = (tgt > prt)
20: Set A[prt].μt.chdb ⊕= tgt ⊕ replc
21: Set A[prt].μt.kb ⊕= tkeytgt ⊕ tkeyreplc
22: Set A[chd0].μt.prt ⊕= tgt ⊕ replc
23: Set A[chd1].μt.prt ⊕= tgt ⊕ replc
24: Remove tgt from A
25: Return A

Algorithm (replc, tkeyreplc, μt) ← Replc(b, tgt, tkeytgt):
1: if A[tgt] is free then
2: Return (tgt, tkeytgt,05)
3: end if

Parallel and Dynamic Structured Encryption 237

4: Compute h1 = Ht(tkeytgt, A[tgt].μa.rt)
5: Compute μt = A[tgt].μt ⊕ h1

6: Parse μt as (prt, chd0, k0, chd1, k1)
7: if A[chd1−b] is free then
8: Return (tgt, tkeytgt, μt)
9: else

10: Return replc(b, chd1−b, k1−b)
11: end if

B Security Proof

Proof (of Theorem 1). The leakage of our scheme is implied by the capability of
the search keys skey, traversal key tkey, and dual keys dkey. Initially, with the
encrypted database, Le leaks the size of itself, namely |Q| + |R| + 2|δ|. Suppose
each of the |Q|+ |R|+2|δ| nodes has a unique identifier. Lq leaks upon a query q
the access pattern, or precisely all μs stored in the normal nodes corresponding
to (q; ·). It also leaks the identifiers of these nodes. Lu leaks upon an update
the type of the update. In addition, a “Link” update for d = (q; r) leaks the
identifiers of the normal nodes for (q; ·), and the identifiers of the dual nodes
for (·; r); an “Unlink” update for d = (q; r) leaks the identifiers of the normal
nodes for (q; ·) under the sub-tree rooted at the normal node for (q; r), and the
identifiers of the dual nodes for (·; r) under the sub-tree rooted at the dual node
for (q; r); a “Delete” update for (q; ∗) (resp. (∗; r)) leaks the identifiers of the
normal (resp. dual) nodes for (q; ∗) (resp. (∗; r)), as well the identifiers of the
corresponding dual (resp. normal) nodes of these nodes.

To prove the security of our scheme, we need to construct a simulator S
which interacts with an adversary A in the experiment IdealA,S(1λ) defined
in Definition 2. Due to space limitation, we provide the essential idea here, but
remark that the simulation is straightforward given the set of leakage functions
and follows the same structure of existing proofs [2,6,7].

The simulator simulates the encrypted database by random dictionaries of
appropriate sizes given by the leakage function Le. It simulates all PRF by ran-
dom functions, and all random oracles (RO) by maintaining and programming
the corresponding tables.

For each query/update, the respective leakage (Lq/Lu) reveals the identifiers
of some of the nodes stored in A. The simulator programs the corresponding RO
(e.g., Hs and Ht for queries) such that on input the corresponding simulated
key (e.g., skey) and randomness (e.g., rs) stored in μa of the entry, it produces
the suitable mask.

Finally, for answering the random oracle queries, it checks whether the answer
for this query to the random oracle is programmed to some particular value. If
so, it outputs the programmed value. Otherwise, it outputs a random value. The
only possibility that an adversary can distinguish the simulated database from
the real database is when it queries the random oracle for a valid pair of (key,
randomness), while the corresponding information is not yet revealed in any

238 R.W.F. Lai and S.S.M. Chow

queries or updates. However, since all simulated keys are produced by random
functions, the probability of having such collision is negligible. �

References

1. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 33

2. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R., Encryption, S.S.: Improved
definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

3. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216
4. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
5. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.

In: ACM Conference on Computer and Communications Security (CCS), pp. 310–
320 (2014)

6. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Financial Cryptography, pp. 258–274 (2013)

7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security (CCS), pp.
965–976 (2012)

8. Lai, R., Chow, S.: Structured encryption with non-interactive updates and parallel
traversal. In: IEEE International Conference on Distributed Computing Systems
(ICDCS), pp. 776–777 (2015)

9. Leskovec, J., Krevl, A., Datasets, S.: Stanford Large Network Dataset Collection,
June 2014. http://snap.stanford.edu/data

10. Reed, B.A.: The height of a random binary search tree. J. ACM 50(3), 306–332
(2003)

11. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

12. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS (2014)

13. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional
range search over encrypted cloud data with tree-based index. In: ASIACCS, pp.
111–122 (2014)

14. Wang, Q., He, M., Du, M., Chow, S.S.M., Lai, R.W.F., Zou, Q.: Searchable encryp-
tion over feature-rich data. IEEE Trans. Depend. Secure Comput. (to appear).
doi:10.1109/TDSC.2016.2593444

http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://snap.stanford.edu/data
http://dx.doi.org/10.1109/TDSC.2016.2593444

	Parallel and Dynamic Structured Encryption
	1 Introduction
	2 Our Dynamic Abstract Data Type
	2.1 Definition
	2.2 Instantiating Our Abstract Data Type

	3 Cryptography Background
	3.1 Basic Notations
	3.2 Pseudorandom Functions and Symmetric-Key Encryption
	3.3 Dynamic Symmetric Structured Encryption

	4 DSSE from Random Binary Tree
	4.1 Intuition
	4.2 High-Level Description
	4.3 Concrete Construction
	4.4 Security Analysis

	5 Efficiency Evaluation
	5.1 Complexities Analysis
	5.2 Experiments on Implementations

	6 Conclusion
	A Sub-routines in Our Construction
	B Security Proof
	References

